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Abstract We propose and analyze a numerical scheme for nonlinear degenerate
parabolic convection–diffusion–reaction equations in two or three space dimen-
sions. We discretize the diffusion term, which generally involves an inhomoge-
neous and anisotropic diffusion tensor, over an unstructured simplicial mesh of
the space domain by means of the piecewise linear nonconforming (Crouzeix–
Raviart) finite element method, or using the stiffness matrix of the hybridization
of the lowest-order Raviart–Thomas mixed finite element method. The other terms
are discretized by means of a cell-centered finite volume scheme on a dual mesh,
where the dual volumes are constructed around the sides of the original mesh.
Checking the local Péclet number, we set up the exact necessary amount of up-
stream weighting to avoid spurious oscillations in the convection-dominated case.
This technique also ensures the validity of the discrete maximum principle under
some conditions on the mesh and the diffusion tensor. We prove the convergence
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of the scheme, only supposing the shape regularity condition for the original mesh.
We use a priori estimates and the Kolmogorov relative compactness theorem for
this purpose. The proposed scheme is robust, only 5-point (7-point in space di-
mension three), locally conservative, efficient, and stable, which is confirmed by
numerical experiments.

Keywords nonlinear degenerate parabolic convection–diffusion–reaction
equation · anisotropic diffusion tensor · finite volume method · nonconforming
finite element method · convergence of approximate solutions
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1 Introduction

Degenerate parabolic equations arise in many contexts, such as flow in porous me-
dia or free boundary problems. This paper is motivated by the modeling of con-
taminant transport in porous media with equilibrium adsorption reaction, see [7,
10], that typically involves a convection–diffusion–reaction equation of the form

∂ β (c)
∂ t

−∇ · (S∇c)+∇ · (cv)+F(c) = q , (1.1)

where c is the unknown concentration of the contaminant, the function β (·) repre-
sents time evolution and equilibrium adsorption reaction and is supposed to be
continuous and increasing with the growth bounded from below by a positive
constant, S is the diffusion–dispersion tensor, v is the velocity field in the con-
vection term (given for instance by the Darcy law), the function F(·) represents
the changes due to chemical reactions, and finally, q stands for the sources. Equa-
tion (1.1) is degenerate parabolic since β ′ may be unbounded, generally dominated
by the convection term, and involves inhomogeneous and anisotropic (nonconstant
full-matrix) diffusion–dispersion tensor.

A large variety of methods have been proposed for the discretization of degen-
erate parabolic equations. The conforming piecewise linear finite element method
has been studied e.g. by Barrett and Knabner [8], Chen and Ewing [15], Ebme-
yer [22], Nochetto et al [37], and Rulla and Walkington [40], the cell-centered
finite volume method by Baughman and Walkington [9] and Eymard et al [25,
26], the vertex-centered finite volume method by Ohlberger [38], the finite dif-
ference method e.g. by Karlsen et al [35], the mixed finite element method by
Arbogast et al [4] or Dawson [19], characteristic or Eulerian–Lagrangian methods
e.g. by Chen et al [16] or Kačur [34], and relaxation schemes have been proposed
e.g. by Jäger and Kačur [33]. We shall follow in this paper the finite element/finite
volume approach.

The finite element method allows for an easy discretization of the diffusion
term with a full tensor and does not impose any restrictions on the meshes. How-
ever, it is well-known that numerical instabilities may arise in the convection-
dominated case. Recall that contrary to a widely held opinion, this method is lo-
cally conservative, cf. Forsyth [31], Eymard et al [23, Section III.12], or a de-
tailed analysis given in Hughes et al [32]. The cell-centered finite volume method
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with an upwind discretization of the convection term ensures the stability and
is extremely robust and computationally inexpensive. However, the mesh for the
discretization of the diffusion term has to fulfill the following orthogonality prop-
erty: the line segment relying the emplacement of the unknowns in two neighbor-
ing volumes has to be orthogonal to the side (edge in space dimension two and
face in space dimension three) between these volumes, cf. [23]. Also, there is no
straightforward way to apply this finite volume method to problems with full dif-
fusion tensors. Various “multi-point” schemes where the approximation of the flux
through an edge involves several scalar unknowns have been proposed, cf. e.g. Aa-
vatsmark et al [1], Coudière et al [18], Eymard et al [24], or Faille [29]. However,
such schemes require using more points than the classical 4 points for triangular
meshes and 5 points for quadrangular meshes in space dimension two, making the
schemes less robust. Their extension to three-dimensional unstructured meshes is
also not straightforward (with the exception of the scheme proposed in [24]).

A quite intuitive idea is hence to combine a finite element discretization of the
diffusion term with a finite volume discretization of the other terms of (1.1), trying
to use the “best of both worlds”. Schemes combining conforming piecewise linear
finite elements on triangles for the diffusion term with S = Id and finite volumes
on dual volumes associated with the vertices, proposed and studied by Debiez et
al [20] or Feistauer et al [30] for fluid mechanics equations, are indeed quite effi-
cient. Our motivation is to extend these ideas to degenerate parabolic problems, to
the combination of the mixed-hybrid finite element and finite volume methods, to
inhomogeneous and anisotropic diffusion–dispersion tensors, to space dimension
three, and finally to meshes only satisfying the shape regularity condition.

Let us now introduce the combined scheme that we analyze in this paper. We
consider a triangulation of the space domain consisting of simplices (triangles in
space dimension two and tetrahedra in space dimension three). We next construct
a dual mesh where the dual volumes are associated with the sides (edges or faces).
To construct a dual volume, one connects the barycentres of two neighboring sim-
plices through the vertices of their common side. We finally place the unknowns in
the barycentres of the sides. For the discretization of the diffusion term of (1.1), we
consider the piecewise linear nonconforming (Crouzeix–Raviart) finite element
method or the mixed-hybrid finite element method where the only unknowns are
the Lagrange multipliers, cf. Arnold and Brezzi [5], Brezzi and Fortin [12]. We re-
call that although obtained on a basis of completely different considerations (min-
imization of a quadratic functional over a nonconforming finite element space in
the first case, easier implementation of the mixed finite element method in the sec-
ond case), the elements of the obtained stiffness matrices have to naturally express
the coefficients for the discrete diffusive fluxes between the unknowns. Hence, to
obtain the combined scheme, we perform a finite volume discretization of (1.1)
over the dual mesh and consequently replace the finite volume stiffness matrix
corresponding to the diffusion term by one of the above finite element stiffness
matrices. The combination of finite volumes with nonconforming finite elements
was originally proposed and analyzed by Angot et al [3] as a semi-implicit dis-
cretization of a convection–diffusion equation with a nonlinear convection term
in space dimension two. As far as we know, the combination of the finite volume
method with the mixed-hybrid method is new. However, the two finite element
stiffness matrices are very close. For a piecewise constant diffusion tensor, they
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completely coincide (see Arnold and Brezzi [5] and Chen [14]), and for a general
diffusion tensor, the stiffness matrix of the mixed-hybrid method is the stiffness
matrix of the nonconforming method with a piecewise constant diffusion tensor,
given as the elementwise harmonic average of the original one (see Lemma 8.1
and Remark 3.2 below).

We propose the combined scheme for the equation (1.1) in combination with
the backward Euler finite difference time stepping. We can mention its following
advantages. The scheme inherits the diffusion properties of nonconforming/mi-
xed-hybrid finite elements, enabling in particular the use of general meshes and
the discretization of anisotropic diffusion tensors. It next possesses the discrete
maximum principle in the case where all transmissibilities are non-negative. This
happens for instance when the diffusion tensor reduces to a scalar function and
when the angles between the outward normal vectors of sides of each simplex
in the triangulation are greater or equal to π/2. Moreover, we achieve this sta-
bility by checking the local Péclet number and by adding side-by-side the exact
necessary amount of upstream weighting in order to reduce the excessive smear-
ing of the full upwinding but to still guarantee the discrete maximum principle.
The scheme is numerically still stable even in the case where there exist negative
transmissibilities, although the discrete maximum principle is no more guaran-
teed. The undershoots and overshoots only come in this case from the diffusion
term, since we avoid the spurious oscillations in the convection-dominated regime
by changing the numerical flux to the full upwind one. The scheme is next locally
conservative in the sense that the sum of the fluxes over the sides of each (dual)
cell equals the time-accumulation, sources, and reaction term in this cell and that
the (both diffusive and convective) fluxes are continuous across each (dual) side.
It is only 5-point in space dimension two and 7-point in space dimension three.
It finally permits to efficiently discretize degenerate parabolic problems: when we
search for the discrete unknowns corresponding to β (c), the resulting system of
nonlinear algebraic equations can be solved by the Newton method without any
parabolic regularization (cf. Barrett and Knabner [8]) or perturbation of initial and
boundary conditions (cf. Pop and Yong [39]), which make the equation uniformly
parabolic. Moreover, the resulting matrices are diagonal for the part of the un-
knowns which correspond to the region where the approximate solution is equal
to zero.

Our numerical scheme permits to construct approximate solutions that are
piecewise constant on the dual mesh or piecewise linear on the primal simplicial
mesh and continuous in the barycentres of the sides of the simplices. We prove
the convergence of both these approximations to a weak solution of the continu-
ous problem in this paper. The methods of proof are based upon the Kolmogorov
relative compactness theorem and the finite volume tools from [23]. We extend
these tools onto schemes with negative transmissibilities, for cases where the dis-
crete maximum principle is not satisfied, and for (dual) meshes not necessarily
satisfying the orthogonality property. We only need the shape regularity (minimal
angle) assumption for the primal triangulation, we require neither the inverse as-
sumption (bounded ratio between the diameters of elements in the primal mesh),
nor any maximal angle condition, as it was the case in [3]. We only suppose that β
is continuous with the growth bounded from below in the case where the discrete
maximum principle is satisfied. In the general case we require in addition β to be
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bounded on some interval and Lipschitz-continuous outside this interval. There
is no restriction on the maximal time step in the case where F is nondecreasing.
If F does not posses this property, we impose an appropriate maximal time step
condition. For the sake of simplicity, we only consider the case of a homogeneous
Dirichlet boundary condition. Extensions to other types of boundary conditions
and to the case where the equation (1.1) involves a nonlinear convection term are
possible, using the techniques from [23] and [25]. Finally, this paper is a detailed
description of the results previously announced in [28].

The rest of the paper is organized as follows. In Section 2 we state the as-
sumptions on the data and present a weak formulation of the continuous problem.
In Section 3 we define the approximation spaces and introduce the combined fi-
nite volume–nonconforming/mixed-hybrid finite element scheme. In Section 4 we
present some properties of this scheme and prove that it possesses a unique solu-
tion, which satisfies the discrete maximum principle under the hypotheses stated
above. In Section 5 we derive a priori estimates and estimates on differences of
time and space translates for the approximate solutions. Finally, in Section 6, us-
ing the Kolmogorov relative compactness theorem, we prove the convergence of
a subsequence of the sequence of approximate solutions to a weak solution of the
continuous problem. We finally present the results of numerical experiments in
Section 7 and give some technical lemmas in Appendix 8.

2 The nonlinear degenerate parabolic problem

Let Ω ⊂ R
d , d = 2,3, be a polygonal (we use this term for d = 3 as well instead

of polyhedral) domain (open, bounded, and connected set) with boundary ∂ Ω ,
let (0,T ), 0 < T < ∞, be a time interval, and let us define QT := Ω × (0,T ).
We consider the equation (1.1) in QT together with the homogeneous Dirichlet
boundary condition

c = 0 on ∂ Ω × (0,T ) (2.1)

and the initial condition
c(·,0) = c0 in Ω . (2.2)

Suppose that S is a domain of R
d . We use the standard notation Lp(S) and

Lp(S) = [Lp(S)]d for the Lebesgue spaces on S, (·, ·)0,S stands for the L2(S) or
L2(S) inner product, and ‖ ·‖0,S for the associated norm. We use dx as the integra-
tion symbol for the Lebesgue measure on S, dγ(x) for the Lebesgue measure on a
hyperplane of S, and dt for the Lebesgue measure on (0,T ). We denote by |S| the
d-dimensional Lebesgue measure of S, by |σ | the (d − 1)-dimensional Lebesgue
measure of σ , a part of a hyperplane in R

d , and in particular by |s| the length of a
segment s. The diameter of S is the supremum of the distances between all pairs
of points of S. Next, H1(S) and H1

0 (S) are the Sobolev spaces of functions with
square-integrable weak derivatives and H(div,S) is the space of vector functions
with square-integrable weak divergences, H(div,S) = {v ∈ L2(S);∇ ·v ∈ L2(S)}.
In the subsequent text we will denote by CA, cA a constant basically dependent
on a quantity A but always independent of the discretization parameters h and 4t
whose definition we shall give later. We make the following assumption on the
data:
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Assumption (A) (Data)

(A1) β ∈C(R), β (0) = 0, is a strictly increasing function such that

|β (a)−β (b)| ≥ cβ |a−b| , cβ > 0

for all a,b ∈ R

or
(A2) in addition to (A1), there exists P∈R,P > 0, such that |β (s)| ≤Cβ in [−P,P],

Cβ > 0, and β is Lipschitz-continuous with a constant Lβ on (−∞,−P] and
[P,+∞);

(A3) Si j ∈ L∞(QT ), |Si j| ≤CS/d a.e. in QT , 1 ≤ i, j ≤ d, CS > 0, S is a symmetric
and uniformly positive definite tensor for almost all t ∈ (0,T ) with a constant
cS > 0, i.e.

S(x,t)η ·η ≥ cS η ·η ∀η ∈ R
d , for a.e. (x,t) ∈ QT ;

(A4) v∈ L2(0,T ;H(div,Ω ))∩L∞(QT ) satisfies ∇ ·v = r ≥ 0 and |v| ≤Cv, Cv > 0,
a.e. in QT ;

(A5) F(0) = 0, F is a nondecreasing, Lipschitz-continuous function with a con-
stant LF

or
(A6) F(0) = 0, F is a Lipschitz-continuous function with a constant LF and there

holds sF(s) ≥ 0 for s < 0 and s > M, M > 0;
(A7) q ∈ L2(QT ), where q = r c with c ∈ L∞(QT ), 0 ≤ c ≤ M a.e. in QT ;
(A8) c0 ∈ L∞(Ω ), 0 ≤ c0 ≤ M a.e. in Ω .

