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Goal-oriented a posteriori error estimation for conforming and

nonconforming approximations with inexact solvers∗

Gouranga Mallik† Martin Vohraĺık‡§ Soleiman Yousef†

July 25, 2019

Abstract

We derive a unified framework for goal-oriented a posteriori estimation covering in particular
higher-order conforming, nonconforming, and discontinuous Galerkin finite element methods, as
well as the finite volume method. The considered problem is a model linear second-order elliptic
equation with inhomogeneous Dirichlet and Neumann boundary conditions and the quantity
of interest is given by an arbitrary functional composed of a volumetric weighted mean value
(source) term and a surface weighted mean (Dirichlet boundary) flux term. We specifically do
not request the primal and dual discrete problems to be resolved exactly, allowing for inexact
solves. Our estimates are based on H(div)-conforming flux reconstructions and H1-conforming
potential reconstructions and provide a guaranteed upper bound on the goal error. The overall
estimator is split into components corresponding to the primal and dual discretization and
algebraic errors, which are then used to prescribe efficient stopping criteria for the employed
iterative algebraic solvers. Numerical experiments are performed for the finite volume method
applied to the Darcy porous media flow problem in two and three space dimensions. They show
excellent effectivity indices even in presence of primal and dual algebraic errors and enable to
spare a large percentage of unnecessary algebraic iterations.

Key words: quantity of interest, a posteriori error estimate, guaranteed bound, inexact algebraic
solver, equilibrated flux, unified framework, adaptivity.

1 Introduction

Goal-oriented a posteriori error estimates are a powerful tool in numerical approximations of many
engineering problems since they provide relevant information about the error in a quantity of
interest rather than about the error measured in some norm. The quantity of interest is expressed
in terms of a functional Q(·). The technique of the estimates is based on the solution of an auxiliary
(dual) problem, adjoint to the original (primal) problem.

The dual weighted residual (DWR) method promoted by Becker and Rannacher [5], see also [3,
7, 22, 24, 33], the general framework by Prodhumme and Oden [36, 40], the approach of Maday and
Patera [31], multi-objective error estimation in [16, 23, 46], enhanced least-squares finite element
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methods by Chaudhry et al. [8], or the constitutive relation error (CRE) approach of Ladevèze et
al. [28, 30] and Rey et al. [42–44], see also the references therein, are very popular approaches to
goal-oriented error estimation; this can also be built in the discretization scheme as in Kergrene et
al. [27]. The obtained bounds are, however, often not guaranteed in the sense of yielding a fully
computable number that is rigorously greater than or equal to the goal error. Obtaining rigorous
guaranteed bounds is possible upon introducing the equilibrated flux approach closely related to the
CRE method. In particular, Ainsworth and Rankin [2] follow this path and develop and compare
a number of alternative approaches, in the context of a linear second-order elliptic problem, also
focusing on general inhomogeneous Dirichlet boundary conditions. Their idea is to split the error
into two components where the first error is bounded by a computable dual-weighted residual and
the second one, claimed small in [5], is estimated via equilibrated fluxes. An important focus whose
rigorous investigation has been started only recently is the theory for nonconforming, discontinuous
Galerkin, and mixed methods: let us cite in particular Mozolevski and Prudhomme [34] and Doleǰśı
et al. [13, 15]. Finally, to the best of our knowledge, with the exception of [13, 32, 42–44], all the
above-cited results rely on the assumption that both the primal and the dual discrete problems
are solved exactly. This may not be satisfied in practical large-scale simulations and, actually,
developing the theory not relying on such an assumption is a basis of full adaptivity including all
meshes, polynomial degrees, and solvers, cf., e.g., [4, 18, 37] and the references therein.

The present article develops a unified framework for goal-oriented a posteriori error estima-
tion for a model linear second-order elliptic equation. We consider inhomogeneous Dirichlet and
Neumann boundary conditions and a goal functional including the “most demanding” (according
to [3]) engineering application of the normal flux passing through some surface, unlike in most of
the papers [24, 33, 34, 36, 40] which concern the primal variable evaluation around a region (point
evaluation by regularization) or (point) evaluation of derivatives of the solution. We next apply
this framework to various finite element methods (conforming, nonconforming, and discontinuous
Galerkin) as well as to the finite volume method. We derive guaranteed goal-oriented a posteriori
error estimates based on equilibrated flux and potential reconstruction, cf. [6, 10, 17, 20, 39] and
the references therein, and treat the tricky “remainder” term in the goal error expression follow-
ing [28, 29]. Our approach is significantly different from the well-known dual-weighted residual
method [3, 5, 7, 22, 24, 33] and extends [34] upon also bounding essentially higher-order terms and
including the case where the continuous and discrete solutions lead to the same goal Q(u) = Q(uh).

The discretization of the primal and dual problems yields two linear algebraic systems. We
do not suppose here their exact resolution. This inexact solution of the linear systems influences
the goal error as well as its estimates. Following the ideas of [4, 18, 25, 32, 37] and the references
therein, we decompose the primal and dual estimates into estimates on discretization and algebraic
error components. We can then prescribe efficient stopping criteria for iterative solvers applied to
both primal and dual algebraic systems, balancing the two components.

This paper is organized as follows: Section 2 introduces setting and useful notation. Section 3
describes the model problem and the goal functional. Section 4 then establishes a posteriori error
estimates for the goal functional in an abstract framework. In Section 5, we then show how to
apply the framework to various discretization schemes. Finally, Section 6 proposes a fully adaptive
algorithm with a posteriori stopping criteria for the primal and dual solvers and illustrates the
theory by numerical experiments.

2 Setting

Let Ω ⊂ Rd, d = 2, 3 be a polygonal/polyhedral domain (open, bounded, and connected set) and
denote by Γ = ΓD∪ΓN with ΓD∩ΓN = ∅ the Lipschitz-continuous boundary ∂Ω of Ω. Throughout
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the paper, standard notation of Lebesgue and Sobolev spaces is employed. We denote by H1
uD

(Ω)
the subspace of H1(Ω) of functions whose trace on the boundary ΓD is a given function uD, and for
vanishing trace, we simply use the notation H1

D(Ω). The symbols ∇ and ∇· are used respectively
for the weak gradient and divergence. For a subdomain ω ⊂ Ω, we denote by (·, ·)ω the L2(ω)-inner
product, by ‖ · ‖ω the associated norm (we omit the index when ω = Ω), and by |ω| the Lebesgue
measure of ω.

Let Th be a conforming (matching) partition of Ω into nonempty closed triangles or rectangles
for d = 2 and tetrahedra or rectangular parallelepipeds for d = 3 such that Ω = ∪K∈ThK and
such that the intersection of two different elements is either an empty set, a vertex, an edge, or
a face. We call e an edge for d = 2 and face for d = 3 (in the sequel, we simply call e face).
The faces of an element K ∈ Th are collected in the set EK . We denote by Eh the set of all faces
of Th, by E int

h the set of interior ones, and by Eext
h the set of boundary ones. Suppose that each

boundary face lies entirely in ΓD or in ΓN and denote by ED
h the faces contained in ΓD and by

EN
h those contained in ΓN. A family of meshes {Th}h is parametrized by h := maxK∈T hK , where
hK stands for the diameter of K; we also denote by he the diameter of e ∈ Eh. Let Vh denote
the set of mesh vertices with subsets V int

h for interior vertices and Vext
h for boundary ones. Let VK

denote the vertices of the element K ∈ Th, VD
h the set of boundary vertices lying in the closure of

ΓD, and VN
h the remaining boundary vertices. For each element K ∈ Th and an each face e ∈ EK ,

we indicate by nK,e the unit normal vector to e pointing outward from K. For a given partition
Th of Ω, let H1(Th) := {ϕ ∈ L2(Ω);ϕ|K ∈ H1(K) ∀K ∈ Th} be the broken Sobolev space. For
ϕ ∈ H1(T ), define the jump [[ϕ]]e = ϕ|K − ϕ|L and the average {{ϕ}}e = 1

2 (ϕ|K + ϕ|L) across the
interior face e of the adjacent elements K and L (the orientation is not important in what follows).
Extend the definition of the jump and the average to face lying in boundary by [[ϕ]]e = ϕ|e and
{{ϕ}}e = ϕ|e for e ∈ Eext

h . We omit the subscript e for jump and average if there is no confusion.
For any vector-valued function, jump and average are understood component-wise.

