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ABSTRACT

We present a direct proof of the discrete Poincaré–Friedrichs inequalities for a class of non-
conforming approximations of the Sobolev space H 1(Ω), indicate optimal values of the con-
stants in these inequalities, and extend the discrete Friedrichs inequality onto domains only
bounded in one direction. We consider a polygonal domain Ω in two or three space di-
mensions and its shape-regular simplicial triangulation. The nonconforming approximations
of H1(Ω) consist of functions from H1 on each element such that the mean values of their
traces on interelement boundaries coincide. The key idea is to extend the proof of the discrete
Poincaré–Friedrichs inequalities for piecewise constant functions used in the finite volume
method. The results have applications in the analysis of nonconforming numerical methods,
such as nonconforming finite element or discontinuous Galerkin methods.
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1 INTRODUCTION

The Friedrichs (also called Poincaré) inequality
∫

Ω
g2(x) dx ≤ cF

∫

Ω
|∇g(x)|2 dx ∀g ∈ H1

0 (Ω) (1.1)

and the Poincaré (also called mean Poincaré) inequality
∫

Ω
g2(x) dx ≤ cP

∫

Ω
|∇g(x)|2 dx + c̃P

(

∫

Ω
g(x) dx

)2
∀g ∈ H1(Ω) (1.2)
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(cf. Nečas [9]) play an important role in the theory of partial differential equations. We
consider here a polygonal (we use this term for d = 3 as well instead of polyhedral) domain
(open, bounded, and connected set) Ω ⊂ R

d, d = 2, 3, H1(Ω) is the Sobolev space of L2(Ω)
functions with square-integrable generalized derivatives, and H 1

0 (Ω) is the subspace of H1(Ω)
of functions with zero trace on the boundary ∂Ω of Ω. We refer for instance to Adams [1]
for details on the spaces H1(Ω), H1

0 (Ω).
Let {Th}h be a shape-regular family of simplicial triangulations of Ω (consisting of tri-

angles in space dimension two and of tetrahedra in space dimension three). Let the spaces
W (Th) be formed by functions locally in H1(K) on each K ∈ Th such that the mean val-
ues of their traces on interior sides (edges if d = 2, faces if d = 3) coincide. Finally, let
W0(Th) ⊂ W (Th) be such that the mean values of the traces on exterior sides of functions
from W0(Th) are equal to zero (precise definitions are given in the next section). These
spaces are nonconforming approximations of the continuous ones, i.e. W0(Th) 6⊂ H1

0 (Ω) and
W (Th) 6⊂ H1(Ω). We investigate in this paper analogies of (1.1) and (1.2) in the forms

∫

Ω
g2(x) dx ≤ CF

∑

K∈Th

∫

K

|∇g(x)|2 dx ∀g ∈W0(Th) , ∀h > 0 , (1.3)

∫

Ω
g2(x) dx ≤ CP

∑

K∈Th

∫

K

|∇g(x)|2 dx + C̃P

(

∫

Ω
g(x) dx

)2
∀g ∈W (Th) , ∀h > 0 . (1.4)

The validity of (1.3) for W0(Th) consisting of piecewise linear functions (used e.g. in
the Crouzeix–Raviart finite element method) has been established by Temam in [13, 14,
Proposition I.4.13]. Thomas [15, Theorem V.4.3] generalizes this result to higher-order
polynomial spaces and, under the condition that the triangulations are not locally refined,
to a subspace of functions of W0(Th) only fixed to zero on a part of the boundary, see the
proof of Theorem V.4.2 in the same reference. Analogous results for polynomial functions
and triangulations that cannot be locally refined have next been established by Stummel [12,
Theorems 3.2.(15) and 3.2.(16)] for (1.3) and (1.4), respectively, and by Doleǰśı et al [5]
for (1.3). Extensions to Th only satisfying the shape regularity (minimal angle) assumption
and onto spaces that include W0(Th) are finally given by Knobloch [8] and Brenner [3]. This
last paper also shows how to extend the discrete Friedrichs and Poincaré inequalities to
general polygonal (nonmatching) partitions of Ω and to functions that do not satisfy the
equality of the means of traces on interior sides, provided that (1.3), (1.4) are satisfied.

It was shown in [8] and in [3] that the constants CF , CP only depend on the domain Ω
and on the shape regularity of the meshes. We establish in this paper the exact dependence
of CF , CP on these parameters. We show that in space dimension two CF only depends on
the area of Ω and that in space dimension two or three CF only depends on the square of
the infimum over the thickness of Ω in one direction. For convex domains, CP only depends
on the square of the diameter of Ω and on the ratio between the area of the circumscribed
ball and the area of Ω. For nonconvex domains, our results involve a more complicated
dependence of CP on Ω. The above-mentioned dependencies are optimal in the sense that
they coincide with the dependencies of cF , cP on Ω in the continuous case. The dependence
of CF on Ω also allows for the extension of the discrete Friedrichs inequality to domains only
bounded in one direction. We finally show that CF depends, in space dimension two and
provided that it is expressed using the area of Ω, on the square of a parameter describing the
shape regularity of the meshes given in the next section. This dependence still holds true for
CF in space dimension two or three and expressed using the square of the infimum over the
thickness of Ω in one direction and also for CP , provided that the mesh is not locally refined.
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We present an example showing that this dependence is optimal. For locally refined meshes,
our results involve a more complicated dependence on the shape regularity parameter.

Our proof of the discrete Friedrichs and Poincaré inequalities on the spaces W0(Th),
W (Th) respectively is more direct than those presented in [8] and in [3]; in particular, all
the necessary intermediate results are proved here. In [8] the author uses a Clément-type
interpolation operator (cf. [4]) mapping the space W0(Th) to H1

0 (Ω). In [3] the key idea
is to construct nonconforming P1 interpolants of functions from W (Th) and to connect the
nonconforming P1 finite elements and conforming P2 finite elements (in space dimension
two) or conforming P3 finite elements (in space dimension three). In both cases one finally
makes use of the continuous inequalities (1.1), (1.2). Our main idea is to construct a piecewise
constant interpolant and to extend the discrete Poincaré–Friedrichs inequalities for piecewise
constant functions known from finite volume methods, see Eymard et al [6, 7]. In particular,
we do not make use of the continuous inequalities; since H 1

0 (Ω) ⊂ W0(Th) and H1(Ω) ⊂
W (Th), we rather prove them. The established inequalities are necessary in the analysis of
nonconforming numerical methods, such as nonconforming finite element or discontinuous
Galerkin methods.

The structure of the paper is as follows. In Section 2 we describe the assumptions on Th,
define a dual mesh Dh where the dual elements are associated with the sides of Th, define the
function spaces used in the sequel, and introduce the interpolation operator. In Section 3 we
give the discrete Friedrichs inequality for piecewise constant functions on Dh. In Section 4
we prove some interpolation estimates on functions from H 1(K), where K is a simplex in
two or three space dimensions. In Section 5 we prove the discrete Friedrichs inequality for
functions from W0(Th), using their interpolation by piecewise constant functions on Dh. In
Section 6 we show how this proof simplifies for Crouzeix–Raviart finite elements in two space
dimensions. Finally, Section 7 is devoted to the proof of the discrete Poincaré inequality for
piecewise constant functions on Dh and Section 8 to the extension of this result to functions
from W (Th).