Remark 2.1 (Hypotheses on β ) In contaminant transport problems one typically
has β (c) = c+cα ,α ∈ (0,1). Assumption (A1) generalizes this type of functions;
we in particular do not limit the number of points where β ′ explodes. As we shall
see, we will be able to prove the convergence of the combined scheme with this as-
sumption only for the case where the discrete maximum principle (cf. Theorem 4.5
below) holds. In the general case we add Assumption (A2), which is however still
satisfied by all realistic functions β . Also, it is necessary that the function β was
defined for negative values since our scheme can take them in this latter case.

We now give the definition of a weak solution of (1.1)–(2.2), following essen-
tially Knabner and Otto [36].

Definition 2.1 (Weak solution) We say that a function c is a weak solution of the
problem (1.1)–(2.2) if

(i) c ∈ L2(0,T ;H1
0 (Ω )) ,

(ii) β (c) ∈ L∞(0,T ;L2(Ω )) ,

(iii) c satisfies the integral equality

−
∫ T

0

∫

Ω
β (c)ϕt dxdt −

∫

Ω
β (c0)ϕ(·,0)dx+

∫ T

0

∫

Ω
S∇c ·∇ϕ dxdt −

−
∫ T

0

∫

Ω
cv ·∇ϕ dxdt +

∫ T

0

∫

Ω
F(c)ϕ dxdt =

∫ T

0

∫

Ω
qϕ dxdt

for all ϕ ∈ L2(0,T ;H1
0 (Ω )) with ϕt ∈ L∞(QT ), ϕ(·,T ) = 0 .
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Remark 2.2 (Existence of a weak solution) The existence of at least one weak
solution is proved in Theorem 6.2 below.

Remark 2.3 (Uniqueness of a weak solution) For a slightly more restrictive hy-
pothesis on the data than that given in Assumption (A), the uniqueness of a weak
solution given by Definition 2.1 is guaranteed in [36]. Namely, no time-dependen-
cy of the diffusion–dispersion tensor S is still required in [36].

3 Combined finite volume–nonconforming/mixed-hybrid finite element
scheme

We will describe the space and time discretizations, define the approximation
spaces, and introduce the combined finite volume–finite element scheme in this
section.

3.1 Space and time discretizations

In order to discretize the problem (1.1)–(2.2), we perform a triangulation Th of
the domain Ω , consisting of closed simplices such that Ω =

⋃
K∈Th

K and such
that if K,L ∈Th, K 6= L, then K∩L is either an empty set or a common face, edge,
or vertex of K and L. We denote by Eh the set of all sides, by E int

h the set of all
interior sides, by E ext

h the set of all exterior sides, and by EK the set of all the sides
of an element K ∈ Th. We define h := maxK∈Th diam(K) and make the following
shape regularity assumption on the family of triangulations {Th}h:

Assumption (B) (Shape regularity of the space mesh)

There exists a positive constant κT such that

min
K∈Th

|K|

diam(K)d ≥ κT ∀h > 0 .

Let ρK denote the diameter of the largest ball inscribed in K. Then in view of
the inequalities |K| ≥ diam(K)d−1ρK/(d−1)d, |K| ≤ (d +1)diam(K)d−1ρK/(d−
1)d following from geometrical properties of a triangle (tetrahedron) K, Assump-
tion (B) is equivalent to the more common requirement of the existence of a con-
stant θT > 0 such that

max
K∈Th

diam(K)

ρK
≤ θT ∀h > 0 . (3.1)

Our scheme will next use a dual partition Dh of Ω such that Ω =
⋃

D∈Dh
D.

There is one dual element D associated with each side σD ∈ Eh. We construct it by
connecting the barycentres of every K ∈ Th that contains σD through the vertices
of σD. For σD ∈ E ext

h , the contour of D is completed by the side σD itself. We refer
to Fig. 3.1 for the two-dimensional case. We denote by QD the barycentre of the
side σD. As for the primal mesh, we set Fh, F int

h , F ext
h , and FD for the dual mesh
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K

L

D

E

sD

sE
QE

QD

D,Es

Fig. 3.1 Triangles K,L ∈ Th and dual volumes D,E ∈ Dh associated with edges σD,σE ∈ Eh

sides. We denote by D int
h the set of all interior and by D ext

h the set of all boundary
dual volumes. We finally denote by N (D) the set of all adjacent volumes to the
volume D,

N (D) :=
{

E ∈ Dh;∃σ ∈ F
int
h such that σ = ∂ D∩∂ E

}

and remark that

|K ∩D| =
|K|

d +1
(3.2)

for each K ∈ Th and D ∈ Dh such that σD ∈ EK . For E ∈ N (D), we also set
dD,E := |QE −QD|, σD,E := ∂ D∩∂ E, and KD,E the element of Th such that σD,E ⊂
KD,E .

We suppose the partition of the time interval (0,T ) such that 0 = t0 < .. . <
tn < .. . < tN = T and define 4tn := tn−tn−1 and 4t := max1≤n≤N 4tn. In the case
where Assumption (A5) is satisfied we do not impose any restriction on the time
step. When only Assumption (A6) is satisfied, we suppose in addition:

Assumption (C) (Maximum time step for decreasing F)

The following maximum time step condition is satisfied:

4t <
cβ

LF
.

We define the following finite-dimensional spaces:

Xh :=
{

ϕh ∈ L2(Ω ); ϕh|K is linear ∀K ∈ Th,

ϕh is continuous at the points QD,D ∈ D
int
h
}

,

X0
h :=

{
ϕh ∈ Xh; ϕh(QD) = 0 ∀D ∈ D

ext
h
}

.

The basis of Xh is spanned by the shape functions ϕD, D ∈Dh, such that ϕD(QE) =
δDE , E ∈ Dh, δ being the Kronecker delta. We recall that the approximations in
these spaces are nonconforming since Xh 6⊂ H1(Ω ). We equip Xh with the semi-
norm

‖ch‖
2
Xh

:= ∑
K∈Th

∫

K
|∇ch|

2 dx ,

which becomes a norm on X 0
h . We have the following lemma:
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Lemma 3.1 For all ch = ∑
D∈Dh

cDϕD ∈ Xh, one has

∑
σD,E∈F int

h

diam(KD,E )d−2(cE − cD)2 ≤
d +1
2dκT

‖ch‖
2
Xh

, (3.3)

∑
σD,E∈F int

h

|σD,E |

dD,E
(cE − cD)2 ≤

d +1
2(d −1)κT

‖ch‖
2
Xh

. (3.4)

Proof Obviously,

dD,E ≤
diam(KD,E )

d
, |σD,E | ≤

diam(KD,E )d−1

d −1
. (3.5)

Thus

∑
σD,E∈F int

h

diam(KD,E )d−2(cE − cD)2 ≤ ∑
σD,E∈F int

h

diam(KD,E )d−2
∣∣∣∇ch|KD,E

∣∣∣
2
d2

D,E

≤
d +1

2d ∑
K∈Th

diam(K)d
∣∣∣∇ch|K

∣∣∣
2
≤

d +1
2dκT

∑
K∈Th

∣∣∣∇ch|K

∣∣∣
2
|K| =

d +1
2dκT

‖ch‖
2
Xh

,

using the fact that the gradient of ch is piecewise constant on Th, (3.5), the fact that
each simplex K ∈Th contains exactly (d +1)d/2 dual sides, and Assumption (B).
This proves (3.3). Similarly,

∑
σD,E∈F int

h

|σD,E |

dD,E
(cE − cD)2 ≤ ∑

σD,E∈F int
h

∣∣∣∇ch|KD,E

∣∣∣
2
dD,E |σD,E |

≤
d +1

2(d −1)κT

‖ch‖
2
Xh

. ut

3.2 The combined scheme

We are now ready to present the combined scheme.

Definition 3.1 (Combined scheme) The fully implicit combined finite volume–
nonconforming/mixed-hybrid finite element scheme for the problem (1.1)–(2.2)
reads: find the values cn

D, D ∈ Dh, n ∈ {0,1, . . . ,N}, such that

c0
D =

1
|D|

∫

D
c0(x)dx D ∈ D

int
h , (3.6a)

cn
D = 0 D ∈ D

ext
h , n ∈ {0,1, . . . ,N} , (3.6b)

β (cn
D)−β (cn−1

D )

4tn
|D|− ∑

E∈D int
h

S
n
D,E cn

E + ∑
E∈N (D)

vn
D,E cn

D,E +F(cn
D)|D| = qn

D|D|

D ∈ D
int
h , n ∈ {1,2, . . . ,N} . (3.6c)
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In (3.6a)–(3.6c) we have denoted

vn
D,E :=

1
4tn

∫ tn

tn−1

∫

σD,E

v(x,t) ·nD,E dγ(x)dt

for D ∈ D int
h , E ∈ N (D), and n ∈ {1,2, . . . ,N}, with nD,E the unit normal vector

of the side σD,E ∈ FD, outward to D, and

qn
D :=

1
4tn|D|

∫ tn

tn−1

∫

D
q(x,t)dxdt D ∈ Dh , n ∈ {1,2, . . . ,N} .

We refer to the matrix S
n of the elements S

n
D,E , D,E ∈ D int

h , at each discrete time
tn, n ∈ {1,2, . . . ,N}, as to the diffusion matrix. This matrix, the stiffness matrix
of the nonconforming or mixed-hybrid finite element method, is defined below.
Finally, we define cn

D,E for D ∈D int
h , E ∈N (D), and n ∈ {1,2, . . . ,N} as follows:

cn
D,E :=

{
cn

D +αn
D,E (cn

E − cn
D) if vn

D,E ≥ 0
cn

E +αn
D,E(cn

D − cn
E) if vn

D,E < 0 . (3.7)

Here αn
D,E is the coefficient of the amount of upstream weighting which is defined

by

αn
D,E :=

max
{

min
{

S
n
D,E , 1

2 |v
n
D,E |
}

,0
}

|vn
D,E |

, vn
D,E 6= 0 . (3.8)

We set αn
D,E := 0 if vn

D,E=0. We remark that cn
D,E = ĉn

D,E + sign(vn
D,E)αn

D,E (cn
E −

cn
D), where ĉn

D,E stands for full upstream weighting.

Remark 3.1 (Numerical flux) We can easily see from (3.8) that 0 ≤ αn
D,E ≤ 1/2,

i.e. the numerical flux defined by (3.7) ranges from the full upstream weighting to
the centered scheme. The amount of upstream weighting is set with respect to the
local proportion of convection and diffusion.

We now turn to the definition of the diffusion matrix. To this purpose, we first
set

S̃n(x) :=
1

4tn

∫ tn

tn−1

S(x,t)dt x ∈ Ω , n ∈ {1,2, . . . ,N} .

Diffusion matrix from the nonconforming method

The diffusion matrix S
n given by the stiffness matrix P

n of the nonconforming
method writes in the form

S
n
D,E := P

n
D,E = − ∑

K∈Th

(Sn∇ϕE ,∇ϕD)0,K D,E ∈ Dh , n ∈ {1,2, . . . ,N} ,

(3.9)
where

Sn(x) = S̃n(x) n ∈ {1,2, . . . ,N} , x ∈ Ω . (3.10)

In fact, the terms S
n
D,E for D ∈Dext

h or E ∈Dext
h do not occur in the scheme (3.6a)–

(3.6c). It will however show convenient to define these values.
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Diffusion matrix from the mixed-hybrid method

Using the analytic form of the stiffness matrix M
n of the mixed-hybrid method

given in Lemma 8.1 in Appendix 8, we can define the diffusion matrix S
n by

S
n
D,E := M

n
D,E = − ∑

K∈Th

(Sn∇ϕE ,∇ϕD)0,K D,E ∈ Dh , n ∈ {1,2, . . . ,N} ,

(3.11)
where

Sn(y) =
( 1
|K|

∫

K
[S̃n(x)]−1 dx

)−1
y ∈ K , K ∈ Th , n ∈ {1,2, . . . ,N} . (3.12)

Remark 3.2 (Stiffness matrices of nonconforming and mixed-hybrid methods) We
remark that the stiffness matrix of the mixed-hybrid method (3.11) is the stiffness
matrix of the nonconforming method (3.9) with a piecewise constant diffusion
tensor, given as the inverse of the elementwise average of the inverse of the orig-
inal one. In particular for an elementwise constant diffusion tensor, the stiffness
matrices coincide, whereas for a general diffusion tensor, (3.9) uses its arithmetic
and (3.11) its harmonic average.

Remark 3.3 (Comparison with a pure finite volume scheme) Let us consider Th
consisting of equilateral simplices and S = Id. Then the segments [QD,QE ] are
orthogonal to the dual sides σD,E and one has P

n
D,E = M

n
D,E =

|σD,E |
dD,E

, E ∈ N (D).
Thus, in view of Corollary 4.1 below, the pure cell-centered finite volume scheme
completely coincides in this case with the combined one. One may regard in this
sense the combined scheme as an extension of the pure finite volume scheme to
general triangulations and full-matrix diffusion tensors, which does not extend the
original 5-point (7-point in space dimension three) stencil.

Remark 3.4 (Comparison of a combined finite volume–finite element scheme with
pure finite volume schemes) We recall that for triangular meshes, the discretization
of a Laplacian by the piecewise linear conforming finite element method coin-
cides with that by the vertex-centered finite volume method [2,38], which is also
named the box scheme [6], the finite volume element scheme [13], or the con-
trol volume finite element scheme [31], see [6, Lemma 3]. Finally, for Delaunay
triangulations (the sums of two opposite angles to all edges are less or equal to
π), constructing the control volumes with the aid of orthogonal bisectors, these
discretizations are equivalent to that by the cell-centered finite volume method,
see [23, Section III.12]. Hence, when S = Id and for a Delaunay triangular mesh
with the above construction of control volumes, the combined finite volume–finite
element scheme [30], the vertex-centered finite volume scheme [2,38], and the
cell-centered finite volume scheme [23,25] for the discretization of (1.1) coincide.

In the sequel we shall consider apart the following special case:

Assumption (D) (Diffusion matrix)

All transmissibilities are non-negative, i.e.

S
n
D,E ≥ 0 ∀D ∈ D

int
h , E ∈ N (D) ∀n ∈ {1,2, . . . ,N} .
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Since

∇ϕD|K =
|σD|

|K|
nσD K ∈ Th , σD ∈ EK (3.13)

with nσD the unit normal vector of the side σD, outward to K, one can immediately
see that Assumption (D) is satisfied e.g. when the diffusion tensor reduces to a
scalar function and when the magnitude of the angles between nσD , σD ∈ EK , for
all K ∈ Th is greater or equal to π/2 (all interior angles smaller or equal to π/2 in
two space dimensions).

