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Abstract
We consider in this paper the time-dependent two-phase Stefan problem and derive a

posteriori error estimates and adaptive strategies for its conforming spatial and backward
Euler temporal discretizations. Regularization of the enthalpy–temperature function and
iterative linearization of the arising systems of nonlinear algebraic equations are considered.
Our estimators yield a guaranteed and fully computable upper bound on the dual norm of
the residual, as well as on the L2(L2) error of the temperature and the L2(H−1) error of the
enthalpy. Moreover, they allow to distinguish the space, time, regularization, and linearization
error components. An adaptive algorithm is proposed, which ensures computational savings
through the online choice of a sufficient regularization parameter, a stopping criterion for the
linearization iterations, local space mesh refinement, time step adjustment, and equilibration
of the spatial and temporal errors. We also prove the efficiency of our estimate. Our analysis
is quite general and is not focused on a specific choice of the space discretization and of the
linearization. As an example, we apply it to the vertex-centered finite volume (finite element
with mass lumping and quadrature) and Newton methods. Numerical results illustrate the
effectiveness of our estimates and the performance of the adaptive algorithm.

MSC: 65N08, 65N15, 65N50, 80A22

1 Introduction

The two-phase Stefan problem models a phase change process which is governed by the Fourier
law, c.f. Friedman [22]. The two phases, typically solid and liquid, are separated by a moving
interface, whose motion is governed by the so-called Stefan condition. Let Ω ⊂ Rd, d ∈ {2, 3}, be
an open bounded polygonal or polyhedral domain, not necessarily convex, and let T > 0. The
mathematical statement of the problem is as follows: given an initial enthalpy u0 and a source
function f , find the enthalpy u such that

∂tu−∇·(∇β(u)) = f in Ω× (0, T ), (1.1a)

u(·, 0) = u0 in Ω, (1.1b)

β(u) = 0 on ∂Ω× (0, T ). (1.1c)
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For the sake of simplicity, we assume that u is normalized so that the (specific) enthalpies of
the two phases are 0 and 1, respectively, and only consider the homogeneous Dirichlet boundary
condition (1.1c). The temperature β(u) is expressed as a function of the enthalpy u. In what
follows, we assume that β(·) is a nondecreasing Lipschitz continuous function which vanishes in
the interval (0, 1). The latter condition reflects the latent heat in the phase change.

The numerical analysis of the Stefan problem has been considered in several works. A fi-
nite difference method for the multi-dimensional Stefan problem is discussed in Meyer [32]. The
author presents a convergent numerical scheme which is the implicit analogue of the method of Ka-
menomostskaja [27]. In Ciavaldini [12], the numerical approach is based on finite elements of first
order. The author describes the different schemes used and the nature of their convergence. El-
liott [16] presents a finite element approximation of an elliptic variational inequality deduced from
a semi-discretization in time of the weak formulation of the two-phase Stefan problem. Discretiza-
tion schemes for regularized versions of the Stefan problem based on piecewise linear Lagrange
finite elements in space and backward differencing in time are presented by Jerome and Rose [25].
Jäger and Kačur [24] use the enthalpy formulation and a variational technique to analyze the
convergence of linearized semi-discrete-in-time and fully discrete schemes for nonlinear degenerate
parabolic systems of porous medium type. In Amiez and Gremaud [2], a numerical scheme based
on the approximation of the enthalpy formulation by semi-implicit finite differences in time com-
bined with continuous piecewise linear finite elements in space is presented. Nochetto [33] employs
the regularization technique to derive a priori error estimates in L2(0, T ;L2(Ω)) for the enthalpy
and temperature errors of respectively one half and first order for an implicit finite element scheme,
under suitable conditions on the data and relation of the space and time steps.

More recently, attention has been paid to finite volume methods which can be used on a
large variety of meshes. The framework of semigroup theory has been used by Baughman and
Walkington [4] for the study of the co-volume method, which is a special instance of the finite
volume method. The analysis predicts one half order rates of convergence for approximate solutions
of the enthalpy in L∞(0, T ;H−1(Ω)) and of the temperature in L2(0, T ;L2(Ω)). In Eymard et
al. [21] the authors give a convergence proof in the case that a finite volume scheme on a general
mesh is used for the space discretization. Weak-∗ convergence for u in L∞ and strong convergence
for β(u) in L2 is shown by means of a priori estimates in L∞ and use of the Kolmogorov theorem
on relative compactness of subsets of L2. Half order error estimates via regularization have also
been obtained in Pop et al. [42], whereas extensions to degenerate hyperbolic–parabolic equations
can be found in Andreianov et al. [3].

A technique often used in various numerical approaches, c.f. Nochetto [33], Nochetto and
Verdi [37], Picasso [40], Beckett et al. [6], or Pop et al. [42], employs a regularization of the
nonsmooth and nonstrictly increasing function β by a smooth and strictly increasing one. This
allows, in particular, to use the Newton method for the solution of the arising system of nonlinear
algebraic equations, albeit its use without regularization has been advocated in Wheeler [52] or in
Baughman and Walkington [4] and studied in Kelley and Rulla [28]. Alternative approaches such
as transformation of dependent variables of Čermák and Zlámal [10] have also been proposed.

An inevitable tool in practical simulations seems to be an a posteriori error estimate-driven
adaptive mesh refinement. One of the first works on a posteriori error estimates for the steady
Stefan problem is that of Picasso [40]. Therein, the author derives estimates based on the residual
equation for a two-dimensional regularized Stefan problem and proposes a space adaptive finite
element algorithm. A posteriori indicators for unsteady phase change problems were derived by
Nochetto et al. in [34, 35], together with an adaptive algorithm which equilibrates space and
time discretization errors. Many other adaptive refinement algorithms such as that of Beckett
et al. [6] have also been proposed. Rigorous a posteriori error estimates for nonlinear parabolic
problems seem much less developed. In nondegenerate cases, Verfürth [46, 47] was able to obtain an
estimator which is both reliable and efficient. A pioneering contribution for degenerate parabolic
problems has been obtained by Nochetto et al. in [36]. Therein, L∞(0, T ;H−1(Ω)) estimates
for the error in the enthalpy and L2(0, T ;L2(Ω)) estimates for the error in the temperature are
obtained. The approach is based on the relation of these errors to the residual of (1.1a) obtained
through the corresponding dual partial differential equation and subsequent use of the Galerkin
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orthogonality of the finite element discretization. Recently, rigorous a posteriori error analysis in
a space–time dual norm, including some degenerate cases, was given in [14].

The aim of this paper is to derive fully computable a posteriori error estimates and adaptive
strategies for the two-phase Stefan problem (1.1) for conforming spatial discretization schemes
such as the finite element, co-volume, or vertex-centered finite volume ones with backward Euler
time stepping. As in Nochetto et al. [36], our approach is based on the dual norm of the residual.
However, we proceed differently in order to have a fully and easily computable estimates not
featuring any undetermined constants. This is achieved by introducing H(div; Ω)-conforming and
locally conservative flux reconstructions following Prager–Synge [43], Ladevèze [29], Destuynder
and Métivet [13], Luce and Wohlmuth [30], Braess and Schöberl [8], Repin [45], and [50, 18, 15,
14, 19], see also the references therein.

In Section 2 we give a weak formulation, introduce a regularized problem with a regularization
parameter ε > 0, and fix the notation for temporal and spatial meshes. In Section 3, we identify
the residual and its dual norm and we derive an a posteriori error estimate on this problem-
dependent error measure. We next split this estimate into estimators characterizing the space,
time, regularization, linearization, and quadrature errors.

Section 4 subsequently presents a criterion for the choice of the regularization parameter ε
and a stopping criterion for an iterative linearization such as the Newton method. The former is
designed to facilitate the treatment of the degeneracy while not spoiling the accuracy, whereas the
latter is designed to avoid performing an excessive number of nonlinear solver iterations. These
criteria are inspired mainly from [26, 15, 19]. We then propose an adaptive algorithm which uses
these criteria while simultaneously performing the usual local mesh refinement and equilibration
of the spatial and temporal errors. This algorithm is inspired from [34, 35, 40, 36, 6] and from the
work [18, 23, 14, 19]. We conclude Section 4 by proving that, under these criteria, our estimators
are also efficient while representing a lower bound for the dual norm of the residual.

In Section 5, we show how to bound the L2(0, T ;H−1(Ω))-type error in the enthalpy and
L2(0, T ;L2(Ω))-type error in the temperature by the above dual norm of the residual. We in
particular focus on the use of the Gronwall lemma with as small overestimation as possible and no
appearance of the exponential term eT elsewhere than in the approximation of the initial condition.
Guaranteed and fully computable a posteriori error estimates on these natural norms immediately
follow.

Section 6 presents the application of all these developments to the vertex-centered finite volume
(or, equivalently, finite element with mass lumping and numerical quadrature) discretization in
space, backward Euler discretization in time, and Newton linearization. Illustrative numerical
results fill up Section 7 and, finally, Appendix A collects the more involved proofs of the various
theorems of the paper.

2 Continuous and discrete settings

This section fixes the basic continuous and discrete settings. More precisely, Section 2.1 presents
the continuous problem and the regularization, whereas the basic assumptions on the discretization
are introduced in Section 2.2.

2.1 Continuous setting

2.1.1 The continuous problem

The starting point for our a posteriori analysis is the weak form of problem (1.1). To give it, we
need to introduce the assumptions on the data and set up some notation. We suppose that: (i) the
enthalpy–temperature function β : R→ R is a Lipschitz continuous function such that

β(s) = 0 in (0, 1),
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β is strictly increasing in R− and R+\(0, 1), and there exist c, C > 0 such that, for all s ∈ R\(0, 1),
sign(s)β(s) ≥ c|s| − C, see Figure 1; the Lipschitz constant of β is denoted by Lβ ; (ii) the initial
enthalpy u0 is such that u0 ∈ L2(Ω); (iii) the source term is such that f ∈ L2(0, T ;L2(Ω)).

We will repeatedly use throughout the paper the two following spaces:

X := L2(0, T ;H1
0 (Ω)), Z := H1(0, T ;H−1(Ω)). (2.1)

We will also need the dual space X ′ of X,

X ′ = L2(0, T ;H−1(Ω)),

and equip the space X with the norm

‖ϕ‖X :=

{∫ T

0

‖∇ϕ(·, t)‖2L2(Ω)dt

} 1
2

.

