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Abstract. We derive a posteriori error estimates for singularly perturbed reaction–diffusion problems
which yield a guaranteed upper bound on the discretization error and are fully and easily computable.
Moreover, they are also locally efficient and robust in the sense that they represent local lower bounds
for the actual error, up to a generic constant independent in particular of the reaction coefficient. We
present our results in the framework of the vertex-centered finite volume method but their nature is
general for any conforming method, like the piecewise linear finite element one. Our estimates are
based on a H(div)-conforming reconstruction of the diffusive flux in the lowest-order Raviart–Thomas
space linked with mesh dual to the original simplicial one, previously introduced by the last author in
the pure diffusion case. They also rely on elaborated Poincaré, Friedrichs, and trace inequalities-based
auxiliary estimates designed to cope optimally with the reaction dominance. In order to bring down the
ratio of the estimated and actual overall energy error as close as possible to the optimal value of one,
independently of the size of the reaction coefficient, we finally develop the ideas of local minimizations
of the estimators by local modifications of the reconstructed diffusive flux. The numerical experiments
presented confirm the guaranteed upper bound, robustness, and excellent efficiency of the derived
estimates.
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1. Introduction

We consider in this paper the model reaction–diffusion problem

− ∆p + rp = f in Ω, (1.1a)

p = 0 on ∂Ω, (1.1b)

where Ω ⊂ R
d, d = 2, 3, is a polygonal (polyhedral) domain (open, bounded, and connected set), r ∈ L∞(Ω),

r ≥ 0, is a reaction coefficient, and f ∈ L2(Ω) is a source term. We denote respectively by cr,S and Cr,S the best
nonnegative constants such that cr,S ≤ r ≤ Cr,S a.e. on a given subdomain S of Ω. Our purpose is to derive
optimal a posteriori error estimates for vertex-centered finite volume approximations of problem (1.1a)–(1.1b),
with extensions to other conforming methods like the piecewise linear finite element one.

Averaging a posteriori error estimates like the Zienkiewicz–Zhu [27] one are quite popular for the purpose of
adaptive mesh refinement in boundary value problems simulations but actually do not give a guaranteed upper
bound on the error made in a numerical approximation. Here and throughout the text, an estimator η represents
a guaranteed upper bound of the error e if e ≤ η. More severely, for problem (1.1a)–(1.1b) in particular, they
are not robust in the sense that the ratio of the estimated to the true energy error blows up for high values of
r. The improvement of the equilibrated residual method to singularly perturbed reaction–diffusion problems by
Ainsworth and Babuška [1] does not have this drawback and yields robust estimates. It also gives a guaranteed
upper bound but this bound is actually not computable, since it is based on a solution of an infinite-dimensional
local problem on each mesh element. Approximations to these problems have to be used in practice, which
rises the question of preservation of the guaranteed upper bound and even of the robustness. This question,
along with a robust extension to anisotropic meshes, is treated by Grosman in [9]. By introducing suitable
finite-dimensional approximations of the local infinite-dimensional problems, Grosman proves the robustness
of the final practical estimate. Moreover, he also shows that these approximations yield an estimate which is
equivalent with the original infinite-dimensional one up to an unknown constant, independent of the mesh size
h and the reaction parameter r. He thus ensures the reliability of the final discrete version of the equilibrated
residual method, the presented numerical results are excellent, but there can still by slight violations of the
guaranteed upper bound, as one can notice it in [9, Table 1]. Moreover, this approach seems rather complicated
and computationally quite expensive, although the evaluation cost, i.e., the number of operations necessary to
compute the estimate, remains linear.

Verfürth in [20] derived robust residual a posteriori error estimates for singularly perturbed reaction–diffusion
problems which are explicitly and easily computable. Unfortunately, these estimates are not guaranteed in the
sense that they contain various undetermined constants; they are suitable for adaptive mesh refinement but
not for the actual error control. An extension of this result to anisotropic meshes is then given by Kunert [12].
Recently, Repin and Sauter [16] or Korotov [11] presented estimates which do give a guaranteed upper bound
also for problem (1.1a)–(1.1b). However, for accurate error control, computational amount comparable to that
necessary to the computation of the approximation itself is required and it is quite likely that this amount will
grow for growing coefficient r, which does not match with the term robustness. Coincidently, no (local) efficiency
in the sense that the estimate also represents a (local) lower bound for the actual error, up to a generic constant,
is proved in these references. Guaranteed and locally computable estimators for problem (1.1a)–(1.1b) are also
arrived at by Vejchodský [19], but, once again, no lower bound is proved and the estimate is not expected to
be robust.

A new family of estimates was established recently for various numerical methods in [7, 23–25]. These
estimates are explicitly and easily computable and yield a guaranteed upper bound together with local efficiency;
the estimates of [24] for the pure diffusion case are moreover completely robust with respect to an inhomogeneous
diffusion coefficient. In the conforming case, these estimates develop ideas going back to the Prager–Synge
equality [15].

The purpose of this paper is to extend the estimates of [24] to the singularly perturbed reaction–diffusion
problem (1.1a)–(1.1b). We first in Section 3, after giving the necessary preliminaries in Section 2, present an
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abstract a posteriori error estimate for conforming (contained in H1
0(Ω)) approximations to problem (1.1a)–

(1.1b). This estimate is shown to be optimal, i.e., equivalent to the energy error, and gives the basic framework
for the further study. We start in Section 4 by presenting the ideas of the diffusive flux reconstruction in the
lowest-order Raviart–Thomas space linked with the mesh dual to the original simplicial one and prove some
important Poincaré, Friedrichs, and trace inequalities-based auxiliary estimates designed to cope optimally with
the reaction dominance. Then the first main result, an a posteriori error estimate which is explicitly and easily
computable and which gives a guaranteed upper bound on the overall energy error, is stated and proved. We
present all these results in a quite general setting of conforming approximations and detail their application
to the vertex-centered finite volume method. We finally in Section 5 present our second main result, the local
efficiency and robustness, with respect to reaction dominance and also with respect to spatial variation of r
under the condition that r is piecewise constant on the dual mesh, of the derived a posteriori error estimates.
We there actually show that our estimates represent, up to a generic constant, local lower bounds for those of
Verfürth [20].

The numerical experiments of Section 6, using the package FreeFem++ [10], where our estimates are imple-
mented, confirm all the theoretical results, i.e., the guaranteed upper bound, local efficiency, robustness, and
linear evaluation cost. The only element missing is the asymptotic exactness, i.e., the fact that effectivity index,
given as the ratio of the estimated to the actual error, is not as close to the optimal value of 1 as one would have
wished (it ranges between 2 and 6 in the presented results). This phenomenon has been already observed in the
pure diffusion case in [6] and [24]. A remedy to this has been proposed in these references, consisting in local
minimizations of the estimators by local modifications of the reconstructed diffusive flux. The final estimate is
then given as a local minimum of the estimator constructed in Section 4 and of the minimized one, so that in
particular the guaranteed upper bound of Section 4 and the robust local efficiency of Section 5 hold true. A
full local minimization over the available degrees of freedom has been proposed and studied in [6]. Such a mini-
mization leads to the solution of a local linear system for each vertex (of size equal to twice the number of sides
sharing the given vertex); although the cost remains linear, the complexity is indeed increased. The solution
of local linear systems was completely avoided by the simplified minimization approach of [24, Section 7]. We
extend in Appendix the two approaches to the singularly perturbed reaction–diffusion problem (1.1a)–(1.1b).
It turns out that the completely explicit simplified local minimization of [24, Section 7] gives almost always the
best results, so it can for its simplicity and efficiency be recommended for practical computations. In particular,
with its use, the effectivity index in the presented results ranges between 1 and 3 for all the meshes from the
coarsest to the finest and from uniformly to adaptively refined and for all values of the reaction coefficient
r. We finally remark that the homogeneous Dirichlet boundary condition is considered only for simplicity of
exposition. For inhomogeneous Dirichlet and Neumann boundary conditions in the present setting (with r = 0),
we refer to [26].