We use Pp(K) (respectively, Qp(K)), p ≥ 0, to denote polynomials in K ∈ Th of total degree at
most p (respectively, at most p in each variable), and Pp(Th) and Qp(Th) to denote the correspond-
ing broken scalar-valued piecewise polynomial spaces. Following the Raviart–Thomas space [41] on
triangles and rectangles, and the Nédélec space [35] on tetrahedra and rectangular parallelepipeds
if d = 3, cf. also [45], we also define the Raviart–Thomas–Nédélec finite element space associated
with the partition Th of the domain Ω. This contains vector-valued piecewise polynomials that are
H(div ,Ω)-conforming, i.e., their normal trace is continuous, and take form

RTNp(Ω) := {vh ∈H(div ,Ω) : vh|K ∈ RTNp(K), ∀K ∈ Th}, (2.1)

where for triangular or tetrahedral partition RTNp(K) := [Pp(K)]d+xPp(K) and for rectangular
or rectangular parallelepipeds partition RTNp(K) := Qp+1,p(K)×Qp,p+1(K) and RTNp(K) :=
Qp+1,p,p(K) ×Qp,p+1,p(K) ×Qp,p,p+1(K) with Q·,·(K) and Q·,·,·(K) being the spaces of maximal
polynomial degree separately for each variable.

3 Model problem

We consider the linear boundary-value diffusion problem of finding u : Ω→ R such that

−∇· (K∇u) = f in Ω,

−K∇u·n = σN on ΓN, (3.1)

u = uD on ΓD,
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where K is a diffusion tensor, f is a source term, and σN and uD prescribe the Neumann and
Dirichlet boundary conditions, respectively. From the pressure head u, we define the Darcy velocity
σ := −K∇u. We also refer to u as potential and to σ as flux. We suppose that K is symmetric,
bounded, and uniformly positive definite. For simplicity, we assume that the data satisfy K ∈
[P0(Th)]d×d (i.e. K is piecewise constant on Th), f ∈ Pp(Th), uD ∈ Pp(ED

h ) ∩ H
1
2 (ΓD), and

σN ∈ Pp(EN
h ) on simplicial meshes, and similarly with Qp in place of Pp on meshes consisting of

rectangular parallelepipeds (i.e. the other data are piecewise p-degree polynomials). This avoids
the introduction of data oscillation terms. With an abuse of notation, any continuous piecewise
p-degree polynomial extension of uD to H1

uD
(Ω) is also denoted by uD.

The weak formulation of the problem (3.1) reads: find u ∈ H1
uD

(Ω) with u = u0 + uD, u0 ∈
H1

D(Ω), such that

(K∇u0,∇v) = (f, v)− (σN, v)ΓN
− (K∇uD,∇v) ∀v ∈ H1

D(Ω). (3.2)

In this article, we are interested in the goal functional

Q(v) :=
(
f̃ , v
)
−
(
K∇v·n, ũD

)
ΓD
, v ∈ H1(Th) (3.3)

for some given weight functions (sometimes called extractors) f̃ ∈ Pp(Th) and ũD ∈ Pp(ED
h ) ∩

H
1
2 (ΓD) (or with Qp in place of Pp). In (3.3), ∇ stands for the broken (elementwise) gradient

(∇v)|K := ∇(v|K); we assume therein that K∇v·n ∈ L1(ΓD) whenever ũD 6= 0.: As above,
any continuous piecewise p-degree polynomial extension of ũD to H1

ũD
(Ω) is again denoted by ũD

itself. We observe that the first term in (3.3) corresponds to the evaluation of the primal variable
(pressure) which can be localized by an appropriate weight function f̃ (possibly only defined on
the some mesh elements), and the second term corresponds to the normal flux passing through the
boundary surface ΓD with respect to the weight function ũD. Note that the weight function ũD

can be chosen as 1 on the surface ΓD in order to have physical normal flux over ΓD, or localized on
just some faces from ED

h . We analyze the above goal functional with the help of the dual problem
(note that K is symmetric) to (3.1) which consists in finding ũ : Ω→ R such that

−∇· (K∇ũ) = f̃ in Ω,

−K∇ũ·n = 0 on ΓN, (3.4)

ũ = ũD on ΓD,

and its weak formulation seeks ũ ∈ H1
ũD

(Ω) with ũ = ũ0 + ũD, ũ0 ∈ H1
D(Ω), such that

(K∇ũ0,∇v) = (f̃ , v)− (K∇ũD,∇v) ∀v ∈ H1
D(Ω). (3.5)

Existence and uniqueness of the weak solutions of both the primal and dual problems (3.2) and
(3.5) classically follow from Riesz representation theorem. Below, we often use the energy norm:
for v ∈ [L2(ω)]d,

‖v‖
K−

1
2 ;ω

:=

{∫
ω

∣∣∣K− 1
2 (x)v(x)

∣∣∣2 dx

} 1
2

.

If ω = Ω, we simply denote the above norm by ‖ · ‖
K−

1
2
.
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4 Goal-oriented error estimate

In this section we derive an abstract a posteriori estimate on the error in the goal functional.
Let respectively uih and ũih be arbitrary piecewise polynomial functions in Pp(Th) or Qp(Th), with
(uih, 1) = 0 and (ũih, 1) = 0 for the pure Neumann case ΓN = Γ; the developments of this section
hold for non-piecewise-polynomials but we stick to this for clarity. The index i will later denote
the algebraic solver iteration.

4.1 Potential and flux reconstructions and the Prager–Synge equality

We start with some basic definitions and results.

Definition 4.1 (Potential reconstruction). We call a potential reconstruction any piecewise poly-
nomial scalar-valued function sih (resp. s̃ih) locally constructed from uih (resp. ũih) which satisfies

sih ∈ H1(Ω) ∩ Pp(Th) or Qp(Th) (resp. s̃ih ∈ H1(Ω) ∩ Pp(Th) or Qp(Th), (4.1a)

(sih, 1) = 0 (resp. (s̃ih, 1) = 0) when ΓN = Γ, (4.1b)

sih|ΓD
= uD (resp. s̃ih|ΓD

= ũD) when ΓD 6= 0. (4.1c)

Note that one can write sih = sih,0 +uD with sih,0 ∈ H1
D(Ω)∩Pp(Th) or Qp(Th) and similarly for s̃ih.

Definition 4.2 (Equilibrated flux reconstruction). We call an equilibrated flux reconstruction any
piecewise polynomial vector-valued function σih (resp. σ̃ih) locally constructed from uih (resp. ũih)
which satisfies

σih ∈ RTNp(Ω) (resp. σ̃ih ∈ RTNp(Ω)), (4.2a)

∇·σih = f (resp. ∇·σ̃ih = f̃) in Ω, (4.2b)

σih·n = σN (resp. σ̃ih·n = 0) on ΓN when ΓN 6= ∅. (4.2c)

The classical result of Prager and Synge [39] implies:

Corollary 4.3 (Prager–Synge equality for the primal problem). Let u ∈ H1
uD

(Ω) be the solution
of (3.2) and let sih ∈ H1

uD
(Ω) be an arbitrary potential reconstruction following Definition 4.1. Let

σih ∈H(div,Ω) be an arbitrary equilibrated flux reconstruction of Definition 4.2. Then

‖K∇(u− sih)‖2
K−

1
2

+ ‖K∇u+ σih‖2
K−

1
2

= ‖K∇sih + σih‖2
K−

1
2
. (4.3)

A similar result to Corollary 4.3 holds for dual problem:

Corollary 4.4 (Prager–Synge equality for the dual problem). Let ũ ∈ H1
ũD

(Ω) be the solution

of (3.5) and s̃ih ∈ H1
ũD

(Ω) be an arbitrary potential reconstruction following Definition 4.1. Let

σ̃ih ∈H(div,Ω) be an arbitrary equilibrated flux reconstruction of Definition 4.2. Then

‖K∇(ũ− s̃ih)‖2
K−

1
2

+ ‖K∇ũ+ σ̃ih‖2
K−

1
2

= ‖K∇s̃ih + σ̃ih‖2
K−

1
2
. (4.4)
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4.2 Equivalent form of the goal functional

We now turn to the goal functional Q of (3.3). We start by the following equality:

Theorem 4.5 (Goal error equation). Let u and ũ be respectively the solutions of (3.2) and (3.5).
Let uih and ũih ∈ Pp(Th) or Qp(Th) be arbitrary discontinuous piecewise polynomial functions. Let
sih and s̃ih be the potential reconstructions of Definition 4.1, and σih and σ̃ih be the equilibrated flux
reconstructions of Definition 4.2. Then there holds

Q(u)−Q(uih) = −
(
K∇sih + σih,∇ũ

)
+
(
(K∇sih + σih)·n, ũD

)
ΓD

+Q(sih − uih). (4.5)

Proof. Using (3.2) together with ũ|ΓD
= ũD and (−K∇u·n, ũ)ΓN

= (σN, ũ)ΓN
and by applying

integration by parts, one can write

(K∇u,∇ũ) = − (∇·(K∇u), ũ) + (K∇u·n, ũ)∂Ω = (f, ũ) + (K∇u·n, ũD)ΓD
− (σN, ũ)ΓN

.