We denote by 〈·, ·〉 the duality pairing between H−1(Ω) and H1
0 (Ω), while (·, ·)S is the usual scalar

product in L2(S) or [L2(S)]d, with the subscript omitted when S = Ω.
The weak formulation of problem (1.1) can now be stated. It reads: find

u ∈ Z with β(u) ∈ X (2.2a)

such that
u(·, 0) = u0 in Ω (2.2b)

and, for a.e. s ∈ (0, T ),

〈∂tu(·, s), ϕ〉+ (∇β(u(·, s)),∇ϕ) = (f(·, s), ϕ) ∀ϕ ∈ H1
0 (Ω). (2.2c)

Existence and uniqueness of the solution to this problem are known [22, 1, 38, 7].

2.1.2 A regularization

An important feature of the problem (2.2) is that, as a result of the assumptions on β, the normal
component of the temperature flux −∇β(u) may jump across the interface

I(t) := {x ∈ Ω : β(u)(x, t) = 0} .

This fact may hinder both the design and the convergence analysis of a discretization method.
Additionally, the lack of smoothness in the dependency of the solution on the problem data can
severely affect the convergence of nonlinear iterations. A possible and often employed approach [33,
37, 40, 6] to overcome these difficulties consists in regularizing the problem (2.2) by replacing the
function β by a smooth, strictly increasing regularized function βε ∈ C1(R), β′ε ≥ ε, for a parameter
ε > 0; see Figure 1 for an example. The regularized problem reads as follows: find

uε ∈ Z with βε(u
ε) ∈ X (2.3a)

such that
uε(·, 0) = β−1

ε (β(u0)) in Ω, (2.3b)

and, for a.e. s ∈ (0, T ),

〈∂tuε(·, s), ϕ〉+ (∇βε(uε(·, s)),∇ϕ) = (f(·, s), ϕ) ∀ϕ ∈ H1
0 (Ω). (2.3c)

2.2 Discrete setting

We describe here the basic discrete setting that will be sufficient for the developments of Sections 3–
5. Further details are given in Section 6.
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Figure 1: An example of a function β and a regularization βε

2.2.1 Time mesh

Our focus is on first-order time discretizations based on the backward Euler scheme. Let {τn}1≤n≤N
denote a sequence of positive real numbers corresponding to the discrete time steps such that
T =

∑N
n=1 τ

n. We let t0 := 0 and, for 1 ≤ n ≤ N , we introduce the discrete times tn :=
∑n
i=1 τ

i

and the time intervals In := (tn−1, tn).

2.2.2 Space meshes

Let {Kn}0≤n≤N denote a family of matching simplicial meshes of the space domain Ω. The initial
mesh K0 is used to approximate the initial condition u0, while Kn is used to march in time from
tn−1 to tn. The meshes can be refined or coarsened as time evolves. For the developments of
Section 4.3 below, we are led to suppose that Kn, 1 ≤ n ≤ N , is obtained from Kn−1 by refining
(a limited number of times) some elements and coarsening (a limited number of times) some
other ones. We denote by Kn−1,n the coarsest common submesh (overlay) of both Kn and Kn−1

and, once again for the developments of Section 4.3, suppose that the meshes {Kn−1,n}1≤n≤N are
shape-regular in the sense that there exists a constant κK > 0 such that

min
K∈Kn−1,n

ρK
hK
≥ κK

for all 1 ≤ n ≤ N , where ρK denotes the diameter of the largest ball inscribed in the element K
and hK the diameter of K. For 0 ≤ n ≤ N , we denote by Πn

0 the L2-orthogonal projection onto
the space of piecewise constant functions on Kn.

For 0 ≤ n ≤ N , let Fn denote the set of mesh faces. Boundary faces are collected in the set
Fb,n := {F ∈ Fn; F ⊂ ∂Ω} and we let F i,n := Fn \ Fb,n. For a given face F ∈ F i,n we fix an
arbitrary orientation and denote the corresponding unit normal vector by nF ; for F ∈ Fb,n, nF
coincides with the exterior unit normal nΩ of Ω. A similar notation for the faces Fn−1,n of the
meshes Kn−1,n will also be used.

3 An a posteriori error estimate for the dual norm of the
residual

In this section we derive an a posteriori estimate for the error measured by the dual norm of
the residual that we first identify. We then give a basic estimate that we subsequently refine to
distinguish the space, time, linearization, regularization, and quadrature errors.
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3.1 Dual norm of the residual

As in Picasso [40] or Nochetto et al. [36], our key for deriving a posteriori error estimates for
the Stefan problem (1.1) will be the residual and its dual norm. Recall that u denotes the weak
solution of the Stefan problem given by (2.2) and the definition of the space X (2.1). Let uhτ ∈ Z
such that β(uhτ ) ∈ X be arbitrary. In practice, uhτ will be the result of the numerical simulation.
We define the residual R(uhτ ) ∈ X ′ such that

〈R(uhτ ), ϕ〉X′,X :=

∫ T

0

{〈∂t(u− uhτ ), ϕ〉+ (∇β(u)−∇β(uhτ ),∇ϕ)} (s)ds, ϕ ∈ X. (3.1)

Using (2.2c), we can infer the following alternative expression for (3.1):

〈R(uhτ ), ϕ〉X′,X =

∫ T

0

{(f, ϕ)− 〈∂tuhτ , ϕ〉 − (∇β(uhτ ),∇ϕ)} (s)ds, ϕ ∈ X.

The norm of the residual in the dual space X ′ is then given by

‖R(uhτ )‖X′ := sup
ϕ∈X, ‖ϕ‖X=1

〈R(uhτ ), ϕ〉X′,X . (3.2)

The key problem-specific measure of the distance between uhτ and u that we will use in this paper
is given by

‖R(uhτ )‖X′ + ‖u0 − uhτ (·, 0)‖H−1(Ω). (3.3)

It follows from (2.2) that the measure (3.3) is zero if and only if the function uhτ coincides with
the exact solution u. As we shall see below in Section 5, it in fact controls the energy error
between u and uhτ and β(u) and β(uhτ ). Moreover, this quantity can be easily bounded in terms
of error estimators based on H(div; Ω)-conforming flux reconstructions for piecewise affine-in-time
uhτ that we show next.

3.2 General assumptions

In order to proceed with the analysis further, without the necessity to specify at this point any
details on how the approximate solution uhτ was obtained, we are lead to make the following
assumption. It requires Z- and X- conformity and uhτ to be piecewise affine and continuous in
time on the time mesh {In}1≤n≤N of Section 2.2.1:

Assumption 3.1 (Approximate solution). The function uhτ is such that

uhτ ∈ Z, ∂tuhτ ∈ L2(0, T ;L2(Ω)), β(uhτ ) ∈ X,
uhτ |In is affine in time on In ∀1 ≤ n ≤ N.

Note that, consequently, the function uhτ is uniquely determined by the N + 1 functions
unh := uhτ (·, tn), 0 ≤ n ≤ N , and ∂tu

n
hτ := ∂tuhτ |In ≡ (unh − un−1

h )/τn, 1 ≤ n ≤ N . We will also
employ the abridged notation unhτ for uhτ |In .

The second assumption that we make is the existence of a piecewise constant-in-time H(div; Ω)-
conforming flux reconstruction thτ , locally conservative on the meshes Kn of Section 2.2.2. Let
us first denote by f̂ the piecewise constant-in-time function given by the time-mean values of the
source function f on the intervals In, 1 ≤ n ≤ N .

Assumption 3.2 (Equilibrated flux reconstruction). For all 1 ≤ n ≤ N , there exists a vector
field tnh ∈ H(div; Ω) such that

(∇·tnh, 1)K = (f̂n, 1)K − (∂tu
n
hτ , 1)K ∀K ∈ Kn.

We denote by thτ the space–time function such that thτ |In := tnh for all 1 ≤ n ≤ N .

In Section 6 below, we show how to construct an equilibrated flux reconstruction thτ in the
context of vertex-centered finite volume (finite element with mass lumping and quadrature) spatial
discretization.
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3.3 A basic a posteriori error estimate

We now give an a posteriori error estimate in the general setting of Assumptions 3.1 and 3.2. Note
that the regularization of Section 2.1.2 is not used at the present stage.

We will estimate the error measure (3.3) by the local residual expressed with the flux thτ
and by the difference of thτ and the temperature flux, in the spirit of [43, 29, 13, 30, 8, 45]
and [50, 18, 15, 14, 19]. More specifically, for 1 ≤ n ≤ N , tnh as in Assumption 3.2, and K ∈ Kn,
we define the residual estimator ηnR,K and the flux estimator ηnF,K as follows:

ηnR,K := CP,KhK‖f̂n − ∂tunhτ −∇·tnh‖L2(K), (3.4a)

ηnF,K(t) := ‖tnh +∇β(uhτ (·, t))‖L2(K) t ∈ In. (3.4b)

Here, CP,K is the constant from the Poincaré inequality

‖ϕ−Πn
0ϕ‖L2(K) ≤ CP,KhK‖∇ϕ‖L2(K) ∀ϕ ∈ H1(K). (3.5)

There holds CP,K = 1/π as the simplices K are convex, see [5, 39]. Finally, we define the initial
condition estimator by

ηIC := ‖u0 − uhτ (·, 0)‖H−1(Ω). (3.6)

We then have:

Theorem 3.3 (A posteriori estimate for the error measure (3.3)). Let u be the weak solution given
by (2.2) and let uhτ and thτ fulfill Assumptions 3.1 and 3.2, respectively. Then, there holds

‖R(uhτ )‖X′ + ‖u0 − uhτ (·, 0)‖H−1(Ω) ≤ η + ηIC, (3.7)

where

η :=

{
N∑
n=1

∫
In

∑
K∈Kn

(
ηnR,K + ηnF,K(t)

)2
dt

} 1
2

+ ‖f − f̂‖X′ . (3.8)

Proof. Let ϕ ∈ X with ‖ϕ‖X = 1 be given. Then there holds, adding and subtracting (thτ ,∇ϕ)
and using Green’s theorem,

〈R(uhτ ), ϕ〉X′,X =

∫ T

0

{(f − ∂tuhτ −∇·thτ , ϕ)− (thτ +∇β(uhτ ),∇ϕ)} (s)ds

=

∫ T

0

{
(f − f̂ , ϕ) + (f̂ − ∂tuhτ −∇·thτ , ϕ)− (thτ +∇β(uhτ ),∇ϕ)

}
(s)ds

= : T1 + T2 + T3.