4 Existence, uniqueness, and discrete properties

In this section we first present some technical lemmas. We then show the conser-
vativity of the scheme, the coercivity of the bilinear diffusion form corresponding
to the diffusion term, and an a priori estimate for an extended scheme, which is
needed later in the proof of the existence of the solution of the discrete problem.
Finally, we prove the uniqueness of this solution and the discrete maximum prin-
ciple when Assumption (D) is satisfied.

4.1 Discrete properties of the scheme

Lemma 4.1 (Nonconforming finite element diffusion matrix) For all D ∈ Dh
and n ∈ {1,2, . . . ,N}, S

n
D,D = − ∑

E∈N (D)

S
n
D,E .

Proof We will show the assertion for d = 2; the case d = 3 is similar. We present
the proof for the nonconforming method, which in view of Remark 3.2 implies
the same result for the mixed-hybrid method. Let us consider a fixed dual volume
D ∈ Dh. The edge σD associated with D is shared by at most two triangles, which
we denote by K and L. The sum over K ∈Th in (3.9) for S

n
D,D reduces just to these

triangles, considering the definition of the basis function ϕD. We denote the dual
volumes associated with the two other edges of L by E1 and E2. Similarly, the sum
over K ∈Th in (3.9) for S

n
D,E1

and S
n
D,E2

reduces to L. Thus it is sufficient to prove
that

−(Sn∇ϕD,∇ϕD)0,L = (Sn∇ϕE1 ,∇ϕD)0,L +(Sn∇ϕE2 ,∇ϕD)0,L ,

since the eventual contribution of the element K is similar. However, this is imme-
diate, since

−ϕD|L = (ϕE1 +ϕE2)|L −1 . ut

Corollary 4.1 (Equivalent form of the diffusion term) Let D ∈ Dh. Using the
fact that S

n
D,E 6= 0 only if E ∈ N (D) or if E = D and Lemma 4.1, one has

∑
E∈Dh

S
n
D,E cn

E = ∑
E∈N (D)

S
n
D,E cn

E +S
n
D,Dcn

D = ∑
E∈N (D)

S
n
D,E(cn

E − cn
D) .

Theorem 4.1 (Conservativity of the scheme) The scheme (3.6a)–(3.6c) is con-
servative with respect to the dual mesh Dh.
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Proof The proof given here uses the “finite volume interpretation”, cf. [23]. “Fi-
nite element interpretations” exist as well, cf. [32].

First, the equation (3.6c) defining the scheme and Corollary 4.1 imply that the
combined finite volume–finite element scheme is conservative on each time level
and on each cell of the dual mesh as the pure finite volume is—the sum of the
fluxes over the sides of each dual cell equals the time-accumulation, sources, and
reaction term in this cell.

We next address the continuity of the fluxes across each dual side. To this
purpose, we first notice that on each time level, the approximate solution cn

h =

∑D∈Dh
cn

DϕD ∈ X0
h is continuous over the dual mesh sides together with its gra-

dient. Alternatively, for the discrete diffusive flux, we can argue as follows. Let
us take two fixed neighboring dual volumes E and D, D ∈ D int

h . Using Corol-
lary 4.1 and (3.6b), the discrete diffusive flux from D to E can be expressed
as −S

n
D,E (cn

E − cn
D). The discrete diffusive flux from E to D is −S

n
E,D(cn

D − cn
E),

i.e. we have their equality up to the sign, considering that S
n
D,E = S

n
E,D for all

n ∈ {1,2, . . . ,N}, which follows from (3.9) or (3.11) using the symmetry of the
tensor S. Hence the discrete diffusive flux is conservative.

For the discrete convective flux from D to E, we have vn
D,E [cn

D + αn
D,E (cn

E −

cn
D)], supposing vn

D,E ≥ 0. For this flux from E to D, we have vn
E,D[cn

D +αn
E,D(cn

E −

cn
D)], i.e. again the equality up to the sign, considering that vn

D,E = −vn
E,D and that

αn
D,E = αn

E,D, which follows from S
n
D,E = S

n
E,D. For vn

D,E < 0, the proof is similar.
Hence the discrete convective flux is conservative as well. ut

Lemma 4.2 (Equivalent form of the upwind part of the convection term) For
all D ∈ D int

h and n ∈ {1,2, . . . ,N},

∑
E∈N (D)

vn
D,E ĉn

D,E = ∑
E∈N (D)

(vn
D,E)−(cn

E − cn
D)+ rn

Dcn
D|D| ,

where (vn
D,E)− := min{vn

D,E ,0} and

rn
D :=

1
4tn|D|

∫ tn

tn−1

∫

D
r(x,t)dxdt ∀D ∈ Dh , ∀n ∈ {1,2, . . . ,N} .

The assertion of this lemma is a simple consequence of Assumption (A4). The
proof can be found in [41].

Lemma 4.3 (Coercivity of the diffusion form) For all ch = ∑
D∈Dh

cDϕD ∈ Xh and

n ∈ {1,2, . . . ,N},
− ∑

D∈Dh

cD ∑
E∈Dh

S
n
D,E cE ≥ cS‖ch‖

2
Xh

.

Proof We have

− ∑
D∈Dh

cD ∑
E∈Dh

S
n
D,EcE = ∑

K∈Th

(Sn∇ch,∇ch)0,K ≥ cS‖ch‖
2
Xh

,

using (3.9) or (3.11) and Assumption (A3) and the subsequent uniform positive
definiteness of the diffusion tensors (3.10) and (3.12). ut
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Lemma 4.4 (Boundedness of the diffusion form) For all ch = ∑
D∈Dh

cDϕD ∈ Xh

and n ∈ {1,2, . . . ,N},
∣∣∣− ∑

D∈Dh

cD ∑
E∈Dh

S
n
D,EcE

∣∣∣≤CS‖ch‖
2
Xh

. (4.1)

Moreover, for all D ∈ Dh, E ∈ N (D), and n ∈ {1,2, . . . ,N},

|Sn
D,E | ≤

CS
κT

diam(KD,E )d−2

(d −1)2 . (4.2)

The assertion of this lemma is a simple consequence of Assumption (A3) and
of (3.13). The proof can be found in [41].

Lemma 4.5 (Estimate on the convection term) For all values cD, D ∈ Dh, such
that cD = 0 for all D ∈ D ext

h and n ∈ {1,2, . . . ,N},

∑
D∈D int

h

cD ∑
E∈N (D)

vn
D,E cD,E ≥ 0 .

Proof We can write

∑
D∈D int

h

cD ∑
E∈N (D)

vn
D,E cD,E

= ∑
σD,E∈F int

h ,vn
D,E≥0

vn
D,E

(
cD(cD − cE)−αn

D,E(cE − cD)2
)

=
1
2 ∑

σD,E∈F int
h ,vn

D,E≥0

vn
D,E(c2

D − c2
E)+ ∑

σD,E∈F int
h

|vn
D,E |(cE − cD)2

(1
2
−αn

D,E

)

≥
1
2 ∑

D∈D int
h

c2
D ∑

E∈N (D)

vn
D,E =

1
2 ∑

D∈D int
h

c2
Drn

D|D| ≥ 0 ,

where we have used the fact that cD = 0 for all D ∈ D ext
h , the relation 2(a−b)a =

(a−b)2 +a2 −b2, and rewritten the summation over interior dual sides with fixed
denotation of the dual volumes sharing given side σD,E such that vn

D,E ≥ 0. In the
last two estimates we have used, respectively, the fact that 0 ≤ α n

D,E ≤ 1/2, which
follows from (3.8), and Assumption (A4). ut

Theorem 4.2 (A priori estimate for an extended scheme) Let us define an ex-
tended scheme by

c0
D =

1
|D|

∫

D
c0(x)dx D ∈ D

int
h , (4.3a)

cn
D = 0 D ∈ D

ext
h , n ∈ {0,1, . . . ,N} , (4.3b)

u
β (cn

D)−β (cn−1
D )

4tn
|D|− ∑

E∈D int
h

S
n
D,E cn

E +u ∑
E∈N (D)

vn
D,E cn

D,E +uF(cn
D)|D|

= uqn
D|D| D ∈ D

int
h , n ∈ {1,2, . . . ,N} (4.3c)
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with u ∈ [0,1]. Then

∑
D∈Dh

(cn
D)2|D| ≤Ces ∀n ∈ {1,2, . . . ,N}

with

Ces :=
8
cβ

Mβ (M)|Ω |+
16T
c2

β
‖q‖2

0,QT
+

8
cβ

LF M2T |Ω | .

Proof We multiply (4.3c) by 4tncn
D, sum over all D ∈ D int

h and n ∈ {1,2, . . . ,k},
and use the fact that u ≥ 0 and Lemmas 4.3 and 4.5. Further, for cn

D < 0 or cn
D >

M, F(cn
D)cn

D ≥ 0 follows from Assumption (A5) or (A6). When 0 ≤ cn
D ≤ M,

−F(cn
D)cn

D ≤ |F(cn
D)||cn

D| ≤ LFM2, which altogether yields

u
k

∑
n=1

∑
D∈D int

h

[β (cn
D)−β (cn−1

D )]cn
D|D|+ cS

k

∑
n=1

4tn‖cn
h‖

2
Xh

(4.4)

≤ u
k

∑
n=1

4tn ∑
D∈D int

h

cn
Dqn

D|D|+uLFM2
k

∑
n=1

∑
D∈D int

h

4tn|D|

with cn
h = ∑

D∈Dh

cn
DϕD. Let us now introduce a function B,

B(s) := β (s)s−
∫ s

0
β (τ)dτ s ∈ R .

One then can derive

B(cn
D)−B(cn−1

D ) = [β (cn
D)−β (cn−1

D )]cn
D −

∫ cn
D

cn−1
D

[β (τ)−β (cn−1
D )]dτ .

Using that β is nondecreasing, one can easily show that

∫ cn
D

cn−1
D

[β (τ)−β (cn−1
D )]dτ ≥ 0 .

In view of the two last expressions, one has

k

∑
n=1

∑
D∈D int

h

[B(cn
D)−B(cn−1

D )]|D| ≤
k

∑
n=1

∑
D∈D int

h

[β (cn
D)−β (cn−1

D )]cn
D|D| ,

which yields

∑
D∈D int

h

B(ck
D)|D|− ∑

D∈D int
h

B(c0
D)|D| ≤

k

∑
n=1

∑
D∈D int

h

[β (cn
D)−β (cn−1

D )]cn
D|D| .
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Using the growth condition on β from Assumption (A1), one can derive B(s) ≥
s2cβ /2 for all s ∈ R, see Lemma 8.2 in Appendix 8. Thus, using in addition As-
sumption (A8)

cβ

2 ∑
D∈D int

h

(ck
D)2|D|−Mβ (M)|Ω | ≤

k

∑
n=1

∑
D∈D int

h

[β (cn
D)−β (cn−1

D )]cn
D|D| .

We notice that
N

∑
n=1

∑
D∈Dh

4tn|D|(qn
D)2 ≤ ‖q‖2

0,QT
(4.5)

by the Cauchy–Schwarz inequality. Hence extending the summation over all n ∈
{1,2, . . . ,N} and D ∈ Dh in the first term of the right-hand side of (4.4) and using
the Cauchy–Schwarz and Young inequality, we have

k

∑
n=1

4tn ∑
D∈D int

h

cn
Dqn

D|D| ≤
( N

∑
n=1

4tn ∑
D∈Dh

(cn
D)2|D|

) 1
2
‖q‖0,QT

≤
ε
2

N

∑
n=1

4tn ∑
D∈Dh

(cn
D)2|D|+

1
2ε

‖q‖2
0,QT

.

Hence, substituting these estimates into (4.4), we obtain

u
cβ

2
max

n∈{1,2,...,N}
∑

D∈Dh

(cn
D)2|D|+ cS

N

∑
n=1

4tn‖cn
h‖

2
Xh

≤ 2uMβ (M)|Ω | (4.6)

+uεT max
n∈{1,2,...,N}

∑
D∈Dh

(cn
D)2|D|+u

1
ε
‖q‖2

0,QT
+2uLF M2T |Ω | ,

considering also (4.3b) and the fact that k was arbitrarily chosen. We now put
ε = cβ /(4T ). When u 6= 0, this already yields the assertion of the lemma. When
u = 0, it follows from (4.6) that cn

D = 0 for all D ∈ Dh and all n ∈ {1,2, . . . ,N},
since in view of (4.3b), ‖ · ‖Xh is a norm on Xh. Thus the assertion of the lemma is
trivially satisfied in this case. ut

4.2 Existence, uniqueness, and the discrete maximum principle

Theorem 4.3 (Existence of the solution of the discrete problem) The prob-
lem (3.6a)–(3.6c) has at least one solution.

The proof follows the ideas of the proof given in [27]. It makes use of the a priori
estimate for the extended scheme given by Theorem 4.2 and of the (Brouwer)
topological degree argument. It can be found in [41].

Theorem 4.4 (Uniqueness of the solution of the discrete problem) The solution
of the problem (3.6a)–(3.6c) is unique.
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Proof We will prove the assertion by contradiction. Let us thus suppose that there
exists n ∈ {1,2, . . . ,N} such that cn−1

D = c̃n−1
D for all D ∈ D int

h but cn
D 6= c̃n

D for
some D ∈ D int

h . After subtracting the equation (3.6c) for cn
D and c̃n

D and denoting
sn

D := cn
D − c̃n

D, we have

β (cn
D)−β (c̃n

D)

4tn
|D|− ∑

E∈D int
h

S
n
D,E sn

E + ∑
E∈N (D)

vn
D,E sn

D,E

+F(cn
D) |D|−F(c̃n

D) |D| = 0 D ∈ D
int
h ,

where sn
D,E is given by (3.7) while changing c by s. We now multiply the above

equality by sn
D and sum the result over D ∈ D int

h . This yields, using Lemmas 4.3
and 4.5,

∑
D∈D int

h

[β (cn
D)−β (c̃n

D)](cn
D − c̃n

D)
|D|

4tn
+ ∑

D∈D int
h

[F(cn
D)−F(c̃n

D)](cn
D − c̃n

D) |D| ≤ 0 .

When Assumption (A5) is satisfied, this is already a contradiction, since from
Assumption (A1), β is strictly increasing and F is nondecreasing in this case.