Next, using the decomposition u = u0 + uD, the weak formulation (3.5) with test function v = u0,
and the symmetry of K, the same left-hand side term can be written as

(K∇u,∇ũ) = (K∇u0,∇ũ) + (K∇uD,∇ũ) = (f̃ , u0) + (K∇uD,∇ũ).

Recall the goal functional (3.3) applied to u:

Q(u) = (f̃ , u)− (K∇u·n, ũD)ΓD
. (4.6)

Combining the above two equations, we obtain the representation of the normal flux term from
the goal functional Q(u) as

(K∇u·n, ũD)ΓD
= (f̃ , u0) + (K∇uD,∇ũ)− (f, ũ) + (σN, ũ)ΓN

. (4.7)

With the normal flux identity (4.7), the goal functional (4.6) can be written as

Q(u) = (f̃ , uD)− (K∇uD,∇ũ) + (f, ũ)− (σN, ũ)ΓN
. (4.8)

Definition 4.2 of the equilibrated flux σih further yields, also employing that ũ on ΓD equals ũD,

Q(u) = (f̃ , uD)− (K∇uD,∇ũ)− (σih,∇ũ) + (σih·n, ũD)ΓD
. (4.9)

The identity of the goal functional (4.9) and the definition of Q(sih) then lead to the goal error in
the potential sih

Q(u)−Q(sih) = −(f̃ , sih,0)− (K∇uD,∇ũ)− (σih,∇ũ) +
(
(K∇sih + σih)·n, ũD

)
ΓD
,

while using that sih = sih,0 + uD. Adding and subtracting Q(uih) implies

Q(u)−Q(uih) = −(f̃ , sih,0)− (K∇uD,∇ũ)− (σih,∇ũ) +
(
(K∇sih + σih)·n, ũD

)
ΓD

+Q(sih − uih).

(4.10)

Observe that here, the first and the last terms only depend on available discrete quantities, and
in the two middle terms, the first arguments are also known. Now, by choosing the test function
v = sih,0 ∈ H1

D(Ω)∩Pp(Th) or Qp(Th) in the weak formulation (3.5) and using the symmetry of K,
we infer that

(f̃ , sih,0) + (K∇uD,∇ũ) = (K∇ũ,∇sih,0) + (K∇ũ,∇uD) = (K∇ũ,∇sih). (4.11)

Finally, by combining the above expressions (4.10) and (4.11) with the symmetry of K, we obtain
the final goal error expression (4.5).
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Remark 4.6 (Comparison with [34, Theorem 1]). For the case of a goal functional without normal
flux, i.e. ũD = 0, Mozolevski and Prudhomme in [34, Theorem 1] propose the error representation
with respect to a discontinuous finite element approximation uih ∈ Pp(Th) as

Q(u)−Q(uih) = (K∇uih + σih,K
−1σ̃ih)−

∑
e∈Eh

(
[[uih]], σ̃ih·ne

)
e

− (K∇uih + σih,∇ũ+K−1σ̃ih) +
∑
e∈Eh

(
[[uih]], (K∇ũ+ σ̃ih)·ne

)
e
, (4.12)

where the first two terms provide asymptotic a posteriori estimator for the goal error in view of the
higher order convergence rate of the last two terms which are disregarded. Moreover, the article
excludes the case Q(u) = Q(uih) in which the asymptotic estimator may overestimate the error.

4.3 A posteriori error estimate of the goal functional

We now present our abstract framework for the estimation of the error in the goal functional. We
start by the following simple estimate based on Theorem 4.5 and Corollary 4.4:

Remark 4.7 (Simple estimate). Adding and subtracting (K∇sih+σih,∇s̃ih) in the right-hand side
of (4.5) yields

Q(u)−Q(uih) = − (K∇sih + σih,∇(ũ− s̃ih))− (K∇sih + σih,∇s̃ih)

+
(
(K∇sih + σih)·n, ũD

)
ΓD

+Q(sih − uih).
(4.13)

Corollary 4.4 yields ‖K∇(ũ − s̃ih)‖
K−

1
2
≤ ‖K∇s̃ih + σ̃ih‖K− 1

2
. This and the Cauchy–Schwarz

inequality lead to an a posteriori error estimate of (4.13) as

|Q(u)−Q(uih)| ≤ ‖K∇sih + σih‖K− 1
2
‖K∇s̃ih + σ̃ih‖K− 1

2

+
∣∣∣−(K∇sih + σih,∇s̃ih) +

(
(K∇sih + σih)·n, ũD

)
ΓD

+Q(sih − uih)
∣∣∣ . (4.14)

Estimate (4.14) may turn out quite precise in many cases but it has been observed by Ladevèze
et al. [28–30] for the linear elasticity problem that it can overestimate the error. We thus modify
the simple a posteriori estimate (4.14) following Ladevèze et al. [28–30]. Let

σ̃i,mh :=
1

2

(
σ̃ih −K∇s̃ih

)
(4.15)

be the average of the dual flux reconstruction of Definition 4.2 and of the gradient of the dual
potential reconstruction of Definition 4.1. Adding and subtracting (K∇sih+σih,K

−1σ̃i,mh ) in (4.5)
leads to:

Theorem 4.8 (Abstract a posteriori estimate). Let u and ũ be respectively the solutions of (3.2)
and (3.5). Let uih and ũih ∈ Pp(Th) or Qp(Th) be respectively arbitrary discontinuous piecewise
polynomial functions. Let sih and s̃ih be the potential reconstructions of Definition 4.1, and σih and

σ̃ih be the equilibrated flux reconstructions of Definition 4.2. Let finally σ̃i,mh be the average flux
reconstruction of (4.15). Then, there holds∣∣∣Q(u)−Q(uih)−

(
K∇sih + σih,K

−1σ̃i,mh

)∣∣∣
≤ 1

2
‖K∇sih + σih‖K− 1

2
‖K∇s̃ih + σ̃ih‖K− 1

2
+
∣∣∣((K∇sih + σih)·n, ũD

)
ΓD

+Q(sih − uih)
∣∣∣ . (4.16)
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Proof. Adding and subtracting (K∇sih + σih,K
−1σ̃i,mh ) in the right-hand side of the error repre-

sentation (4.5) yields

Q(u)−Q(uih) = −
(
K∇sih + σih,∇ũ+K−1σ̃i,mh

)
+
(
K∇sih + σih,K

−1σ̃i,mh

)
+
(
(K∇sih + σih)·n, ũD

)
ΓD

+Q(sih − uih). (4.17)

By Definition (4.15) of the average flux σ̃i,mh , we observe that

‖K∇ũ+ σ̃i,mh ‖
2

K−
1
2

=
1

4
‖K∇(ũ− s̃ih) +

(
K∇ũ+ σ̃ih

)
‖2
K−

1
2

=
1

4
‖K∇(ũ− s̃ih)‖2

K−
1
2

+
1

4
‖K∇ũ+ σ̃ih‖2

K−
1
2

+
1

2
(K

1
2∇(ũ− s̃ih),K

1
2∇ũ+K−

1
2 σ̃ih). (4.18)

The symmetry of K, the Green formula, (3.5) which implies that −K∇ũ ∈ H(div ,Ω) with
divergence −∇· (K∇ũ) = f̃ , (4.2b), (4.1c), and (4.2c) lead to

(K
1
2∇(ũ− s̃ih),K

1
2∇ũ+K−

1
2 σ̃ih) = (∇(ũ− s̃ih),K∇ũ+ σ̃ih)

= −
(
ũ− s̃ih,∇·(K∇ũ+ σ̃ih)

)
+ (ũ− s̃ih, (K∇ũ+ σ̃ih)·n)∂Ω = 0.

This and the Prager–Synge equality (4.4) that we employ in (4.18) lead to

‖K∇ũ+ σ̃i,mh ‖
2

K−
1
2

=
1

4
‖K∇s̃ih + σ̃ih‖2

K−
1
2
. (4.19)

Moving the second term of the right-hand side of (4.17) to the left-hand side and applying the
Cauchy–Schwarz inequality together with (4.19) concludes the proof.

Remark 4.9 (Modified goal error). It is claimed and numerically illustrated in [28–30], see also

the references therein, that the modified goal error
∣∣∣Q(u)−Q(uih)−

(
K∇sih + σih,K

−1σ̃i,mh

)∣∣∣ is

often smaller than the original goal error |Q(u) − Q(uih)|. This is, however, not always the case,
as we illustrate it numerically in Section 6.4 below. The illustration in Section 6.4, though, indeed
shows that modified estimate of the modified error (4.16) is much sharper than the simple estimate
of the error (4.14) (in terms of effectivity indices). Please also note that, unfortunately, both goal
estimators (4.14) and (4.16) can be nonzero while bounding a zero goal error, see Section 6.5 below.