For the first term we infer T1 ≤ ‖f − f̂‖X′‖ϕ‖X = ‖f − f̂‖X′ . The second term can be rewritten
as follows:

T2 =

N∑
n=1

∫
In

(f̂n − ∂tunhτ −∇·tnh, ϕ)(s)ds.

For all 1 ≤ n ≤ N and t ∈ In, there holds (the dependence of ϕ on the time variable is omitted
for brevity),

(f̂n − ∂tunhτ −∇·tnh, ϕ) =
∑
K∈Kn

(f̂n − ∂tunhτ −∇·tnh, ϕ)K

=
∑
K∈Kn

(f̂n − ∂tunhτ −∇·tnh, ϕ−Πn
0ϕ)K

≤
∑
K∈Kn

‖f̂n − ∂tunhτ −∇·tnh‖L2(K)‖ϕ−Πn
0ϕ‖L2(K)

≤
∑
K∈Kn

CP,KhK‖f̂n − ∂tunhτ −∇·tnh‖L2(K)‖∇ϕ‖L2(K)

=
∑
K∈Kn

ηnR,K‖∇ϕ‖L2(K),
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where we have used the regularity of the arguments, Assumption 3.2, the Cauchy–Schwarz inequal-
ity, and the Poincaré inequality (3.5). For the third term, an application of the Cauchy–Schwarz
inequality yields

T3 ≤
N∑
n=1

∫
In

∑
K∈Kn

ηnF,K‖∇ϕ‖L2(K)(s)ds.

Collecting the above estimates, using the definition (3.2) of the dual norm of the residual, and
using the Cauchy–Schwarz inequality yields (3.7).

3.4 An a posteriori error estimate distinguishing the space, time, reg-
ularization, linearization, and quadrature errors

Our next goal is to distinguish the different error components. This is an instrumental step to
design an adaptive algorithm where the time step, the space mesh, the regularization parameter,
and the stopping criterion for the linearization iterations are chosen optimally. We start by
localizing in time the error measure introduced in Section 3.1. For 1 ≤ n ≤ N , we let

Xn := L2(In;H1
0 (Ω)), Zn := H1(In;H−1(Ω)).

We localize in time the dual norm of the residual (3.2) by setting

‖R(uhτ )‖X′n := sup
ϕ∈Xn, ‖ϕ‖Xn=1

∫
In

{〈∂t(u− uhτ ), ϕ〉+ (∇β(u)−∇β(uhτ ),∇ϕ)} (s)ds. (3.9)

Note that, consequently,

‖R(uhτ )‖2X′ =

N∑
n=1

‖R(uhτ )‖2X′n

for any uhτ ∈ Z with β(uhτ ) ∈ X.
Suppose now that we are marching in time from time tn−1 to time tn with a given time step τn,

starting from the approximation un−1
h . We also suppose that the regularization of Section 2.1.2

has been used for a given value of the parameter ε, and that we are on the k-th step of some
iterative linearization algorithm. We denote by un,ε,kh the approximation of the solution u at time

tn and prescribe the space–time function un,ε,khτ by the value un−1
h at time tn−1, by the value un,ε,kh

at time tn, and by affine behavior in time on In, i.e.,

un,ε,khτ (·, t) = (1− ρ(t))un−1
h + ρ(t)un,ε,kh , ρ(t) :=

t− tn−1

τn
. (3.10)

We summarize our general requirements in the following:

Assumption 3.4 (Adaptive setting). For all 1 ≤ n ≤ N , a regularization parameter ε ≥ 0, and
a linearization step k ≥ 1:

(i) un,ε,khτ is the approximate solution given by (3.10), un,ε,khτ ∈ Zn with ∂tu
n,ε,k
hτ ∈ L2(In;L2(Ω))

and β(un,ε,khτ ) ∈ Xn;

(ii) there exists an equilibrated flux tn,ε,kh ∈ H(div; Ω) such that

(∇·tn,ε,kh , 1)K = (f̂n, 1)K − (∂tu
n,ε,k
hτ , 1)K ∀K ∈ Kn; (3.11)

(iii) ln,ε,kh ∈ [L2(Ω)]d is the available approximation of the flux ∇βε(u(·, tn));

(iv) Πn is an operator used for interpolatory numerical integration.
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An example of the approximate solution un,ε,khτ , the linearized flux ln,ε,kh , and the operator Πn

in the context of the implicit vertex-centered finite volume discretization and Newton linearization
is provided in Section 6.3 below.

Proceeding as in Theorem 3.3, it is immediately inferred

‖R(un,ε,khτ )‖X′n ≤
{∫

In

∑
K∈Kn

(
ηn,ε,kR,K + ηn,ε,kF,K (t)

)2

dt

} 1
2

+ ‖f − f̂‖X′n , (3.12)

where
ηn,ε,kR,K := CP,KhK‖f̂n − ∂tun,ε,khτ −∇·tn,ε,kh ‖L2(K),

ηn,ε,kF,K (t) := ‖tn,ε,kh +∇β(un,ε,khτ (·, t))‖L2(K), t ∈ In.
For all K ∈ Kn, we next define the local spatial, temporal, quadrature, regularization, and lin-
earization estimators as follows:

ηn,ε,ksp,K := ηn,ε,kR,K + ‖ln,ε,kh + tn,ε,kh ‖L2(K), (3.13a)

ηn,ε,ktm,K(t) := ‖∇(Πnβ(un,ε,khτ (·, t)))−∇(Πnβ(un,ε,kh ))‖L2(K), t ∈ In, (3.13b)

ηn,ε,kqd,K(t) := ‖∇(β(un,ε,khτ (·, t)))−∇(Πnβ(un,ε,khτ (·, t)))‖L2(K), t ∈ In, (3.13c)

ηn,ε,kreg,K := ‖∇(Πnβ(un,ε,kh ))−∇(Πnβε(u
n,ε,k
h ))‖L2(K), (3.13d)

ηn,ε,klin,K := ‖∇(Πnβε(u
n,ε,k
h ))− ln,ε,kh ‖L2(K). (3.13e)

Global versions of these estimators are given by,

(ηn,ε,ksp )2 := τn
∑
K∈Kn

(
ηn,ε,ksp,K

)2

, (3.14a)

(ηn,ε,ktm )2 :=

∫
In

∑
K∈Kn

(
ηn,ε,ktm,K(t)

)2

dt, (3.14b)

(ηn,ε,kqd )2 :=

∫
In

∑
K∈Kn

(
ηn,ε,kqd,K(t)

)2

dt, (3.14c)

(ηn,ε,kreg )2 := τn
∑
K∈Kn

(
ηn,ε,kreg,K

)2

, (3.14d)

(ηn,ε,klin )2 := τn
∑
K∈Kn

(
ηn,ε,klin,K

)2

. (3.14e)

Using the inequality (3.12) followed by the triangle inequality we obtain the following estimate:

Corollary 3.5 (Distinguishing the space, time, quadrature, regularization, linearization, and data
oscillation errors). Let u be the weak solution given by (2.2), let 1 ≤ n ≤ N , ε ≥ 0, and k ≥ 1,

and let un,ε,khτ , tn,ε,kh , ln,ε,kh , and Πn be as described in Assumption 3.4. Then there holds

‖R(un,ε,khτ )‖X′n ≤ ηn,ε,ksp + ηn,ε,ktm + ηn,ε,kqd + ηn,ε,kreg + ηn,ε,klin + ‖f − f̂‖X′n .

Remark 3.6 (Time oscillation of the source term). The error due to the time oscillation of the

source term ‖f − f̂‖X′n is zero provided that the source function f is piecewise constant in time.

4 Balancing and stopping criteria, adaptive algorithm, and
efficiency

The individual error component estimators of Corollary 3.5 are used in this section to define
adaptive criteria to stop the iterative linearizations, to select the value of the regularization pa-
rameter ε, to locally adapt the quadrature rule, to adjust the time step, and to select the mesh
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elements to refine/derefine. These criteria are incorporated in a fully adaptive algorithm detailed
in Section 4.2. Finally, in Section 4.3 we show the efficiency of our estimators when the adaptive
balancing and stopping criteria are used.

4.1 Balancing and stopping criteria

Following [26, 15, 19], this section introduces stopping criteria for the iterative algorithms based
on the estimators of Corollary 3.5. The goal is to stop the iterations as soon as the corresponding
error component no longer affects significantly the overall error. We assume in what follows that
we are marching in time from time tn−1 to time tn. Let three user-given parameters Γlin, Γreg,
Γqd ∈ (0, 1) be given. The criteria are:

(i) Linearization. The linearization iteration is pursued until step kn such that

ηn,ε,knlin ≤ Γlin

(
ηn,ε,knsp + ηn,ε,kntm + ηn,ε,knqd + ηn,ε,knreg

)
. (4.1)

(ii) Regularization. The regularization parameter ε is reduced until the value εn such that

ηn,εn,knreg ≤ Γreg

(
ηn,εn,knsp + ηn,εn,kntm + ηn,εn,knqd

)
. (4.2)

(iii) Quadrature. The quadrature rule is improved until

ηn,εn,knqd ≤ Γqd

(
ηn,εn,knsp + ηn,εn,kntm

)
. (4.3)

Note that all the linearization, regularization, and quadrature errors may be classified as subsidiary
as they can be made as small as desired by increasing the computational effort for fixed mesh and
time step; it is thus reasonable to expect that the above criteria will be attained. Local, element
by element, versions of the criteria (4.1)–(4.3) can be formulated using the local estimators (3.13)
(see [26, 15, 19]), and require that the inequalities hold for all K ∈ Kn; c.f. (7.4) for an example.

In the spirit of [41, 36, 48] and [18, 23, 14], we also propose the usual space–time adaptivity:

(iv) Space–time error balancing. The space and time error components should be equilibrated by
selecting the time step τn and adjusting the spatial meshes Kn in such a way that

γtmη
n,εn,kn
sp ≤ ηn,εn,kntm ≤ Γtmη

n,εn,kn
sp . (4.4)

Above, Γtm > γtm > 0 are again user-given parameters, typically close to 1.