2 NOTATION AND ASSUMPTIONS

Throughout this paper, we shall mean by “segment” a segment of a straight line. Let
us consider a domain K ⊂ R

d, d = 2, 3. We denote by ‖ · ‖0,K the norm on L2(K),
‖g‖2

0,K =
∫

K
g2(x) dx, by |K| the d-dimensional Lebesgue measure of K, by |σ| the (d− 1)-

dimensional Lebesgue measure of σ, a part of a hyperplane in R
d, and in particular by |s|

the length of a segment s. Let b be a vector. We shall mean by the thickness of K in the
direction of b, denoted by thickb(K), the supremum of the lengths of segments s with the
direction vector b such that s ⊂ K. The thickness of K is then the supremum of the lengths
of all the segments s such that s ⊂ K. Recall that the diameter of K is the supremum of the
distances between all pairs of points of K. For K convex, thickness and diameter coincide.

Triangulation

We suppose that Th for all h > 0 consists of closed simplices such that Ω =
⋃

K∈Th
K and

such that if K,L ∈ Th, K 6= L, then K ∩ L is either an empty set or a common face, edge,
or vertex of K and L. The parameter h is defined by h := maxK∈Th

diam(K). We denote
by Eh the set of all sides, by E int

h the set of all interior sides, by E ext
h the set of all exterior

sides, and by EK the set of all the sides of an element K ∈ Th. We make the following shape
regularity assumption on the family of triangulations {Th}h:
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Assumption (A) (Shape regularity assumption)

There exists a constant κT > 0 such that

min
K∈Th

|K|
diam(K)d

≥ κT ∀h > 0 .

Assumption (A) is equivalent to the existence of a constant θT > 0 such that

max
K∈Th

diam(K)

ρK
≤ θT ∀h > 0 , (2.1)

where ρK is the diameter of the largest ball inscribed in the simplex K. Finally, Assump-
tion (A) is equivalent to the existence of a constant φT > 0 such that

min
K∈Th

φK ≥ φT ∀h > 0 . (2.2)

Here φK is the smallest angle of the simplex K (plain angle in radians if d = 2 and spheric
angle in steradians if d = 3).

In the sequel we shall consider apart triangulations that may not be locally refined, i.e.
the case where the following assumption holds:

Assumption (B) (Inverse assumption)

There exists a constant ζT > 0 such that

max
K∈Th

h

diam(K)
≤ ζT ∀h > 0 .

Assumptions (A) and (B) imply

min
K∈Th

|K|
hd

≥ κ̃T ∀h > 0 , (2.3)

where κ̃T := κT /ζ
d
T .

Dual mesh

In the sequel we will use a dual mesh Dh to Th such that Ω =
⋃

D∈Dh
D. There is one dual

element D associated with each side σD ∈ Eh. We construct it by connecting the barycentres
of every K ∈ Th that contains σD through the vertices of σD. For σD ∈ Eext

h , the contour of
D is completed by the side σD itself. We refer to Fig. 1 for the two-dimensional case. We
denote by Dint

h the set of all interior and by Dext
h the set of all boundary dual elements. As

for the primal mesh, we set Fh, F int
h , and F ext

h for the dual mesh sides. We denote by QD the
barycentre of a side σD and for two adjacent elements D,E ∈ Dh, we set σD,E := ∂D ∩ ∂E,
dD,E := |QE −QD|, and KD,E the element of Th such that σD,E ⊂ KD,E. We remark that

|K ∩D| =
|K|
d+ 1

(2.4)

for each K ∈ Th and D ∈ Dh such that σD ∈ EK . Let us now consider σD,E ∈ F int
h ,

σD,E = ∂D ∩ ∂E in the two-dimensional case. Let KD,E ∩D be in the clockwise direction
from KD,E ∩ E. We then define vD,E as the height of the triangle |KD,E ∩D| with respect
to its base σD,E and have (see Fig. 1)

|KD,E ∩D| =
|σD,E|vD,E

2
. (2.5)
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KD, E

L
D

E

vD, E

QD

QE

sD

sD,E sE

Figure 1: Triangles K,L ∈ Th and dual elements D,E ∈ Dh with edges σD, σE ∈ Eh

Function spaces

We define the space W (Th) by

W (Th) :=
{

g ∈ L2(Ω) ; g|K ∈ H1(K) ∀K ∈ Th ,
∫

σK,L

g|K(x) dγ(x) =

∫

σK,L

g|L(x) dγ(x) (2.6)

∀σK,L ∈ E int
h , σK,L = ∂K ∩ ∂L

}

.

We keep the same notation for the function g and its trace and denote dγ(x) the integration
symbol for the Lebesgue measure on a hyperplane of Ω. The space W0(Th) is defined by

W0(Th) :=
{

g ∈W (Th) ;

∫

σ

g(x) dγ(x) = 0 ∀σ ∈ E ext
h

}

. (2.7)

We finally define

|g|1,T :=
(

∑

K∈Th

∫

K

|∇g(x)|2 dx
)

1

2

,

which is a seminorm on W (Th) and a norm on W0(Th). The spaces X(Th) ⊂ W (Th) and
X0(Th) ⊂ W0(Th) are defined by piecewise linear functions on Th. Note that the functions
fromX(Th) are continuous in barycentres of interior sides and that the functions fromX0(Th)
are moreover equal to zero in barycentres of exterior sides.

The space Y (Dh) is the space of piecewise constant functions on Dh,

Y (Dh) :=
{

c ∈ L2(Ω) ; c|D is constant ∀D ∈ Dh

}

,

and Y0(Dh) is its subspace of functions equal to zero on all D ∈ Dext
h ,

Y0(Dh) :=
{

c ∈ Y (Dh) ; c|D = 0 ∀D ∈ Dext
h

}

.

For c ∈ Y (Dh) given by the values cD on D ∈ Dh, we define

|c|1,T ,∗ :=
(

∑

σD,E∈F int

h

|σD,E|
vD,E

(cE − cD)2
)

1

2

,

|c|1,T ,† :=
(

∑

σD,E∈F int

h

|σD,E|
diam(KD,E)

(cE − cD)2
)

1

2

,

|c|1,T ,‡ :=
(

∑

σD,E∈F int

h

|σD,E|
dD,E

(cE − cD)2
)

1

2

;

| · |1,T ,∗, | · |1,T ,†, and | · |1,T ,† are seminorms on Y (Dh) and norms on Y0(Dh).
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Interpolation operator

The interpolation operator I associates to a function g ∈ W (Th) a function I(g) ∈ Y (Dh)
such that

I(g)|D = gD :=
1

|σD|

∫

σD

g|K(x) dγ(x) ∀D ∈ Dh ,

where K ∈ Th is such that σD ∈ EK . Note that by (2.6), if σD ∈ EK and σD ∈ EL, K 6= L,
the choice between K and L does not matter. We recall that σD ∈ Eh is the side associated
with the dual element D ∈ Dh. Note that for g ∈W0(Th), I(g) ∈ Y0(Dh).

3 DISCRETE FRIEDRICHS INEQUALITY FOR PIECE-

WISE CONSTANT FUNCTIONS

In finite volume methods (cf. [7]) one can prove the discrete Friedrichs inequality for piecewise
constant functions for meshes that satisfy the following orthogonality property: there exists
a point associated with each element of the mesh such that the straight line connecting these
points for two neighboring elements is orthogonal to the common side of these two elements.
The proofs in [6, 7] rely on this property of the meshes. We present in this section analogies
of Lemma 9.5 and consequent Remark 9.13 and of Lemma 9.1 of [7] for the mesh Dh, where
the orthogonality property is not necessarily satisfied.