When only Assumption (A6) is satisfied, we have | − [F(cn
D)−F(c̃n

D)](cn
D −

c̃n
D)| ≤ LF (cn

D − c̃n
D)2. In view of Assumption (A1), [β (cn

D)−β (c̃n
D)](cn

D − c̃n
D) ≥

cβ (cn
D − c̃n

D)2. Since

∑
D∈D int

h

(cn
D − c̃n

D)2|D| 6= 0 ,

cβ /LF ≤ 4tn, which is a contradiction with Assumption (C) supposed in this
case. ut

Theorem 4.5 (Discrete maximum principle) Under Assumption (D), the solu-
tion of the problem (3.6a)–(3.6c) satisfies

0 ≤ cn
D ≤ M

for all D ∈ Dh, n ∈ {1,2, . . . ,N}.

Proof Setting T
n
D,E := S

n
D,E −|vn

D,E |αn
D,E , D ∈ D int

h , E ∈ N (D), and using Corol-
lary 4.1 and Lemma 4.2, we can rewrite (3.6c) as

β (cn
D)−β (cn−1

D )

4tn
|D|− ∑

E∈N (D)

T
n
D,E (cn

E − cn
D)+ ∑

E∈N (D)

(vn
D,E)−(cn

E − cn
D)

+rn
Dcn

D|D|+F(cn
D) |D| = qn

D |D| D ∈ D
int
h , n ∈ {1,2, . . . ,N} . (4.7)

In view of Assumption (D) and of (3.8), one has T
n
D,E ≥ 0 for all D ∈ D int

h , E ∈

N (D), and n ∈ {1,2, . . . ,N}. We now make use of an induction argument. We
remark that 0 ≤ cn

D ≤ M is satisfied for n = 0 by Assumption (A8) and (3.6a)
and (3.6b). Let us suppose that 0 ≤ cn−1

D ≤ M for all D ∈ D int
h and for a fixed

(n− 1) ∈ {0,1, . . . ,N − 1}. Since |Dh| is finite, there exist D0,D1 ∈ Dh such that
cn

D0
≤ cn

D ≤ cn
D1

for all D ∈ Dh. Using a contradiction argument we prove below
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that cn
D0

≥ 0 and cn
D1

≤M. Suppose that cn
D0

< 0. We remark that D0 ∈D int
h because

of (3.6b). Then, since T
n
D0,E ≥ 0 and −(vn

D0,E )− ≥ 0, we have

∑
E∈N (D0)

T
n
D0,E(cn

E − cn
D0

)+ ∑
E∈N (D0)

−(vn
D0,E)−(cn

E − cn
D0

) ≥ 0 .

This yields, using (4.7),

β (cn
D0

)−β (cn−1
D0

)

4tn
|D0|+ rn

D0
cn

D0
|D0|+F(cn

D0
) |D0|−qn

D0
|D0| ≥ 0 .

Now cn
D0

< 0 implies rn
D0

cn
D0

≤ 0 and F(cn
D0

) ≤ 0 using, respectively, Assump-
tion (A4) and (A5) or (A6). Also −qn

D0
≤ 0, using Assumption (A7). Hence

β (cn
D0

) ≥ β (cn−1
D0

), which is a contradiction, since β is strictly increasing from
Assumption (A1).

Let us now suppose cn
D1

> M. Again D1 ∈ D int
h , because of (3.6b). Similarly

as in the previous case, one comes to

β (cn
D1

)−β (cn−1
D1

)

4tn
|D1|+ rn

D1
cn

D1
|D1|+F(cn

D1
) |D1|−qn

D1
|D1| ≤ 0 .

We can estimate

−qn
D1

|D1| ≥ −Mrn
D1
|D1| ≥ −cn

D1
rn

D1
|D1|

using, respectively, Assumption (A7) and (A4). It follows from (A5) or (A6) that
F(cn

D1
) ≥ 0. This implies β (cn

D1
) ≤ β (cn−1

D1
), which is again a contradiction, using

Assumption (A1). ut

5 A priori estimates

In this section we give a priori estimates and estimates on differences of time and
space translates of the approximate solutions that we shall define.

5.1 Discrete energy-type estimates

We now give energy-type estimates for the approximate solution values cn
D, D ∈

Dh, n ∈ {0,1, . . . ,N}.

Theorem 5.1 (A priori estimates) The solution of the combined scheme (3.6a)–
(3.6c) satisfies

cβ max
n∈{1,2,...,N}

∑
D∈Dh

(cn
D)2|D| ≤ Cae , (5.1)

max
n∈{1,2,...,N}

∑
D∈Dh

[β (cn
D)]2|D| ≤ Caeβ , (5.2)

cS

N

∑
n=1

4tn‖cn
h‖

2
Xh

≤ Cae (5.3)
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with cn
h = ∑

D∈Dh

cn
DϕD,

Cae := 8Mβ (M)|Ω |+
16T
cβ

‖q‖2
0,QT

+8LFM2T |Ω | ,

Caeβ := [β (M)]2|Ω |

when Assumption (D) is satisfied and only Assumption (A1) holds and

Caeβ := (2C2
β +4L2

β P2)|Ω |+
4L2

β

cβ
Cae

when Assumption (D) is not satisfied but Assumption (A2) holds.

Proof Estimates (5.1) and (5.3) follow immediately from (4.6) for ε = cβ /(4T ),
since for u = 1 the extended scheme (4.3a)–(4.3c) completely coincides with the
scheme (3.6a)–(3.6c). To see the boundedness of the term on the left-hand side
of (5.2) under Assumption (D) is immediate, using the discrete maximum princi-
ple stated by Theorem 4.5. In this case Assumption (A1) suffices. In the general
case one has to use Assumption (A2) to show [β (s)]2 ≤ 2C2

β +4L2
β P2 +4L2

β s2, see
Lemma 8.3 in Appendix 8. Hence, for all n ∈ {1,2, . . . ,N},

∑
D∈Dh

[β (cn
D)]2|D| ≤ (2C2

β +4L2
β P2)|Ω |+4L2

β ∑
D∈Dh

(cn
D)2|D| . ut

Using the values cn
D, D ∈ Dh, n ∈ {0,1, . . . ,N}, we now define two approxi-

mate solutions.

Definition 5.1 (Approximate solutions) Let the values cn
D with D ∈ Dh, n ∈

{0,1, . . . ,N}, be the solutions to (3.6a)–(3.6c). As the approximate solutions of the
problem (1.1)–(2.2) by means of the combined finite volume–nonconforming/mi-
xed-hybrid finite element scheme, we understand:

(i) The function ch,4t defined by

ch,4t (x,0) = c0
h(x) for x ∈ Ω ,

ch,4t (x,t) = cn
h(x) for x ∈ Ω , t ∈ (tn−1,tn] n ∈ {1, . . . ,N} , (5.4)

where cn
h = ∑

D∈Dh

cn
DϕD;

(ii) The function c̃h,4t defined by

c̃h,4t(x,0) = c0
D for x ∈ D◦ , D ∈ Dh ,

c̃h,4t(x,t) = cn
D for x ∈ D◦ , D ∈ Dh , t ∈ (tn−1,tn] n ∈ {1, . . . ,N} .(5.5)

The function ch,4t is piecewise linear and continuous in the barycentres of the
interior sides in space and piecewise constant in time; we will call it a noncon-
forming finite element solution. The function c̃h,4t is given by the values of ch,4t
in side barycentres and is piecewise constant on the dual volumes in space and
piecewise constant in time; we will call it a finite volume solution. The following
important relation between ch,4t and c̃h,4t is a simple consequence of the a priori
estimate (5.3) (for the proof, see [41]):
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Lemma 5.1 (Relation between ch,4t and c̃h,4t ) There holds

‖ch,4t − c̃h,4t‖0,QT −→ 0 as h → 0 .

Remark 5.1 (Interpretation of the values cn
D) We remark that the approximate so-

lutions ch,4t and c̃h,4t are only interpretations of the values cn
D, D ∈ Dh, n ∈

{0,1, . . . ,N}. In particular, we may work with c̃h,4t as in the finite volume method
and then use Lemma 5.1 to extend the convergence results also to ch,4t .

5.2 Estimates on differences of time and space translates

Estimates on differences of time and space translates have been used in [26,27]
to prove the relative compactness property of the sequence of approximate so-
lutions. We give below the time translate estimate for c̃h,4t given by (5.5). We
extend the techniques from [26,27] to the case of transmissibilities issued from
the nonconforming/mixed-hybrid finite element method, which may in particular
be negative (this implies that the discrete maximum principle is not satisfied), and
to a nonconstant time step.

Lemma 5.2 (Time translate estimate) There exists a constant Ctt > 0 such that
∫ T−τ

0

∫

Ω

(
c̃h,4t(x,t + τ)− c̃h,4t(x,t)

)2 dxdt ≤Ctt(τ +4t)

for all τ ∈ (0,T ).

Proof We set

TT :=
∫ T−τ

0

∫

Ω

(
c̃h,4t(x,t + τ)− c̃h,4t(x,t)

)2 dxdt .

Using the definition of c̃h,4t given by (5.5), we can rewrite TT as

TT =
∫ T−τ

0
∑

D∈Dh

|D|
(

cn1(t)
D − cn2(t)

D

)2
dt ,

where

n1(t) ∈ {1,2, . . . ,N} is such that tn1−1 < t + τ ≤ tn1 ,

n2(t) ∈ {1,2, . . . ,N} is such that tn2−1 < t ≤ tn2 .

We now use (3.6b) and the growth condition imposed on β in Assumption (A1)
and estimate

TT ≤
1
cβ

∫ T−τ

0
∑

D∈D int
h

|D|
(

cn1(t)
D − cn2(t)

D

)(
β
(
cn1(t)

D

)
−β

(
cn2(t)

D

))
dt

=
1
cβ

∫ T−τ

0
∑

D∈D int
h

|D|
(

cn1(t)
D − cn2(t)

D

) N

∑
n=1

χ(n,t)
(

β (cn
D)−β (cn−1

D )
)

dt ,
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where the function χ(n,t) is defined as

χ(n,t) :=
{

1 if t ≤ tn−1 < t + τ
0 otherwise .

In view of the definition (3.6a)–(3.6c) of the combined scheme and of Corol-
lary 4.1, we have

TT ≤
1
cβ

N

∑
n=1

4tn
∫ T−τ

0
χ(n,t) ∑

D∈D int
h

(
cn1(t)

D − cn2(t)
D

)(
∑

E∈N (D)

S
n
D,E (cn

E − cn
D)

− ∑
E∈N (D)

vn
D,E cn

D,E −F(cn
D) |D|+qn

D |D|
)

dt . (5.6)

We now estimate each term separately.

Diffusion term

We set

TD :=
N

∑
n=1

4tn
∫ T−τ

0
χ(n,t) ∑

D∈Dh

(
cn1(t)

D − cn2(t)
D

)
∑

E∈N (D)

S
n
D,E(cn

E − cn
D)dt ,

where we have changed the summation over D ∈ D int
h into the summation over

D ∈ Dh using (3.6b). This enables us to rewrite TD as a summation over interior
dual sides, since each σD,E ∈ F int

h is in the original sum just twice. This gives

TD =
N

∑
n=1

4tn
∫ T−τ

0
χ(n,t) ∑

σD,E∈F int
h

S
n
D,E

[
(cn

E − cn
D)
(

cn1(t)
D − cn1(t)

E

)

+(cn
E − cn

D)
(

cn2(t)
E − cn2(t)

D

)]
dt .

Using the inequality cab ≤ |c|a2/2+ |c|b2/2 and the estimate (4.2) on |Sn
D,E |, we

can write
TD ≤ TD1 +TD2 +TD3

with

TD1 := CS,d,T

N

∑
n=1

4tn
∫ T−τ

0
χ(n,t) ∑

σD,E∈F int
h

diam(KD,E)d−2(cn
E − cn

D)2 dt ,

TD2 :=
CS,d,T

2

N

∑
n=1

4tn
∫ T−τ

0
χ(n,t) ∑

σD,E∈F int
h

diam(KD,E)d−2
(

cn1(t)
E − cn1(t)

D

)2
dt ,

TD3 :=
CS,d,T

2

N

∑
n=1

4tn
∫ T−τ

0
χ(n,t) ∑

σD,E∈F int
h

diam(KD,E)d−2
(

cn2(t)
E − cn2(t)

D

)2
dt ,

where CS,d,T := CS
κT

1
(d−1)2 .
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We now notice that ∫ T−τ

0
χ(n,t)dt ≤ τ , (5.7)

since the function χ(n,t), for fixed n, is nonzero and equal to one just on the
interval (tn−1 − τ,tn−1] of length τ . Using this and the a priori estimate (5.3), we
have

T ∗
X1

:=
N

∑
n=1

4tn‖cn
h‖

2
Xh

∫ T−τ

0
χ(n,t)dt ≤ τ

Cae

cS
. (5.8)

We now introduce a term T ∗
X3

,

T ∗
X3

:=
N

∑
n=1

4tn
∫ T−τ

0
χ(n,t)‖cn2(t)

h ‖2
Xh

dt

and have, using the definition of n2(t),

T ∗
X3

=
N

∑
n=1

4tn
N

∑
m=1

∫ tm

tm−1

χ(n,t)‖cn2(t)
h ‖2

Xh
dt =

N

∑
m=1

‖cm
h ‖

2
Xh

N

∑
n=1

4tn
∫ tm

tm−1

χ(n,t)dt .

(5.9)
Let us now consider the case where the time step is constant, i.e. 4tn = 4t for all
n ∈ {1,2, . . . ,N}. We then have, using a simple change of variables and the fact
that tm−1 − tn−1 = tm − tn,

N

∑
n=1

4tn
∫ tm

tm−1

χ(n,t)dt =
N

∑
n=1

4t
∫ tm−tn−1

tm−1−tn−1

χ(n,s+ tn−1)ds

= 4t
N

∑
n=1

∫ tm−tn−1

tm−tn
1−τ<s≤0 ds ≤ τ4t ,

where the function 1a<s≤b is equal to 1 on the interval (a,b] and zero otherwise,
which we substitute back into (5.9) and use the a priori estimate (5.3) to obtain

T ∗
X3

≤ τ
Cae

cS
.

Next we consider a nonconstant time step. We have

N

∑
n=1

4tnχ(n,t) ≤ τ +4t ,

considering that χ(n,t), for fixed t, is nonzero and equal to one just when t ≤
tn−1 < t + τ , i.e. an interval of length τ , and that with each such n, we add 4tn.
Using this, we have

T ∗
X3

≤ (τ +4t)
N

∑
m=1

‖cm
h ‖

2
Xh
4tm ≤ (τ +4t)

Cae

cS
.
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We next introduce a term T ∗
X2

,

T ∗
X2

:=
N

∑
n=1

4tn
∫ T−τ

0
χ(n,t)‖cn1(t)

h ‖2
Xh

dt .