(v) Adaptive mesh refinement. The error in space should be evenly distributed throughout the
domain Ω by local adaptation (refinement, coarsening) of the space mesh Kn in such a way
that, for all K1, K2 ∈ Kn,

ηn,εn,knsp,K1
≈ ηn,εn,knsp,K2

.

In contrast to (4.1)–(4.3), the goal is to make ηn,εn,knsp and ηn,εn,kntm of comparable size as these
error components are substantial and cannot be made arbitrarily small for a given choice of the
mesh and of the time step.

4.2 Adaptive algorithm

In this section we propose an adaptive algorithm that implements the balancing and stopping
criteria of Section 4.1. Moreover, for a prescribed ζ > 0, we aim at satisfying the relation∑N

n=1‖R(uhτ )‖2X′n∑N
n=1‖l

n,ε,k
h ‖2L2(In;L2(Ω))

≤ ζ2, (4.5)
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i.e., to bring the relative error under the user-given precision ζ. To account for limited computing
resources, we fix refinement thresholds h, τ > 0 for both the mesh size and the time step and
require, for all 0 ≤ n ≤ N ,

min
K∈Kn

hK ≥ h, τn ≥ τ . (4.6)

Note that, in particular because of (4.6), the attainment of (4.5) is not guaranteed.

Recall that un,ε,kh stands for the approximation of the solution unh at discrete time tn obtained
after k linearization iterations using a regularization parameter ε. At each linearization iteration
k, the new approximation un,ε,kh is obtained solving the linear problem written schematically as

un,ε,kh = Ψ(un,ε,k−1
h , τn,Kn). For the sake of simplicity, in what follows we neglect the quadrature

and data oscillation estimators. Our adaptive algorithm is the following:

Algorithm 4.1 (Adaptive algorithm).

Fix the fractions of cells to refine, cref , and to derefine, cderef

Choose an initial mesh K0, regularization parameter ε0, and a tolerance ζIC > 0
u0
h ← Π0(β−1

ε0 (β(u0)))
repeat {Initial mesh and regularization parameter adaptation}

Compute ηIC

Refine the cells K ∈ K0 such that ηIC,K ≥ cref maxL∈K0

{
ηIC,L

}
in accordance with (4.6) and

adjust the regularization parameter ε0
u0
h ← Π0(β−1

ε0 (β(u0)))
until ηIC ≤ ζIC‖∇(βε0(u0

h))‖L2(Ω)

Choose an initial time step τ0

ε← ε0, t0 ← 0, n← 0
while tn ≤ T do {Time loop}
n← n+ 1
Kn ← Kn−1

τn ← τn−1

un,ε,0h ← un−1
h

repeat {Space refinement}
repeat {Space and time error balancing}
repeat {Regularization}
k ← 0
repeat {Nonlinear solver}
k ← k + 1
un,ε,kh = Ψ(un,ε,k−1

h , τn,Kn)

Compute ηn,ε,ksp , ηn,ε,ktm , ηn,ε,kreg , ηn,ε,klin

until (4.1) is satisfied
kn ← k
if (4.2) does not hold then
ε← ε/2

end if
until (4.2) is satisfied
εn ← ε
if ηn,εn,kntm < γtmη

n,εn,kn
sp then

τn ← 2τn

else if ηn,εn,kntm > Γtmη
n,εn,kn
sp and τn ≥ 2τ then

τn ← τn/2
end if

until (4.4) is satisfied or τn = τ

Refine the cells K ∈ Kn such that ηn,εn,knsp,K ≥ cref maxL∈Kn
{
ηn,εn,knsp,L

}
in accordance with

(4.6)

until ηn,εn,knsp + ηn,εn,kntm + ηn,εn,knreg + ηn,εn,knlin ≤ ζ‖ln,εn,knh ‖L2(In;L2(Ω)) or (hK = h,∀K ∈ Kn)
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Derefine the cells K ∈ Kn such that ηn,εn,knsp,K ≤ cderef maxL∈Kn
{
ηn,εn,knsp,L

}
unh ← un,εn,knh

tn ← tn−1 + τn

ε← 2ε
end while

4.3 Efficiency of the a posteriori error estimate

In this section we investigate the global efficiency of the estimators of Corollary 3.5 under the
stopping and balancing criteria of Section 4.1. Hence, the quantities at discrete time tn are
those obtained after performing kn linearization iterations to meet the criterion (4.1), using a
regularization parameter εn and a quadrature rule such that, respectively, (4.2) and (4.3) are
satisfied, and a time step ensuring the time and space error balance (4.4). As usual, in order to
use the argument of equivalence of norms on finite-dimensional spaces, we need to assume here:

Assumption 4.2 (Polynomial approximations). For all 1 ≤ n ≤ N , the function un,εn,knhτ is affine
in time on the time interval In and piecewise polynomial of order m in space on the mesh Kn−1,n;
the functions ln,εn,knh and tn,εn,knh are piecewise polynomial of order m in space on Kn−1,n.

For 1 ≤ n ≤ N , we introduce the standard residual-based a posteriori error estimators, c.f. [48]:

(
ηnres,1

)2
:= τn

∑
K∈Kn−1,n

h2
K‖f̂n − ∂tun,εn,knhτ +∇·ln,εn,knh ‖2L2(K), (4.7a)

(
ηnres,2

)2
:= τn

∑
F∈F i,n−1,n

hF ‖Jln,εn,knh K·nF ‖2L2(F ). (4.7b)

Let C be a generic constant only depending on the shape regularity parameter κK of the meshes
Kn−1,n, 1 ≤ n ≤ N , the space dimension d, and the polynomial degree m. In order to still proceed
generally, without the specification of a particular spatial discretization scheme, we will suppose
the following:

Assumption 4.3 (Approximation property). For all 1 ≤ n ≤ N , there holds

τn
∑

K∈Kn−1,n

‖ln,εn,knh + tn,εn,knh ‖2L2(K) ≤ C
((
ηnres,1

)2
+
(
ηnres,2

)2)
. (4.8)

This property will be verified in Section 6 below for the vertex-centered finite volume spatial
discretization and specific constructions of the fluxes tn,εn,knh and ln,εn,knh .

Under these assumptions, we have the following result, showing the equivalence of the error
‖R(un,εn,knhτ )‖X′n and the estimators of Corollary 3.5, up to data oscillation:

Theorem 4.4 (Global efficiency). Let, for all 1 ≤ n ≤ N , the stopping criteria (4.1)–(4.3) as
well as the second inequality in the balancing criterion (4.4) be satisfied with the parameters Γlin,
Γreg, Γqd, and Γtm small enough. Let Assumptions 4.2 and 4.3 hold true. Then

ηn,εn,knsp + ηn,εn,kntm + ηn,εn,knqd + ηn,εn,knreg + ηn,εn,knlin ≤ C
(
‖R(un,εn,knhτ )‖X′n + ‖f − f̂‖X′n

)
.

The proof of this result follows the techniques of [49] and the approach of [15]. It is given in
Appendix A.1.

5 An a posteriori error estimate for the error in tempera-
ture and enthalpy

In the previous sections we have given a posteriori error estimators for the dual norm of the
residual. In this section we prove that these same estimators also bound an error in temperature
and enthalpy. We rely on a duality argument which reveals simpler than using the dual partial
differential equation as in [36].
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5.1 Bounding the error of the temperature and enthalpy by the dual
norm of the residual

For brevity of notation we let for t ∈ (0, T ],

Qt := L2(0, t;L2(Ω)), Xt := L2(0, t;H1
0 (Ω)), X ′t := L2(0, t;H−1(Ω)).

It is convenient to stress that the result of this section applies to all functions uhτ ∈ Z such that
β(uhτ ) ∈ X. We first state the following bound:

Lemma 5.1 (Simple bounds for the temperature and enthalpy errors). Let u be the solution
of (2.2) and let uhτ ∈ Z be such that β(uhτ ) ∈ X. Then there holds

Lβ
2
‖u− uhτ‖2X′ +

Lβ
2
‖(u− uhτ )(·, T )‖2H−1(Ω) + ‖β(u)− β(uhτ )‖2QT

≤ Lβ
2

(2eT − 1)
(
‖R(uhτ )‖2X′ + ‖u0 − uhτ (·, 0)‖2H−1(Ω)

)
,

and

Lβ
2
‖(u−uhτ )(·, T )‖2H−1(Ω) +‖β(u)−β(uhτ )‖2QT ≤

Lβ
2
eT
(
‖R(uhτ )‖2X′ + ‖u0 − uhτ (·, 0)‖2H−1(Ω)

)
.

The results of Lemma 5.1 are classical; we obtain them as a byproduct in the proof of Theo-
rem 5.2 in Section A.2 below. These results are, however, not sufficiently precise. In particular,
the use of the Gronwall lemma in its proof implies the appearance of the term eT on the right-hand
sides, which grows exponentially with the final time T . The purpose of the following theorem is to
improve considerably this point. Indeed, note that, in Theorem 5.2, the term eT does not appear
elsewhere than in the approximation of the initial condition ‖u0 − uhτ (·, 0)‖2H−1(Ω) which can be
made sufficiently small. Theorem 5.2 takes a more complicated form than Lemma 5.1 but the
numerical results based on its use, see Section 7, reveal excellent, which is not the case for the
framework of Lemma 5.1:

Theorem 5.2 (An improved bound for the temperature and enthalpy errors). Let u be the solution
of (2.2) and let uhτ ∈ Z be such that β(uhτ ) ∈ X. Then there holds

Lβ
2
‖u− uhτ‖2X′ +

Lβ
2
‖(u− uhτ )(·, T )‖2H−1(Ω) + ‖β(u)− β(uhτ )‖2QT

+ 2

∫ T

0

(
‖β(u)− β(uhτ )‖2Qt +

∫ t

0

‖β(u)− β(uhτ )‖2Qset−sds
)

dt

≤ Lβ
2

{
(2eT − 1)‖u0 − uhτ (·, 0)‖2H−1(Ω) + ‖R(uhτ )‖2X′

+ 2

∫ T

0

(
‖R(uhτ )‖2X′t +

∫ t

0

‖R(uhτ )‖2X′se
t−sds

)
dt

}
.

The proof of this result is given in Section A.2.

5.2 The a posteriori error estimate

The upper bound in Theorem 5.2 can be combined with the results of Section 3.3 to obtain an a
posteriori estimate for the temperature and enthalpy errors.