2. Preliminaries

We set up in this section the considered meshes description and all notation and describe the continuous and
discrete problems we shall work with.

2.1. Notation

We shall work in this paper with triangulations Th which for all h > 0 consists of simplices K such that
Ω =

⋃
K∈Th

K and which are conforming, i.e., if K, L ∈ Th, K 6= L, then K ∩ L is either an empty set or a
common face, edge, or vertex of K and L. Let hK denote the diameter of K and let h := maxK∈Th

hK . We
next denote by Eh the set of all sides of Th, by E int

h the set of interior, by Eext
h the set of exterior, and by EK the

set of all the sides of an element K ∈ Th; hσ stands for the diameter of σ ∈ Eh. Finally, we denote by Vh (V int
h )

the set of all (interior) vertices of Th and define for V ∈ Vh and σ ∈ Eh, respectively, TV := {L ∈ Th; L∩V 6= ∅},
Tσ := {L ∈ Th; σ ∈ EL}.
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Th
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Sh

Figure 1. Original simplicial mesh Th, the associated dual mesh Dh, and the fine simplicial mesh Sh

We shall next consider dual partitions Dh of Ω such that Ω =
⋃

D∈Dh
D and such that each V ∈ Vh is

in exactly one DV ∈ Dh. The notation VD stands inversely for the vertex associated with a given D ∈ Dh.
When d = 2, we construct Dh as follows. For each vertex V , we consider all the triangles K ∈ TV . Then,
the dual volume DV associated to V is the polygon which has these triangle barycenters and the midpoints of
the edges passing trough V as vertices. An example of such a dual volume is shown in Figure 1. If d = 3, in
each tetrahedron, face barycentres are first connected with face vertices and face edges midpoints. Then small
tetrahedra are formed by the resulting triangles in each face and the tetrahedron barycentre. Finally, the union
of all small tetrahedra sharing a given vertex VD is the dual volume D. We use the notation Fh for all sides
of Dh, F int

h (Fext
h ) for all interior (exterior) sides of Dh, and Dint

h (Dext
h ) to denote the dual volumes associated

with vertices from V int
h (Vext

h ).
Finally, in order to define our a posteriori error estimates, we need a second simplicial triangulation Sh of Ω.

This is given by Sh := ∪D∈Dh
SD, where the local triangulation SD of D ∈ Dh is given as shown in Figure 1 if

d = 2 and by the “small” tetrahedra if d = 3. We will use the notation Gh for all sides of Sh and Gint
h (Gext

h , for
all interior (exterior) sides of Sh. Also, we will note Gint

D all σ ∈ Gint
h contained in the interior of a D ∈ Dh.

Next, for K ∈ Th, n always denotes its exterior normal vector and we employ the notation nσ for a normal
vector of a side σ ∈ Eh, whose orientation is chosen arbitrarily but fixed for interior sides and coinciding with
the exterior normal of Ω for exterior sides. For a function ϕ and a side σ ∈ E int

h shared by K, L ∈ Th such that
nσ points from K to L, we define the jump operator [[·]] by

[[ϕ]] := (ϕ|K)|σ − (ϕ|L)|σ. (2.1)

We put [[ϕ]] := 0 for any σ ∈ Eext
h . For σ = σK,L ∈ E int

h , we define the average operator {{·}} by

{{ϕ}} :=
1

2
(ϕ|K)|σ +

1

2
(ϕ|L)|σ, (2.2)

whereas for σ ∈ Eext
h , {{ϕ}} := ϕ|σ . We use the same type of notation also for the meshes Dh and Sh.

In what concerns functional notation, we denote by (·, ·)S the L2-scalar product on S and by ‖ · ‖S the
associated norm; when S = Ω, the index is dropped off. We denote by |S| the Lebesgue measure of S, by |σ| the
(d − 1)-dimensional Lebesgue measure of σ ⊂ R

d−1, and in particular by |s| the length of a segment s. Next,
H1(S) is the Sobolev space of functions with square-integrable weak derivatives and H1

0(S) is its subspace of
functions with traces vanishing on ∂S. Finally, H(div, S) is the space of functions with square-integrable weak
divergences, H(div, S) = {v ∈ L2(S);∇ · v ∈ L2(S)}, and 〈·, ·〉∂S stands for the appropriate duality pairing on
∂S.
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2.2. Continuous and discrete problems

For problem (1.1a)–(1.1b), we define a bilinear form B by

B(p, ϕ) := (∇p,∇ϕ) + (r1/2p, r1/2ϕ),

where p, ϕ ∈ H1
0(Ω), and the associated energy norm by

|||ϕ|||2 := B(ϕ, ϕ). (2.3)

The standard weak formulation for this problem is then to find p ∈ H1
0(Ω) such that

B(p, ϕ) = (f, ϕ) ∀ϕ ∈ H1
0(Ω). (2.4)

For the approximation of problem (1.1a)–(1.1b), we will consider the vertex-centered finite volume method,
also known as the finite volume element or the box method. It reads: find ph ∈ X0

h such that

− 〈∇ph · n, 1〉∂D + (rph, 1)D = (f, 1)D ∀D ∈ Dint
h , (2.5)

where

X0
h :=

{
ϕh ∈ H1

0(Ω); ϕh|K ∈ P1(K) ∀K ∈ Th

}

with P1(K) the space of linear polynomials on K ∈ Th. This method for the approximation of problem (1.1a)–
(1.1b) is very closely related to the piecewise linear finite element one, which consists in finding ph ∈ X0

h such
that

B(ph, ϕh) = (f, ϕh) ∀ϕh ∈ X0
h.

In particular, for the considered dual meshes, the discretization of the diffusion term completely coincides,
cf. [2, Lemma 3], [13, Lemma 2], or [24, Lemma 3.8]. Similarly, if f is piecewise constant on Th, the discretization
of the right-hand side again coincides, see [13, Lemma 2] or [24, Lemma 3.11], whereas the discretization of
the reaction term only differs by a numerical quadrature. We refer to [24] for the relations to other methods
yielding an approximation in the space X0

h.

3. Optimal abstract framework for a posteriori error estimation

In this section, we recall the basic results of [7, 23], giving an optimal abstract framework for a posteriori
error estimation in problem (1.1a)–(1.1b). For their simplicity and for the sake of completeness of the present
paper, we include also the proofs.

3.1. Abstract estimate

The first result is the following abstract upper bound:

Theorem 3.1 (Abstract a posteriori error estimate). Let p be the weak solution of problem (1.1a)–(1.1b) given
by (2.4) and let ph ∈ H1

0(Ω) be arbitrary. Then

|||p − ph||| ≤ inf
t∈H(div,Ω)

sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

{(f −∇ · t− rph, ϕ) − (∇ph + t,∇ϕ)}. (3.1)

Proof. We first notice that according to the definition of the energy norm by (2.3),

|||p − ph||| = B

(
p − ph,

p − ph

|||p − ph|||

)
.
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Here, as well as in the sequel, we treat the possible occurrence of 0/0 as 0 for the simplicity of notation. Next,
as ϕ := (p − ph)/|||p − ph||| ∈ H1

0, we have B(p, ϕ) = (f, ϕ) by (2.4). So, for any t ∈ H(div, Ω), adding and
subtracting (t,∇ϕ) and using the definition of B(·, ·), we have

|||p − ph||| = (f, ϕ) − B(ph, ϕ)

= (f, ϕ) − (∇ph,∇ϕ) − (rph, ϕ)

= (f, ϕ) − (∇ph + t,∇ϕ) − (rph, ϕ) + (t,∇ϕ)

= (f −∇ · t− rph, ϕ) − (∇ph + t,∇ϕ).