Similarly as in the previous case, using the definition of n1(t), we have

T ∗
X2

≤
N

∑
n=1

4tn
N

∑
m=1

∫ tm−τ

tm−1−τ
χ(n,t)‖cn1(t)

h ‖2
Xh

dt

=
N

∑
m=1

‖cm
h ‖

2
Xh

N

∑
n=1

4tn
∫ tm−τ

tm−1−τ
χ(n,t)dt ,

which yields the same estimate for T ∗
X2

as for T ∗
X3

. We finally introduce

T ∗
L1

:=
N

∑
n=1

4tn ∑
D∈Dh

(cn
D)2|D|

∫ T−τ

0
χ(n,t)dt ≤ τT

Cae

cβ
, (5.10)

which we have estimated using (5.7) and the a priori estimate (5.1), and

T ∗
Li

:=
N

∑
n=1

4tn
∫ T−τ

0
χ(n,t) ∑

D∈Dh

(
cni−1(t)

D

)2
|D|dt i ∈ {2,3} .

We shall need T ∗
Li

, i ∈ {1,2,3}, for the estimates of the other terms of TT below.
Using the a priori estimate (5.1) and the same techniques as for T ∗

Xi
, i = 2,3, we

altogether come to

T ∗
Xi
≤ τ

Cae

cS
, T ∗

Li
≤ τT

Cae

cβ
i ∈ {2,3} (5.11)

for a constant time step and

T ∗
Xi
≤ (τ +4t)

Cae

cS
, T ∗

Li
≤ (τ +4t)T

Cae

cβ
i ∈ {2,3} (5.12)

for a generally nonconstant time step. Now using (3.3) for TD1 , TD2 , and TD3 , we
have

TD ≤
CS

κ2
T

d +1
2d(d −1)2

(
T ∗

X1
+

1
2

T ∗
X2

+
1
2

T ∗
X3

)
. (5.13)
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Convection term

We will write the convection term as TC1 +TC2 , with

TC1 := −
N

∑
n=1

4tn
∫ T−τ

0
χ(n,t) ∑

D∈Dh

(
cn1(t)

D − cn2(t)
D

)
∑

E∈N (D)

vn
D,E ĉn

D,E dt

and

TC2 :=−
N

∑
n=1

4tn
∫ T−τ

0
χ(n,t) ∑

D∈Dh

(
cn1(t)

D −cn2(t)
D

)
∑

E∈N (D)

|vn
D,E | αn

D,E (cn
E −cn

D) dt ,

using the splitting into full upstream weighting and coefficient-centered weight-
ing.

We again rewrite TC1 as the summation over the interior dual sides; we however
adjust the denotation of the dual volumes sharing a given side σD,E such that
vn

D,E ≥ 0. Then, using the definition of the upstream weighting, TC1 writes

N

∑
n=1

4tn
∫ T−τ

0
χ(n,t) ∑

σD,E∈F int
h ,vn

D,E≥0

−vn
D,Ecn

D

(
cn1(t)

D − cn1(t)
E + cn2(t)

E − cn2(t)
D

)
dt .

Using ±ab ≤ εa2/2+b2/(2ε), ε > 0, where we put ε = dD,E , we come to

TC1 ≤ TC3 +TC4 +TC5

with

TC3 :=
N

∑
n=1

4tn
∫ T−τ

0
χ(n,t) ∑

σD,E∈F int
h ,vn

D,E≥0

|vn
D,E |dD,E (cn

D)2 dt ,

TC4 :=
1
2

N

∑
n=1

4tn
∫ T−τ

0
χ(n,t) ∑

σD,E∈F int
h

|vn
D,E |

dD,E

(
cn1(t)

E − cn1(t)
D

)2
dt ,

TC5 :=
1
2

N

∑
n=1

4tn
∫ T−τ

0
χ(n,t) ∑

σD,E∈F int
h

|vn
D,E |

dD,E

(
cn2(t)

E − cn2(t)
D

)2
dt .

We have

∑
σD,E∈F int

h ,vn
D,E≥0

|vn
D,E |dD,E (cn

D)2 ≤Cv ∑
σD,E∈F int

h ,vn
D,E≥0

|KD,E |

κT d(d −1)
(cn

D)2

≤
Cv

κT

d +1
d −1 ∑

D∈Dh

( |KD|

d +1
+

|LD|

d +1

)
(cn

D)2 =
Cv

κT

d +1
d −1 ∑

D∈Dh

(cn
D)2|D| ,

where we have used Assumption (A4), which implies |vn
D,E | ≤ Cv|σD,E |, (3.5),

Assumption (B), (3.6b), the fact that each dual volume D ∈ D int
h has d dual sides
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inside a simplex KD and d dual sides inside a simplex LD and that cn
D can appear

as an upwind value only at these sides, and (3.2). Thus, we have

TC3 ≤
Cv

κT

d +1
d −1

T ∗
L1

.

Using |vn
D,E | ≤Cv|σD,E | and (3.4), we have

TCi ≤
Cv

κT

d +1
4(d −1)

T ∗
Xi−2

i ∈ {4,5} ,

which altogether leads to

TC1 ≤
Cv

κT

(d +1
d −1

T ∗
L1

+
d +1

4(d −1)
(T ∗

X2
+T ∗

X3
)
)

. (5.14)

We now consider TC2 . We can easily notice that it is almost same as the dif-
fusion term TD, except for the term S

n
D,E , which is replaced by |vn

D,E | αn
D,E . Using

|vn
D,E | ≤ Cv|σD,E |, αn

D,E ≤ 1/2, and the estimates (3.3) and (3.5), we easily come
to

TC2 ≤
Cv

κT

h
d +1

4d(d −1)

(
T ∗

X1
+

1
2

T ∗
X2

+
1
2

T ∗
X3

)
. (5.15)

Reaction term

We denote

TR := −
N

∑
n=1

4tn
∫ T−τ

0
χ(n,t) ∑

D∈Dh

(
cn1(t)

D − cn2(t)
D

)
F(cn

D)|D|dt .

We estimate

−F(cn
D)(cn1

D − cn2
D ) ≤

(cn1
D − cn2

D )2

2
+

(F(cn
D))2

2
≤ (cn1

D )2 +(cn2
D )2 +

L2
F(cn

D)2

2
,

using the inequalities ab ≤ a2/2+b2/2, (a−b)2/2 ≤ a2 +b2, the Lipschitz con-
tinuity of F with the constant LF , and the fact that F(0) = 0, following either
from Assumption (A5) or (A6). This implies

TR ≤
(L2

F
2

T ∗
L1

+T ∗
L2

+T ∗
L3

)
. (5.16)
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Sources term

We denote

TS :=
N

∑
n=1

4tn
∫ T−τ

0
χ(n,t) ∑

D∈Dh

(
cn1(t)

D − cn2(t)
D

)
qn

D|D|dt .

Using the same estimate as for the reaction term, (5.7), and (4.5), we come to

TS ≤
1
2

τ‖q‖2
0,QT

+T ∗
L2

+T ∗
L3

. (5.17)

The proof of the lemma is concluded by introducing (5.13), (5.14), (5.15),
(5.16), and (5.17) into (5.6), while using the estimates (5.8), (5.10), and (5.12). ut

Remark 5.2 (Time translate estimate under Assumption (D)) If Assumption (D) is
valid, the transmissibilities S

n
D,E are non-negative as in the finite volume method.

Hence TD ≤ TD1 +TD2 +TD3 with

TD1 =
N

∑
n=1

4tn
∫ T−τ

0
χ(n,t) ∑

σD,E∈F int
h

S
n
D,E (cn

E − cn
D)2 dt

and similarly for TD2 and TD3 . Thus using

∑
σD,E∈F int

h

S
n
D,E (cn

E − cn
D)2 = − ∑

D∈Dh

cD ∑
E∈Dh

S
n
D,E cE

and (4.1), TD ≤CS(T ∗
X1

+T ∗
X2

/2+T ∗
X3

/2) in this case instead of (5.13).

Remark 5.3 (Time translate estimate for a constant time step) For a constant time
step, we have indeed an O(τ) estimate, using (5.11) instead of (5.12).

We give below a space translate estimate for c̃h,4t given by (5.5). It extends
the estimate from [26,27] to the case of (dual) meshes not necessarily satisfying
the orthogonality property; we only need the shape regularity Assumption (B) and
the constant Cst only depends on d, κT , and Cae/cS. The proof is analogous to that
of [42, Theorem 3.5], uses the a priori estimate (5.3), and can be found in [41].

Lemma 5.3 (Space translate estimate) Let us define c̃h,4t(x,t) by zero outside
of Ω . Then there exists a constant Cst > 0 such that

∫ T

0

∫

Ω

(
c̃h,4t(x+ξ ,t)− c̃h,4t(x,t)

)2 dxdt ≤Cst|ξ |(|ξ |+h)

for all ξ ∈ Rd .

6 Convergence

Using the a priori estimates of the previous section and the Kolmogorov relative
compactness theorem, we show in this section that the approximate solutions con-
verge strongly in L2(QT ) to a function c and we prove that c is a weak solution of
the continuous problem.
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6.1 Strong convergence in L2(QT )

Theorem 6.1 (Strong convergence in L2(QT )) There exist subsequences of c̃h,4t
and ch,4t which converge strongly in L2(QT ) to a function c ∈ L2(0,T ;H1

0 (Ω )).

Proof Let us consider the sequence c̃h,4t . The a priori estimate (5.1) and Lem-
mas 5.2 and 5.3 imply that c̃h,4t satisfies the assumptions of Lemma 8.4 in Ap-
pendix 8. Thus c̃h,4t verifies the assumptions of the Kolmogorov theorem ([11,
Theorem IV.25 ], [23, Theorem 14.1]) and consequently is relatively compact in
L2(QT ). This implies the existence of a subsequence of c̃h,4t which converges
strongly to some function c in L2(QT ). Moreover, due to the space translate esti-
mate of Lemma 5.3, [23, Theorem 14.2] gives that c ∈ L2(0,T ;H1

0 (Ω )). Finally,
considering Lemma 5.1, ch,4t converges to the same c. ut

Remark 6.1 (Relative compactness for a constant time step) Using Remark 5.3,
the a priori estimate (5.1) and Lemmas 5.2 and 5.3 directly imply that c̃h,4t verifies
the assumptions of the Kolmogorov theorem for a constant time step. Hence, in
this case Lemma 8.4 is not necessary.

6.2 Convergence to a weak solution

We have shown in Theorem 6.1 that subsequences of c̃h,4t and ch,4t , which we
still denote by c̃h,4t and ch,4t , converge strongly in L2(QT ) to some function
c ∈ L2(0,T ;H1

0 (Ω )). We now show that c is a weak solution of the continuous
problem. For this purpose, we introduce

Ψ :=
{

ψ ∈ C2,1(Ω × [0,T ]), ψ = 0 on ∂ Ω × [0,T ], ψ(·,T ) = 0
}

. (6.1)

We then take an arbitrary ψ ∈Ψ , multiply (3.6c) by 4tn ψ(QD,tn−1), and sum the
result over D ∈ D int

h and n = 1, . . . ,N. This gives

TT +TD +TC +TR = TS (6.2)

with

TT :=
N

∑
n=1

∑
D∈Dh

(
β (cn

D)−β (cn−1
D )

)
ψ(QD,tn−1)|D| ,

TD :=
N

∑
n=1

4tn ∑
D∈Dh

∑
E∈Dh

cn
E ∑

K∈Th

(Sn∇ϕE ,∇ϕD)0,K ψ(QD,tn−1) ,

TC :=
N

∑
n=1

4tn ∑
D∈Dh

∑
E∈N (D)

vn
D,E cn

D,E ψ(QD,tn−1) ,

TR :=
N

∑
n=1

4tn ∑
D∈Dh

F(cn
D)ψ(QD,tn−1)|D| ,

TS :=
N

∑
n=1

4tn ∑
D∈Dh

qn
D ψ(QD,tn−1)|D| ,



28 Robert Eymard et al.

using ψ(QD,tn−1) = 0 for all D ∈ D ext
h and n = 1, . . . ,N. We now show that each

of the above terms converges to its continuous version as h and 4t tend to zero.

Time evolution term

We use the discrete integration by parts formula and the fact that ψ(QD,tN) = 0
for all D ∈ Dh to obtain

TT = −
N

∑
n=1

∑
D∈Dh

β (cn
D)
(

ψ(QD,tn)−ψ(QD,tn−1)
)
|D|− ∑

D∈Dh

β (c0
D)ψ(QD,0)|D| .

(6.3)
We would now like to show that

∑
D∈Dh

β (c0
D)ψ(QD,0)|D| −→

∫

Ω
β (c0(x))ψ(x,0)dx as h → 0 . (6.4)

For this purpose, we introduce

TT1 := ∑
D∈Dh

∫

D

(
β (c0

D)ψ(QD,0)−β (c0(x))ψ(x,0)
)

dx .

We add and subtract β (c0
D)ψ(x,0) to each term and rewrite TT1 as

∑
D∈Dh

∫

D
β (c0

D)
(

ψ(QD,0)−ψ(x,0)
)

dx+ ∑
D∈Dh

∫

D

(
β (c0

D)−β (c0(x))
)

ψ(x,0)dx .

Using the definition of c0
D given by (3.6a) for D ∈D int

h and by (3.6b) for D ∈Dext
h ,

the fact that β is increasing by Assumption (A1), and Assumption (A8), we have
that |β (c0

D)| ≤ β (M) for all D ∈ Dh. Due to the boundedness of |ψ| by C1,ψ , we
can bound |TT1 | by

β (M) ∑
D∈Dh

∫

D
|ψ(QD,0)−ψ(x,0)|dx+C1,ψ ∑

D∈Dh

∫

D
|β (c0

D)−β (c0(x))|dx .