Theorem 5.3 (A posteriori estimate for the temperature and enthalpy errors). Let u be the
solution of (2.2) and let uhτ and thτ fulfill Assumptions 3.1 and 3.2, respectively. Then there
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holds
Lβ
2
‖u− uhτ‖2X′ +

Lβ
2
‖(u− uhτ )(·, T )‖2H−1(Ω) + ‖β(u)− β(uhτ )‖2QT

+ 2

∫ T

0

(
‖β(u)− β(uhτ )‖2Qt +

∫ t

0

‖β(u)− β(uhτ )‖2Qset−sds
)

dt

≤ Lβ
2

{
(2eT − 1)η2

IC + η2

+ 2

(
N∑
n=1

τn
n∑
l=1

(ηl)2 +

N∑
n=1

n∑
l=1

Jnl

{
l∑
i=1

(ηi)2

})}
,

(5.1)

with ηIC defined by (3.6), η defined by (3.8), ηn, 1 ≤ n ≤ N , defined by

ηn :=

{∫
In

∑
K∈Kn

(ηnR,K + ηnF,K(t))2dt

} 1
2

+ ‖f − f̂‖X′n , (5.2)

and setting, for 1 ≤ n, l ≤ N ,

Jnl :=

∫
In

∫
Il

et−sdsdt.

Proof. To prove the result, we rely on Theorem 5.2. Applying Theorem 3.3, it follows that
‖R(uhτ )‖X′ ≤ η, so we are left to estimate the following right-hand side contributions in terms of
the a posteriori error estimators:

T1 :=

∫ T

0

‖R(uhτ )‖2X′tdt, T2 :=

∫ T

0

(∫ t

0

‖R(uhτ )‖2X′se
t−sds

)
dt.

As in Theorem 3.3, it is readily inferred that ‖R(uhτ )‖X′l ≤ η
l for all 1 ≤ l ≤ N , so that

‖R(uhτ )‖2X′tn =

n∑
l=1

‖R(uhτ )‖2X′l ≤
n∑
l=1

(ηl)2.

Using the fact that ‖R(uhτ )‖X′t is a nondecreasing function of the time t together with the above
inequality yields for the first term

T1 ≤
N∑
n=1

∫
In

‖R(uhτ )‖2X′tndt ≤
N∑
n=1

∫
In

n∑
l=1

(ηl)2dt =

N∑
n=1

τn
n∑
l=1

(ηl)2.

Proceeding in a similar way, for the second term T2 we obtain

T2 ≤
N∑
n=1

∫
In

n∑
l=1

∫
Il

‖R(uhτ )‖2X′tl e
t−sdsdt

≤
N∑
n=1

∫
In

n∑
l=1

{∫
Il

l∑
i=1

(ηi)2et−sds

}
dt

=

N∑
n=1

n∑
l=1

{∫
In

∫
Il

et−sdsdt

}
×
{

l∑
i=1

(ηi)2

}
=

N∑
n=1

n∑
l=1

Jnl

{
l∑
i=1

(ηi)2

}
,

whence the conclusion follows.

Remark 5.4 (Simplified versions of the a posteriori estimate). In the spirit of Lemma 5.1, the
following simplified versions of the a posteriori estimate of Theorem 5.3 hold:

Lβ
2
‖u− uhτ‖2X′ +

Lβ
2
‖(u− uhτ )(·, T )‖2H−1(Ω) + ‖β(u)− β(uhτ )‖2QT ≤

Lβ
2

(2eT − 1)
(
η2 + η2

IC

)
,

Lβ
2
‖(u− uhτ )(·, T )‖2H−1(Ω) + ‖β(u)− β(uhτ )‖2QT ≤

Lβ
2
eT
(
η2 + η2

IC

)
.
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T n

Dn

D

KD

Figure 2: Simplicial mesh T n and the associated vertex-centered dual mesh Dn (left) and the fine
simplicial mesh KD of D ∈ Dn (right)

Remark 5.5 (An a posteriori error estimate distinguishing the different error components). While
relying on Corollary 3.5 instead of Theorem 3.3, equivalents of Theorem 5.3 and of the bounds of
Remark 5.4 distinguishing the different error components can immediately be obtained.

6 Application to a vertex-centered finite volume discretiza-
tion

In this section, we consider the vertex-centered finite volume spatial and backward Euler temporal
discretization of the Stefan problem (1.1). The regularization of Section 2.1.2 is considered and

the Newton linearization is used. We show how to construct the equilibrated flux tn,ε,kh , the

linearized flux ln,ε,kh , and the interpolation operator Πn of Assumption 3.4 (in generalization of
Assumptions 3.1 and 3.2) and verify Assumptions 4.2 and 4.3. Thus, all the results of Sections 3–5
will apply.

6.1 Dual and tertial space meshes

The vertex-centered finite volume method is defined using a sequence of dual meshes {Dn}0≤n≤N
of the space domain Ω. For a given family of matching simplicial primal meshes {T n}0≤n≤N , we
construct {Dn}0≤n≤N as follows: for any 1 ≤ n ≤ N and with every vertex a of the mesh T n, we
associate one dual volume D, constructed by connecting the barycenters of the simplices sharing
a through edge (and face for d = 3) barycenters, see Figure 2, left, for d = 2. We split every
set Dn into interior dual volumes Dn,i and boundary dual volumes Dn,b. The simplicial mesh Kn
appearing in Sections 2–5 is constructed by dividing each D ∈ Dn into a mesh KD as indicated in
Figure 2, right, if d = 2 and similarly for d = 3.

6.2 The vertex-centered finite volume scheme

Let, for 1 ≤ n ≤ N ,

V nh :=
{
ϕh ∈ C0(Ω); ϕh|K ∈ P1(K) ∀K ∈ T n

}
and let

Πn : C0(Ω)→ V nh be the Lagrange interpolation operator, (6.1)

c.f. Ciarlet [11], which to a function ϕ ∈ C0(Ω) associates a function ϕh ∈ V nh by setting ϕh(a) :=
ϕ(a) for any vertex a of the mesh T n.

Let u0
h ∈ V 0

h be a suitable approximation of the regularized initial enthalpy β−1
ε (β(u0)), see

Algorithm 4.1. Let next 1 ≤ n ≤ N , un−1
h ∈ V n−1

h , and a mesh T n (and consequently Dn) be
given. The vertex-centered finite volume scheme for the regularized Stefan problem (2.3) reads:
find un,εh ∈ V nh such that βε(u

n,ε
h )(a) = 0 for all vertices a of T n on ∂Ω and such that

1

τn
(un,εh − un−1

h , 1)D − (∇Πn(βε(u
n,ε
h ))·nD, 1)∂D = (f̂n, 1)D ∀D ∈ Dn,i. (6.2)
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Then the continuous and piecewise affine-in-time function uhτ appearing in the previous sections
is given by uhτ |In := un,εhτ ,

un,εhτ (·, t) = (1− ρ(t))un−1
h + ρ(t)un,εh , ρ(t) :=

t− tn−1

τn
t ∈ In. (6.3)

Remark 6.1 (Regularization). It is also possible to consider the vertex-centered finite volume
discretization without any regularization, i.e., use β in place of βε in (6.2), with u0

h ∈ V 0
h an

approximation of the initial enthalpy u0.

Remark 6.2 (Links to the discretizations of [36, 4, 21]). Let for simplicity the meshes T n (and

consequently Dn) do not move in time and let f̂n be piecewise constant on Dn. Consider the case
without regularization. Then the second and third terms of the scheme (6.2) coincide with that
of [36, equation (4.4)], because of the links of the vertex-centered finite volumes and finite elements
with mass lumping/quadrature for the source term. Similarly, in two space dimensions and when
all the angles of T n are smaller than or equal to 90◦, replacing the triangle barycenters by the
triangle circumcenters in the construction of Dn, the second and third terms of the scheme (6.2)
coincide with that in the co-volume method of [4]. More generally, whenever T n is Delaunay and
the mesh Dn is its Voronöı dual, the same link holds true with the cell-centered finite volume
scheme of [21], c.f., e.g., [36, 4, 21], [11, 20], or [51, Section 3]. Hence the only slight difference
between (6.2) and these schemes is in the treatment of the time evolution term which is not mass-
lumped herein.

Remark 6.3 (Assumption 3.1). By the definition of uhτ by (6.2)–(6.3) and by the fact that uhτ
lies in a finite-dimensional space, uhτ ∈ Z and β(uhτ ) ∈ X, so that Assumption 3.1 is satisfied.
A uniform bound could also be obtained by a priori stability analysis such as those in [36, 4, 21],
but is not necessary in our setting.

6.3 Newton linearization

Let 1 ≤ n ≤ N and the mesh T n (and Dn) be fixed. Let the vector Gn−1 be given by its
components associated with the dual volumes D ∈ Dn,i, Gn−1

D := (un−1
h , 1)D, and similarly for

the vector Fn, FnD := (f̂n, 1)D. Let ub,n,ε
h ∈ V nh take the values β−1

ε (0) (0.5 for the example of
Figure 1) at the boundary vertices of T n and the value zero at the other vertices of T n. The

last vector that we need is Hn,ε, Hn,ε
D := (ub,n,ε

h , 1)D. Let, for a given dual volume E ∈ Dn,i,
φE stand for the hat basis function of the space V nh associated with E: this is a function that
takes the value 1 in the vertex associated with E and the value 0 at all other vertices of T n.
We also define two matrices, with the components on the line associated with the dual volume
D ∈ Dn,i and on the column associated with the dual volume E ∈ Dn,i given by Mn

D,E := (φE , 1)D,

KnD,E := (∇φE ·nD, 1)∂D. All the vectors are of size R|Dn,i| and the matrices of size R|Dn,i|×|Dn,i|,
with |Dn,i| the number of dual volumes in Dn,i (equal to the number of interior vertices of T n).
The equation (6.2) can be written in matrix form as follows: find the vector Un,ε such that

MnUn,ε − τnKnβε(Un,ε) = τnFn +Gn−1 −Hn,ε, (6.4)

where (βε(U
n,ε))D := βε(U

n,ε
D ). We have un,εh =

∑
E∈Dn,i U

n,ε
E φE + ub,n,ε

h .
The algebraic system (6.4) is nonlinear. Its solution is approximated using the Newton lin-

earization. Let Un,ε,0 be fixed; typically, Un,ε,0 := Un−1. Then, for k ≥ 1, we approximate

βε(U
n,ε,k) ≈ βε(Un,ε,k−1) + β′ε(U

n,ε,k−1)
(
Un,ε,k − Un,ε,k−1

)
. (6.5)

The Newton linearization (6.5) is well defined since the regularized enthalpy–temperature function
βε is continuously differentiable. At every Newton iteration k, we are thus lead to solve the
following system of linear algebraic equations: find the vector Un,ε,k such that(

Mn − τnKnβ′ε(Un,ε,k−1)
)
Un,ε,k = τnFn +Gn−1 −Hn,ε

− τnKn
(
β′ε(U

n,ε,k−1)Un,ε,k−1 − βε(Un,ε,k−1)
)
.