(3.2)

Here, we have also applied the Green theorem yielding (t,∇ϕ) = −(∇ · t, ϕ). As t ∈ H(div, Ω) was chosen
arbitrarily and |||ϕ||| = 1, this concludes the proof. �

3.2. Efficiency of the abstract estimate

Concerning the efficiency of the above estimate, we have:

Theorem 3.2 (Global efficiency of the abstract estimate). Let p be the weak solution of problem (1.1a)–(1.1b)
given by (2.4) and let ph ∈ H1

0(Ω) be arbitrary. Then

inf
t∈H(div,Ω)

sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

{(f −∇ · t − rph, ϕ) − (∇ph + t,∇ϕ)} ≤ |||p − ph|||.

Proof. We add and subtract the term (rp, ϕ), put t = −∇p, and use the fact that p is the weak solution to
obtain

inf
t∈H(div,Ω)

sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

{(f −∇ · t− rph, ϕ) − (∇ph + t,∇ϕ)}

= inf
t∈H(div,Ω)

sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

{(f −∇ · t− rp, ϕ) − (∇ph + t,∇ϕ) + (rp − rph, ϕ)}

≤ sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

{(f + ∆p − rp, ϕ) − (∇ph −∇p,∇ϕ) + (rp − rph, ϕ)}

= sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

{(∇(p − ph),∇ϕ) + (r(p − ph), ϕ)}.

The proof is concluded by using the Cauchy–Schwarz inequality, the fact that |||ϕ||| = 1, and the definition of
the energy norm (2.3). �

4. Guaranteed a posteriori error estimates

We derive here a locally computable version of the abstract a posteriori estimate of the previous section.
The first step is to properly choose a reconstructed diffusive flux th ∈ H(div, Ω) to be used as t ∈ H(div, Ω) in
Theorem 3.1. We next recall the Poincaré, Friedrichs, and trace inequalities and derive some auxiliary estimates
that will turn out later as crucial in order to obtain robustness. We finally state our guaranteed a posteriori
error estimates.

4.1. Diffusive flux reconstruction

We present here a particular diffusive flux reconstruction th ∈ H(div, Ω) in the vertex-centered finite volume
method (2.5), which will be crucial in our a posteriori error estimates. We define it in the lowest-order Raviart–
Thomas–Nédélec space over the fine simplicial mesh Sh introduced in Section 2. The space RTN(Sh) is a space
of vector functions having on each K ∈ Sh the form (aK + dKx, bK + dKy)t if d = 2 and (aK + dKx, bK +
dKy, cK + dKz)t if d = 3. Note that the requirement RTN(Sh) ⊂ H(div, Ω) imposes the continuity of the
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normal trace across all σ ∈ Gint
h and recall that ∇ · vh is constant on all K ∈ Sh, that vh · nσ is constant on

all σ ∈ Gh, and that these side fluxes also represent the degrees of freedom of RTN(Sh). For more details, we
refer to Brezzi and Fortin [4] or Roberts and Thomas [17].

Let us thus define th ∈ RTN(Sh) by

th · nσ = −{{∇ph · nσ}} ∀σ ∈ Gh, (4.1)

where {{·}} is the average operator defined in Section 2. Note that th · nσ is given directly by −∇ph · nσ for
such σ ∈ Gh where there is no jump in ∇ph. This set is given by all the sides σ ∈ Gh which are in the interior
of some K ∈ Th or at the boundary of Ω, or, equivalently by all the sides σ ∈ Gh contained in ∂D for some
D ∈ Dh. In the other cases, we may think of th as of a H(div, Ω)-conforming smoothing of −∇ph, which itself
is not contained in H(div, Ω). The following important property holds for th constructed in this way:

Lemma 4.1 (Reconstructed diffusive flux). Let ph ∈ X0
h be given by the vertex-centered finite volume method

(2.5) and let th ∈ RTN(Sh) be given by (4.1). Then

(∇ · th + rph, 1)D = (f, 1)D ∀D ∈ Dint
h .

Proof. The local conservativity of the vertex-centered finite volume method (2.5) and the definition (4.1) of th

imply that

〈th · n, 1〉∂D + (rph, 1)D = (f, 1)D ∀D ∈ Dint
h ,

noticing that {{∇ph ·nσ}} = ∇ph ·nσ for all σ ⊂ ∂D as discussed above. The assertion of the lemma now follows
by the Green theorem. �

4.2. Poincaré, Friedrichs, and trace inequalities-based auxiliary estimates

In order to define our estimators, we will need the Poincaré, Friedrichs, and trace inequalities, which we
recall below. We then prove several important auxiliary estimates, designed to cope optimally with the reaction
dominance.

Let D be a polygon or polyhedron. The Poincaré inequality states that

‖ϕ − ϕD‖2
D ≤ CP,Dh2

D‖∇ϕ‖2
D ∀ϕ ∈ H1(D), (4.2)

where ϕD is the mean of ϕ over D given by ϕD := (ϕ, 1)D/|D| and where the constant CP,D can for each convex
D be evaluated as 1/π2, cf. [3,14]. To evaluate CP,D for nonconvex elements D is more complicated but it still
can be done, cf. Eymard et al. [8, Lemma 10.2] or Carstensen and Funken [5, Section 2].

If ∂Ω ∩ ∂D 6= ∅, the Friedrichs inequality states that

‖ϕ‖2
D ≤ CF,D,∂Ωh2

D‖∇ϕ‖2
D ∀ϕ ∈ H1(D) such that ϕ = 0 on ∂Ω ∩ ∂D. (4.3)

As long as ∂Ω is such that there exists a vector b ∈ R
d such that for almost all x ∈ D, the first intersection of

Bx and ∂D lies in ∂Ω, where Bx is the straight semi-line defined by the origin x and the vector b, CF,D,∂Ω = 1,
cf. [22, Remark 5.8]. To evaluate CF,D,∂Ω in the general case is more complicated but it still can be done,
cf. [22, Remark 5.9] or Carstensen and Funken [5, Section 3].

Finally, for a simplex K, the trace inequality states that

‖ϕ‖2
σ ≤ Ct,K,σ(h−1

K ‖ϕ‖2
K + ‖ϕ‖K‖∇ϕ‖K) ∀ϕ ∈ H1(K). (4.4)

It follows from [18, Lemma 3.12] that the constant Ct,K,σ can be evaluated as |σ|hK/|K|, see also Carstensen
and Funken [5, Theorem 4.1] for d = 2.
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Lemma 4.2 (Auxiliary estimates on simplices). Let K ∈ Sh, σ ∈ EK , ϕ ∈ H1(K), and ϕK := (ϕ, 1)K/|K|.
Then

‖ϕ − ϕK‖K ≤ mK |||ϕ|||K (4.5)

with
mK := min

{
C

1/2
P,KhK , c

−1/2
r,K

}
. (4.6)

Moreover,

‖ϕ − ϕK‖σ ≤ C
1/2
t,K,σm̃

1/2
K |||ϕ|||K (4.7)

with

m̃K := min

{(
CP,K + C

1/2
P,K

)
hK , c−1

r,Kh−1
K +

1

2
c
−1/2
r,K

}
. (4.8)

Proof. We begin by the first assertion. As ϕK is the L2 projection of ϕ over the constants, we have

‖ϕ − ϕK‖K ≤ ‖ϕ‖K . (4.9)

Now, using that

‖ϕ‖K =
∥∥∥

r1/2

r1/2
ϕ
∥∥∥

K
≤ c

−1/2
r,K |||ϕ|||K , (4.10)

we obtain ‖ϕ−ϕK‖K ≤ c
−1/2
r,K |||ϕ|||K . On the other hand, from the Poincaré inequality (4.2) and definition (2.3)

of the energy norm, the estimate ‖ϕ − ϕK‖K ≤ C
1/2
P,KhK |||ϕ|||K follows easily, whence we conclude (4.5).