Since ψ ∈C2,1(Ω × [0,T ]), we have

|ψ(QD,0)−ψ(x,0)| ≤C2,ψ |QD −x| ≤C2,ψ h

for all x ∈ D, and thus the first term of the bound for |TT1 | tends to 0 as h → 0. We
now consider its second term. We have, for boundary dual volumes,

∑
D∈Dext

h

∫

D
|c0

D − c0(x)|dx ≤ M ∑
D∈Dext

h

|D| ≤ M|∂ Ω |h ,

using (3.6b) and Assumption (A8). Considering in addition the definition of c̃h,4t
by (5.5) and (3.6a) for interior dual volumes, c̃h,4t(x,0) converges to c0(x) in
Ω in the L1 sense as h → 0. Hence at least a subsequence of c̃h,4t(x,0), which
we still denote by c̃h,4t(x,0), converges to c0(x) pointwise a.e. in Ω . Thus also
β (c̃h,4t (x,0)) → β (c0(x)) a.e. in Ω , using the continuity of β . Further, using that
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β is increasing from Assumption (A1), we have |β (c̃h,4t(x,0))| ≤ β (M). Hence
the Lebesgue dominated convergence theorem implies

∑
D∈Dh

∫

D
|β (c0

D)−β (c0(x))|dx =

∫

Ω
|β (c̃h,4t (x,0))−β (c0(x))|dx−→ 0 as h→ 0 ,

which can be by repetition extended onto whole c̃h,4t (x,0). Thus TT1 → 0 as h → 0
and consequently (6.4) is fulfilled.

Now we intend to prove that

N

∑
n=1

∑
D∈Dh

β (cn
D)
(

ψ(QD,tn)−ψ(QD,tn−1)
)
|D| −→

∫ T

0

∫

Ω
β (c(x,t))ψt(x,t)dxdt

(6.5)
as h,4t → 0. We set

TT2 :=
N

∑
n=1

∑
D∈Dh

[
β (cn

D)
(

ψ(QD,tn)−ψ(QD,tn−1)
)
|D|

−

∫ tn

tn−1

∫

D
β (c(x,t))ψt(x,t)dxdt

]
.

We add and subtract
∫ tn

tn−1

∫

D
β (cn

D)ψt(x,t)dxdt in each term of TT2 to obtain

TT2 =
N

∑
n=1

∑
D∈Dh

β (cn
D)

∫ tn

tn−1

∫

D

(∂ ψ
∂ t

(QD,t)−
∂ ψ
∂ t

(x,t)
)

dxdt (6.6)

+

∫ T

0

∫

Ω

(
β (c̃h,4t (x,t))−β (c(x,t))

)
ψt(x,t)dxdt .

We have, for all x ∈ D, for all D ∈ Dh, and all h > 0,
∣∣∣∂ ψ

∂ t
(QD,t)−

∂ ψ
∂ t

(x,t)
∣∣∣≤ f (h) ,

where the function f satisfies f (h) > 0 and f (h) → 0 as h → 0. This follows by
the fact that ∂ ψ/∂ t ∈ C(Ω ) from (6.1) and hence is uniformly continuous on Ω .
Thus the first term of (6.6) is bounded by

f (h)
N

∑
n=1

∑
D∈Dh

|β (cn
D)|4tn|D| ≤ f (h)T

1
2 |Ω |

1
2

( N

∑
n=1

∑
D∈Dh

(β (cn
D))24tn|D|

) 1
2

≤ f (h)T |Ω |
1
2 C

1
2
aeβ ,

using the Cauchy–Schwarz inequality and the a priori estimate (5.2). Further,
|ψt(x,t)| ≤C4,ψ , and thus we can estimate TT2 by

|TT2 | ≤ f (h)T |Ω |
1
2 C

1
2
aeβ +C4,ψ

∫ T

0

∫

Ω
|β (c̃h,4t (x,t))−β (c(x,t))|dxdt . (6.7)
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We now use that c̃h,4t → c strongly in L2(QT ) as h,4t → 0, due to Theorem 6.1.
There exists at least a subsequence of c̃h,4t , which we still denote c̃h,4t , such that
c̃h,4t(x,t)→ c(x,t) a.e. in QT . Thus, using the continuity of β (·), β (c̃h,4t(x,t))→
β (c(x,t)) a.e. in QT . Now under Assumption (D), which implies the discrete max-
imum principle by Theorem 4.5, and using that β is increasing, |β (c̃h,4t(x,t))| ≤
β (M), and thus we can use the Lebesgue dominated convergence theorem to
conclude the convergence of the second term of (6.7) and thus of (6.7) to 0 as
h,4t → 0. In this case Assumption (A1) suffices.

In the general case we use Assumption (A2). We decompose the function β as
β1 + β2,

β1(s) := β (s) on [−P,P] , β1(s) := 0 on (−∞,−P)∪ (P,+∞) ,

β2(s) := 0 on [−P,P] , β2(s) := β (s) on (−∞,−P)∪ (P,+∞) .

We further introduce a function y linearly connecting the points [−P,β (−P)] and
[P,β (P)] and zero otherwise,

y(s) :=
β (P)−β (−P)

2P
s+

β (P)+β (−P)

2
on [−P,P] ,

y(s) := 0 on (−∞,−P)∪ (P,+∞) .

We finally define β̃1 := β1 − y and β̃2 := β2 + y and remark that β = β̃1 + β̃2.
Clearly, β̃1 is continuous on R and satisfies |β̃1(s)| ≤ 2Cβ on R and β̃2 is Lipschitz-
continuous on R with max{Lβ , [β (P)−β (−P)]/(2P)}. We now estimate

∫ T

0

∫

Ω
|β (c̃h,4t (x,t))−β (c(x,t))|dxdt ≤

∫ T

0

∫

Ω
|β̃1(c̃h,4t(x,t))

−β̃1(c(x,t))|dxdt +
∫ T

0

∫

Ω
|β̃2(c̃h,4t(x,t))− β̃2(c(x,t))|dxdt .

The first term of the above expression converges to zero using the Lebesgue domi-
nated convergence theorem as in the previous case. For the second term, it suffices
to use the Lipschitz continuity of β̃2 and the strong convergence of c̃h,4t to c in
L2(QT ). Thus (6.5) is satisfied. Combining (6.4) and (6.5), we have

TT −→−

∫ T

0

∫

Ω
β (c(x,t))ψt(x,t)dxdt −

∫

Ω
β (c0(x))ψ(x,0)dx (6.8)

as h,4t → 0.

Diffusion term

We rewrite TD as

TD =
N

∑
n=1

4tn ∑
K∈Th

∫

K
Sn∇cn

h(x) ·∇
(

∑
D∈Dh

ψ(QD,tn−1)ϕD(x)
)

dx ,

using the definition of cn
h ∈ Xh, and define

S4t(x,t) := Sn(x) for x ∈ Ω , t ∈ (tn−1,tn] n ∈ {1, . . . ,N} , (6.9)
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where Sn is given by (3.10) for the nonconforming method and by (3.12) for the
mixed-hybrid method. We will show the validity of two passages to the limit. We
begin by showing that

N

∑
n=1

4tn ∑
K∈Th

∫

K
Sn∇cn

h(x) ·∇
(

∑
D∈Dh

ψ(QD,tn−1)ϕD(x)
)

dx (6.10)

−
N

∑
n=1

4tn ∑
K∈Th

∫

K
Sn∇cn

h(x) ·∇ψ(x,tn−1)dx −→ 0 as h → 0 .

We set
Iψ(·,tn−1) := ∑

D∈Dh

ψ(QD,tn−1)ϕD

and

TD1 :=
N

∑
n=1

4tn ∑
K∈Th

∫

K
Sn∇cn

h(x) ·∇
(

Iψ (x,tn−1)−ψ(x,tn−1)
)

dx .

We then estimate

|TD1 | ≤CS

N

∑
n=1

4tn‖cn
h‖Xh‖Iψ(·,tn−1)−ψ(·,tn−1)‖Xh ,

using the Cauchy–Schwarz inequality. Next we use the interpolation estimate

‖Iψ(·,tn−1)−ψ(·,tn−1)‖Xh =
(

∑
K∈Th

∫

K

∣∣∣∇
(
Iψ (·,tn−1)−ψ(·,tn−1)

)∣∣∣
2

dx
) 1

2

≤ CIθT h
(

∑
K∈Th

|ψ(·,tn−1)|
2
2,K

) 1
2
≤CIθT C5,ψ h ,

where θT is given by the consequence (3.1) of Assumption (B), CI does not de-
pend on h (nor on 4t), and | · |2,K denotes the H2 seminorm, see for instance [17,
Theorem 15.3]. Finally, the Cauchy–Schwarz inequality yields

|TD1 | ≤CSCIθT C5,ψ h
( N

∑
n=1

4tn‖cn
h‖

2
Xh

) 1
2
( N

∑
n=1

4tn
) 1

2
= CSCIθT C5,ψ T

1
2

(Cae

cS

) 1
2
h ,

using the a priori estimate (5.3). Hence (6.10) is fulfilled.
We next show that

N

∑
n=1

4tn ∑
K∈Th

∫

K
Sn∇cn

h(x) ·∇ψ(x,tn−1)dx −→
∫ T

0

∫

Ω
S∇c(x,t) ·∇ψ(x,t)dxdt

(6.11)
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as h,4t → 0. We see that both cn
h(x) and ψ(x,tn−1) are constant in time, so that we

can easily introduce an integral with respect to time into the first term of (6.11).

We further add and subtract
N

∑
n=1

∫ tn

tn−1

∫

Ω
Sn∇cn

h(x)∇ψ(x,t)dxdt and introduce

TD2 :=
N

∑
n=1

∫ tn

tn−1
∑

K∈Th

∫

K
Sn∇cn

h(x) ·
(

∇ψ(x,tn−1)−∇ψ(x,t)
)

dxdt ,

TD3 :=
∫ T

0
∑

K∈Th

∫

K
S4t∇ch,4t(x,t) ·∇ψ(x,t)dxdt

−

∫ T

0

∫

Ω
S∇c(x,t) ·∇ψ(x,t)dxdt ,

where ch,4t is given by (5.4). Clearly, (6.11) is valid when TD2 and TD3 tend to
zero as h,4t → 0. We first estimate TD2 . We have, for t ∈ (tn−1,tn],

|∇ψ(x,tn−1)−∇ψ(x,t)| ≤ g(4t) ,

where g satisfies g(4t) > 0 and g(4t) → 0 as 4t → 0. Thus

|TD2 | ≤CSg(4t)
N

∑
n=1

4tn ∑
K∈Th

∣∣∣∇cn
h|K

∣∣∣|K| ≤CSg(4t)
(Cae

cS

) 1
2
T

1
2 |Ω |

1
2 ,

using the Cauchy–Schwarz inequality and the a priori estimate (5.3).
To show that TD3 → 0 as h,4t → 0, we begin by showing that

T ′
D3

:=
∫ T

0
∑

K∈Th

∫

K

(
∇ch,4t(x,t)−∇c(x,t)

)
·w(x,t)dxdt −→ 0 (6.12)

as h,4t → 0 for all w ∈ [C1(QT )]d . To this purpose, we first rewrite T ′
D3

as

T ′
D3

=
N

∑
n=1

∫ tn

tn−1
∑

K∈Th

∫

K
∇cn

h(x) ·w(x,t)dxdt +

∫ T

0

∫

Ω
c(x,t)∇ ·w(x,t)dxdt ,

where we have used the Green theorem for c (recall that c ∈ L2(0,T ;H1
0 (Ω )) by

Theorem 6.1) and w. We easily notice that we cannot use the Green theorem for
cn

h on Ω , since cn
h /∈ H1(Ω ). We are thus forced to apply it on each K ∈ Th.

We rewrite the first term of T ′
D3

as

N

∑
n=1

∫ tn

tn−1
∑

K∈Th

∫

K
−cn

h(x)∇ ·w(x,t)dxdt +
N

∑
n=1

∫ tn

tn−1
∑

K∈Th

∫

∂ K
cn

h(x)w(x,t) ·ndγ(x)dt .

We next consider the term

T ′′
D3

:=
N

∑
n=1

∫ tn

tn−1
∑

K∈Th

∫

∂ K
cn

hw ·ndγ(x)dt . (6.13)
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Reordering the summation by sides, we come to

T ′′
D3

=
N

∑
n=1

∫ tn

tn−1

(
∑

σK,L∈E int
h

∫

σK,L

(cn
h|K − cn

h|L)w ·nK,L dγ(x)

+ ∑
σK∈E ext

h

∫

σK

cn
h|Kw ·nK dγ(x)

)
dt ,

where we have used w · nK,L = −w · nL,K following from w ∈ [C1(QT )]d . The
functions cn

h|K − cn
h|L or cn

h|K restricted to a side σK,L ∈ E int
h or σK ∈ E ext

h , respec-
tively, are first-order polynomials, vanishing in the barycentre QD of this side.
For σK,L ∈ E int

h , this follows from the continuity requirement given in the defini-
tion of Xh and for σK ∈ E ext

h from the zero Dirichlet boundary condition imposed
by (3.6b). Hence

∫

σK,L

(
cn

h|K(x)− cn
h|L(x)

)
dγ(x) = 0 ,

∫

σK

cn
h|K(x)dγ(x) = 0 (6.14)

for all σK,L ∈ E int
h and σK ∈ E ext

h , since the quadrature formula using the value
in the barycentre of a segment (d = 2) or a triangle (d = 3) is precise for linear
functions. We further estimate

∣∣∣cn
h|K(x)

∣∣∣=
∣∣∣cn

h|K(x)− cn
h|K(QD)

∣∣∣≤
∣∣∣∇cn

h|K

∣∣∣ |x−QD| ≤
∣∣∣∇cn

h|K

∣∣∣diam(σK)

4−d
,

with x ∈ σK ∈ E ext
h , where we have used |x−QD| ≤ diam(σK)/2 for d = 2 but

only |x−QD| ≤ diam(σK) for d = 3. Similarly,

∣∣∣cn
h|K(x)− cn

h|L(x)
∣∣∣≤
∣∣∣∇cn

h|K

∣∣∣diam(σK,L)

4−d
+
∣∣∣∇cn

h|L

∣∣∣diam(σK,L)

4−d

with x ∈ σK,L ∈ E int
h . We have from the smoothness of w

w ·nσD(x) = w ·nσD(QD)+ f (ξ )|QD −x| x ∈ σD ∈ Eh , ξ ∈ [QD,x]

with | f (ξ)| ≤Cw. Thus

∫

σK

cn
h|K(x) f (ξ )|QD −x|dγ(x) ≤Cw

(diam(σK)

4−d

)2∣∣∣∇cn
h|K

∣∣∣|σK|

for an exterior side σK and similarly

∫

σK,L

(
cn

h|K(x)− cn
h|L(x)

)
f (ξ )|QD −x|dγ(x) ≤ Cw

(diam(σK,L)

4−d

)2

(∣∣∣∇cn
h|K

∣∣∣+
∣∣∣∇cn

h|L

∣∣∣
)
|σK,L|
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for an interior side σK,L. Using these estimates, we immediately come to

|T ′′
D3
| ≤ Cw

h
(4−d)2

d +1
d −1

N

∑
n=1

∫ tn

tn−1
∑

K∈Th

∣∣∣∇cn
h|K

∣∣∣diam(K)d dt

≤
Cw

κT

h
(4−d)2

d +1
d −1

N

∑
n=1

4tn ∑
K∈Th

∣∣∣∇cn
h|K

∣∣∣|K|

≤
Cw

κT

h
(4−d)2

d +1
d −1

(Cae

cS

) 1
2
T

1
2 |Ω |

1
2 ,

using the fact that each ∇cn
h|K is in the summation over all sides just (d + 1)-

times, |σD| ≤ diam(K)d−1/(d−1) and diam(σD)≤ diam(K)≤ h for all σD ∈ EK ,
Assumption (B), the Cauchy–Schwarz inequality, and the a priori estimate (5.3).
Thus T ′′

D3
→ 0 as h → 0.