Theorem 3.1 (Discrete Friedrichs inequality for piecewise constant functions in
two space dimensions). Let d = 2. Then for all c ∈ Y0(Dh),

‖c‖2
0,Ω ≤ |Ω|

2
|c|21,T ,∗ .

Proof. Let b1 = (1, 0) and b2 = (0, 1) be two fixed unit vectors in the axis directions. For
all x ∈ Ω, let B1

x and B2
x be the straight lines going through x and defined by the vectors b1,

b2 respectively. Let the functions χ
(i)
σ (x), i = 1, 2, for each σ ∈ F int

h be defined by

χ(i)
σ (x) :=

{

1 if σ ∩ Bi
x 6= ∅

0 if σ ∩ Bi
x = ∅ .

Let finally D ∈ Dint
h be fixed. Then for a.e. x ∈ D, Bi

x, i = 1, 2, do not contain any vertex
of the dual mesh and Bi

x ∩ σ, i = 1, 2, contain at most one point of all σ ∈ Fh. This implies
that for a.e. x ∈ D, Bi

x, i = 1, 2, always have to intersect the interior of some E ∈ Dext
h

before “leaving” or after “entering” Ω (we recall that Ω may be nonconvex). Using this, the
fact that cE = 0 for all E ∈ Dext

h , and the triangle inequality, we have

2|cD| ≤
∑

σF,G∈F int

h

|cG − cF |χ(i)
σF,G

(x) for a.e. x ∈ D , i = 1, 2 .

This gives

|cD|2 ≤ 1

4

∑

σF,G∈F int

h

|cG − cF |χ(1)
σF,G

(x)
∑

σF,G∈F int

h

|cG − cF |χ(2)
σF,G

(x) for a.e. x ∈ D ,

which is obviously valid also for D ∈ Dext
h , considering that cD = 0 on D ∈ Dext

h . Integrating
the above inequality over D and summing over D ∈ Dh yields

∑

D∈Dh

c2D|D| ≤ 1

4

∫

Ω

(

∑

σD,E∈F int

h

|cE − cD|χ(1)
σD,E

(x)
∑

σD,E∈F int

h

|cE − cD|χ(2)
σD,E

(x)
)

dx .
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Let α = inf{x1; (x1, x2) ∈ Ω} and β = sup{x1; (x1, x2) ∈ Ω}. For each x1 ∈ (α, β), we denote

by J(x1) the set of x2 such that x = (x1, x2) ∈ Ω. We now notice that χ
(1)
σ (x) only depends

on x2 and that χ
(2)
σ (x) only depends on x1. Thus

∫ β

α

∫

J(x1)

(

∑

σD,E∈F int

h

|cE − cD|χ(1)
σD,E

(x2)
∑

σD,E∈F int

h

|cE − cD|χ(2)
σD,E

(x1)
)

dx2 dx1

=

∫ β

α

∑

σD,E∈F int

h

|cE − cD|χ(2)
σD,E

(x1)
∑

σD,E∈F int

h

|cE − cD|
∫

J(x1)
χ(1)

σD,E
(x2) dx2 dx1

≤
∑

σD,E∈F int

h

|cE − cD||σD,E|
∫ β

α

∑

σD,E∈F int

h

|cE − cD|χ(2)
σD,E

(x1) dx1 ,

where we have used
∫

J(x1) χ
(1)
σD,E

(x2) dx2 ≤ |σD,E|. Using analogously
∫ β

α
χ

(2)
σD,E

(x1) dx1 ≤
|σD,E|, we come to

∑

D∈Dh

c2D|D| ≤ 1

4

(

∑

σD,E∈F int

h

|σD,E ||cE − cD|
)2
.

Finally, using the Cauchy–Schwarz inequality, we have

∑

D∈Dh

c2D|D| ≤ 1

4

∑

σD,E∈F int

h

|σD,E|vD,E

∑

σD,E∈F int

h

|σD,E |
vD,E

(cE − cD)2 .

The equality
∑

σD,E∈F int

h
|σD,E|vD,E = 2|Ω|, which follows from (2.5), concludes the proof.

Remark 3.2 (Discrete Friedrichs inequality for piecewise constant functions on
equilateral simplices). Let b ∈ R

d be a fixed vector and let Th consist of equilateral
simplices. Then for all c ∈ Y0(Dh),

‖c‖2
0,Ω ≤ [thickb(Ω) + 2h]2|c|21,T ,‡ .

This follows from [7, Lemma 9.1] (cf. alternatively [6, Lemma 1]), since the dual mesh Dh

satisfies in this case the orthogonality property.

Our purpose now will be to extend this result to general triangulations.

Lemma 3.3. Let Assumption (B) be satisfied and let b ⊂ Ω be a segment that does not
contain any vertex of the dual mesh Dh. Then

A :=
∑

σD,E∈F int

h
, σD,E∩b6=∅

diam(KD,E) ≤ Cd,T thickb(Ω) ,

where

Cd,T =
2d(d− 1)

κ̃T
(1 + 2θT ) . (3.1)
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Proof. The number of nonzero terms of A is equal to the number of interior dual sides
intersected by b. In view of the fact that b does not contain any vertex of the dual mesh,
this number is bounded by 2(d− 1)-times the number of simplices K ∈ Th whose interior is
intersected by b. All intersected simplices have to be entirely in the rectangle/rectangular
parallelepiped constructed around b, with the distance between b and its boundary equal
to h. Considering the consequence (2.3) of Assumptions (A) and (B), we can estimate the
number of intersected elements by

(2h)d−1(|b| + 2h)

κ̃T hd
.

Using in addition diam(KD,E) ≤ h and |b| ≤ thickb(Ω), we have

A ≤ 2d(d− 1)

κ̃T
(thickb(Ω) + 2h) .

Noticing that

h ≤ θT thickb(Ω) (3.2)

by the consequence (2.1) of Assumption (A) concludes the proof.

Lemma 3.4. Let b ⊂ Ω be a segment that does not contain any vertex of the dual mesh Dh.
Then

A :=
∑

σD,E∈F int

h
, σD,E∩b6=∅

diam(KD,E) ≤ Cd,T thickb(Ω) ,

where

Cd,T = 4(d − 1)NθN
T , N =

2d−2π

φT
. (3.3)

Proof. The number of nonzero terms of A is equal to the number of interior dual sides
intersected by b. In view of the fact that b does not contain any vertex of the dual mesh,
this number is bounded by 2(d− 1)-times the number of simplices K ∈ Th whose interior is
intersected by b. We next follow the ideas of [15, Lemma V.4.3] rather than those originally
used in [16, Lemma 2.3.4], yielding a slightly better value of the constant Cd,T .