In order to prove the second assertion, we use the trace inequality (4.4) for ϕ − ϕK . We have

‖ϕ − ϕK‖2
σ ≤ Ct,K,σ(h−1

K ‖ϕ − ϕK‖2
K + ‖ϕ − ϕK‖K‖∇(ϕ − ϕK)‖K)

≤ Ct,K,σ(CP,KhK‖∇ϕ‖2
K + C

1/2
P,KhK‖∇ϕ‖2

K)

≤ Ct,K,σ

(
CP,K + C

1/2
P,K

)
hK |||ϕ|||2K ,

using that ∇ϕK = 0, the Poincaré inequality (4.2) and definition (2.3) of the energy norm. Similarly,

‖ϕ − ϕK‖2
σ ≤ Ct,K,σ

(
h−1

K ‖ϕ‖2
K + ‖ϕ‖K‖∇ϕ‖K

)

≤ Ct,K,σ

(
c−1
r,Kh−1

K |||ϕ|||2K + c
−1/2
r,K ‖r1/2ϕ‖K‖∇ϕ‖K

)

≤ Ct,K,σ

(
c−1
r,Kh−1

K |||ϕ|||2K +
1

2
c
−1/2
r,K |||ϕ|||2K

)
,

using (4.9), (4.10), the inequality 2ab ≤ a2+b2, and definition (2.3) of the energy norm. Hence (4.7) follows. �

Lemma 4.3 (Auxiliary estimates on dual volumes). Let D ∈ Dh, ϕ ∈ H1(D), and ϕD := (ϕ, 1)D/|D|. Then,

‖ϕ − ϕD‖D ≤ mD|||ϕ|||D , D ∈ Dint
h ,

‖ϕ‖D ≤ mD|||ϕ|||D , D ∈ Dext
h ,

where

mD := min
{

C
1/2
P,DhD, c

−1/2
r,D

}
, D ∈ Dint

h , (4.11)

mD := min
{

C
1/2
F,D,∂ΩhD, c

−1/2
r,D

}
, D ∈ Dext

h , (4.12)

with CP,D the constant from the Poincaré inequality (4.2) and CF,D,∂Ω that from the Friedrichs inequality (4.3).
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Proof. The proof of the first statement is analogous to the proof of (4.5) in Lemma 4.2. To obtain the second

statement, we use ‖ϕ‖D ≤ c
−1/2
r,D |||ϕ|||D (cf. (4.10)) and the Friedrichs inequality (4.3). �

4.3. Guaranteed a posteriori error estimates

We define and prove here our a posteriori error estimates in a rather general form motivated by the diffusive
flux reconstruction of Section 4.1:

Theorem 4.4 (Guaranteed a posteriori error estimate). Let p be the weak solution of problem (1.1a)–(1.1b)
given by (2.4) and let ph ∈ H1

0(Ω) such that ∆ph ∈ L2(K) on each K ∈ Sh be arbitrary. Let next th ∈ H(div, Ω)
be such that

(∇ · th + rph, 1)D = (f, 1)D ∀D ∈ Dint
h . (4.13)

Define the residual estimator by

ηR,D := mD‖f −∇ · th − rph‖D, D ∈ Dh, (4.14)

where mD is given by (4.11)–(4.12), and the diffusive flux estimator

ηDF,D := min
{

η
(1)
DF,D, η

(2)
DF,D

}
, D ∈ Dh, (4.15)

where
η
(1)
DF,D := ‖∇ph + th‖D

and

η
(2)
DF,D :=




∑

K∈SD

(
mK‖∆ph + ∇ · th − (∆ph + ∇ · th)K‖K + m̃

1/2
K

∑

σ∈EK

C
1/2
t,K,σ‖(∇ph + th) · n‖σ

)2




1/2

,

with mK given by (4.6), and m̃K and Ct,K,σ respectively by (4.8) and (4.4). Then

|||p − ph||| ≤

{
∑

D∈Dh

(ηR,D + ηDF,D)2

}1/2

. (4.16)

Proof. Putting t = th in (3.2) we have (with ϕ defined in the proof of Theorem 3.1)

|||p − ph||| = (f −∇ · th − rph, ϕ) − (∇ph + th,∇ϕ).

Next, multiplying (4.13) by ϕD := (ϕ, 1)D/|D|, we come to

(f −∇ · th − rph, ϕD)D = 0 ∀D ∈ Dint
h .

Thus
|||p − ph||| =

∑

D∈Dint

h

{(f −∇ · th − rph, ϕ − ϕD)D − (∇ph + th,∇ϕ)D}

+
∑

D∈Dext

h

{(f −∇ · th − rph, ϕ)D − (∇ph + th,∇ϕ)D} .
(4.17)

Using the Cauchy–Schwarz inequality and Lemma 4.3, we have for D ∈ Dint
h

(f −∇ · th − rph, ϕ − ϕD)D ≤ ‖f −∇ · th − rph‖D‖ϕ − ϕD‖D

≤ mD‖f −∇ · th − rph‖D|||ϕ|||D = ηR,D|||ϕ|||D
(4.18)
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and for D ∈ Dext
h

(f −∇ · th − rph, ϕ)D ≤ ‖f −∇ · th − rph‖D‖ϕ‖D

≤ mD‖f −∇ · th − rph‖D|||ϕ|||D = ηR,D|||ϕ|||D .
(4.19)

In order to estimate the terms −(∇ph + th,∇ϕ)D, we can use Cauchy–Schwarz inequality and the definition
(2.3) of the energy norm to obtain

− (∇ph + th,∇ϕ)D ≤ ‖∇ph + th‖D‖∇ϕ‖D ≤ η
(1)
DF,D|||ϕ|||D . (4.20)

However, the estimate ‖∇ϕ‖D ≤ |||ϕ|||D is too poor if r ≫ 1 and an a posteriori error estimate featuring only

η
(1)
DF,D would not be robust (cf. Verfürth [21] for a recent similar observation). We fortunately notice that there

is another way of estimating the terms −(∇ph + th,∇ϕ)D. Using the fact that ∇ϕK = 0 for ϕK := (ϕ, 1)K/|K|
for all K ∈ SD and the Green theorem, we obtain

−(∇ph + th,∇ϕ)D =
∑

K∈SD

−(∇ph + th,∇(ϕ − ϕK))K

=
∑

K∈SD

{−〈(∇ph + th) · n, ϕ − ϕK〉∂K + (∆ph + ∇ · th, ϕ − ϕK)K}

=
∑

K∈SD

{−〈(∇ph + th) · n, ϕ − ϕK〉∂K + (∆ph + ∇ · th − (∆ph + ∇ · th)K , ϕ − ϕK)K}.

(4.21)
Note that in the last equality, we could have subtracted the mean value of ∆ph + ∇ · th on K thanks to the
term ϕ − ϕK in the second argument of the scalar product (·, ·)K . This turns out advantageous as

‖∆ph + ∇ · th − (∆ph + ∇ · th)K‖K ≤ ‖∆ph + ∇ · th‖K (4.22)

by (4.9).
We now estimate the terms of the last sum separately. Using the Cauchy–Schwarz inequality and esti-

mate (4.7) from Lemma 4.2, the first terms of (4.21) can be estimated as

−〈(∇ph + th) · n, ϕ − ϕK〉∂K ≤
∑

σ∈EK

‖(∇ph + th) · n‖σ‖ϕ − ϕK‖σ

≤
∑

σ∈EK

‖(∇ph + th) · n‖σC
1/2
t,K,σm̃

1/2
K |||ϕ|||K .