(6.6)
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At each linearization step k, we set

un,ε,kh :=
∑

E∈Dn,i
Un,ε,kE φE + ub,n,ε

h , (6.7)

which is the function appearing in Section 3.4. The corresponding linearized flux of Assumption 3.4
is given by

ln,ε,kh := ∇
( ∑
E∈Dn,i

{
βε(U

n,ε,k−1
E ) + β′ε(U

n,ε,k−1
E )

(
Un,ε,kE − Un,ε,k−1

E

)}
φE

)
. (6.8)

We perform the Newton iterations until we meet the convergence criterion discussed in Section 4.1.

6.4 Flux reconstruction

Let a time step 1 ≤ n ≤ N , a regularization parameter ε > 0, and a Newton linearization
step k be fixed. We now show how to construct the flux tn,ε,kh of Assumption 3.4. For this
purpose, we will solve a local Neumann problem by mixed finite elements on every dual volume,
following [30, 17, 51]. For a given D ∈ Dn, we introduce the spaces

RTN(KD) := {vh ∈ H(div;D); vh|K ∈ [P0(K)]d + xP0(K) ∀K ∈ KD},
RTNN(KD) := {vh ∈ RTN(KD); vh·nF = −ln,ε,kh ·nF ∀F ∈ ∂Ki

D},
RTNN,0(KD) := {vh ∈ RTN(KD); vh·nF = 0 ∀F ∈ ∂Ki

D},

where ∂Ki
D stands for all the faces of the submesh KD which are on the boundary of the dual

volume D but not on the boundary of Ω. We will also need the space P∗0(KD) which consists
of piecewise constants functions on KD; when D ∈ Dn,i, we additionally impose a zero mean
value over D. The local problem consists in finding tn,ε,kh ∈ RTNN(KD) and qh ∈ P∗0(KD),
the mixed finite element approximations of local Neumann problems on D ∈ Dn,i and local
Neumann/Dirichlet problems on D ∈ Dn,b:

(tn,ε,kh + ln,ε,kh ,vh)D − (qh,∇·vh)D = 0 ∀vh ∈ RTNN,0(KD), (6.9a)

(∇·tn,ε,kh , φh)D − (f̂n − ∂tun,ε,khτ , φh)D = 0 ∀φh ∈ P∗0(KD). (6.9b)

Note that the problem (6.9) is well-posed and one can take all φh ∈ P0(KD) as the test functions
in (6.9b). Indeed, it follows from (6.6) and (6.8) that (compare to (6.2)) that

1

τn
(un,ε,kh − un−1

h , 1)D − (ln,ε,kh ·nD, 1)∂D = (f̂n, 1)D ∀D ∈ Dn,i. (6.10)

From (6.10), we see that the Neumann boundary condition encoded in RTNN(KD) is in equilib-

rium with the boundary datum f̂n − ∂tun,ε,khτ of (6.9). We have the following key result:

Lemma 6.4 (Assumptions 3.4, 4.2, and 4.3). Let 1 ≤ n ≤ N , ε > 0, and k ≥ 1 be fixed. Let un,ε,kh

be given by (6.6)–(6.7), ln,ε,kh by (6.8), tn,ε,kh by (6.9), and Πn by (6.1). Then Assumptions 3.4,
4.2, and 4.3 hold true.

Proof. The equilibrium property (3.11) follows immediately from (6.9b), so that Assumption 3.4
is easily satisfied. Whereas Assumption 4.2 is trivial, Assumption 4.3 is obtained by proceeding
exactly as in [51, proof of Theorem 5.5] or [15, proof of Lemma 5.3].

7 Numerical experiments

We illustrate in this section our theoretical results on a series of numerical experiments for the
vertex-centered finite volume discretization approach of Section 6.
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7.1 Setting

We consider the two-dimensional test case proposed by Nochetto et al. [34, 35] on the space–time
domain Ω × (0, T ) with Ω = (0, 5)2 and T = π/1.25. The function β(·) is given by β(u) =
u	 + (u− 1)⊕. The exact temperature has the following expression:

(β(u))(x, y, t) =

{
0.75(r2 − 1), if r < 1,(

1.5− ρ′(t)y−ρ(t)r

)
(r − 1), if r ≥ 1,

(7.1)

where r2 := x2 + (y − ρ(t))2 and ρ(t) := 0.5 + sin(1.25t). The exact interface I(t) is a circle with
center (0, ρ(t)) and radius 1. The motion of the interface is governed by the Stefan law which
prescribes that the normal velocity v satisfies

(∇β(u)+ −∇β(u)−)·n = v on I(t),

where ∇β(u)+ and ∇β(u)− denote the values of the temperature gradient on each side of the
interface, while n is the unit normal to the interface with suitable orientation. The enthalpy u on
Ω \ I(t) can be obtained from the expression (7.1) of β(u). The homogeneous Neumann condition
∇β(u)·n = 0 is enforced at x = 0, whereas Dirichlet boundary conditions on the temperature are
prescribed at y = 0, y = 5, and x = 5 using (7.1). The initial enthalpy u0 and the source term f
are likewise imposed using (7.1). The vertex-centered finite volume discretization of Section 6 is
considered. No adaptation of the quadrature rule is performed; this is a reasonable simplification
since the enthalpy–temperature function β(·) is piecewise affine.

7.2 Computing approximately the negative norms

In practice we cannot compute the negative norms as the initial data indicator ηIC , the data
oscillation ‖f − f̂‖X′ , and the dual norm of the residual ‖R(uhτ )‖X′ , even if the exact solution u
is known. For numerical experiments below, the dual norms are approximated by solving auxiliary
problems. More specifically, for a function v ∈ X ′ to compute the negative norm ‖v‖X′ we consider
for a.e. t ∈ (0, T ) the problem: find ψ(·, t) ∈ H1

0 (Ω) such that

(∇ψ(·, t),∇ϕ) = 〈v(·, t), ϕ〉, ∀ϕ ∈ H1
0 (Ω). (7.2)

Then

‖v‖2X′ =

∫ T

0

{
sup

ϕ∈H1
0 (Ω), ‖∇ϕ‖L2(Ω)=1

〈v(·, t), ϕ〉
}2

dt

=

∫ T

0

{
sup

ϕ∈H1
0 (Ω), ‖∇ϕ‖L2(Ω)=1

(∇ψ(·, t),∇ϕ)

}2

dt

=

∫ T

0

‖∇ψ‖2L2(Ω)(t)dt = ‖∇ψ‖2L2(0,T ;L2(Ω)).

We obtain an approximation of the function ψ by solving the problem (7.2) numerically by the
vertex-centered finite volume scheme on a refined spatial mesh and on discrete times which refine
the given temporal mesh. We suppose that the ensuing discretization error is small and can be
ignored. The computation of ηIC is easier as it only involves the initial time t = 0.

7.3 Stopping criteria

We start by assessing the performance of the balancing and stopping criteria introduced in Sec-
tion 4.1. Figure 3 depicts the evolution of the spatial (3.14a), temporal (3.14b), regulariza-
tion (3.14d), and linearization (3.14e) error estimators as a function of the number of Newton
iterations for a fixed mesh K with hK = 0.25, time step τ = 0.1, and regularization parameter
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Figure 3: Evolution of the spatial, temporal, regularization, and linearization error estima-
tors (3.14) as a function of Newton iterations for a fixed mesh, time step, and regularization
parameter
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Figure 4: Error estimator ηn (5.2) as a function of the cumulated Newton iterations at each time
step (time steps are identified by markers). Global stopping criterion (4.1) (left), local stopping
criterion (7.4) (right)

ε = 0.05. As expected, the linearization error steadily decreases, while the other components
stagnate starting from the second iteration. The stopping criterion (4.1) with Γlin = 10−2 allows
to profit from this behavior by stopping the Newton algorithm after the second iteration, while a
classical criterion based on a fixed threshold,

ηn,ε,klin ≤ ζlin, ζlin = 10−7, (7.3)

would require 10 iterations to converge.
The overall gain for an entire simulation in terms of linearization iterations can be appreciated

considering the results in Figure 4, left. We use the adaptive Algorithm 4.1 with different choices
for the linearization stopping criterion: the classical criterion (7.3) then the stopping criterion (4.1)
with Γlin = 0.01 and Γlin = 0.1. The others parameters used in the Algorithm are: Γreg = 0.1,
ζ = 1, ζIC = 1, hK0 = 0.1, τ0 = 0.1, ε0 = 0.25, h = 10−2, τ = 10−2, cref = 0.7, cderef = 0.2,
γtm = 0.7, and Γtm = 1.3. For the sake of completeness we also add a comparison with the local
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Figure 5: Evolution of the spatial, temporal, and regularization error estimators (3.14) as a
function of ε−1 for a fixed mesh and time step

version of the stopping criterion (4.1), namely

ηn,ε,knlin,K ≤ Γlin,loc

(
ηn,ε,knsp,K + ηn,ε,kntm,K + ηn,ε,knqd,K + ηn,ε,knreg,K

)
∀K ∈ Kn. (7.4)

Even with this more stringent criterion, Figure 4, right, shows that a considerable gain in terms
of number of linearization iterations can be achieved, whereas the precision on each time step
(expressed by our error estimator ηn (5.2)) is basically unchanged.

Figure 5 shows similar results concerning the criterion (4.2) for the choice of the regularization
parameter ε for a fixed mesh K with hK = 0.25 and time step τ = 0.1. For each value of ε,
the Newton iterations are stopped according to (4.1) with Γlin = 0.1. The regularization error
estimator decreases as expected when ε decreases, while the space and time error estimators
stagnate starting from the third iteration. The criterion (4.2) with Γreg = 0.1 leads to stopping
the iterations after the fourth step.