Let us group the intersected simplices byN , defining a system of nonoverlapping segments
{bk}M

k=1 lying on the intersection of the straight line given by b and Ω, such that each bk

intersects exactly N simplices and such that the intersection always contains two points from
∂K (stretches over the whole K). At most N − 1 simplices whose interior is intersected by
b remain. Using that

diam(K) ≤ θT ρK ≤ θT thickb(Ω) ∀K ∈ Th ,

following from the consequence (2.1) of Assumption (A), we have

A ≤ 2(d − 1)

M
∑

k=1

∑

K∈Th;K◦∩bk 6=∅

diam(K) + 2(d − 1)NθN
T thickb(Ω) , (3.4)

noticing as well that θT > 1 and N > 1. We next estimate the first term of the above
expression. It follows from the consequence (2.1) of Assumption (A) that ρK ≤ θT ρL if
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K,L ∈ Th are neighboring elements. Recall that ρK is the diameter of the largest ball
inscribed in the simplex K. Thus we come to

max
K∈Th; K◦∩bk 6=∅

ρK

min
K∈Th; K◦∩bk 6=∅

ρL
≤ θN−1

T ∀k = 1, . . . ,M .

We further claim that

min
K∈Th;K◦∩bk 6=∅

ρK ≤ |bk| ∀k = 1, . . . ,M ,

i.e. if we take N simplices, where N is given by (3.3), intersected by a straight line, then the
length of the intersection is at least equal to the smallest diameter of the inscribed balls of
the simplices. Let V be a vertex of a simplex K and let us consider the hyperplane joining
the midpoints of the edges sharing V . Clearly, as soon as bk intersects this hyperplane
or as soon as the intersection lies entirely in the part of K bounded by this hyperplane
and not containing V , the intersection is longer than ρK . Hence, in order not to exceed
ρK for some K, all the intersected simplices would have to share the same vertex and the
intersection would only have to lie in the part of K bounded by the above defined hyperplane
and containing V for each K. However, with each intersected simplex, we would in this case
add an angle greater or equal to φT by the consequence (2.2) of Assumption (A). Since we
have N simplices, their angles would fill the whole semi-circle (π, d = 2) or semi-sphere (2π,
d = 3), which shows that this is not possible.

Using the last two estimates and once more the consequence (2.1) of Assumption (A),
we have

M
∑

k=1

∑

K∈Th;K◦∩bk 6=∅

diam(K) ≤
M
∑

k=1

θT

N
∑

K∈Th;K◦∩bk 6=∅

ρK ≤
M
∑

k=1

NθN
T |bk| ≤ NθN

T thickb(Ω) .

In combination with (3.4), this concludes the proof of the lemma.

Theorem 3.5 (Discrete Friedrichs inequality for piecewise constant functions).
Let b ∈ R

d be a fixed vector. Then for all c ∈ Y0(Dh),

‖c‖2
0,Ω ≤ Cd,T [thickb(Ω)]2|c|21,T ,† ,

where Cd,T is given by (3.1) when Assumption (B) is satisfied and by (3.3) in the general
case.

Proof. For all x ∈ Ω, we denote by Bx the straight semi-line defined by the origin x and the
vector b. Let y(x) ∈ ∂Ω ∩ Bx be the point where Bx intersects ∂Ω for the first time. Then
[x,y(x)] ⊂ Ω. We finally define a function χσ(x) for each σ ∈ F int

h by

χσ(x) :=

{

1 if σ ∩ [x,y(x)] 6= ∅
0 if σ ∩ [x,y(x)] = ∅ .

Let D ∈ Dint
h be fixed. Then for a.e. x ∈ D, Bx does not contain any vertex of the dual

mesh and Bx ∩ σ contains at most one point of all σ ∈ Fh. This implies that for a.e. x ∈ D,
Bx always has to intersect the interior of some E ∈ Dext

h before “leaving” Ω. Using this, the
fact that cE = 0 for all E ∈ Dext

h , and the triangle inequality, we have

|cD| ≤
∑

σF,G∈F int

h

|cG − cF |χσF,G
(x) for a.e. x ∈ D .
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The Cauchy–Schwarz inequality yields

|cD|2 ≤
∑

σF,G∈F int

h

χσF,G
(x) diam(KF,G)

∑

σF,G∈F int

h

(cG − cF )2

diam(KF,G)
χσF,G

(x) for a.e. x ∈ D ,

which is obviously valid also for D ∈ Dext
h , considering that cD = 0 on D ∈ Dext

h . Inte-
grating the above inequality over D, summing over D ∈ Dh, and using Lemma 3.3 when
Assumption (B) is satisfied and Lemma 3.4 in the general case yields

∑

D∈Dh

|cD|2|D| ≤ Cd,T thickb(Ω)
∑

σD,E∈F int

h

(cE − cD)2

diam(KD,E)

∫

Ω
χσD,E

(x) dx .

Now the value
∫

Ω χσD,E
(x) dx is the measure of the set of points of Ω located inside a cylinder

whose basis is σD,E and generator vector is −b. Thus

∫

Ω
χσD,E

(x) dx ≤ |σD,E| thickb(Ω) ,

which leads to the assertion of the lemma.

4 INTERPOLATION ESTIMATES ON FUNCTIONS

FROM H
1(K)

We give some interpolation estimates for a simplex K in this section.

Lemma 4.1. Let K be a simplex, σ its side, and g ∈ H 1(K). We set

gK :=
1

|K|

∫

K

g(x) dx ,

gσ :=
1

|σ|

∫

σ

g(x) dγ(x) .

Then

(gK − gσ)2 ≤ cd
diam(K)2

|K|

∫

K

|∇g(x)|2 dx , (4.1)

∫

K

[g(x) − gσ ]2 dx ≤ cd diam(K)2
∫

K

|∇g(x)|2 dx , (4.2)

where
cd = 6 for d = 2 , cd = 9 for d = 3 . (4.3)

Proof. The inequality (4.1) is proved as a part of [7, Lemma 9.4] or [6, Lemma 2] for d =
2. In these references a general convex polygonal element K is considered; the fact that
cd = 6 follows by considering a triangular element. The inequality (4.2) also follows from
these proofs, using the Cauchy–Schwarz inequality. We now give the proof for the three-
dimensional case, following the ideas of the proof for d = 2.

Let us consider a tetrahedron K and its face σ. Let us denote the space coordinates by
x1, x2, x3. We assume, without loss of generality, that σ ⊂ {0} ×R×R

+, that one vertex of
σ lies in the origin, that the longest edge of σ lies on x+

2 , and that K ⊂ R
+ × R × R. Let



DISCRETE POINCARÉ–FRIEDRICHS INEQUALITIES 11

a = (α, β, γ) be the vertex that does not lie on σ. For all x1 ∈ [0, α], we set J(x1) = {x2 ∈ R

such that (x1, x2, x3) ∈ K for some x3 ∈ R}. For all x2 ∈ J(x1) with x1 ∈ [0, α] given, we
set J(x1, x2) = {x3 ∈ R such that (x1, x2, x3) ∈ K}. For a.e. x = (x1, x2, x3) ∈ K and a.e.
y = (0, y2, y3) ∈ σ, we set z(x,y) = ta+(1− t)y with t = x1

α
. Since K is convex, z(x,y) ∈ K

and we have z(x,y) = (x1, z2(x1, y2), z3(x1, y3)) with z2(x1, y2) = x1

α
β + (1 − x1

α
)y2 and

z3(x1, y3) = x1

α
γ + (1 − x1

α
)y3.