Remark 4.10 (Galerkin orthogonality). The derivation of estimate (4.16) does not involve any
Galerkin orthogonality. This is replaced here by the necessity to obtain an equilibrated flux recon-
struction in the sense of Definition 4.2, see in particular (4.2b).

One specific advantage of our approach is that one can consider same or different (order of)
finite element approximations of the primal and dual problems. This stands in contrast to usual
residual-type estimators, cf., e.g., [33] and the references therein that use the Galerkin orthogonality
(often one of the primal and dual discrete spaces should be strictly contained in the other discrete
space).

4.4 Discretization and algebraic error flux reconstructions

We will below consider numerical discretizations of (3.2) and (3.5) with inexact solutions of the
arising linear systems. In such a context, it is not obvious at all to obtain (4.2b). We now outline
a framework allowing to do so, following Papež et al. [37] and the references therein.
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The idea is to split the flux reconstruction σih of Definition 4.2 to a discretization flux recon-
struction σih,disc and an algebraic error flux reconstruction σih,alg. The latter reconstruction has
to disappear for an exact solver, and is solely defined from the algebraic residual of the discrete
primal problem represented by a discontinuous piecewise polynomial rih ∈ Pp(Th) or rih ∈ Qp(Th).
A similar decomposition is performed for the dual problem:

Assumption 4.11 (Discretization flux reconstruction). There exist a piecewise polynomial vector-
valued function σih,disc (resp. σ̃ih,disc) locally constructed from uih and rih (resp. ũih and r̃ih) which
satisfies

σih,disc ∈ RTNp(Ω) (resp. σ̃ih,disc ∈ RTNp(Ω)), (4.20a)

∇·σih,disc = f − rih (resp. ∇·σ̃ih,disc = f̃ − r̃ih) in Ω, (4.20b)

σih,disc·n = σN (resp. σ̃ih,disc·n = 0) on ΓN when ΓN 6= ∅. (4.20c)

Assumption 4.12 (Algebraic error flux reconstruction (lifting of the algebraic residual)). There
exists an algebraic error flux reconstruction σih,alg (resp. σ̃ih,alg) cheaply constructed from rih (resp.

r̃ih) which satisfies

σih,alg ∈ RTNp(Ω) (resp. σ̃ih,alg ∈ RTNp(Ω)), (4.21a)

∇·σih,alg = rih (resp. ∇·σ̃ih,alg = r̃ih) in Ω, (4.21b)

σih,alg·n = 0 (resp. σ̃ih,alg·n = 0) on ΓN when ΓN 6= ∅. (4.21c)

Assumption 4.11 is verified in all the applications below. Assumption 4.12 can on its turn be
verified independently of the numerical discretization and the algebraic solver at hand following
Papež et al. [37]. We provide a brief outline of this procedure in Appendix 8. With these decom-
positions, the goal-oriented a posteriori error estimate of Theorem 4.8 can further distinguish the
error components in terms of numerical discretization and linear algebra:

Theorem 4.13 (A posteriori error estimate distinguishing the discretization and algebraic error
components). Let the hypotheses of Theorem 4.8 be satisfied and let Assumptions 4.11 and 4.12
hold. Then∣∣∣Q(u)−Q(uih)−

(
K∇sih + σih,K

−1σ̃i,mh

)∣∣∣
≤ 1

2

(
‖K∇sih + σih,disc‖K− 1

2
+ ‖σih,alg‖K− 1

2

)(
‖K∇s̃ih + σ̃ih,disc‖K− 1

2
+ ‖σ̃ih,alg‖K− 1

2

)
+
∣∣∣((K∇sih + σih,disc)·n, ũD

)
ΓD

∣∣∣+
∣∣∣(σih,alg·n, ũD

)
ΓD

∣∣∣+
∣∣Q(sih − uih)

∣∣ . (4.22)

5 Applications to discretization methods

We show now the applications of the a posteriori estimate established in Section 4 to various finite
element and finite volume methods.

Here and throughout the next sections, the construction of the discrete potential s̃ih ∈ H1
ũD

(Ω)

of Definition 4.1 and of the reconstructed flux σ̃ih ∈ RTNp(Ω) of Definition 4.2 related to the
dual problem are obtained exactly in the same way as the constructions of sih ∈ H1

uD
(Ω) and

σih ∈ RTNp(Ω) related to the primal problem by setting σN = 0 on ΓN, and replacing uD by ũD

and f by f̃ . Similarly, we henceforth only present details on simplicial meshes Th.

9



5.1 Conforming finite elements

In this section, we describe the conforming finite element method and the the corresponding flux
reconstructions. Let Vh := Pp(Th)∩H1

D(Ω). The discrete formulation of (3.2) seeks uh,0 ∈ Vh such
that

(K∇uh,0,∇vh) = (f, vh)− (σN, vh)ΓN
− (K∇uD,∇vh) ∀vh ∈ Vh (5.1)

and one sets uh := uh,0 + uD.
Let ψlh, 1 ≤ l ≤ Nh, form a basis of Vh. Then the discrete problem (5.1) is equivalent to solving

a system of linear algebraic equations with a symmetric positive definite matrix: find Uh ∈ RNh

such that
AUh = Fh, (5.2)

where

(A)lm := (K∇ψmh ,∇ψlh),

(Fh)l := (f, ψlh)− (σN, ψ
l
h)ΓN

− (K∇uD,∇ψlh).

Then uh,0 :=
∑Nh

m=1(Uh)mψ
m
h ∈ Vh. Let Uih ∈ RNh be an arbitrary approximation of the exact

solution Uh of (5.2) which corresponds to an arbitrary approximation uih,0 of (5.1) with uih,0 =∑Nh
m=1(Uih)mψ

m
h ∈ Vh; then uih := uih,0 + uD. The algebraic residual vector is

Rih := Fh − AUih. (5.3)

Following [37, 38], we associate Rih with an elementwise discontinuous polynomial rih of degree p,
vanishing on the Dirichlet boundary ΓD. Let N l

h be the number of elements forming the support
of the basis function ψlh, 1 ≤ l ≤ Nh. For each fixed element K ∈ Th, we define rih|K ∈ Pp(K) by

(rih, ψ
l
h)K =

(Rih)l

N l
h

, rih|∂K∩ΓD
= 0, (5.4)

for all basis functions ψlh of the space Vh non-vanishing on K. Such rih satisfies (Rih)l = (rih, ψ
l
h), 1 ≤

l ≤ Nh, and the algebraic relation (5.3) yields

(rih, vh) = (f, vh)− (σN, vh)ΓN
− (K∇uih,∇vh) ∀vh ∈ Vh. (5.5)

In view of the fact that uih is conforming since Vh ⊂ H1
D(Ω), we can directly set sih := uih to

obtain a potential reconstruction in the sense of Definition 4.1. As for the flux reconstruction in
the sense of Definition 4.2, let ψa

h ∈ P1(Th) ∩ H1(Ω) stand for the hat basis function associated
with a vertex a ∈ Vh. For all vertices a ∈ Vh, let T a

h be the patch of elements of Th that
share a. Moreover, ωa

h is the corresponding open subdomain, forming the support of hat basis

function ψa
h . LetRTNN,0

p (ωa
h ) be the subspace ofRTNp(Ω) restricted to ωa

h with zero normal flux
through ∂ωa

h for an interior vertex a ∈ V int
h or a vertex in the interior of the Neumann boundary

a ∈ VN
h and zero normal flux through that part of ∂ωa

h which lies inside Ω and on ΓN for VD
h . For

interior vertices, let RTNN,σN
p (ωa

h ) := RTNN,0
p (ωa

h ), whereas for boundary vertices, we also need

the space RTNN,σN
p (ωa

h ) where the normal component over ΓN is imposed by the projection of
σNψ

a
h to piecewise p-degree polynomials. Let P∗p(T a

h ) be the subspace of discontinuous piecewise

polynomials Pp(T a
h ) with zero mean on ωa

h when a ∈ V int
h or a ∈ VN

h , and Pp(T a
h ) otherwise.