7.4 Balancing criteria

The next series of numerical experiments aims at assessing the space–time balancing criterion (4.4)
by showing its impact on the estimated error (3.8) as a function of the total number of space–time

unknowns
∑N
n=1 |Dn,i|. In Figure 6, bottom left, we started by an initial mesh K0 with hK0 = 0.4

and a time step τ0 = 0.1. Then the time step is adapted in order to satisfy (4.4), with γtm = 0.7,
Γtm = 1.3. As a result, the spatial (3.14a) and temporal (3.14b) error estimators stay equilibrated
during the whole simulation. Figure 6, top, on the other hand, shows two possible disequilibrated
patterns corresponding to space and time over-refinement. In the top left we started by an initial
mesh K0 with hK0 = 0.2 and a time step τ0 = 0.2, we fixed also γtm = 2 and Γtm = 3, while in the
top right we started by an initial mesh K0 with hK0 = 0.5 and time step τ0 = 0.05 and we fixed
γtm = 1

3 and Γtm = 1
2 . Finally, Figure 6, bottom right shows the effect of this violating of the

balancing criterion (4.4) on the total error. These results make it apparent that the performance
of an adaptive code may be considerably reduced when time and space errors are not balanced,
and advocate the use of (4.4).

Next, we compare in Figure 7 the actual and predicted error distribution using the adaptive
Algorithm 4.1 with Γlin = Γreg = 0.1, ζ = 1, ζIC = 1, hK0 = 0.25, τ0 = 0.05, ε0 = 0.25, h = 10−2,
τ = 10−2, cref = 0.7, cderef = 0.2, γtm = 0.7, and Γtm = 1.3. We present the results at time t = 0.1.
We see that the actual and predicted error distributions match very nicely. The corresponding
exact and discrete enthalpies are depicted in Figure 8.
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Figure 6: Effect of the time step adaptation strategy on the global error estimator (3.8). Violations
of the balancing criterion (4.4) by space over-refinement (top left) and time over-refinement (top
right). Time step refinement honoring (4.4) (bottom left). Overall comparison (bottom right)

7.5 Overall performance

In this section we assess the overall performance of the adaptive algorithm of Section 4.2 in terms
of precision vs. the number of unknowns.

In Figure 9, left, we depict the error and estimates as a function of the total number of space–
time unknowns in the fully adaptive case and in the uniform case. In the adaptive case, we use
Algorithm 4.1 with the parameters detailed in Section 7.4. In the uniform case, the temporal
and spatial meshes as well as the regularization parameter are fixed during the simulation, and
linearization is stopped when (7.3) is satisfied. The error is measured in the dual norm (3.3)
and estimated by Theorem 3.3 in the top part of Figure 9, whereas the energy-like norm (5.1)
and the estimate of Theorem 5.3 are used in the bottom part of Figure 9. In both cases the
adaptive strategy yields much better results than the uniform one, as expected. The right part
of Figure 9 displays the corresponding effectivity indices, given by the ratio of the estimates over
the error. These are remarkably close to the optimal value of one for the dual norm (3.3), even
for the present time-dependent, degenerate problem with a moving free boundary. We regard the
effectivity indices corresponding to Theorem 5.3 as likewise excellent; they are in particular several
orders of magnitude smaller than the effectivity indices corresponding to the setting of Remark 5.4
that we have also assessed (not presented).

A quantitative evaluation of the performance in terms of precision vs. the number of unknowns
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Figure 7: Actual (left) and estimated (right) error distribution for Γlin = Γreg = 0.1, adaptive
Algorithm 4.1, entire domain (top), interface zoom (bottom)

Figure 8: Exact (left) and approximate (right) enthalpy corresponding to the results of Figure 7
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Figure 9: Comparison between adaptive and uniform refinement. Dual norm (3.3) (top), energy-
like norm (5.1) (bottom). Error and estimators (left), effectivity indices (right)

Table 1: Comparison of the experimental orders of convergence (e.o.c.) in the uniform and fully
adaptive cases. The total number of space–time unknowns is denoted by Nst. The actual error
‖R(uhτ )‖X′ and the estimated error η are defined by (3.2) and (3.8) respectively.

(a) Uniform case

Nst ‖β(u)− β(uhτ )‖QT e.o.c. ‖R(uhτ )‖X′ e.o.c. η e.o.c.

7020 7.13e-02 – 3.75e-01 – 1.22e-00 –
66906 6.02e-02 0.224 3.30e-01 0.172 8.65e-01 0.455
915840 5.07e-02 0.197 2.48e-01 0.364 6.50e-01 0.392

1.12963e+07 2.19e-02 0.221 1.60e-01 0.115 2.40e-01 0.261

(b) Adaptive case

Nst ‖β(u)− β(uhτ )‖QT e.o.c. ‖R(uhτ )‖X′ e.o.c. η e.o.c.

9360 6.55e-02 – 3.51e-01 – 1.51e-00 –
35370 5.28e-02 0.486 3.07e-01 0.303 1.08e-00 0.751
224082 4.06e-02 0.427 2.19e-01 0.546 6.32e-01 0.868

1.53329e+06 1.10e-02 0.392 1.18e-01 0.186 2.23e-01 0.312
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can be obtained by computing the experimental order of convergence (e.o.c.), defined as follows:

e.o.c :=
log(eNst)− log(eMst)

− 1
3 (logNst − logMst)

,

where e denotes the chosen error measure while Nst and Mst are the total number of space–time
unknowns corresponding to two subsequent levels of refinement. The results for the uniform and
adaptive cases are collected in Tables 1a and 1b, respectively. We evaluate the dual norm of the
residual (3.2), the L2(0, T ;L2(Ω)) error in the temperature, and the estimator η of (3.8). We
observe roughly twice faster convergence in the adaptive case in comparison with the uniform one.

A Proofs

In this appendix, we collect the more involved proofs of some theorems of the paper.

A.1 Proof of Theorem 4.4

In this section, we will use the notation a . b for the inequality a ≤ Cb with a generic constant C
only depending on the shape regularity parameter κK of the meshes Kn−1,n, 1 ≤ n ≤ N , the space
dimension d, and the polynomial degree m. Fix 1 ≤ n ≤ N . We start by observing that, owing to
the stopping criteria (4.1)–(4.3) and to the second inequality in the balancing criterion (4.4),

ηn,εn,knsp + ηn,εn,kntm + ηn,εn,knqd + ηn,εn,knreg + ηn,εn,knlin . ηn,εn,knsp . (A.1)

Recall that we have supposed in Section 2.2.2 that the mesh Kn, 1 ≤ n ≤ N , is obtained from
Kn−1 by limited refinement/coarsening and that the common refinements Kn−1,n are uniformly
shape regular. Thus, for K ∈ Kn, using the triangle inequality, Assumption 4.2, and the inverse
inequality, c.f. [44, Proposition 6.3.2], the first term of (3.13a) can be bounded by

ηn,εn,knR,K = CP,KhK‖f̂n − ∂tun,εn,knhτ −∇·tn,εn,knh ‖L2(K)

≤ CP,KhK‖f̂n − ∂tun,εn,knhτ +∇·ln,εn,knh ‖L2(K) + CP,KhK‖∇·(ln,εn,knh + tn,εn,knh )‖L2(K)

.

 ∑
K′∈Kn−1,n, K′⊂K

h2
K′‖f̂n − ∂tun,εn,knhτ +∇·ln,εn,knh ‖2L2(K′)


1
2

+

 ∑
K′∈Kn−1,n, K′⊂K

‖ln,εn,knh + tn,εn,knh ‖2L2(K′)


1
2

.

Consequently, employing Assumption 4.3,

ηn,εn,knsp . ηnres,1 + ηnres,2. (A.2)

Proving the efficiency of the estimators introduced in Section 3.4 thus amounts to proving the
efficiency of the residual estimators ηnres,1 and ηnres,2.

Henceforth, to simplify, we will use the shorthand notation

unhτ = un,εn,knhτ , lnh = ln,εn,knh

and denote (
ηnLRQT

)2
:=

∫
In

∑
K∈Kn−1,n

‖∇β(unhτ (·, t))− lnh‖2L2(K)dt. (A.3)

We have:
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Lemma A.1 (Estimate of ηnres,1). Under the assumptions of Theorem 4.4, there holds

ηnres,1 . ‖R(unhτ )‖X′n + ηnLRQT + ‖f − f̂‖X′n . (A.4)

Proof. For all K ∈ Kn−1,n, we let vK := (f̂n − ∂tu
n
hτ + ∇·lnh)|K . By Assumption 4.2, vK is

polynomial in K. We denote by ψK the usual bubble function on K, i.e., the product of the (d+1)
hat basis functions (barycentric coordinates) ψa associated with the vertices a of the element K,
set λK := h2

KψKvK for all K ∈ Kn−1,n, and let λ :=
∑
K∈Kn−1,n λK . Clearly, λ ∈ H1

0 (Ω) and
λ|K ∈ H1

0 (K) for all K ∈ Kn−1,n. Using the equivalence of norms on finite-dimensional spaces,
integrating by parts in space, the weak form (2.2c), and (3.9) together with the Cauchy–Schwarz
inequality, we infer, c.f. [49],(

ηnres,1

)2
.
∫
In

∑
K∈Kn−1,n

h2
K(vK , ψKvK)Kds

=

∫
In

{
〈∂t(u− unhτ ), λ〉+ (∇β(u)−∇β(unhτ ),∇λ)

+ (∇β(unhτ )− lnh,∇λ) + (f̂n − f, λ)
}

ds

≤
(
‖R(unhτ )‖X′n + ηnLRQT + ‖f − f̂‖X′n

)
‖λ‖Xn .

(A.5)

By the shape regularity of the mesh Kn−1,n and the inverse inequality, c.f. [44, Proposition 6.3.2],
we have, for any K ∈ Kn−1,n,

‖∇λ‖L2(K) = h2
K‖∇(ψKvK)‖L2(K) . hK‖ψKvK‖L2(K) ≤ hK‖vK‖L2(K).

An immediate consequence is that ‖λ‖Xn . ηnres,1 and (A.4) follows.