Using the Cauchy–Schwarz inequality, we have
∫

K

[g(x) − gσ ]2 dx =

∫

K

[ 1

|σ|

∫

σ

g(x) dγ(y) − 1

|σ|

∫

σ

g(y) dγ(y)

± 1

|σ|

∫

σ

g(z(x,y)) dγ(y)
]2

dx ≤ 2

|σ|2
∫

K

[

∫

σ

(

g(x) − g(z(x,y))
)

dγ(y)
]2

dx

+
2

|σ|2
∫

K

[

∫

σ

(

g(z(x,y)) − g(y)
)

dγ(y)
]2

dx ≤ 2

|σ| (A+B) ,

where

A :=

∫

K

∫

σ

(

g(x) − g(z(x,y))
)2

dγ(y) dx ,

B :=

∫

K

∫

σ

(

g(z(x,y)) − g(y)
)2

dγ(y) dx .

Similarly,

(gK − gσ)2 ≤ 2

|K||σ| (A+B) .

We denote by Dig the partial derivative of g with respect to xi, i ∈ {1, 2, 3}, and estimate
A and B separately. For this purpose, we suppose that g ∈ C 1(K) and use the density of
C1(K) in H1(K) to extend the estimates to g ∈ H1(K).

We first estimate A. We have

A =

∫ α

0

∫

J(x1)

∫

J(x1,x2)

∫

J(0)

∫

J(0,y2)

(

g(x1, x2, x3)

−g(x1, z2(x1, y2), z3(x1, y3))
)2

dy3 dy2 dx3 dx2 dx1 .

Let us suppose that x3 ≥ z3. This implies that [x1, x2, z3(x1, y3)] ∈ K, since the cross-section
of K and the plane x1 = const is a triangle whose bottom edge is horizontal and the longest
of its three edges. We deduce the inequality

(

g(x1, x2, x3) − g(x1, z2(x1, y2), z3(x1, y3))
)2

=
(

g(x1, x2, x3) − g(x1, x2, z3(x1, y3))

+g(x1, x2, z3(x1, y3)) − g(x1, z2(x1, y2), z3(x1, y3))
)2

=
(

∫ x3

z3(x1,y3)
D3g(x1, x2, s) ds

+

∫ x2

z2(x1,y2)
D2g(x1, s, z3(x1, y3)) ds

)2
≤ 2diam(K)

∫

J(x1,x2)
[D3g(x1, x2, s)]

2 ds

+2diam(K)
(

1 − x1

α

)

∫ x2

z2(x1,y2)
[D2g(x1, s, z3(x1, y3))]

2 ds ,

where we have used the Newton integration formula and the Cauchy–Schwarz inequality.
Defining Dig, i ∈ {1, 2, 3}, by 0 outside of K and considering also x3 < z3, we come to

A ≤ 2diam(K)(A1 +A2 +A3 +A4)
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with

A1 :=

∫ α

0

∫

J(x1)

∫

J(x1,x2)

∫

J(0)

∫

J(0,y2)

∫

J(x1,x2)
[D3g(x1, x2, s)]

2 dsdy3 dy2 dx3 dx2 dx1 ,

A2 :=

∫ α

0

∫

J(x1)

∫

J(x1,x2)

∫

J(0)

∫

J(0,y2)

(

1 − x1

α

)

∫ x2

z2(x1,y2)
[D2g(x1, s, z3(x1, y3))]

2 dsdy3 dy2 dx3 dx2 dx1 ,

A3 :=

∫ α

0

∫

J(x1)

∫

J(x1,x2)

∫

J(0)

∫

J(0,y2)

∫ x2

z2(x1,y2)
[D2g(x1, s, x3)]

2 dsdy3 dy2 dx3 dx2 dx1 ,

A4 :=

∫ α

0

∫

J(x1)

∫

J(x1,x2)

∫

J(0)

∫

J(0,y2)

(

1 − x1

α

)

∫ x3

z3(x1,y3)
[D3g(x1, z2(x1, y2), s)]

2 dsdy3 dy2 dx3 dx2 dx1 .

We easily see that

A1 ≤ diam(K)|σ|
∫

K

[D3g(x)]2 dx .

Next, we estimate A2. Using the Fubini theorem and the change of variables z3 = z3(x1, y3),
we have

∫

J(0,y2)

(

1 − x1

α

)

∫ x2

z2(x1,y2)
[D2g(x1, s, z3(x1, y3))]

2 dsdy3

=

∫ x2

z2(x1,y2)

∫

J(x1,z2(x1,y2))
[D2g(x1, s, z3)]

2 dz3 ds

≤
∫

J(x1)

∫

J(x1,s)
[D2g(x1, s, z3)]

2 dz3 ds ,

where the estimate follows by extending the integration region. Hence

A2 ≤ diam(K)|σ|
∫

K

[D2g(x)]2 dx .

Using the Fubini theorem, we similarly estimate A3 and A4,

A3 ≤ diam(K)|σ|
∫

K

[D2g(x)]2 dx ,

A4 ≤ diam(K)|σ|
∫

K

[D3g(x)]2 dx ,

which finally yields

A ≤ 4diam(K)2|σ|
∫

K

|∇g(x)|2 dx . (4.4)

We now turn to the study of B. We write it as

B =

∫ α

0

∫

J(x1)

∫

J(x1,x2)

∫

J(0)

∫

J(0,y2)

(

g(x1, z2(x1, y2), z3(x1, y3)) −

−g(0, y2, y3)
)2

dy3 dy2 dx3 dx2 dx1 .
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Using the Newton integration formula and the Cauchy–Schwarz and Hölder inequalities, we
have

(

g(x1, z2(x1, y2), z3(x1, y3)) − g(0, y2, y3)
)2

=
(

∫ x1

0

[

D1g(s, z2(s, y2), z3(s, y3))

+D2g(s, z2(s, y2), z3(s, y3))
β − y2

α
+D3g(s, z2(s, y2), z3(s, y3))

γ − y3

α

]

ds
)2

≤ α
(

1 +
(β − y2

α

)2
+

(γ − y3

α

)2)
∫ x1

0

3
∑

i=1

[Dig(s, z2(s, y2), z3(s, y3))]
2 ds .

Hence

B ≤ α
(

1 +
(β − y2

α

)2
+

(γ − y3

α

)2)
3

∑

i=1

Bi

with

Bi =

∫ α

0

∫

J(x1)

∫

J(x1,x2)

∫

J(0)

∫

J(0,y2)

∫ x1

0
[Dig(s, z2(s, y2), z3(s, y3))]

2 dsdy3 dy2 dx3 dx2 dx1 ,

i ∈ {1, 2, 3}. Using the Fubini theorem, we have

Bi =

∫

J(0)

∫

J(0,y2)

∫ α

0
[Dig(s, z2(s, y2), z3(s, y3))]

2

∫ α

s

∫

J(x1)

∫

J(x1,x2)
dx3 dx2 dx1 dsdy3 dy2 .