Then, the discretization flux reconstruction σih,disc is computed by the following local patchwise
problems, see [6, 10, 12, 37] for more details:
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Definition 5.1 (Discretization flux reconstruction σih,disc). For all vertices a ∈ Vh, define σi,ah,dis ∈
RTNN,σN

p (ωa
h ) and γah ∈ P∗p(T a

h ) by

(σi,ah,dis,vh)ωa
h
−(γah ,∇·vh)ωa

h
= −(ψa

hK∇uih,vh)ωa
h

∀vh ∈ RTNN,0
p (ωa

h ), (5.6a)

(∇·σi,ah,dis, qh)ωa
h

= (fψa
h − rihψa

h −K∇uih·∇ψa
h , qh)ωa

h
∀qh ∈ P∗p(T a

h ). (5.6b)

Then set
σih,dis :=

∑
a∈Vh

σi,ah,dis ∈ RTNp(Ω). (5.6c)

The Neumann compatibility condition for (5.6) amounts to

(f − rih, ψa
h )− (σN, ψ

a
h )ΓN

− (K∇uih,∇ψa
h ) = 0 ∀a ∈ V int

h ∪ VN
h (5.7)

and follows from (5.5).
In view of the definition of the residual rih in (5.4) and its key property (5.5) together with

Definition 5.1, there holds, cf. [6, 10, 12, 37]:

Lemma 5.2 (Assumption 4.11). Let the pair (uih, r
i
h) be given by (5.1)–(5.4) and σih,disc by Defi-

nition 5.1. Then Assumption 4.11 holds.

5.2 Nonconforming finite elements

Let Vh stand for the space of functions vh from Pp(Th), p ≥ 1, satisfying the jump orthogonality

([[vh]]e, qh)e = 0 ∀qh ∈ Pp−1(e), ∀e ∈ E int
h ∪ ED

h . (5.8)

The nonconforming finite element discretization of (3.2) looks for uh,0 ∈ Vh such that

(K∇uh,0,∇vh) = (f, vh)− (σN, vh)ΓN
− (K∇ūD,∇vh) ∀vh ∈ Vh, (5.9)

where ūD is the nonconforming finite element approximation of the Dirichlet datum uD; one sets
uh := uh,0 + ūD. Energy a posteriori error estimates are derived in particular in [1, 20], see also
the references therein. Algebraically, (5.9) is rewritten as: find Uh ∈ RNh such that AUh = Fh, and
the algebraic residual vector Rih := Fh − AUih is used to construct an elementwise discontinuous
polygonal rih of degree p vanishing on ΓD as above, such that (5.5) holds.

Since the lowest-order conforming hat functions ψa
h belong to the nonconforming space Vh for

all vertices a ∈ V int
h ∪ VN

h , so that (5.7) holds, the discretization flux reconstruction σih,disc can be
prescribed by Definition 5.1. Hence, it follows immediately that:

Lemma 5.3 (Assumption 4.11). Let the pair (uih, r
i
h) be as described above and let σih,disc be given

by Definition 5.1. Then Assumption 4.11 is satisfied.

Remark 5.4 (Alternative flux reconstruction in the lowest-order case). Let f ∈ P0(Th) and σN ∈
P0(EN

h ) be piecewise constant for simplicity. Then, for the case p = 1, one can simply prescribe
the flux reconstruction σh,disc element by element as follows. For K ∈ Th, define fh(x)|K :=
f |K
d (x−xK) with xK the barycenter of K. For each face e ∈ EK , let aK,e be the vertex of K opposite

to e. Let T eh stand for the patch of (one or two) elements sharing the face e. Following [18, 19],
set

σih,disc|K := −K∇uih|K + fh(x)|K −
∑
e∈EK

|T eh |−1 Rie
d

(x− aK,e), (5.10)
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where Rie := (f, ψe)− (σN, ψe)ΓN
− (K∇uih,∇ψe) for all e ∈ E int

h ∪ EN
h , with ψe being the face basis

functions of Vh for p = 1. The algebraic residual function is then elementwise constant and defined
by rih|K :=

∑
e∈EK |T

e
h |−1Rie. It can be verified that this construction also satisfies Assumption 4.11

(actually σih,disc ∈ RTN0(Ω)), see [18, Lemma 6.5].

There are numerous possibilities to obtain a potential reconstruction in the sense of Defini-
tion 4.1. The following is a slightly cheaper variant of [20, Construction 3.8 and Remark 3.10],
where (p+ 1)-degree piecewise polynomials are used in place of the present sih ∈ H1(Ω) ∩ Pp(Th):

Definition 5.5 (Potential reconstruction by local minimizations). For an interior vertex a ∈ V int
h ,

let V D,0(ωa
h ) := Pp(T a

h ) ∩H1
0 (ωa

h ). For a boundary vertex a ∈ Vext
h , let V D,0(ωa

h ) be the subspace
of Pp(T a

h ) ∩ H1(ωa
h ) with zero trace on that part of ∂ωa

h which lies inside Ω and on ΓD. For
interior vertices, let V D,uD(ωa

h ) := V D,0(ωa
h ), whereas for boundary vertices, we also need the

space V D,uD(ωa
h ) where the trace on ΓD is imposed by the projection of uDψ

a
h to piecewise p-degree

polynomials. We define si,ah ∈ V
D,uD(ωa

h ) such that

(K∇si,ah ,∇vh)ωa
h

= (K∇(ψauh),∇vh)ωa
h

∀vh ∈ V D,0(ωa
h ), (5.11a)

and the potential reconstruction is obtained by

sih :=
∑
a∈Vh

si,ah . (5.11b)

It is also possible to prescribe directly the degrees of freedom, without any solution of local
problems, following [26] and the references therein:

Definition 5.6 (Potential reconstruction by local averaging). Let the averaging operator Iav :
Pp(Th)→ Pp(Th) ∩H1

uD
(Ω) be such that, for any vh ∈ Pp(Th), the values of Iav(vh) are prescribed

at the Lagrange interpolation nodes x of the conforming finite element space Pp(Th) ∩H1
uD

(Ω) by

Iav(vh)(x) :=


1

card(T x
h )

∑
K∈T x

h

(vh|K)(x) x ∈ Ω,

uD(x) x ∈ ΓD,

(5.12)

where T x
h regroups all the mesh elements K ∈ Th sharing x. The potential reconstruction is given

by
sih := Iav(uih). (5.13)

5.3 Discontinuous Galerkin elements

In this section, we consider the discontinuous Galerkin method for problem (3.2). For non-negative
weights wK∓,e that can be chosen as wK∓,e = (δK,e+ + δK,e−)−1δK,e± with δK,e± = nteK|K±ne,
define the weighted average of v on interior face e ∈ E int

h by {{v}}w :=
(
wK+,ev|K+ + wK−,ev|K−

)
and on boundary face e ∈ Eext

h with e = ∂K ∩Γ by {{v}}w := v|K . Then the discontinuous Galerkin
method seeks uh ∈ Vh := Pp(Th) with p ≥ 1 such that

(K∇uh,∇vh)−
∑

e∈E inth ∪E
D
h

{
({{K∇uh·n}}w, [[vh]])e + ϑ({{K∇vh·n}}w, [[uh]])e − ξ

γK,e

he
([[uh]], [[vh]])e

}

= (f, vh)− (σN, vh)ΓN
−
∑
e∈EDh

{
ϑ (uD,K∇vh·n)e − ξ

γK,e

he
(uD, vh)e

}
∀vh ∈ Vh, (5.14)
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where ξ is a sufficiently large positive penalty parameter, ϑ ∈ {−1, 0, 1}, and the penalty coeffi-
cient γK,e is defined on interior faces e as γK,e := (δK,e+ + δK,e−)−1δK,e+δK,e− and as γK,e :=
δK,e on boundary faces. Denote the basis functions of Vh by ψK,j for all K ∈ Th and all
j ∈ {1, . . . , N}, N := dim(Pp(K)). Then the matrix formulation of (5.14) is: find Uh ∈ Rcard(Th)×N

such that

AUh = Fh (5.15)

and the algebraic residual equation on iteration i writes

Rih := Fh − AUih. (5.16)

We finally define the algebraic residual function rih ∈ Pp(Th) by, for element K ∈ Th and j ∈
{1, . . . , N},

(rih, ψK,j)K = (Rih)K,j . (5.17)

We can obtain a discretization flux reconstruction σih,dis ∈ RTNp(Ω) by Definition 5.1 when
the parameter ϑ = 0, which ensures the Neumann compatibility condition (5.7); indeed, it is enough
to consider vh = ψa

h in (5.14) in this case. For ϑ = −1, 1, such a construction is also possible after
a slight modification of the broken gradient ∇uih into the so-called discrete gradient, cf. [11, 20].
One can also directly prescribe the degrees of freedom of the discretization flux reconstruction
σih,disc following [14, 17, 18] as follows:

Definition 5.7 (Flux reconstruction by direct prescription). Let in this definition [[uih]] := uih −
uD on Dirichlet boundary faces e ∈ ED

h . For given uih ∈ Pp(Th), define the discretization flux
reconstruction σih,dis ∈ RTNp(Ω) such that, for all K ∈ Th,

(σih,dis·ne, ve)e := (−{{K∇uih·ne}}w + ξ
γK,e

he
[[uih]], ve)e ∀ve ∈ Pp(e), ∀e ∈ EK ∩ (E int

h ∪ ED
h ),

(5.18)

(σih,dis·ne, ve)e := (σN, ve)e ∀ve ∈ Pp(e), ∀e ∈ EK ∩ EN
h , (5.19)

(σih,dis, th)K := −(K∇uih, th)K + ϑ
∑

e∈EK\ENh

(χK,e[[u
i
h]],Kth·ne)e ∀th ∈ [Pp−1(K)]d, (5.20)

where χK,e = wK,e if e ∈ E int
h and χK,e = 1 if e ∈ Eext

h .