(4.23)

For the second terms of (4.21), we use the Cauchy–Schwarz inequality and estimate (4.5) from Lemma 4.2 in
order to obtain

(∆ph + ∇ · th − (∆ph + ∇ · th)K , ϕ − ϕK)K ≤ ‖∆ph + ∇ · th − (∆ph + ∇ · th)K‖K‖ϕ − ϕK‖K

≤ ‖∆ph + ∇ · th − (∆ph + ∇ · th)K‖KmK |||ϕ|||K .
(4.24)

Putting inequalities (4.23) and (4.24) into (4.21), we obtain

−(∇ph + th,∇ϕ)D ≤

≤
∑

K∈SD

(
m̃

1/2
K

∑

σ∈EK

C
1/2
t,K,σ‖(∇ph + th) · n‖σ + mK‖∆ph + ∇ · th − (∆ph + ∇ · th)K‖K

)
|||ϕ|||K

≤ η
(2)
DF,D|||ϕ|||D ,

(4.25)
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employing finally the Cauchy–Schwarz inequality.
Now, using estimates (4.20) and (4.25), we have that

− (∇ph + th,∇ϕ)D ≤ ηDF,D|||ϕ|||D . (4.26)

Hence, (4.17) with (4.18), (4.19), and (4.26), the Cauchy–Schwarz inequality, and the fact that |||ϕ||| = 1 yield

|||p − ph||| ≤
∑

D∈Dh

(ηR,D + ηDF,D)|||ϕ|||D ≤

{
∑

D∈Dh

(ηR,D + ηDF,D)2

}1/2

.

�

Remark 4.5 (The estimate for the vertex-centered finite volume method (2.5)). By Lemma 4.1, th ∈ RTN(Sh)
given by (4.1) for the vertex-centered finite volume method (2.5) satisfies (4.13), whence it can directly be used
in Theorem 4.4. Moreover, as ph is piecewise linear on Th (and thus also on Sh), ∆ph = 0 on all K ∈ Sh.
Additionally, as th ∈ RTN(Sh), ∇·th is piecewise constant on (Sh), whence ‖∆ph+∇·th−(∆ph+∇·th)K‖K = 0.
Thus

η
(2)
DF,D =





∑

K∈SD

(
m̃

1/2
K

∑

σ∈EK

C
1/2
t,K,σ‖(∇ph + th) · n‖σ

)2





1/2

in this case.

Remark 4.6 (Extensions to other conforming methods). Using the general form of Theorem 4.4, extension of
our estimates to other methods yielding a conforming approximation ph consists only in finding an appropriate
th ∈ H(div, Ω) satisfying (4.13). For the pure diffusion case, we refer in this respect to [24].

5. Local efficiency and robustness of the a posteriori error estimates

We prove in this section the local efficiency of the a posteriori error estimators of Theorem 4.4 for the case
where th ∈ RTN(Sh) is given by (4.1), which is according to Remark 4.5 in particular possible in the vertex-
centered finite volume method (2.5). The key feature is the robustness, with respect to reaction dominance
and also with respect to the spatial variation of r under the condition that r is piecewise constant on Dh. We
actually show that the estimators of Theorem 4.4 represent, up to a generic constant, local lower bounds for
those of Verfürth [20].

Theorem 5.1 (Local efficiency and robustness of the a posteriori error estimate). Let the functions f and r
be piecewise polynomials of degree m on Sh, let p be the weak solution of problem (1.1a)–(1.1b) given by (2.4),
let ph ∈ X0

h be arbitrary, and let th ∈ RTN(Sh) be given by (4.1). Let next Th be shape-regular, i.e., let
minK∈Th

|K|/hd
K ≥ κT for some positive constant κT . Let finally the a posteriori error estimators ηR,D and

ηDF,D be respectively given by (4.14) and (4.15). Then, for each D ∈ Dh, there holds

ηDF,D + ηR,D ≤ C|||p − ph|||D, (5.1)

where the constant C depends only on the space dimension d, on the shape regularity parameter κT , on the poly-
nomial degree m of f and r, on the constants CP,D if D ∈ Dint

h , CF,D,∂Ω if D ∈ Dext
h , and maxK∈SD maxσ∈EK∩Gint

D

{Ct,K,σ}, and finally on the local variation of r in D through the ratio Cr,D/cr,D.

Proof. Let D ∈ Dh be fixed. We first note that as −∇ph · nσ = th · nσ for all σ ⊂ ∂D by (4.1) and by
the definition of the average operator, we may change the summation over σ ∈ EK to the summation over
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σ ∈ EK ∩ Gint
D in the definition of η

(2)
DF,D. Then using the definition of the residual and diffusive flux estimators,

the estimate (4.22), and the triangle inequality, we have

ηDF,D + ηR,D =min
{

η
(1)
DF,D, η

(2)
DF,D

}
+ ηR,D ≤ η

(2)
DF,D + ηR,D

≤






∑

K∈SD


mK‖∆ph + ∇ · th‖K + m̃

1/2
K

∑

σ∈EK∩Gint

D

C
1/2
t,K,σ‖(∇ph + th) · n‖σ




2





1/2

+ mD‖f + ∆ph − rph‖D + mD‖∆ph + ∇ · th‖D.

So, squaring the above estimate and applying the Cauchy–Schwarz inequality, we obtain

C−1
1 (ηDF,D + ηR,D)2 ≤

∑

K∈SD

m2
K‖∆ph + ∇ · th‖

2
K +

∑

K∈SD

m̃K

∑

σ∈EK∩Gint

D

Ct,K,σ‖(∇ph + th) · n‖2
σ+

+ m2
D‖f + ∆ph − rph‖

2
D + m2

D‖∆ph + ∇ · th‖
2
D

for some constant C1 depending only on d and κT .
Noticing that m2

D ≤ C2m
2
K for all K ∈ SD, with a constant C2 which depends only on CP,D if D ∈ Dint

h ,
CF,D,∂Ω if D ∈ Dext

h , κT , and Cr,D/cr,D, we have from the last inequality

(ηDF,D + ηR,D)2 ≤C1(1 + C2)
∑

K∈SD

m2
K‖∆ph + ∇ · th‖

2
K

+ C1

∑

K∈SD

m̃K

∑

σ∈EK∩Gint

D

Ct,K,σ‖(∇ph + th) · n‖2
σ

+ C1C2

∑

K∈SD

m2
K‖f + ∆ph − rph‖

2
K .

Recall now that for a simplex K and v ∈ RTN(K), we have the inverse inequality ‖∇ · v‖2
K ≤ C3h

−2
K ‖v‖2

K ,
with C3 depending only on d and κT , and the estimate

‖v‖2
K ≤ C4hK

∑

σ∈EK

‖v · n‖2
σ,

with C4 again depending only on d and κT . Thus, as ∇ph + th ∈ RTN(K),

‖∆ph + ∇ · th‖
2
K ≤ C3h

−2
K ‖∇ph + th‖

2
K ≤ C3C4h

−1
K

∑

σ∈EK∩Gint

D

‖(∇ph + th) · n‖2
σ,

using also again the fact that −∇ph ·nσ = th ·nσ for all σ ⊂ ∂D. Hence, putting Ct,K := maxσ∈EK∩Gint

D
{Ct,K,σ},

we have the estimate

(ηDF,D + ηR,D)2 ≤C1

∑

K∈SD


((1 + C2)C3C4m

2
Kh−1

K + Ct,Km̃K

) ∑

σ∈EK∩Gint

D

‖(∇ph + th) · n‖2
σ




+ C1C2

∑

K∈SD

m2
K‖f + ∆ph − rph‖

2
K .
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Let us now recall that by definition (4.1) of th, we have

(∇ph + th)|K · nσ = (∇ph · nσ)|K − {{∇ph · nσ}} =
1

2
nσ · n[[∇ph · nσ]]

if σ ∈ EK ∩Gint
D , where nσ ·n = ±1 is used for sign alternation. Thus, we infer, for a constant C5 only depending

on the constants C1–C4, maxK∈SD Ct,K , d, and κT ,

(ηDF,D + ηR,D)2 ≤ C5

∑

K∈SD


m2

K‖f + ∆ph − rph‖
2
K + (m2

Kh−1
K + m̃K)

∑

σ∈EK∩Gint

D

‖[[∇ph · n]]‖2
σ


 .