Hence

Bi ≤
|σ|
2α

∫ α

0

∫

J(0)

∫

J(0,y2)
[Dig(s, z2(s, y2), z3(s, y3))]

2(α− s)2 dy3 dy2 ds ,

where we have used the estimate
∫

J(x1)

∫

J(x1,x2)
dx3 dx2 ≤ |σ|

(

1 − x1

α

)

on the area of the cross-section of K and the plane x1 = const. Now using the change of
variables z3 = z3(s, y3) and z2 = z2(s, y2) gives

∫

J(0)

∫

J(0,y2)
[Dig(s, z2(s, y2), z3(s, y3))]

2(α− s)2 dy3 dy2

= α2

∫

J(s)

∫

J(s,z2)
[Dig(s, z2, z3)]

2 dz3 dz2

and thus

Bi ≤
|σ|α
2

∫

K

[Dig(x)]2 dx ,

which finally yields, noticing that α2 + (β − y2)
2 + (γ − y3)

2 = |a− y|2 ≤ diam(K)2,

B ≤ |σ|
2

diam(K)2
∫

K

|∇g(x)|2 dx . (4.5)

Now combining (4.4) and (4.5) leads to the assertion of the lemma for d = 3.
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5 DISCRETE FRIEDRICHS INEQUALITY

We prove in this section the discrete Friedrichs inequality, using the results of the previous
sections. We first give several auxiliary lemmas.

Lemma 5.1. Let d = 2. Then

|I(g)|21,T ,∗ ≤
Cd

κ2
T

|g|21,T ∀g ∈W (Th) ,

where Cd is given by (5.2) below.

Proof. Let K ∈ Th and σD, σE ∈ EK . We define gK as the mean value of g over K and
deduce from the inequality (a− b)2 ≤ 2a2 + 2b2 and from (4.1) that

(gE − gD)2 ≤ 2(gE − gK)2 + 2(gD − gK)2 ≤ 4cd
diam(K)2

|K|

∫

K

|∇g(x)|2 dx . (5.1)

Using this, the definition of | · |1,T ,∗, |σD,E| ≤ 2/3 diam(K), (2.5) and (2.4), the fact that
each K ∈ Th contains exactly three dual edges, and Assumption (A), we have

|I(g)|21,T ,∗ =
∑

σD,E∈F int

h

|σD,E|
vD,E

(gE − gD)2

≤ 4cd
∑

K∈Th

∑

σD,E∈F int

h
, σD,E⊂K

|σD,E|2
vD,E|σD,E|

diam(K)2

|K|

∫

K

|∇g(x)|2 dx

≤ 8cd
∑

K∈Th

[diam(K)2

|K|
]2

∫

K

|∇g(x)|2 dx ≤ 8cd
κ2
T

∑

K∈Th

∫

K

|∇g(x)|2 dx .

Lemma 5.2. There holds

|I(g)|21,T ,† ≤
Cd

κT
|g|21,T ∀g ∈W (Th) ,

where

Cd = 8cd for d = 2 , Cd =
27

4
cd for d = 3 , (5.2)

and cd is given by (4.3).

Proof. Using the definition of | · |1,T ,†, (5.1), |σD,E| ≤ C∗
ddiam(KD,E)d−1 with C∗

d = 2/3 if
d = 2 and C∗

d = 9/32 if d = 3, the fact that each K ∈ Th contains (d+ 1)d/2 dual sides, and
Assumption (A), we have

|I(g)|21,T ,† =
∑

σD,E∈F int

h

|σD,E|
diam(KD,E)

(gE − gD)2

≤ 4cd
∑

K∈Th

∑

σD,E∈F int

h
, σD,E⊂K

|σD,E|diam(K)

|K|

∫

K

|∇g(x)|2 dx

≤ 2cd(d+ 1)dC∗
d

∑

K∈Th

diam(K)d

|K|

∫

K

|∇g(x)|2 dx ≤ Cd

κT

∑

K∈Th

∫

K

|∇g(x)|2 dx .
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Lemma 5.3 (Interpolation estimate). There holds

‖g − I(g)‖2
0,Ω ≤ cdh

2|g|21,T ∀g ∈W (Th) ,

where cd is given by (4.3).

Proof. We have

‖g − I(g)‖2
0,Ω =

∑

K∈Th

∑

σD∈EK

∫

K∩D

[g(x) − gD]2 dx

≤ cd
∑

K∈Th

∑

σD∈EK

[diam(K ∩D)]2
∫

K∩D

|∇g(x)|2 dx

≤ cdh
2

∑

K∈Th

∫

K

|∇g(x)|2 dx ,

using the estimate (4.2) for the simplex K ∩D and diam(K ∩D) ≤ h.

We are now ready to state the first of the two main results of this paper.

Theorem 5.4 (Discrete Friedrichs inequality). There holds

‖g‖2
0,Ω ≤ CF |g|21,T ∀g ∈W0(Th) , ∀h > 0

with

CF =
Cd

κ2
T

|Ω| + 2cdh
2 for d = 2 , CF = 2Cd

Cd,T

κT

[

inf
b∈Rd

thickb(Ω)
]2

+ 2cdh
2 for d = 2, 3 ,

where Cd,T is given by (3.1) when Assumption (B) is satisfied and by (3.3) in the general
case, cd is given by (4.3), and Cd is given by (5.2).

Proof. One has
‖g‖2

0,Ω ≤ 2‖g − I(g)‖2
0,Ω + 2‖I(g)‖2

0,Ω .

The error ‖g − I(g)‖2
0,Ω of the approximation follows from Lemma 5.3. Note that I(g) ∈

Y0(Dh) and hence the discrete Friedrichs inequality for piecewise constant functions given
by Theorem 3.1 together with Lemma 5.1 yield

‖I(g)‖2
0,Ω ≤ Cd

2κ2
T

|Ω||g|21,T

for the case where d = 2. Similarly, using the discrete Friedrichs inequality for piecewise
constant functions given by Theorem 3.5 together with Lemma 5.2, one has

‖I(g)‖2
0,Ω ≤ Cd

Cd,T

κT
[thickb(Ω)]2|g|21,T

for an arbitrary vector b ∈ R
d for the case where d = 2, 3.

Remark 5.5 (Dependence of CF on Ω). We have h2 ≤ |Ω|/κT by Assumption (A)
and h ≤ θT thickb(Ω) by the consequence (2.1) of Assumption (A). Hence the constant in
the discrete Friedrichs inequality only depends on the area of Ω if d = 2 and on the square
of the infimum over the thickness of Ω in one direction if d = 2, 3. This dependence is
optimal: Nečas [9, Theorem 1.1] gives the same dependence for the Friedrichs inequality and
H1

0 (Ω) ⊂ W0(Th). Note however that the constant itself can still be better in the continuous
case, see e.g. Rektorys [11, Chapters 18 and 30].
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Remark 5.6 (Dependence of CF on the shape regularity parameter). One can see
that CF depends on 1/κ2

T if d = 2 and when it is expressed using |Ω|. We are able to establish
the same result also when CF is expressed using infb∈Rd thickb(Ω) only when the meshes are
not locally refined (when Assumption (B) is satisfied). Indeed, CF in this case depends on
Cd,T /κT and the constant Cd,T given by (3.1) is of the form [2d(d− 1)ζd

T (2C + 1)]/κT ; this
follows by replacing the inequality (3.2) by h ≤ Cthickb(Ω) for some suitable constant C.
Example 6.3 below shows that this dependence is optimal. In the case where the meshes are
only shape-regular, we only have (3.3). Note however that this dependence carries over to
the case where the functions are only fixed to zero on a part of the boundary, cf. Remarks 5.8
and 5.9 below.

Remark 5.7 (Discrete Friedrichs inequality for domains only bounded in one
direction). We see that the constant CF only depends on the infimum over the thickness
of Ω in one direction. Thus the discrete Friedrichs inequality may be extended onto domains
only bounded in one direction, as it is the case for the Friedrichs inequality (cf. Nečas [9,
Remark 1.1]).