Assumption 4.11 now follows from the definition of discretization flux reconstruction and the
definition of residual function rih:

Lemma 5.8 (Assumption 4.11). Let the pair (uih, r
i
h) be prescribed by (5.14)–(5.17). Let σih,disc

be given by Definition 5.1 when ϑ = 0 or by Definition 5.7 for all ϑ ∈ {−1, 0, 1}. Then Assump-
tion 4.11 is satisfied.

Finally, the potential reconstructions sih can be obtained by either Definition 5.5, or by Defini-
tion 5.6.
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5.4 Finite volumes

This section presents a general finite volume approximation for problem (3.2). Finite volumes seek,
cf. [21], the discrete pressure ūh ∈ P0(Th) associated with Uh := (ūh|K)K∈Th such that∑

e∈EK

ΨK,e(Uh) = (f, 1)K ∀K ∈ Th, (5.21)

where ΨK,e(Uh) is any conservative finite volume flux function for each face e of an element K ∈ Th,
defined from the discrete pressures Uh. The algebraic residual equation simply reads [18, 25] as

RiK := (f, 1)K −
∑
e∈EK

ΨK,e(Uih) ∀K ∈ Th. (5.22)

The piecewise constant residual function rih ∈ P0(Th) is then defined by

rih|K := RiK/|K|. (5.23)

Following [18, 25] and the references therein, we trivially set:

Definition 5.9 (Flux reconstruction by direct prescription). Define σih,dis ∈ RTN0(Ω) by

(σih,dis·ne, 1)e := ΨK,e(Uih) ∀e ∈ EK , ∀K ∈ Th. (5.24)

We then immediately have:

Lemma 5.10 (Assumption 4.11). Let the pair (ūih, r
i
h) be given by (5.21)–(5.23) and σih,disc by

Definition 5.9. Then Assumption 4.11 holds with p = 0.

The approximate finite volume solution ūih ∈ P0(Th) is only piecewise constant. Therefore,
to compute the a posteriori estimate (4.16), we first construct a postprocessed approximation
uih ∈ P2(Th) that is defined elementwise following [18, 25] and the references therein as

−K∇uih|K ·ne =
ΨK,e(Uih)

|e|
∀e ∈ EK , ∀K ∈ Th,

(uih, 1)K
|K|

= ūih|K ∀K ∈ Th.

Then, we set sih := Iav(uih) ∈ P2(Th) to obtain the potential reconstruction in the sense of Defini-
tion 4.1.

Remark 5.11 (Mixed finite elements). Application to mixed finite elements is also simply possible
following [18, 20].

6 Numerical experiments

In this Section, we consider the application of the goal-oriented a posteriori error estimates of
Theorems 4.8 and 4.13 to a finite volume method of Section 5.4. We also numerically illustrate the
difference of the goal estimate of Theorem 4.8 with respect to the simple estimate of Remark 4.7
for the nonconforming finite element method of Section 5.2 and present an example where both
lead to unsatisfactory results.
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Denote the approximate goal functional by Qih := Q(uih) + (K∇sih +σih,K
−1σ̃i,mh ). We realize

the estimator (4.16) of Theorem 4.8 as a product of a primal estimator ηih := ‖K∇sih + σih‖K− 1
2

and a dual estimator η̃ih := ‖K∇s̃ih + σ̃ih‖K− 1
2
. Then the goal estimate (4.16) reads

eih := |Q(u)−Qih| ≤
ηih η̃

i
h

2
+
∣∣∣((K∇sih + σih)·n, ũD

)
ΓD

+Q(sih − uih)
∣∣∣ =: ηih,goal.

The finite volume method we consider is defined on a possibly nonmatching mesh of general
polygonal or polyhedral elements, popular in porous media applications. To cast this setting in
the framework of the present paper, we follow [48] and in particular suppose that there exists a
virtual simplicial submesh of the polytopal mesh which is matching, shape-regular, and such that
any polytopal element is covered by a patch of simplices. For a fast evaluation of the estimators
ηih and η̃ih, we proceed as in [48, Theorem 3.12]. Following Theorem 4.13, the error components
are then distinguished as

ηih ≤ ηih,disc + ηih,alg where ηih,disc := ‖K∇sih + σih,disc‖K− 1
2

and ηih,alg := ‖σih,alg‖K− 1
2
, (6.1a)

η̃ih ≤ η̃ih,disc + η̃ih,alg where η̃ih,disc := ‖K∇s̃ih + σ̃ih,disc‖K− 1
2

and η̃ih,alg := ‖σ̃ih,alg‖K− 1
2
. (6.1b)

Moreover, these estimators are localized as

ηih,disc,K := ‖K∇sih + σih,disc‖K− 1
2 ;K

, ηih,alg,K := ‖σih,alg‖K− 1
2 ;K

,

η̃ih,disc,K := ‖K∇s̃ih + σ̃ih,disc‖K− 1
2 ;K

, η̃ih,alg,K := ‖σ̃ih,alg‖K− 1
2 ;K

,

so that we have ηih,• =
{∑

K∈Th(ηih,•,K)2
} 1

2
and η̃ih,• =

{∑
K∈Th(η̃ih,•,K)2

} 1
2

where • = disc, alg.

For the numerical examples below, we apply Algorithm 1 which includes mesh adaptation as
well as adaptive stopping criteria for both the primal and dual linear algebraic solvers, similarly
to [32].

6.1 Regular solution, uniform mesh refinement, and inexact solvers

In this test, we consider a two-dimensional problem from [34] of form (3.1) with Ω = (0, 1)× (0, 1),
ΓD = ∂Ω, uD = 0, K = Id, and the load term f given such that the (regular) exact solution reads

u(x, y) = 104x(1− x)y(1− y) exp
(
−100

(
(x− 0.75)2 + (y − 0.75)2

))
. (6.3)

Note that f is not piecewise polynomial here; we neglect the data oscillation in the primal problem.
The goal functional is chosen as

Q(u) =
1

|ω|

∫
ω
udx =

(
f̃ , u

)
Ω
, f̃ =

χω
|ω|

, (6.4)

where ω := {(x, y) ∈ Ω : 1.5 ≤ x+y ≤ 1.75}. In other words, the goal functional is the mean value
of the pressure in the strip ω, where the right-hand side function f , the solution u, and gradient
of u exhibit large changes. The exact solution is illustrated in the left part of Figure 1, and the
zone of interest ω is highlighted in the right part of Figure 1 by the gray region together with the
point (0.75, 0.75) (bullet) where the peak of the solution is situated. Comparing (6.4) with (3.3),
we see that ũD = 0.

The numerical tests are performed on a sequence of uniformly refined meshes T0, T1, . . . , TJ ,
J = 4. We employ the Bi-Conjugated Gradient Stabilization (BiCGStab) [47] iterative matrix
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Algorithm 1 Goal-oriented adaptive inexact method

Input: Initial mesh T0, J ≥ 1 the maximum number of mesh refinement levels, and two real
parameters γalg, θ ∈ (0, 1).
Set j = 0.
While (j ≤ J) do

• INEXACTLY SOLVE:

1. Approximately solve the primal matrix system AUh = Fh as follows:

(a) Choose an initial vector U0 ∈ RN . Set i := 0.

(b) Perform ν > 0 steps of a chosen iterative linear solver . This yields an approximation
Ui+νh to Uh which satisfies: AUi+νh = Fh − Ri+νh .

(c) Set i := i+ ν.

2. Compute the potential reconstruction and the flux reconstructions as follows:

(a) Compute uih and rih as described in Section 5.

(b) Construct the discretization flux reconstruction σih,disc from Definition 5.1 or 5.7

or 5.9 or Remark 5.4 and the algebraic error flux reconstruction σih,alg from Defini-
tion 8.1.

(c) Construct the potential reconstruction sih from either Definition 5.5 or Defini-
tion 5.6.

3. ESTIMATE. Compute the discretization and algebraic estimators ηih,disc and ηih,alg

from (6.1a).

4. Check the stopping criterion of the primal linear solver in the form:

ηih,alg ≤ γalg η
i
h,disc. (6.2a)

If not satisfied, go back to step (1b).

5. Follow the above steps 1–4 to solve the dual matrix system AŨh = F̃h, with the adaptive
stopping criterion

η̃ih,alg ≤ γalgη̃
i
h,disc (6.2b)

for the estimators from (6.1b).