To conclude that T ′
D3

→ 0 as h,4t → 0, it remains to show that

−
N

∑
n=1

∫ tn

tn−1
∑

K∈Th

∫

K
cn

h(x)∇ ·w(x,t)dxdt +

∫ T

0

∫

Ω
c(x,t)∇ ·w(x,t)dxdt −→ 0 .

This is however immediate, since we can rewrite it as
∫ T

0

∫

Ω
(c(x,t)− ch,4t(x,t))∇ ·w(x,t)dxdt −→ 0 ,

which is a consequence of the strong L2(QT ) convergence of ch,4t to c.
We next show that the density of the set [C1(QT )]d in [L2(QT )]d and (6.12)

implies a weak convergence of ∇ch,4t (piecewise constant function in space and
time) to ∇c. Indeed, let w ∈ [L2(QT )]d be given and let wn be a sequence of
[C1(QT )]d functions converging in [L2(QT )]d to w. Then

∫ T

0

∫

Ω
(∇ch,4t −∇c) ·wdxdt =

∫ T

0

∫

Ω
(∇ch,4t −∇c) ·wn dxdt

+

∫ T

0

∫

Ω
(∇ch,4t −∇c) · (w−wn)dxdt .

The second term of the above expression tends to zero as n → ∞ by the Cauchy–
Schwarz inequality. Hence the whole expression tends to zero as h,4t → 0 for
each w ∈ [L2(QT )]d , using (6.12) for the first term.

We now finally conclude that TD3 → 0 as h,4t → 0. We can write

TD3 =

∫ T

0

∫

Ω
(S4t −S)∇ch,4t ·∇ψ dxdt −

∫ T

0

∫

Ω
S(∇c−∇ch,4t) ·∇ψ dxdt .

Since (S4t)i, j , 1 ≤ i, j ≤ d, converge strongly in L1(QT ) to Si, j by its defini-
tion (6.9), the boundedness of S4t and S given by Assumption (A3) implies a
strong L2(QT ) convergence as well. Hence the first term of the above expres-
sion tends to zero as h,4t → 0, using the boundedness of |∇ψ|, the a priori es-
timate (5.3), and the Cauchy–Schwarz inequality. The second term converges to
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zero by the L∞ boundedness of S and the weak convergence of ∇ch,4t to ∇c shown
in the previous paragraph. Altogether, combining (6.10) and (6.11) gives

TD −→
∫ T

0

∫

Ω
S∇c(x,t) ·∇ψ(x,t)dxdt as h,4t → 0 . (6.15)

Remark 6.2 (Nonconforming approximation) The fact that T ′′
D3

given by (6.13)
is not immediately equal to zero is the consequence of the nonconforming-type
approximation. However, since the approximation is continuous in the barycentres
of interior sides and equal to zero in the barycentres of exterior sides, (6.14) is
fulfilled and consequently T ′′

D3
is of order h, which suffices for the convergence.

Convection term

We recall that

TC =
N

∑
n=1

4tn ∑
D∈Dh

∑
E∈N (D)

vn
D,E cn

D,E ψ(QD,tn−1)

and denote

vn(x) :=
1

4tn

∫ tn

tn−1

v(x,t)dt n ∈ {1,2, . . . ,N} , x ∈ Ω . (6.16)

We first intend to show that

TC +
N

∑
n=1

4tn ∑
D∈Dh

cn
D ∑

E∈N (D)

∫

σD,E

vn(x) ·nD,E ψ(x,tn−1)dγ(x) (6.17)

−
N

∑
n=1

4tn ∑
D∈Dh

cn
D

∫

D
∇ ·vn(x)ψ(x,tn−1)dx −→ 0 as h → 0 .

We add and subtract cn
Dψ(QD,tn−1)vn

D,E and cn
D,E
∫

σD,E
vn(x)·nD,E ψ(x,tn−1)dγ(x)

to the summations in the first two terms of (6.17). We denote

TC1 :=
N

∑
n=1

4tn ∑
D∈Dh

∑
E∈N (D)

(cn
D,E − cn

D)
(

ψ(QD,tn−1)vn
D,E

−

∫

σD,E

vn(x) ·nD,E ψ(x,tn−1)dγ(x)
)

,

TC2 :=
N

∑
n=1

4tn ∑
D∈Dh

∑
E∈N (D)

cn
D,E

∫

σD,E

vn(x) ·nD,E ψ(x,tn−1)dγ(x) ,

TC3 :=
N

∑
n=1

4tn ∑
D∈Dh

cn
Dψ(QD,tn−1) ∑

E∈N (D)

vn
D,E ,

TC4 :=
N

∑
n=1

4tn ∑
D∈Dh

cn
D

∫

D
∇ ·vn(x)ψ(x,tn−1)dx .
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One can easily verify that (6.17) is satisfied when TC1 → 0, TC2 → 0, and (TC3 −
TC4) → 0 as h → 0.

We begin with TC2 . We denote

vn
ψ;D,E :=

∫

σD,E

vn(x) ·nD,E ψ(x,tn−1)dγ(x) .

Since the summation in TC2 is over all D ∈ Dh and all its neighbors, each interior
dual side is in the summation just twice. We consider one fixed interior dual side
σD,E , where we have denoted D and E such that vn

D,E ≥ 0, and have
(

cn
D +αn

D,E(cn
E − cn

D)
)

vn
ψ;D,E +

(
cn

D +αn
D,E(cn

E − cn
D)
)

vn
ψ;E,D = 0 ,

considering the definition of the local Péclet upstream weighting (3.7) and the fact
that vn

ψ;D,E = −vn
ψ;E,D. Thus TC2 = 0.

Next we consider TC3 and TC4 . We immediately have that

∑
E∈N (D)

vn
D,E =

∫

D
∇ ·vn(x)dx ∀D ∈ D

int
h ,

using the definition of vn
D,E . We further estimate

|TC3 −TC4 | =
∣∣∣

N

∑
n=1

4tn ∑
D∈D int

h

cn
D

∫

D
∇ ·vn(x)

(
ψ(QD,tn−1)−ψ(x,tn−1)

)
dx
∣∣∣

≤ C2,ψ h
N

∑
n=1

∑
D∈Dh

|cn
D|

∫ tn

tn−1

∫

D
r(x,t)dxdt (6.18)

≤ C2,ψ h
( N

∑
n=1

∑
D∈Dh

4tn|D|(cn
D)2
) 1

2

(
N

∑
n=1

∑
D∈Dh

(∫ tn
tn−1

∫
D r(x,t)dxdt

)2

4tn|D|

)1
2

≤ C2,ψ h
(Cae

cβ
T
) 1

2
‖r‖0,QT ,

considering the boundary condition cn
D = 0 for all D ∈ D ext

h ,

|ψ(QD,tn−1)−ψ(x,tn−1)| ≤C2,ψ h (6.19)

for all x ∈ D,
∫

D
|∇ ·vn(x)|dx =

1
4tn

∫

D

∫ tn

tn−1

∇ ·v(x,t)dt dx =
1

4tn

∫

D

∫ tn

tn−1

r(x,t)dt dx ,

which follows from Assumption (A4), the Cauchy–Schwarz inequality, and the a
priori estimate (5.1). Thus (TC3 −TC4) → 0 as h → 0.

We finally turn to TC1 . We first define

TC5 :=
N

∑
n=1

4tn ∑
D∈Dh

∑
E∈N (D)

diam(KD,E)d−2(cn
D,E − cn

D)2 .
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We have
(cn

D,E − cn
D)2 =

(
αn

D,E (cn
E − cn

D)
)2

≤
1
4
(cn

E − cn
D)2

when vn
D,E ≥ 0, considering the definition of the local Péclet upstream weight-

ing (3.7) and Remark 3.1, which gives 0 ≤ αn
D,E ≤ 1/2. Similarly, when vn

D,E < 0,
we come to

(cn
D,E − cn

D)2 =
(
(cn

E − cn
D)(1−αn

D,E)
)2

≤ (cn
E − cn

D)2 .

We have

TC5 ≤ 2
N

∑
n=1

4tn ∑
σD,E∈F int

h

diam(KD,E)d−2(cn
E − cn

D)2

≤
d +1
dκT

N

∑
n=1

4tn‖cn
h‖

2
Xh

≤
d +1
dκT

Cae

cS
,

noticing that each interior dual side is in the original summation just twice and
using the estimate (3.3) and the a priori estimate (5.3). We next define

TC6 :=
N

∑
n=1

4tn ∑
D∈Dh

∑
E∈N (D)

1
diam(KD,E )d−2

(∫

σD,E

vn(x) ·nD,E

(
ψ(QD,tn−1)−ψ(x,tn−1)

)
dγ(x)

)2

and estimate

TC6 ≤ C2
2,ψ h2C2

v

N

∑
n=1

4tn ∑
D∈Dh

∑
E∈N (D)

1
diam(KD,E )d−2 |σD,E |

2

≤ C2
2,ψ h2C2

v
(d +1)d
(d −1)2

N

∑
n=1

4tn ∑
K∈Th

diam(K)d ≤C2
2,ψ h2 C2

v
κT

(d +1)d
(d −1)2 |Ω |T ,

using (6.19), |vn
D,E | ≤ Cv|σD,E | following from Assumption (A4), (3.5), noticing

that each interior dual side is in the original summation just twice and that each
K ∈ Th contains exactly (d + 1)d/2 dual sides, and finally Assumption (B). We
now notice that

T 2
C1

≤ TC5TC6 ,

using the Cauchy–Schwarz inequality, and hence TC1 → 0 as h → 0. Thus (6.17)
is satisfied.

Using the Green theorem and considering cn
D = 0 for all D ∈ D ext

h , we easily
come to

N

∑
n=1

4tn ∑
D∈Dh

cn
D ∑

E∈N (D)

∫

σD,E

vn(x) ·nD,E ψ(x,tn−1)dγ(x) =
N

∑
n=1

4tn (6.20)

∑
D∈Dh

cn
D

∫

D
vn(x)∇ψ(x,tn−1)dx+

N

∑
n=1

4tn ∑
D∈Dh

cn
D

∫

D
∇ ·vn(x)ψ(x,tn−1)dx .
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Therefore it follows from (6.17) that if we can prove that
N

∑
n=1

4tn ∑
D∈Dh

cn
D

∫

D
vn(x) ·∇ψ(x,tn−1)dx (6.21)

−→

∫ T

0

∫

Ω
c(x,t)v(x,t) ·∇ψ(x,t)dxdt as h,4t → 0 ,

then we will have that

TC −→−

∫ T

0

∫

Ω
c(x,t)v(x,t) ·∇ψ(x,t)dxdt as h,4t → 0 . (6.22)

To prove (6.21), we introduce

TC7 :=
N

∑
n=1

∫ tn

tn−1

∫

Ω
c̃h,4t(x,t)vn(x) ·

(
∇ψ(x,tn−1)−∇ψ(x,t)

)
dxdt ,

TC8 :=
N

∑
n=1

∫ tn

tn−1

∫

Ω

(
c̃h,4t(x,t)− c(x,t)

)
vn(x) ·∇ψ(x,t)dxdt ,

TC9 :=
N

∑
n=1

∫ tn

tn−1

∫

Ω
c(x,t)

(
vn(x)−v(x,t)

)
·∇ψ(x,t)dxdt .

We have
|∇ψ(x,tn−1)−∇ψ(x,t)| ≤ g(4t)

for t ∈ (tn−1,tn] and thus

|TC7 | ≤ g(4t)
N

∑
n=1

∑
D∈Dh

|cn
D|
∫

D

∫ tn

tn−1

|v(x,t)|dxdt ≤ g(4t)
(Cae

cβ
T
) 1

2
‖v‖0,QT ,

using the same estimate as in (6.18). Thus TC7 → 0 as 4t → 0. It is immediate
that TC8 → 0 as h,4t → 0, using the strong (and consequently weak) convergence
of c̃h,4t to c. By Assumption (A4) and (6.16) v and vn are bounded, and hence
the piecewise constant in time approximation given by vn converges strongly in
L2(QT ) to v as 4t → 0. Since |∇ψ| ≤ C2,ψ and c ∈ L2(QT ), it suffices to use the
Cauchy–Schwarz inequality to conclude that TC9 → 0 as 4t → 0. Thus (6.21) and
consequently (6.22) is fulfilled.

Reaction term

We would now like to show that

TR −→

∫ T

0

∫

Ω
F(c(x,t))ψ(x,t)dxdt as h,4t → 0 . (6.23)

For this purpose, we introduce

TR1 :=
N

∑
n=1

∑
D∈Dh

F(cn
D)

∫ tn

tn−1

∫

D

(
ψ(QD,tn−1)−ψ(x,t)

)
dxdt ,

TR2 :=
N

∑
n=1

∑
D∈Dh

∫ tn

tn−1

∫

D

(
F(cn

D)−F(c(x,t))
)

ψ(x,t)dxdt .
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We have
|ψ(QD,tn−1)−ψ(x,t)| ≤C3,ψ (h+4t) (6.24)

for all x ∈ D and t ∈ (tn−1,tn], and thus

|TR1 | ≤C3,ψ LF (h+4t)
N

∑
n=1

∑
D∈Dh

4tn|D||cn
D| ≤C3,ψ LF(h+4t)

(Cae

cβ
T
) 1

2
|Ω |

1
2 T

1
2 ,

using the Lipschitz continuity of F , following from Assumption (A5) or (A6), the
Cauchy–Schwarz inequality, and the a priori estimate (5.1). Hence, TR1 → 0 as
h,4t → 0. We have

|TR2 | ≤C1,ψ LF

∫ T

0

∫

Ω
|c̃h,4t(x,t)− c(x,t)|dxdt ,

which tends to 0 because of the strong L2(QT ) convergence of c̃h,4t to c. Thus,
(6.23) is fulfilled.