Remark 5.8 (Discrete Friedrichs inequality for functions only fixed to zero on
a particular part of the boundary). Let Γ ⊂ ∂Ω (given by a set of boundary sides) be
such that there exists a vector b ∈ R

d such that the first intersection of Bx and ∂Ω lies in
Γ for all x ∈ Ω, where Bx is the straight semi-line defined by the origin x and the vector b.
We notice that the discrete Friedrichs inequality can immediately be extended onto functions
only fixed to zero on Γ. This follows easily from the proof of Theorem 3.5 (the zero condition
is only used on boundary sides lying in Γ). The dependence of CF on the shape regularity
parameter is thus given by Cd,T /κT , cf. Remark 5.6. The constant CF in this case depends
on the square of the infimum of thickb(Ω) over suitable vectors b (compare with the general
case treated in the next remark).

Remark 5.9 (Discrete Friedrichs inequality for functions only fixed to zero on a
general part of the boundary). The discrete Friedrichs inequality can also be extended
onto functions only fixed to zero on an arbitrary set of boundary sides, cf. Lemma 7.2 below.
Then, for convex domains, CF depends on the square of the diameter of Ω, on the ratio
[diam(Ω)]d−1/|Γ| where Γ is the part of the boundary with the zero condition, and possibly
additionally on the geometry of Ω, see Lemma 7.2. For nonconvex domains, the dependence
of CF on Ω is more complicated. The dependence of CF on the shape regularity parameter
again reveals given by Cd,T /κT , cf. Remark 5.6.

6 DISCRETE FRIEDRICHS INEQUALITY FOR CROU-

ZEIX–RAVIART FINITE ELEMENTS IN TWO SPACE

DIMENSIONS

We show in this section how the proofs from the previous sections simplify for the case of
Crouzeix–Raviart finite elements in two space dimensions. Let us consider the space X(Th)
introduced in Section 2. The basis of this space is spanned by the shape functions ϕD,
D ∈ Dh, such that ϕD(QE) = δDE , E ∈ Dh, δ being the Kronecker delta.

Lemma 6.1. Let d = 2. Then for all c ∈ X(Th),

‖c‖0,Ω = ‖I(c)‖0,Ω .
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Proof. Let us write c =
∑

D∈Dh
cDϕD. Using that the quadrature formula

∫

K
ψ dx ≈

|K|/3 ∑

σD∈EK
ψ(QD) is exact for quadratic functions on triangles and (2.4), we have

∫

Ω
c2(x) dx =

∑

K∈Th

∫

K

c2(x) dx =
∑

K∈Th

1

3
|K|

∑

σD∈EK

c2(QD) =
∑

D∈Dh

c2D|D| .

Lemma 6.2 (Discrete Friedrichs inequality for Crouzeix–Raviart finite elements
in two space dimensions). Let d = 2. Then

‖c‖2
0,Ω ≤ CF |c|21,T ∀c ∈ X0(Th) , ∀h > 0

with

CF =
1

4κ2
T

|Ω| or CF =
Cd,T

2κT

[

inf
b∈Rd

thickb(Ω)
]2
,

where Cd,T is given by (3.1) when Assumption (B) is satisfied and by (3.3) in the general
case.

Proof. Let c ∈ X0(Th), c =
∑

D∈Dh
cDϕD. Note that by the definition of X0(Th), cD = 0 for

all D ∈ Dext
h . Using respectively Lemma 6.1 and Theorem 3.1 or Theorem 3.5, we get

‖c‖2
0,Ω ≤ |Ω|

2
|I(c)|21,T ,∗ , ‖c‖2

0,Ω ≤ Cd,T [thickb(Ω)]2|I(c)|21,T ,†

for an arbitrary vector b ∈ R
2. Finally, we deduce that

|I(c)|21,T ,∗ =
∑

σD,E∈F int

h

|σD,E|2
vD,E|σD,E|

(

∇c|KD,E
· (QE −QD)

)2

≤ 2

3

∑

σD,E∈F int

h

diam(KD,E)2

|KD,E|
∣

∣

∣
∇c|KD,E

∣

∣

∣

2
d2

D,E

≤ 1

2κ2
T

∑

K∈Th

∣

∣

∣
∇c|K

∣

∣

∣

2
|K| =

1

2κ2
T

|c|21,T ,

using (2.5) and (2.4), |σD,E | ≤ 2/3 diam(KD,E), the fact that the gradient of c is elementwise
constant and that each K ∈ Th contains exactly three dual edges, dD,E ≤ diam(KD,E)/2,
and Assumption (A). Similarly, |I(c)|21,T ,† ≤ 1/(2κT ) |c|21,T .

Example 6.3 (Optimality of the dependence of CF on the shape regularity param-
eter). Let us consider a domain Ω, its triangulation Th, a vector b, and a function c ∈ X(Th)
given by the values 0, 1,−1 as depicted in Figure 2. Using Lemma 6.1, we immediately have

‖c‖2
0,Ω =

∑

K∈Th

1

3
|K|(0 + 1 + 1) =

2

3
|Ω| .

On each K ∈ Th, |∇c|K | = 4/h, hence |c|21,T = 16/h2 |Ω|. Using Remark 5.8, the discrete
Friedrichs inequality given by Lemma 6.2 holds true. The term occurring on its right hand
side, independent of the shape regularity parameter, is 1/2[thickb(Ω)]2|c|21,T = 8v2/h2 |Ω|.
This term can be arbitrarily smaller than ‖c‖2

0,Ω, letting h → +∞ or v → 0. Next, κT =
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Dh Th

Ω

v

h

b

• • • •

• • •

• • • • • • • •

0 0 0 0

0 0 0

-1 1 -1 1 -1 1 -1 1

Figure 2: Domain Ω, triangulation Th, dual mesh Dh, and values of a function c ∈ X(Th) for
the optimality example

v/(2h). Note that Th satisfies Assumption (B) and hence Cd,T ≈ 1/κT . In fact, by a simple
estimation of the term A from Lemma 3.3, one has Cd,T = 1/κT in this case and thus
Cd,T /κT = 1/κ2

T = 4h2/v2. One immediately sees that the multiplication by this term is
necessary.

Corollary 6.4 (Discrete Friedrichs inequality for Crouzeix–Raviart finite elements
on equilateral triangles). Let d = 2 and let Th consist of equilateral triangles. Then

‖c‖2
0,Ω ≤ CF |c|21,T ∀c ∈ X0(Th) , ∀h > 0 ,

where

CF =
|Ω|
2

or CF =
[

inf
b∈Rd

thickb(Ω) + 2h
]2
.

Proof. Let c be as in the previous lemma. For equilateral triangles, one has dD,E = vD,E

and thus the norms | · |1,T ,∗ and | · |1,T ,‡ coincide. By (2.5) and (2.4), |σD,E|vD,E = 2/3 |K|,
cos2(α) + cos2(α+ π/3) + cos2(α+ 2π/3) = 3/2, so that

∑

K∈Th

∑

σD,E∈F int

h
, σD,E⊂K

|σD,E|
dD,E

∣

∣

∣
∇c|K

∣

∣

∣

2
d2

D,E cos2(∇c|K , QE −QD) =
∑

K∈Th

∣

∣

∣
∇c|K

∣

∣

∣

2
|K| .