• MARK. Mark sets for each of the primal and dual problems:

1. Mark a minimal set for the primal problem Mp ⊂ Th such that

θ max
K∈Th

ηih,disc,K ≤ ηih,disc,K′ , ∀K ′ ∈Mp.

2. Mark a minimal set for the dual problem Md ⊂ Th such that

θ max
K∈Th

η̃ih,disc,K ≤ η̃ih,disc,K′ , ∀K ′ ∈Md.

3. Set M := Mp ∪ Md the union of marked sets found for primal and dual marking
procedures above.

• REFINE. Refine the marked set M and generate refined mesh Tj+1. Set j := j + 1.

End While
16
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ω

Ω

Figure 1: Exact solution (left) and the zone of interest (right). Section 6.1, goal functional (6.4).

solver with an ILU{0} preconditioner. We first illustrate the INEXACTLY SOLVE procedure
of Algorithm 1 on the mesh Tj , j = 2, with 4 × 104 unknowns. The exact solution as well as the
primal and the dual approximate solutions are illustrated in Figure 2, where the color bars represent
the distribution of functional values on the xy projected plane. The discretization estimator ηih,disc

(resp. η̃ih,disc) and the algebraic estimator ηih,alg (resp. η̃ih,alg) in function of the iteration counter i
are then plotted in the left part (resp. the right part) of Figure 3. In practice, the threshold for
the relative algebraic residual is often set as

‖AUih − Fh‖
‖Fh‖

≤ 10−8 and
‖AŨih − F̃h‖
‖F̃h‖

≤ 10−8. (6.5)

With these stopping criteria, the iterative solvers in the present case need at least 30 iterations,
shown in the left and the right part of Figure 3 by the boxes of “std. stop. criteria”. It can
be observed from Figure 3 that for both the primal and the dual problems, the discretization
estimators remain constant after 10 or 15 iterations of the algebraic solver. This is precisely where
the adaptive criteria (6.2) (with γalg = 0.1) stop the iterations, enabling to avoid the unnecessary
work, see the boxes “adap. stopping criterion” in the left and the right parts of Figure 3.

The convergence histories related to the goal errors eh (resp. eih) obtained with the inexact
ILU{0}-BiCGStab solver with the standard stopping criteria (6.5) and the adaptive stopping cri-
teria (6.2) are plotted in the left part of Figure 4 with respect to the number of unknowns. The
effectivity indices defined by the ratio of the estimator to the error ηih,goal/e

i
h are then shown in the

middle part of Figure 4. They lie between 1.6 and 2.6 which we consider excellent. A comparison of
the standard stopping criteria (6.5) with the adaptive stopping criteria (6.2) for all the considered
meshes Tj , 0 ≤ j ≤ 4, is then shown in Figure 4, right. We observe a uniform significant gain with
the adaptive stopping criterion.
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Figure 2: Exact primal solution (left), approximate primal solution (middle), and approximate
dual solution (right). Section 6.1, goal functional (6.4).
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Figure 3: Discretization and algebraic estimators (6.1a)–(6.1b) with standard stopping crite-
ria (6.5) and adaptive stopping criteria (6.2) for the primal (left) and the dual problem (right)
on the mesh T2 with 4× 104 unknowns.
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Figure 4: Convergence history of the goal error eh (resp. eih) on a sequence of uniformly-refined
meshes for the ILU{0}-BiCGStab iterative solver with standard (6.5) and adaptive (6.2) stopping
criteria with γalg = 0.1 (left), and effectivity indices for the goal estimator ηh,goal (resp. ηih,goal)
(middle). Comparison of the number of necessary algebraic solver iterations for the standard (6.5)
and adaptive (6.2) stopping criteria on the sequence of meshes T0, . . . , T4 (right). Section 6.1, goal
functional (6.4).
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6.2 Singular solution, adaptive mesh refinement, and inexact solvers

In this test, we review the standard adaptive mesh refinement procedure SOLVE, ESTIMATE,
MARK, and REFINE in the context of goal-oriented a posteriori estimation with our adaptive
inexact Algorithm 1, with θ = 0.6. In [7, 24, 33], an exact solver is considered, and the Dörfler
marking criterion has been used in the framework of the DWR method. The authors in [33] choose
the set with smallest cardinality between Mp and Md, whereas the authors [24] use the union of
these sets Mp ∪Md as we do in Algorithm 1. Moreover, the authors in [7] choose the marking
criteria based on the goal estimator which is represented by sum of the product of primal estimator
over an element and dual estimator based on the solution over local patch. In [32], a DWR goal
estimator is used to distinguish discretization and algebraic errors. The main emphasis is on the
multigrid solver, in extension of the energy error estimates in [5].

ω

Ω

Figure 5: 3D L-shaped domain (left), zone of interest on the middle surface (middle), and the
exact solution (right). Section 6.2, goal functional (6.6).

We consider a three-dimensional test case of the form (3.1) with K = Id, the right-hand side
data function f = 0, and the two-dimensional exact solution

u(r, θ, z) = r2/3 sin(2θ/3)

defined on the domain Ω = ((−1, 1)× (−1, 1) \ (−1, 0]× (−1, 0])×(−1, 0). The Dirichlet boundary
condition on ΓD = ∂Ω is given by the exact solution as uD = u|∂Ω, and we neglect the error
due to polynomial approximation of this boundary datum. The zone of interest is considered as
ω = {(x, y, z) ∈ Ω : (x− 1)2 + (y − 1)2 ≤ 0.252; z ∈ (−1, 0)} and the goal functional is defined by

Q(u) =
1

|ω|

∫
ω
udx =

(
f̃ , u

)
Ω
, f̃ =

χω
|ω|

. (6.6)

The domain Ω, the middle surface, and the exact solution are illustrated in Figure 5. The numer-
ical tests are performed first on a sequence of uniformly refined meshes with standard stopping
criteria (6.5) for the inexact ILU{0}-BiCGStab solver and then on a sequence of adaptively refined
meshes with adaptive (6.2) stopping criteria with γalg = 0.1 for the inexact ILU{0}-BiCGStab
solver, following Algorithm 1. The convergence histories are shown in the left part of Figure 6,
and the effectivity indices are plotted in the middle part of this figure. We got effectivity indicies
which lie in between 1 and 1.5. Additionally, we observe that adaptive mesh refinement guided
by the a posteriori goal estimator leads to rapid error reduction compared to the uniform mesh
refinement and a significant gain with the adaptive stopping criterion is obtained in comparison
with the standard stopping criteria (6.5).
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Figure 6: Convergence history of the goal error eh (resp. eih) (left) and the effectivity indices for
the goal estimator ηh,goal (resp. ηih,goal) (middle). Comparison of the number of necessary algebraic
solver iterations for the standard (6.5) and adaptive (6.2) stopping criteria (right). Section 6.2,
goal functional (6.6).

6.3 Heterogeneous media, goal functional given by outflow, uniform mesh re-
finement, and inexact solvers

In this last test, we consider a heterogeneous porous media with domain Ω = (0, 1200)× (0, 2200)
partitioned by a grid of 60×220 rectangular cells. The permeability field K (scalar times identity)
corresponds to the permeability of the layer 85 of the tenth SPE comparative solution project
model field [9] and is shown in the left part of Figure 7. We impose a uniform pressure drop from
the bottom to the top of the domain with no-flow boundary conditions on the lateral sides. The
pressure field on a fine mesh is shown in the right part of Figure 7. In our setting, ΓD = {y =
0} ∪ {y = 2200}, f = 0, uD|{y=0} = 1, uD|{y=2200} = 0, and σN = 0. The outflow passing through
the surface {y = 2200} is defined by

Q(u) = −
∫
{y=2200}

K∇u·nds = −
(
K∇u·n, ũD

)
ΓD
, ũD|{y=0} = 0 and ũD|{y=2200} = 1.

(6.7)
Comparing (6.7) with (3.3), we see that f̃ = 0. In order to illustrate convergence history, we
also consider tests on coarse meshes of 30 × 110 and 15 × 55 rectangular cells. We again employ
Algorithm 1 with adaptive stopping criteria (6.2) and γalg = 10−2 that we now compare to the
“almost exact solve” with the standard algebraic residual criteria (6.5).

In the left part of Figure 8, we show the convergence history of the relative estimator ηih,goal/Q
i
h

with respect to the number of unknowns. In the right part of Figure 8, we plot the number of
iterations needed to attain the stopping criteria for the three considered meshes. We observe a
significant gain in terms of the number of iterations performed by the ILU{0}-BiCGStab solver
with the adaptive stopping criterion.