We now show that m2
Kh−1

K + m̃K ≤ C6mK with some constant C6 only dependent on CP,K (recall that

CP,K = 1/π2 as simplices are convex). Firstly, m2
Kh−1

K ≤ C
1/2
P,KmK is obvious noticing that this statement is

equivalent to mK ≤ C
1/2
P,KhK , which follows from the definition (4.6) of mK . Secondly, employing also this

bound, we have

m̃K ≤ min
{(

CP,K + C
1/2
P,K

)
hK , c−1

r,Kh−1
K

}
+ min

{(
CP,K + C

1/2
P,K

)
hK ,

1

2
c
−1/2
r,K

}

≤
(
1 + C

−1/2
P,K

)
min

{
CP,KhK , c−1

r,Kh−1
K

}
+
(
1 + C

1/2
P,K

)
min

{
C

1/2
P,KhK , c

−1/2
r,K

}

=
(
1 + C

−1/2
P,K

)
m2

Kh−1
K +

(
1 + C

1/2
P,K

)
mK

≤ 2
(
1 + C

1/2
P,K

)
mK ,

whence the assertion follows. Combining the previous bounds, we thus have

(ηDF,D + ηR,D)2 ≤ C7

∑

K∈SD



m2
K‖f + ∆ph − rph‖

2
K + mK

∑

σ∈EK∩Gint

D

‖[[∇ph · n]]‖2
σ



 ,

for a constant C7 depending only on C5 and C6. We now finally note from this estimate that our estimators
represent, up to the constant C7, a local lower bound for the residual a posteriori error estimators of Verfürth [20,
Proposition 4.1] (for the case of r constant and on the mesh Sh instead of the mesh Th). Hence, in order to
show their fully robust local efficiency, it is sufficient to use the results of this reference. In particular, applying
the bubble function estimates (4.13) and (4.16) from this reference to a simplex K ∈ SD and its side σ ∈ Gint

D

for r constant and f piecewise linear, we get

mK‖f + ∆ph − rph‖K ≤ C|||p − ph|||K ,

m
1/2
K ‖[[∇ph · n]]‖σ ≤ C|||p − ph|||Sσ

(recall that Sσ are the two simplices sharing σ ∈ Gint
D ), whence (5.1) follows. Finally, one can extend this result

to general piecewise polynomial f and r, which gives the final dependencies of the constant C of (5.1) indicated
in the announcement of the theorem. �

6. Numerical experiments

We present in this section a series of numerical experiments for the vertex-centered finite volume method (2.5)
which confirm the theoretical results of the paper. The a posteriori error estimate of Theorem 4.4 with the
reconstructed diffusive flux th given by (4.1) gives a guaranteed upper bound on the overall energy error but the
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Figure 2. Comparison of the different estimators for the original jump estimate (4.16) with
th given by (4.1) (left) and for the minimization estimate (C.1) (right) in dependence on r

effectivity index (recall that this is the ratio of the estimated to the actual error) is never close to the optimal
value of one in our tests. For this reason, we also present results employing a local minimization procedure,
consisting in modifications of the flux th in the interior of each D ∈ Dh. This procedure is in detail described
in Appendix below.

We perform our numerical experiments for problem (1.1a) with Ω = (0, 1) × (0, 1), a constant reaction
coefficient r, and f = 0. We prescribe the Dirichlet boundary condition by the exact solution

p(x, y) = e−r1/2x + e−r1/2y,

as in [9]. This solution exhibits a boundary layer along the coordinate axes for high values of r. In order to carry
out the tests, we have implemented our estimates into the FreeFem++ [10] package and all the results presented
have been computed using FreeFem++. Finally, we shall in this section term estimate (4.16) of Theorem 4.4
with th given by (4.1) as the jump estimate, as this reconstructed diffusive flux th leads to estimators of the
form ‖(∇ph + th) · n‖σ = ‖[[∇ph · n]]‖σ/2, and estimate (C.1) following from the local minimization strategy
described in Appendix C below as the minimization estimate. We, however, note that in the majority of the
cases, it is the simple choice (B.1) of Appendix B below which gives the minimum in (C.1), so that very similar
results may be presented with (B.1) instead of (C.1).

We first in the left part of Figure 2 show the different estimators of the original jump estimate (4.16)
with th given by (4.1) on a fixed uniformly refined mesh with 512 elements in dependence on the reaction
coefficient r, which we let vary between 10−6 and 106. We remark that the highest contribution is always

given by the residual estimate ηR := {
∑

D∈Dh
η2
R,D}

1

2 , whereas the contributions of the diffusive flux estimates

η
(i)
DF := {

∑
D∈Dh

(η
(i)
DF,D)2}

1

2 are smaller. Note also that although the estimate η
(1)
DF gives smaller values for

moderate values of r, it gets eventually outperformed by the estimate η
(2)
DF. We next in Figure 3 present, for

two different (uniformly refined) grids, the corresponding effectivity indices. We can clearly see that they are
bounded uniformly with respect to r which demonstrates the full robustness of our estimates. Unfortunately,
in particular for smaller values of r, they are not too close to the optimal value of 1. This is the reason for
the introduction of a local minimization procedure which we have devised in [6] and [24, Section 7] in the pure
diffusion case and which we adapt to the present case in Appendix below. The results using the minimization
estimate (C.1) are then presented in the right part of Figure 2 and in both parts of Figure 3. We can see that for
moderate values of r, the residual estimate has been decreased under the diffusive flux ones and consequently
the effectivity index gets close to the optimal value of 1. In what follows, we present the results only for the
minimization estimate (C.1).
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Figure 3. Effectivity indices for the original jump estimate (4.16) with th given by (4.1) and
for the minimization estimate (C.1) in dependence on r for two different (uniformly refined)
meshes
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Figure 4. Estimated and actual error against the number of elements in uniformly/adaptively
refined meshes (left) and corresponding effectivity indices (right) of the minimization estima-
tor (C.1), r = 1

Apart from overall error control, a posteriori error estimates are a key element for adaptive mesh refinement.
We exploit for this purpose the capabilities of FreeFem++. We mark an element for refinement if the estimator
exceeded 25% of the maximal element estimators but we recall that FreeFem++ actually generates a completely
new mesh on the basis of this criterion and this new mesh is thus not a simple refinement of the previous one.
In the adaptive refinement case, the elements marked for refinement were selected using the original jump
estimators (4.16) with th given by (4.1). This approach seems to give better numerical results (better error
decreasing with the number of elements) and is in coincidence with our theoretical results, since we prove the
local efficiency for these original estimators in Theorem 5.1. We firstly plot, in the left parts of Figures 4 and 5,
respectively, the estimated and actual errors against the number of elements in both uniformly and adaptively
refined meshes for r = 1 and r = 106. In the first case, the solution posses no singularity, so the adaptive
approach only leads to a slight improvement of the error attained for a given number of unknowns. In the
second case with a singular solution, the adaptive approach leads to an important improvement of the error
attained for a given number of unknowns. The effectivity indices are then shown in the right parts of Figures 4
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Figure 5. Estimated and actual error against the number of elements in uniformly/adaptively
refined meshes (left) and corresponding effectivity indices (right) of the minimization estima-
tor (C.1), r = 106
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65.8539
70.1025
74.3511
78.5998
82.8484

Estimated Error Distribution
IsoValue
0.0917744
0.275323
0.458872
0.64242
0.825969
1.00952
1.19307
1.37662
1.56016
1.74371
1.92726
2.11081
2.29436
2.47791
2.66146
2.845
3.02855
3.2121
3.39565
3.5792

Exact Error Distribution

Figure 6. Estimated error (left) and exact error (right) distribution using the original jump
estimate (4.16) with th given by (4.1) on an adaptively refined mesh for r = 106

and 5, respectively. In the first case, they improve considerably with the mesh refinement and especially in the
adaptive refinement mode they get very close to the optimal value of 1, whereas in the second one they are
rather stable around the value of 2.4. Finally, to further promote the usability of our estimates for adaptive
mesh refinement, we present in Figure 6 the very well matching predicted and actual error distribution and the
corresponding adaptively refined mesh as given by the jump estimator for r = 106.
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Appendix: Improvements by local minimization

In Sections 4 and 5, we have shown that a choice of th ∈ H(div, Ω) in Theorem 4.4 for the vertex-centered
finite volume method (2.5) leading to a guaranteed upper bound, local efficiency, and robustness is given
by (4.1). However, it is not apparent at all whether this choice leads to the best upper bound. In particular, by
closer investigation, it turns out that whereas in mixed finite element, finite volume, or discontinuous Galerkin
methods [7,23,25], the residual estimator represents a higher-order term, as in these methods one has (with an
appropriate th) (∇· th + rph, 1)K = (f, 1)K for all K ∈ Th, it is not the case here, as (4.13) is only true on a set
of elements SD of each interior dual volume D and not on each element K ∈ SD. The numerical experiments
for th given by (4.1) of Section 6 indeed show that the residual estimators ηR,D represent a major contribution
to the estimate.