Now using respectively Lemma 6.1 and Theorem 3.1 or Remark 3.2 yields the assertion.

Remark 6.5 (CF for Crouzeix–Raviart finite elements on equilateral triangles).
Let d = 2. Then the constant in the Friedrichs inequality may be expressed as cF = |Ω|/2 or
cF = [infb∈Rd thickb(Ω)]2, cf. Nečas [9, Theorem 1.1]. Corollary 6.4 shows that for Crouzeix–
Raviart finite elements and equilateral triangles, we are able to achieve the same result (up
to h) also for the constant CF from the discrete Friedrichs inequality. We however remark
that there exist sharper estimates in the continuous case, see e.g. Rektorys [11, Chapters 18
and 30].

7 DISCRETE POINCARÉ INEQUALITY FOR PIECEWI-

SE CONSTANT FUNCTIONS

As in the case of the discrete Friedrichs inequality, we start with the discrete Poincaré
inequality for piecewise constant functions. [7, Lemma 10.2] states the discrete Poincaré
inequality for piecewise constant functions on meshes satisfying the orthogonality property.
We present in this section an analogy of this lemma for the mesh Dh, where the orthogonality
property is not necessarily satisfied.
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Lemma 7.1. Let ω be an open convex subset of Ω, ω 6= ∅, and let

mω(c) :=
1

|ω|

∫

ω

c(x) dx .

Then for all c ∈ Y (Dh),

‖c−mω(c)‖2
0,ω ≤ |BΩ|

|ω| Cd,T [diam(Ω)]2|c|21,T ,† ,

where BΩ is the ball of R
d with center 0 and radius diam(Ω) and Cd,T is given by (3.1) when

Assumption (B) is satisfied and by (3.3) in the general case.

The proof of this lemma follows the proof of the first step of [7, Lemma 10.2], using
the techniques introduced in Section 3 for meshes where the orthogonality property is not
satisfied. Similarly, following the proof of the second step of [7, Lemma 10.2], we have:

Lemma 7.2. Let ω be a polygonal open convex subset of Ω and let Γ be a subset of a
hyperplane of R

d such that Γ ⊂ ∂ω and |Γ| > 0. Let

mΓ(c) :=
1

|Γ|

∫

Γ
c(x) dγ(x) .

Then for all c ∈ Y (Dh),

‖c−mΓ(c)‖2
0,ω ≤ cω,ΓCd,T diam(Ω)diam(ω)

[diam(ω)]d−1

|Γ| |c|21,T ,† ,

where cω,Γ only depends on Γ and the geometry of ω and Cd,T is given by (3.1) when As-
sumption (B) is satisfied and by (3.3) in the general case.

Remark 7.3 (The constant cω,Γ in two space dimensions). Evaluating the constants
from the proof of the second step of [7, Lemma 10.2], one has cω,Γ = 2 + 2/(infy∈Γ nΓ · (a−
y)/|a−y|) in two space dimensions, where a ∈ ∂ω is the most distant point from the straight
line given by Γ.

Theorem 7.4 (Discrete Poincaré inequality for piecewise constant functions). Let

mΩ(c) :=
1

|Ω|

∫

Ω
c(x) dx .

Then for all c ∈ Y (Dh),

‖c−mΩ(c)‖2
0,Ω ≤ CΩCd,T [diam(Ω)]2|c|21,T ,† ,

where

CΩ =
|BΩ|
|Ω| (7.1)

when Ω is convex and

CΩ = 2

n
∑

i=1

|BΩ|
|Ωi|

+ 16(n− 1)2
|Ω|

|Ωi|min

( |BΩ|
|Ωi|min

+ cΩ

)

(7.2)

when Ω is not convex but there exists a finite number of disjoint open convex polygonal sets
Ωi such that Ω = ∪n

i=1Ωi. Here, |Ωi|min = mini=1,...,n{|Ωi|}, BΩ is the ball of R
d with center

0 and radius diam(Ω), cΩ = maxi=1,...,n maxΓ=∂Ωi∩∂Ωj for some j, |Γ|>0 cΩi,Γ[diam(Ωi)]
d−1/|Γ|,

and Cd,T is given by (3.1) when Assumption (B) is satisfied and by (3.3) in the general case.
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Proof. When Ω is convex, the assertion of this theorem coincides with that of Lemma 7.1
for ω = Ω. When Ω is not convex, we have Lemmas 7.1 and 7.2 for each Ωi. Then the third
step of the proof of [7, Lemma 10.2] yields the assertion of the theorem.

Remark 7.5. One has

‖c‖2
0,Ω ≤ 2‖c −mΩ(c)‖2

0,Ω + 2‖mΩ(c)‖2
0,Ω .

Hence Theorem 7.4 implies the discrete Poincaré inequality for piecewise constant functions
in the more common form

‖c‖2
0,Ω ≤ 2CΩCd,T [diam(Ω)]2|c|21,T ,† +

2

|Ω|
(

∫

Ω
c(x) dx

)2
∀c ∈ Y (Dh) , ∀h > 0 .

8 DISCRETE POINCARÉ INEQUALITY

We state below the second of the two main results of this paper.

Theorem 8.1 (Discrete Poincaré inequality). There holds

‖g‖2
0,Ω ≤ CP |g|21,T +

4

|Ω|
(

∫

Ω
g(x) dx

)2
∀g ∈W (Th) , ∀h > 0

with

CP = 4CdCΩ
Cd,T

κT
[diam(Ω)]2 + 8cdh

2 ,

where CΩ is given by (7.1) when Ω is convex and by (7.2) otherwise, Cd,T is given by (3.1)
when Assumption (B) is satisfied and by (3.3) in the general case, cd is given by (4.3), and
Cd is given by (5.2).

Proof. One has

‖g‖2
0,Ω ≤ 4‖g − I(g)‖2

0,Ω + 4‖I(g) −mΩ[I(g)]‖2
0,Ω + 4‖mΩ[I(g)] −mΩ(g)‖2

0,Ω + 4‖mΩ(g)‖2
0,Ω ,

where mΩ(f) = 1/|Ω|
∫

Ω f(x) dx. The discrete Poincaré inequality for piecewise constant
functions given by Theorem 7.4 and Lemma 5.2 imply

‖I(g) −mΩ[I(g)]‖2
0,Ω ≤ CdCΩ

Cd,T

κT
[diam(Ω)]2|g|21,T .

We have

‖mΩ[I(g)] −mΩ(g)‖2
0,Ω ≤ ‖g − I(g)‖2

0,Ω

by the Cauchy–Schwarz inequality. Finally, the error ‖g − I(g)‖2
0,Ω of the approximation

follows from Lemma 5.3.

Remark 8.2 (Dependence of CP on Ω). Let Ω be a cube. We then have h ≤ diam(Ω)
and CΩ ≤ π

√
3/2 and hence the constant in the discrete Poincaré inequality in this case

only depends on the square of the diameter of Ω. This dependence is optimal: Nečas [9,
Theorem 1.3] gives the same dependence for the Poincaré inequality and H 1(Ω) ⊂ W (Th).
Note however that the constant itself can still be better in the continuous case, see e.g. Payne
and Weinberger [10] and Bebendorf [2] for convex domains.
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Remark 8.3 (Dependence of CP on the shape regularity parameter). Our results
indicate that the dependence of CP on the shape regularity parameter is given by Cd,T /κT ,
cf. Remark 5.6.
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