6.4 Comparison of the estimate of Theorem 4.8 with that of Remark 4.7

In this short section, we consider the nonconforming finite approximation of Section 5.2 with exact
solvers and illustrate the difference of the goal estimate (4.16) of Theorem 4.8 with respect to the
simple goal estimate (4.14) of Remark 4.7. Let the primal problem be given by

−∆u = f in Ω,

u = uex on ∂Ω,
(6.8)
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Figure 7: SPE10 permeability (left) and pressure field (right). Section 6.3.
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ping criteria (6.5) and the adaptive stopping criteria (6.2) with γalg = 10−2 (left). Comparison
of the corresponding number of necessary algebraic solver iterations (right). Section 6.3, goal
functional (6.7).

where we take Ω = (0, 1)× (0, 1) and f = 2 which leads to uex(x, y) = −x2. The dual problem is
given by

−∆ũ = 1 in Ω,

ũ = 0 on ∂Ω.
(6.9)

In the notation of Section 3, we choose K = Id, ΓD = ∂Ω, ΓN = ∅, uD = uex|ΓD
, f̃ = 1, and

ũD = 0, which leads to the goal functional Q(v) =
∫

Ω v dx, so that Q(uex) =
∫

Ω uex dx = −1/3.
Numerical tests are performed on sequence of uniform meshes Tj with isosceles triangles of size
hj =

√
2/2j , j = 0, 1, 2, 3.
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Figure 9: Simple goal error and estimate (4.14) vs. modified goal error and estimate (4.16) (left),
corresponding effectivity indices (right).

The results for the goal error |Q(u) − Q(uh)| with estimate (4.14) of Remark 4.7 and the

modified goal error |Q(u)−Q(uh)−
(
K∇sh + σh,K

−1σ̃i,mh

)
| with estimate (4.16) of Theorem 4.8

are plotted in the left part of Figure 9. We observe that the estimator of the right-hand side
of (4.16) is much smaller than that of the right-hand side of (4.14), which indeed is an important
improvement. On the other hand, the goal error on the left-hand side of (4.16) is much bigger
than that on the left-hand side of (4.14), so that the “improved” setting of Theorem 4.8 actually
deteriorates the goal error. The corresponding effectivity indices are plotted in right part of
Figure 9; they are around 24 for the simple goal estimate (4.14) and around 1.14 for the improved
goal estimate (4.16). In this respect, i.e., evaluating the quality of the given estimator with respect
to the given error, Theorem 4.8 is a real improvement over Remark 4.7.

6.5 A shortcoming of the estimators of Theorem 4.8 and of Remark 4.7

Let us now consider problem (6.8) with Ω = (−1, 1)× (−1, 1) and f = −2 in (−1, 0)× (−1, 1) and
f = 2 in (0, 1)× (−1, 1). This has a unique solution uex(x, y) defined by

uex(x, y) =

{
x2 in (−1, 0]× (−1, 1),

−x2 in (0, 1)× (−1, 1).
(6.10)

We also consider the dual problem (6.9), so that in the notation of Section 3, again K = Id,
ΓD = ∂Ω, ΓN = ∅, uD = uex|ΓD

, f̃ = 1, and ũD = 0. Numerical tests are performed here on
sequence of uniform meshes Tj which are symmetric across the y-axis, with isosceles triangles of
size hj =

√
2/2j , j = 0, 1, 2, 3; the final mesh T3 is illustrated in the left part of Figure 10. Recall

the goal functional Q(v) =
∫

Ω v dx, so that Q(uex) =
∫

Ω uex dx = 0. The computed goal functional
on the mesh T3 then yields Q(uh) = −4.900594e-16, i.e., is zero up to machine precision. The
nonconforming approximation uh and its potential reconstruction sh are illustrated, respectively,
in the middle and right parts of Figure 10 (on the mesh T1 for better visibility). The equilibrated
fluxes are computed from Remark 5.4. Then, the goal estimates (4.14) and (4.16), respectively,
provide on the mesh T3 the bounds

4.900594e-16 = |Q(u)−Q(uh)| ≤ 0.01388889, (6.11a)

4.351513e-16 = |Q(u)−Q(uh)−
(
K∇sh + σh,K

−1σ̃i,mh

)
| ≤ 0.006944444; (6.11b)
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Figure 10: Mesh T3 symmetric across the y-axis (left), the nonconforming approximation uh on
the mesh T1 (middle), and the potential reconstruction sh on the mesh T1 (right).

here actually all (K∇sh + σh,∇s̃h),
(
K∇sh + σh,K

−1σ̃m
h

)
, ((K∇sh + σh)·n, ũD)ΓD

, and Q(sh)
are also zero up to machine precision, so that goal errors coincide, and the modified estimator
is a half of the simple one (up to machine precision). In this test, both bounds (6.11) extremely
overestimate the goal errors, and produce effectivity indices reaching +∞. In particular, the setting
of Theorem 4.8 does not bring here any structural improvement over that of Remark 4.7.

7 Conclusion

This paper presents an abstract framework for guaranteed goal-oriented a posteriori error control
for various conforming and nonconforming discretizations of the model problem (3.1). It is based on
H(div,Ω)-conforming flux reconstructions and H1(Ω)-conforming potential reconstructions. The
numerical results illustrate that the error in the goal functional (3.3) is estimated very precisely and
can be reduced rapidly by applying the adaptive Algorithm 1. Here meshes are refined according
to a discretization error estimator and an arbitrary iterative solver is stopped when algebraic
and discretization error estimators are in balance. This allows to significantly reduce the number
of iterations in the algebraic iterative solver. In particular, the real-life problem of Section 6.3
illustrates an efficient control of the (practically interesting) error in the outflow of fluid through
a part of the boundary.
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8 Appendix: Algebraic error flux reconstruction

Following Papež et al. [37], for any given rih ∈ Pp(Th), an algebraic error flux reconstruction
σih,alg ∈ RTNp(Ω) with ∇·σih,alg = rih and σih,alg·n = 0 on ΓN when ΓN 6= ∅ can be constructed
by employing an exact coarse solver and a telescoping procedure on a hierarchy of meshes that are
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supposed nested but typically non-uniform, issued from Algorithm 1. We describe it below for the
sake of completeness.

Let {Tj}Jj=0 be a hierarchy of matching partitions with the coarse mesh T0 and the fine mesh

TJ := Th. Let ψa
j ∈ P1(Tj) ∩ H1(Ω) stand for the hat basis function associated with vertex

a ∈ Vj and mesh Tj . For all vertices a ∈ Vj , let T a
j be the patch of elements of Tj that share a.

Moreover, ωa
j is the corresponding open subdomain, forming the support of hat basis function ψa

j .

Let V0 := P1(T0)∩H1
D(Ω) be the conforming space of p-degree polynomials over the coarsest mesh

T0. The coarse level Riesz representer ρi0,alg ∈ V0 of the algebraic residual rih is found as a solution
of

(K∇ρi0,alg,∇v0) = (rih, v0) ∀v0 ∈ V0. (8.1)

Set RTNp,j := RTNp(Ω) (with respect to the mesh Tj) and Pp,j := Pp(Tj). For a given space
X, we use X(ωa

j−1) to denote its restriction on the subdomain ωa
j−1 ⊂ Ω associated with the mesh

Tj−1. Define the local spaces

V a
j,j−1 :=

{
vj ∈ RTNp,j(ω

a
j−1); vj ·nωa

j−1
= 0 on ∂ωa

j−1

}
,

Qa
j,j−1 :=

{
qj ∈ Pp,j(ωa

j−1); (qj , 1)ωa
j−1

= 0
}
,

a ∈ V int
j−1 ∪ VN

j−1,

V a
j,j−1 :=

{
vj ∈ RTNp,j(ω

a
j−1); vj ·nωa

j−1
= 0 on ∂ωa

j−1 \ ΓD

}
,

Qa
j,j−1 := Pp,j(ωa

j−1),
a ∈ Vext

j−1 \ VN
j−1,

where nωa
j−1

stands for the outward unit normal of the domain ωa
j−1. The multilevel algebraic

error flux reconstruction reads:

Definition 8.1. Define the algebraic error flux reconstruction by the telescoping sum over mesh
levels

σih,alg :=

J∑
j=1

∑
a∈Vj−1

σa
j,alg, (8.2)

where the vertex contributions are defined as the solution of the local patch mixed finite element
problems: find (σa

j,alg, γ
a
j ) ∈ V a

j,j−1 ×Qa
j,j−1 such that

(σa
j,alg,vj)ωa

j−1
− (γaj ,∇·vj)ωa

j−1
= 0 ∀vh ∈ V a

j,j−1, (8.3a)

(∇·σa
j,alg, qj)ωa

j−1
=
(
(Id−Πj−1)(rihψ

a
j−1 −K∇ρi0,alg·∇ψa

j−1), qj
)
ωa
j−1

∀qj ∈ Qa
j,j−1, (8.3b)

where Πj is the L2(Ω)-orthogonal projection onto Pp,j except for j = 0 where Π0 := 0.
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