A natural idea in order to decrease the estimate is to try to choose a different t̃h ∈ H(div, Ω) satisfying (4.13).
Notice now that t̃h ∈ RTN(Sh) given by (4.1) only for such σ ∈ Gh that lie in some interior side of Dh

satisfies (4.13) and we can choose any value of the normal component for the other sides (in the interior of each
D ∈ Dh and on the boundary). In particular, we can choose values that minimize the estimate. Moreover, as
the estimator is built locally on each dual volume, we can perform this optimization process locally on each
dual volume.

We describe in this appendix two ways of a local minimization. In the pure diffusion case, the first one was
devised in [6] and consists in true local minimization for the given degrees of freedom, leading to a small linear
system solution for each vertex. The second, simplified one, was proposed in [24, Section 7] and avoids any local
linear system solution. We adapt them here to the reaction–diffusion case; our exposition will be given in two
space dimensions but a similar development can be done in three space dimensions. For the sake of simplicity,
we assume that f and r are piecewise constant on Th.

Once a local minimization has been performed, we have at our disposal two vector fields from the space
RTN(Sh) satisfying (4.13): th given by (4.1) and t̃h resulting from the local minimization. Thus local estimators
on each D ∈ Dh can be given as ηmin

D = min
{
ηD(th), ηD(t̃h)

}
. Now recall that the normal components of th

and t̃h on the interior sides of Dh coincide. Thus th ∈ RTN(Sh) can be formed (for explication only, not in
practice) by choosing locally on each D ∈ Dh either th or t̃h, according to for which of these fluxes the local
minimum has been attained. Then ηmin

D corresponds to ηD(th). By such a construction: a) the upper bound
(Theorem 4.4) holds true, as th satisfies (4.13); b) one can only improve the original estimators of Theorem 4.4
given by ηD(th) alone; c) the lower bound (Theorem 5.1) holds true as well, as the estimator ηmin

D as a local
minimum is necessarily smaller than ηD(th), for which Theorem 5.1 holds.

Appendix A. A full local minimization strategy

We outline here the generalization of the “full minimization strategy” of [6] to the reaction–diffusion case.

A.1. Notation and previous results

Let D ∈ Dh be the dual volume corresponding to a vertex VD as in Figure 7; D is decomposed into a subdivi-
sion SD of n subtriangles K0, . . . , Kn−1, numbered in the counter-clockwise direction. On each subtriangle Ki,
the vertex 0 is the center of the volume D, the other vertices are numbered in the counter-clockwise direction,
and we call σi

j the edge opposite to the vertex j and nσi
j

the exterior normal vector of the edge σi
j . Let next

ψi
j , j = 0, 1, 2, be the basis function of RTN(Ki) corresponding to the vertex j, i.e., ψi

j = 1
d|Ki|

(x−V i
j ), where

V i
j is vertex j of the triangle Ki. On Ki, th can consequently be written as th|Ki = αi

0ψ
i
0 + αi

1ψ
i
1 + αi

2ψ
i
2.

The values of the external fluxes over ∂D are prescribed by (4.1) in the same way as before: for any dual
volume D ∈ Dh, αi

0 = −|σi
0|∇ph · nσi

0

, i = 0, . . . , n − 1; if D ∈ Dext
h , then in addition α0

2 = −|σ0
2 |∇ph ·

nσ0

2
and αn−1

1 = −|σn−1
1 |∇ph ·nσn−1

1

. The internal fluxes, given by the coefficients αi
1 and αi

2, have to first fulfill

the continuity of the normal trace across the edges, which imposes



TITLE WILL BE SET BY THE PUBLISHER 19

K0

K1

Kn−1 Ki

1

2

1

2

1 2

10

2

0
0

0

K0
Kn−1
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0
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1

1

12

2

2

2

Figure 7. Dual volume and its subdivision SD. Left: interior dual volume; right: boundary
dual volume

• if D ∈ Dint
h ,

αi
1 + αi+1

2 = 0, i = 0, . . . , n − 1 with αn
2 = α0

2; (A.1)

• if D ∈ Dext
h ,

αi
1 + αi+1

2 = 0, i = 0, . . . , n − 2. (A.2)

Therefore, there are n degrees of freedom X = (α0, . . . , αn−1)t if D ∈ Dint
h and n − 1 degrees of freedom

X = (α0, . . . , αn−2)t if D ∈ Dext
h left and these can be chosen in order to minimize the estimator; from now on,

the local estimator ηD(X) = ηDF,D(X) + ηR,D(X) will be considered as a function of them. Later on, we will
also employ the notation ηD(th) = ηDF,D(th) + ηR,D(th).

It has been in particular shown in [6, Section 3] that the square of the first diffusive flux estimator η
(1)
DF,D on

a dual volume D ∈ Dh is a quadratic form with respect to X of the form

(
η
(1)
DF,D

)2

(X) = a
(1)
DF −

(
B

(1)
DF

)t

X +
1

2
Xt

A
(1)
DFX; (A.3)

we refer to this reference for the precise form of the entries. Similarly, by a slight modification of the approach
of this reference, one can derive that

η2
R,D(X) = aR − Bt

RX +
1

2
Xt

ARX. (A.4)

We now accomplish a similar task for the diffusive flux estimator η
(2)
DF,D.

A.2. Diffusive flux estimator η
(2)
DF,D

By the definition, the square of the second diffusive flux estimator η
(2)
DF,D on a dual volume D ∈ Dh is not a

quadratic form with respect to the degrees of freedom X as the other ones. As our purpose is to improve the

estimator without increasing too much the computational cost, we choose not to minimize
(
η
(2)
DF,D

)2

directly,
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but an upper bound instead: we have

(
η
(2)
DF,D

)2

≤ 2
∑

K∈SD

(
m̃K

(
Ct,K,σ1

‖(∇ph + th) · n‖2
σ1

+Ct,K,σ2
‖(∇ph + th) · n‖2

σ2

))
,

using the inequality (a+b)2 ≤ 2(a2 +b2) and the fact that on the edge σ0 of each subtriangle K, th is prescribed

such that (∇ph + th)|K ·nσ0
= 0. We denote by

(
η
(3)
DF,D

)2

this upper bound and study it separately for interior

and exterior dual volumes.

A.2.1. Interior dual volumes

Let D ∈ Dint
h and SD = {K0, . . . , Kn−1} be its subtriangulation. Using the definition of ψi

j and (A.1), we
have

th|K0
= 1

d|K0|

(
α0

0(x − V 0
0 ) + α0(x − V 0

1 ) − αn−1(x − V 0
2 )
)
,

th|Ki = 1
d|Ki|

(
αi

0(x − V i
0 ) + αi(x − V i

1 ) − αi−1(x − V i
2 )
)
, i = 1, . . . , n − 1

(A.5)

Using (A.5) and the fact that the normal components of the basis functions ψi
j are constant over the edges, we

have

‖(∇ph + th) · nσi
1

‖2
σi
1

= |σi
1|
(
∇ph · nσi

1

+ 1
|σi

1
|
αi
)2

, i = 0, . . . , n − 1,

‖(∇ph + th) · nσ0

2
‖2

σ0

2

= |σ0
2 |
(
∇ph · nσ0

2
− 1

|σ0

2
|
αn−1

)2

,

‖(∇ph + th) · nσi
2

‖2
σi
2

= |σi
2|
(
∇ph · nσi

2

− 1
|σi

2
|
αi−1

)2

, i = 1, . . . , n − 1.