Lemma A.2 (Estimate of ηnres,2). Under the assumptions of Theorem 4.4, there holds

ηnres,2 . ‖R(unhτ )‖X′n + ηnLRQT + ‖f − f̂‖X′n . (A.6)

Proof. Let F ∈ F i,n−1,n. We denote by KF the simplices K ∈ Kn−1,n that share the face F . Let
vF := JlnhK·nF and keep the same notation for the constant extension of vF into KF along the
vectors face barycenter–opposite vertex. Owing to Assumption 4.2, vF is a polynomial on KF . Let
ψF be the usual face bubble function supported on KF , i.e., the product of the d hat basis functions
(barycentric coordinates) ψa associated with the vertices a of the face F . For all F ∈ F i,n−1,n,
set λF := hFψF vF and let λ :=

∑
F∈F i,n−1,n λF . Note that λ ∈ H1

0 (Ω) and λ|KF ∈ H1
0 (KF ) for

all F ∈ F i,n−1,n. Using the equivalence of norms in finite-dimensional spaces, integrating by parts
in space, using the weak form (2.2c), and (3.9) together with the Cauchy–Schwarz inequality, it is
inferred, c.f. [49],(

ηnres,2

)2
.
∫
In

∑
F∈F i,n−1,n

hF (vF , ψF vF )Fds

=

∫
In

∑
F∈F i,n−1,n

∑
K∈KF

{(∇·lnh, λF )K + (lnh,∇λF )K} ds

=

∫
In

{(∇·lnh, λ) + (lnh,∇λ)} ds

=

∫
In

{
〈∂t(unhτ − u), λ〉+ (∇β(unhτ )−∇β(u),∇λ) + (f̂n − ∂tunhτ +∇·lnh, λ)

+ (lnh −∇β(unhτ ),∇λ) + (f − f̂n, λ)
}

ds

.
(
‖R(unhτ )‖X′n + ηnLRQT + ‖f − f̂‖X′n

)
‖λ‖Xn

+ ηnres,1

{
τn

∑
K∈Kn−1,n

h−2
K ‖λ‖2L2(K)

} 1
2

.

(A.7)
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Using the fact that, for all F ∈ F i,n−1,n and K ∈ Kn−1,n
F , ‖ψF vF ‖L2(K) . h

1
2

F ‖vF ‖L2(F ), it is

inferred that τn
∑
K∈Kn−1,n h

−2
K ‖λ‖2L2(K) . (ηnres,2)2, whence by the inverse inequality, ‖λ‖Xn .

ηnres,2. Using this fact in (A.7) in conjunction with (A.4), (A.6) follows.

Proof of Theorem 4.4. It follows from Lemmas A.1 and A.2 and from (A.2) that

ηn,εn,knsp . ‖R(un,εn,knhτ )‖X′n + ηnLRQT + ‖f − f̂‖X′n . (A.8)

In order to bound the term ηnLRQT, we proceed as follows. The triangle inequality and the defini-
tions (3.13) and (3.14) give

ηnLRQT ≤ ηn,εn,knlin + ηn,εn,knreg + ηn,εn,knqd + ηn,εn,kntm .

Thus, proceeding as for the bound (A.1),

ηnLRQT ≤ Cηn,εn,knsp ,

where the constant C only depends on the parameters Γlin, Γreg, and Γqd in the stopping crite-
ria (4.1)–(4.3) and Γtm in the balancing criterion (4.4). Thus, choosing these parameters small
enough, the term ηnLRQT can be made small enough to be discarded from the right-hand side
of (A.8), c.f. [15, Theorem 4.4] and the assertion of Theorem 4.4 follows from (A.1).

A.2 Proof of Theorem 5.2

We start by proving the following intermediate result.

Lemma A.3 (Duality bound). Let u be the solution to (2.2) and let uhτ ∈ Z be such that
β(uhτ ) ∈ X. Then, there holds, for a.e. t ∈ (0, T ),

2

Lβ
‖β(u)−β(uhτ )‖2Qt+‖(u−uhτ )(·, t)‖2H−1(Ω) ≤ ‖u0−uhτ (·, 0)‖2H−1(Ω)+‖R(uhτ )‖2X′t+‖u−uhτ‖

2
X′t
.

(A.9)

Proof. For a.e. t ∈ (0, T ), we denote by W (·, t) ∈ H1
0 (Ω) the solution to

(∇W (·, t),∇ψ) = ((u− uhτ )(·, t), ψ) ∀ψ ∈ H1
0 (Ω). (A.10)

The existence and uniqueness of W (·, t) follow from the Lax–Milgram lemma. Moreover, since
u, uhτ ∈ Z, there holds W ∈ X. Using (A.10), it is inferred that

‖∇W (·, t)‖L2(Ω) = sup
ψ∈H1

0 (Ω), ‖∇ψ‖L2(Ω)=1

(∇W (·, t),∇ψ)

= sup
ψ∈H1

0 (Ω), ‖∇ψ‖L2(Ω)=1

((u− uhτ )(·, t), ψ) = ‖(u− uhτ )(·, t)‖H−1(Ω).
(A.11)

This duality technique is rather standard; see [9] and the references therein. Its origins can be
traced back at least to the elliptic projection of Wheeler [53]. In some aspects, it is close to
the elliptic reconstruction of Makridakis and Nochetto [31]; however, in [31] it is used to restore
optimal order of the a posteriori estimate in L∞(0, T ;L2(Ω)), whereas here we employ it to obtain
a bound on an energy-like norm.

Taking ϕ = W1(0,t) with 1(0,t) the characteristic function of the interval (0, t) in definition (3.1)
and using (A.11) and the Young inequality, it is inferred

〈R(uhτ ),W 〉X′t,Xt ≤ ‖R(uhτ )‖X′t‖u− uhτ‖X′t ≤
1

2
‖R(uhτ )‖2X′t +

1

2
‖u− uhτ‖2X′t . (A.12)
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Moreover,

〈R(uhτ ),W 〉X′t,Xt =

∫ t

0

〈∂t(u− uhτ ),W 〉(s)ds+

∫ t

0

(∇β(u)−∇β(uhτ ),∇W )(s)ds = : R1 + R2.

(A.13)
Recalling (A.10), and since u − uhτ ∈ H1(0, T ;H−1(Ω)), there holds ∂tW ∈ X and, for a.e.
s ∈ (0, T ), ∂tW (·, s) satisfies in a weak sense

−∇·(∇∂tW (·, s)) = ∂t(u− uhτ )(·, s) in Ω,

∂tW (·, s) = 0 on ∂Ω.

Thus, it follows from the definition (A.10) of W and from the norm characterization (A.11) that

R1 =

∫ t

0

(∂t∇W,∇W )(s)ds =
1

2

(
‖∇W (·, t)‖2L2(Ω) − ‖∇W (·, 0)‖2L2(Ω)

)
=

1

2

(
‖(u− uhτ )(·, t)‖2H−1(Ω) − ‖u0 − uhτ (·, 0)‖2H−1(Ω)

)
.

(A.14)

Invoking again the definition (A.10) and using the fact that β is nondecreasing and Lβ-Lipschitz
continuous, there holds

R2 =

∫ t

0

(u− uhτ , β(u)− β(uhτ ))(s)ds ≥ 1

Lβ

∫ t

0

(β(u)− β(uhτ ), β(u)− β(uhτ ))(s)ds

=
1

Lβ
‖β(u)− β(uhτ )‖2Qt .

(A.15)

The conclusion follows using inequalities (A.12), (A.14), and (A.15) in equation (A.13).

Corollary A.4 (Application of the Gronwall lemma). Under the assumptions of Lemma A.3,
there holds

‖u− uhτ‖2X′ ≤ (eT − 1)‖u0 − uhτ (·, 0)‖2H−1(Ω) +

∫ T

0

(
‖R(uhτ )‖2X′t +

∫ t

0

‖R(uhτ )‖2X′se
t−sds

)
dt

− 2

Lβ

∫ T

0

(
‖β(u)− β(uhτ )‖2Qt +

∫ t

0

‖β(u)− β(uhτ )‖2Qset−sds
)

dt.

Proof. Using (A.9) followed by the Gronwall lemma

ξ(t) ≤ α(t) +

∫ t

0

ξ(s)ds =⇒ ξ(t) ≤ α(t) +

∫ t

0

α(s)et−sds,

with ξ(t) := ‖(u−uhτ )(·, t)‖2H−1(Ω) and α(t) := ‖u0−uhτ (·, 0)‖2H−1(Ω) + ‖R(uhτ )‖2X′t −
2
Lβ
‖β(u)−

β(uhτ )‖2Qt , it is inferred, for a.e. t ∈ (0, T ),

‖(u− uhτ )(·, t)‖2H−1(Ω) ≤ et‖u0 − uhτ (·, 0)‖2H−1(Ω) + ‖R(uhτ )‖2X′t +

∫ t

0

‖R(uhτ )‖2X′se
t−sds

− 2

Lβ

(
‖β(u)− β(uhτ )‖2Qt +

∫ t

0

‖β(u)− β(uhτ )‖2Qset−sds
)
.

The assertion follows by integrating over the interval (0, T ).

We are now ready to prove Theorem 5.2:
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Proof of Theorem 5.2. Using (A.9) with t = T and adding ‖u− uhτ‖2X′ to both sides we infer

L :=
2

Lβ
‖β(u)− β(uhτ )‖2QT + ‖u− uhτ‖2X′ + ‖(u− uhτ )(·, T )‖2H−1(Ω)

≤ ‖u0 − uhτ (·, 0)‖2H−1(Ω) + ‖R(uhτ )‖2X′ + 2‖u− uhτ‖2X′ .

Using Corollary A.4 to estimate the last term in the right-hand side we obtain

L ≤(2eT − 1)‖u0 − uhτ (·, 0)‖2H−1(Ω) + ‖R(uhτ )‖2X′

+ 2

∫ T

0

(
‖R(uhτ )‖2X′t +

∫ t

0

‖R(uhτ )‖2X′se
t−sds

)
dt

− 4

Lβ

∫ T

0

(
‖β(u)− β(uhτ )‖2Qt +

∫ t

0

‖β(u)− β(uhτ )‖2Qset−sds
)

dt.

The conclusion follows multiplying both sides by Lβ/2 and rearranging the terms.
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diffusion equations. RAIRO Modél. Math. Anal. Numér., 32(6):747–761, 1998.

[22] A. Friedman. The Stefan problem in several space variables. Trans. Amer. Math. Soc.,
133:51–87, 1968.
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