Therefore, we find that
(
η
(3)
DF,D

)2

is a quadratic form with respect to X = (α0, . . . , αn−1)t:

(
η
(3)
DF,D

)2

(X) = a
(3)
DF −

(
B

(3)
DF

)t

X +
1

2
Xt

A
(3)
DFX, (A.6)

where a
(3)
DF =

∑n−1
i=0 Ei

0 and

B
(3)
DF = −




E0
1 + E1

2
...

En−1
1 + E0

2


 , A

(3)
DF = diag(2(E0

3 + E1
4), . . . , 2(En−1

3 + E0
4)).

Here

Ei
0 = 2m̃Ki

(
Ct,Ki,σi

1

|σi
1|(∇ph · nσi

1

)2 + Ct,Ki,σi
2

|σi
2|(∇ph · nσi

2

)2
)

,

Ei
1 = 4Ct,Ki,σi

1

m̃Ki∇ph · nσi
1

,

Ei
2 = −4Ct,Ki,σi

2

m̃Ki∇ph · nσi
2

,

Ei
3 = 2

C
t,Ki,σi

1

m̃Ki

|σi
1
|

,

Ei
4 = 2

C
t,Ki,σi

1

m̃Ki

|σi
2
|

.
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A.2.2. Boundary dual volumes

Let D ∈ Dext
h be a boundary dual volume. In the general case n > 2, using the conditions (A.2), we find that(

η
(3)
DF,D

)2

is a quadratic form of the form (A.6), where a
(3)
DF = Ẽ0

0 +
∑n−3

i=1 Ei
0 + Ẽn−2

0 and

B
(3)
DF = −




Ẽ0
1 + E1

2

E1
1 + E2

2
...

En−3
1 + En−2

2

Ẽn−2
1




, A
(3)
DF = diag(2(E0

3 + E1
4), . . . , 2(En−3

3 + En−2
4 ), 2Ẽn−2

3 ).

Here Ei
0, Ei

1, Ei
2, Ei

3, Ei
4 i = 0, . . . , n − 2 are defined as for interior dual volumes, and we introduce

Ẽ0
0 = E0

0 − E0
2α0

2 + E0
5(α0

2)
2,

Ẽ0
1 = E0

1 − E0
3α0

2,

Ẽn−2
0 = En−2

0 + En−1
0 + En−1

1 αn−1
1 + En−1

4 (αn−1
1 )2,

Ẽn−2
1 = En−2

1 + En−1
2 + En−1

3 αn−1
1 ,

Ẽn−2
3 = En−2

3 + En−1
4 .

In the limit case n = 2, we find (A.6) with the scalar entries

a
(3)
DF = E0

3 + E1
4 ,

B
(3)
DF = E0

1 + E1
2 − E0

3α0
2 + E1

3α1
1,

A
(3)
DF = E0

0 + E1
1α0

1 − E0
2α0

2 + E0
4 (α0

2)
2 + E1

3(α1
1)

2.

A.3. Minimization

Given a dual volume D ∈ Dh, we would like to find the vector of degrees of freedom X0 such that
ηD(X0) = minX ηD(X) in order to improve the estimator. However, as we want to make this improvement
with a computational cost as small as possible, we choose not to minimize directly ηD, but rather quadratic

forms; precisely, we minimize η2
R,D + min

{(
η
(1)
DF,D

)2

,
(
η
(3)
DF,D

)2
}

, i.e,

min

{
min
X

{
η2
R,D(X) +

(
η
(1)
DF,D

)2

(X)

}
, min

X

{
η2
R,D(X) +

(
η
(3)
DF,D

)2

(X)

}}
.

Using definitions (A.3), (A.4), and (A.6), this amounts to find the minima of two quadratic forms:

X1 = argmin
X

(
a(1) −

(
B(1)

)t

X +
1

2
Xt

A
(1)X

)
,

where a(1) = aR + a
(1)
DF, B(1) = BR + B

(1)
DF, and A

(1) = AR + A
(1)
DF, and

X2 = argminX

(
a(3) −

(
B(3)

)t

X +
1

2
Xt

A
(3)X

)
,

where a(3) = aR + a
(3)
DF, B(3) = BR + B

(3)
DF, and A

(3) = AR + A
(3)
DF.

The matrices AR and A
(1)
DF are positive, and so is A

(1); it is also definite: one can easily prove that Xt
ARX

and Xt
A

(1)
DFX cannot be zero at the same time except if X = 0. Thus, finding X1 is reduced to computing the
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solution of the linear system A
(1)X = B(1). This is also true for X2. Then we define the local estimator as

ηmin,full
D := min {ηD(X1), ηD(X2), ηD(th)} . (A.7)

Here th is given by (4.1) and we include the term ηD(th) for the sake of security, as, having minimized the
quadratic forms, we are not sure to have found the minimum. Once again, we stress that this minimization
process is local and the size of the matrices is small. Thus, the computational cost of the estimator does not
increase excessively and remains linear.

Appendix B. A simplified local minimization strategy

We generalize here the “simplified minimization strategy” of [24, Section 7] to the reaction–diffusion case.
Let D ∈ Dh be fixed. We construct tD ∈ RTN(SD) given by (4.1) only for such σ ∈ Gh that lie in some

interior side of Dh. The other requirement that we impose on tD is that (∇ · tD + rph, 1)K = (f, 1)K for all
K ∈ SD. In RTN(SD), there are number of interior sides of SD plus number of exterior sides of SD degrees
of freedom (fluxes over these sides have to be fixed). For D ∈ Dint

h , the first requirement amounts to fixing
the fluxes over the exterior sides of SD and we are left with fixing the fluxes over the interior sides of SD. As
the number of interior sides equals the number of the triangles in SD, prescribing (∇ · tD + rph, 1)K = (f, 1)K

for all K ∈ SD seemingly leads to a local system of |SD| equations for |SD| unknowns. Note, however, that
(∇ · tD + rph, 1)D = (f, 1)D when D ∈ Dint

h , by (4.1) prescribed for the exterior sides and by the definition of
the vertex-centered finite volume method (2.5). This amounts to

∑
K∈SD

(∇ · tD + rph, 1)K =
∑

K∈SD
(f, 1)K .

Hence we actually have one degree of freedom left, we can choose the flux over one interior side (by (4.1)) and
construct sequentially the other degrees of freedom so that (∇ · tD + rph, 1)K = (f, 1)K . If D ∈ Dext

h , this
argument is replaced by the fact that we are free to choose the fluxes over the exterior sides. Consequently, no
local linear system is to be solved in this procedure. We then define a local estimator

ηmin,simpl
D := min {ηD(tD), ηD(th)} , (B.1)

where th is given by (4.1).
Finally, we remark that in [24, Section 7], an additional parameter α such that ηD(αth + (1 − α)tD) was

(approximately) minimal was searched. Then, the value ηD(αth+(1−α)tD) was included in the above minimum.
We do not introduce here the parameter α and do not perform such an additional minimization since the above
extremely simple choice already works very well.

Appendix C. A minimization strategy used in the numerical experiments

In the numerical experiments of this paper, we finally use the minimization estimate of the form

|||p − ph||| ≤

{
∑

D∈Dh

(ηmin
D )2

}1/2

, ηmin
D := min

{
ηmin,full

D , ηmin,simpl
D

}
, (C.1)

where ηmin,full
D is given by (A.7) and ηmin,simpl

D by (B.1). As noted in the text, in the majority of the cases, it is
the simple choice (B.1) of Appendix B which gives the minimum. Thus the construction of Appendix A can be

completely avoided and one is only led to evaluate ηmin,simpl
D of (B.1), which is completely explicit.
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