Sources term

We finally show that

TS −→

∫ T

0

∫

Ω
q(x,t)ψ(x,t)dxdt as h,4t → 0 . (6.25)

We set

TS1 :=
N

∑
n=1

∑
D∈Dh

qn
D

∫ tn

tn−1

∫

D

(
ψ(QD,tn−1)−ψ(x,t)

)
dxdt ,

TS2 :=
N

∑
n=1

∑
D∈Dh

∫ tn

tn−1

∫

D

(
qn

D −q(x,t)
)

ψ(x,t)dxdt .

We can bound |TS1 | by

C3,ψ (h+4t)
N

∑
n=1

∑
D∈Dh

∫ tn

tn−1

∫

D
|q(x,t)|dxdt ≤C3,ψ (h+4t)‖q‖0,QT |Ω |

1
2 T

1
2 ,

using (6.24) and the Cauchy–Schwarz inequality. Finally,

|TS2 | ≤C1,ψ
N

∑
n=1

∑
D∈Dh

∫ tn

tn−1

∫

D
|qn

D −q(x,t)|dxdt ,

which tends to 0 as h,4t → 0 because of the L1 convergence of the piecewise
constant approximation qn

D to q. Thus (6.25) is satisfied.
We are now ready to give the final theorem of this paper:
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Theorem 6.2 (Convergence to a weak solution) There exist subsequences of
c̃h,4t and ch,4t , the approximate solutions of the problem (1.1)–(2.2) by means
of the combined finite volume–nonconforming/mixed-hybrid finite element scheme
given by Definition 5.1, which converge strongly in L2(QT ) to a weak solution of
the problem (1.1)–(2.2) given by Definition 2.1. If the weak solution is unique,
then the whole sequences c̃h,4t , ch,4t converge to the weak solution.

Proof We have from Theorem 6.1 that subsequences of c̃h,4t and ch,4t converge
strongly in L2(QT ) to some function c ∈ L2(0,T ;H1

0 (Ω )). The function c satisfies

−

∫ T

0

∫

Ω
β (c(x,t))ψt(x,t)dxdt −

∫

Ω
β (c0(x))ψ(x,0)dx

+
∫ T

0

∫

Ω
S(x,t)∇c(x,t) ·∇ψ(x,t)dxdt−

∫ T

0

∫

Ω
c(x,t)v(x,t) ·∇ψ(x,t)dxdt

+
∫ T

0

∫

Ω
F(c(x,t))ψ(x,t)dxdt =

∫ T

0

∫

Ω
q(x,t)ψ(x,t)dxdt

for all test functions ψ ∈ Ψ , given by (6.1). This follows from (6.8), (6.15),
(6.22), (6.23), (6.25), and (6.2). In addition, β (c) ∈ L∞(0,T ;L2(Ω )), which fol-
lows from (5.2). Thus c is a weak solution of the problem (1.1)–(2.2), since Ψ is
dense in the set {ϕ; ϕ ∈ L2(0,T ;H1

0 (Ω )), ϕt ∈ L∞(QT ), ϕ(·,T ) = 0}. ut

7 Numerical experiments

We present the results of two numerical experiments in this section. We first check
our scheme for a model problem with a traveling wave solution and then consider a
problem with an inhomogeneous and anisotropic diffusion–dispersion tensor and
compare our scheme with three different ones. The computations were done in
double precision on a notebook with Intel Pentium 4-M 1.8 GHz processor and
MS Windows XP operating system. Machine precision was in power of 10−16.

7.1 A model problem with a traveling wave solution

We consider here a model degenerate parabolic convection–diffusion problem
with a known traveling wave solution (cf. [34]). In particular, we take the equa-
tion (1.1) for Ω = (0,1)× (0,1) and T = 1 with

β (c) = c
1
2 for c ≥ 0 ,

S = δ
(

1 0
0 1

)
,

v = (v,0) ,

F(c) = 0 , q = 0 .

Here, δ > 0 and v > 0 are parameters. We fix v to 0.8 and let δ vary: for large
values of δ , diffusion dominates over convection and conversely for small values
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Fig. 7.1 Initial space mesh Th (solid) and its dual mesh Dh (dashed) with emplacement of the
unknowns

of δ . The initial and Dirichlet boundary conditions are given by the exact solution

c(x,y,t) =
(

1− e
v

2δ (x−vt−p)
)2

for x ≤ vt + p , c(x,y,t) = 0 for x ≥ vt + p .

The shift p defines the position of the front of the wave at t = 0 and is set to 0.2.
Note that the problem is degenerate parabolic since β ′(0) = +∞ and the solution
takes the value of 0.

We perform the simulations on an unstructured triangular mesh; the initial one
is given in Figure 7.1. The initial time step is T/2. We refine the space mesh by
dividing each triangle regularly into four subtriangles and each time the space
mesh is refined, the time step is divided by two. We define the Péclet number by
Pe := hv/δ . The initial conditions are the values of the exact solution for t = 0
at the midpoints of triangle edges. The boundary conditions are given in a similar
way. The solution of the simulated problem is in fact only one-dimensional. We
use this fact to test the performance of the numerical scheme that we propose for
strongly irregular two-dimensional meshes. The case where the triangular mesh
contains angles greater than π/2 is similar to the case where the diffusion tensor
is anisotropic: in both cases the discrete maximum principle is not necessarily
satisfied (recall that this principle holds under Assumption (D), cf. Theorem 4.5).
Hence we need to define the function β (c) for c < 0. To fulfill Assumptions (A1)
and (A2), we set β (c) := −β (−c) for c < 0.

At each discrete time level, we have to solve the nonlinear system of alge-
braic equations given by (3.6a)–(3.6c). Since β ′(0) = +∞ and since the solution
takes the value 0, we cannot directly apply the Newton method for this pur-
pose. The traditional finite element technique to overcome this difficulty con-
sists in regularization (approximation of β by functions with bounded slope),
cf. [8]. Another method, however applicable only when the discrete maximum
principle holds, consists in perturbing the initial and boundary conditions so that
all the values that the scheme works with were strictly positive (the problem
is not anymore degenerate parabolic), see [39]. In our approach, we introduce
new unknowns un

D = β (cn
D) and rewrite the system of equations (3.6a)–(3.6c)
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Fig. 7.2 Approximate solution at t = 0.25, δ = 0.01, r = 3

Table 7.1 Number of refinements, number of time steps, number of unknowns, Péclet number,
and computational times in min:sec for δ = 0.05, 0.01, and 0.0001, respectively

Rf. T. st. Unkn. Peδ=0.05 tδ=0.05 Peδ=0.01 tδ=0.01 Peδ=0.0001 tδ=0.0001

1 4 88 4.56 0:01 22.80 0:01 2280.0 0:01
3 16 1504 1.14 0:16 5.70 0:15 570.0 0:11
5 64 24448 0.29 19:11 1.43 17:49 142.5 9:51

for these new unknowns, cf. [23]. We believe that this approach is advantageous
for the following reasons: (i) There is no need to regularize the problem or to
perturb the data (now [β−1]′(0) = 0); (ii) One can directly apply the Newton
method to linearize the problem; (iii) The resulting matrices are diagonal for
the part of the unknowns corresponding to the region where the concentration
is zero. Indeed, on the step k of the linearization at time tn, we approximate
cn,k

E = β−1(un,k
E ) ≈ β−1(un,k−1

E ) + (β−1)′(un,k−1
E )(un,k

E − un,k−1
E ), which vanishes

since β−1(0) = (β−1)′(0) = 0. Let {un,k
D }D∈D int

h
be the solution vector on the step

k. The linearization is terminated whenever

(
∑

D∈D int
h

(un,k
D −un,k−1

D )2
) 1

2
/(

∑
D∈D int

h

(un,k
D )2

) 1
2
≤ 10−10 .

The bi-conjugate gradients stabilized method (Bi-CGStab), preconditioned by the
LU incomplete factorization with drop tolerance 10−3, is used for the solution of
the associated linear systems. The iterations were stopped whenever the relative
residual decreased below 10−10.

We consider three values of δ : 0.05, 0.01, and 0.0001. The number of re-
finements is r = 1,3, and 5 (r = 0 corresponds to the initial mesh). We refer to
Table 7.1 for the number of unknowns, Péclet numbers, and computational times.
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Fig. 7.3 Solution profiles for y = 0.5 and δ = 0.01, at t = 0.5 (left) and at t = 0.75 (right)
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Fig. 7.4 Solution profiles for y = 0.5 at t = 0.5, δ = 0.05 (left) and δ = 0.0001 (right)

For the finest meshes, there were up to 15 Newton steps necessary in the first it-
eration. This number then decreased to approx. 7 per time step. We can see the
approximate solution for δ = 0.01 and r = 3 at t = 0.25 in Figure 7.2. We next
give the profiles of approximate solutions in y = 0.5 for the different values of δ
and r in Figures 7.3 and 7.4. The profile in y = 0.5 is defined by all the calculated
values cD such that QD (the midpoint of the edge σD associated with the dual vol-
ume D) satisfies |QD − l0.5| < 0.25 for r = 1, |QD − l0.5| < 0.08 for r = 3, and
|QD − l0.5| < 0.02 for r = 5, where l0.5 is the line y = 0.5.

We finally give some comments on the results. First, the scheme works easily
for the given irregular mesh, which would not be possible with the standard finite
volume method, cf. [23]. This irregularity (angles greater than π/2) on the other
hand causes the violation of the discrete maximum principle. However, this vio-
lation is only noticeable for the coarsest meshes (r = 0,1, in power of 10−3) and
disappears with the refinement of the meshes. The scheme naturally works with
negative values due to the appropriate definition of β (c) for c < 0. We remark
that the negative values of the approximation that are visible in Figure 7.2 have
no relation to the discrete maximum principle; they are only a consequence of a
piecewise linear interpretation of the (non-negative) values cn

D. The influence of
unsuitable shapes of the elements is also visible in Figures 7.3 and 7.4—note the
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local fluctuations in the profiles for r = 1 and 3. This influence is however only
because of the finite volume part of the scheme, which can be easily verified by
considering a pure hyperbolic problem. Next, the local Péclet upstream weighting
reduces the numerical diffusion of full upstream weighting to the amount exactly
necessary to ensure the stability of the scheme. In particular, the coefficients α n

D,E
given by (3.8) automatically increase with r. Moreover, the different values of
these parameters for different dual sides of the mesh reflect the local ratio of the
diffusion and convection fluxes (recall that e.g. for a dual side parallel with v, the
flux of v through this side is zero). This numerical flux would be still more efficient
for a problem where the ratio of v and δ is not uniform over Ω . Finally, precise
approximation of realistic convection-dominated problems on fixed grids with the
proposed scheme may still be expensive in terms of the computational cost. A
local refinement strategy as those proposed in [37,38] would then be necessary.

7.2 A problem with an inhomogeneous and anisotropic diffusion–dispersion
tensor

We consider here a problem with an inhomogeneous and anisotropic diffusion–
dispersion tensor and compare our scheme with three different ones.

The problem at hand is given by the equation (1.1) for Ω = (0,2)× (0,1) and
T = 1 with

β (c) = c+ c
1
2 for c ≥ 0 ,

F(c) =
1
2

c
1
2 for c ≥ 0 , q = 0

and either

S =

(
1 0
0 1

)
in Ω , v = (3,0) in Ω (7.1)

or

S =

(
1 0
0 1

)
for x < 1 , S =

(
8 −7

−7 20

)
for x > 1 ,

v = (3,0) for x < 1 , v = (3,12) for x > 1 . (7.2)

Initial and Dirichlet or Robin boundary conditions are again given by the exact
solution c(x,y,t) = exeye−t/e3. Note that in the case of the coefficients given
by (7.2), the velocity field v as well as the flux of the solution given by −S∇c +
(cv) have a continuous normal trace across the discontinuity line x = 1.

We perform the simulations on refinements of the meshes A and B from Fig-
ure 7.5 and compare the scheme (3.6a)–(3.6c) (abbreviated as FV–NCFE) with the
lowest-order Raviart–Thomas mixed finite element (MFE) method, with the com-
bined finite volume–finite element (FV–FE) scheme, cf. [30], and finally, for the
mesh A (where all angles are acute) and for coefficients (7.1) also with the pure
cell-centered finite volume (FV) scheme, cf. [23,25]. Since we will only consider
piecewise constant diffusion tensors, the two variants of our scheme coincide, see
Remark 3.2. Finally, for the FV, FV–FE, and FV–NCFE schemes, we use the ap-
propriate variant of the local Péclet upstream weighting (3.7), (3.8), whereas for
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Fig. 7.5 Initial meshes A (top) and B (bottom)

Method \r 0 1 2 3 4 5
PFV 0.02914 0.01159 0.00551 0.00276 0.00140 0.00070
PMFE 0.03480 0.01249 0.00558 0.00276 0.00139 0.00069
FV–FE 0.04892 0.01665 0.00693 0.00314 0.00149 0.00073
FV–NCFE 0.02642 0.01146 0.00554 0.00278 0.00140 0.00070

Table 7.2 Discrete L∞(0,T ;L2(Ω)) relative errors, coefficients (7.1), mesh A

Method \r 0 1 2 3 4 5
FV 0.04957 0.02428 0.01215 0.00608 0.00304 0.00152
MFE 0.02542 0.01099 0.00539 0.00273 0.00138 0.00070
FV–FE 0.13859 0.04922 0.01771 0.00655 0.00252 0.00102
FV–NCFE 0.03595 0.01495 0.00658 0.00306 0.00147 0.00072

Table 7.3 Discrete L∞(0,T ;L2(Ω)) projection relative errors, coefficients (7.1), mesh A

mixed finite elements, we employ its centered form from [21], since the problem
at hand is not convection-dominated.

Tables 7.2 and 7.3 give discrete relative and projection relative errors (see the
definitions below) for all the compared schemes and up to five refinements of
the original space-time grid, considering coefficients (7.1), mesh A, and Dirichlet
boundary conditions. Similarly, tables 7.4 and 7.5 give the discrete relative and
projection relative errors for the coefficients (7.2), mesh B, and Robin boundary
conditions on x = 0 and Dirichlet boundary conditions otherwise. The discrete
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L∞(0,T ;L2(Ω )) relative error is defined by

max
n∈{1,2,...,N}

‖cn
h(·)− c(·,tn)‖0,Ω

‖c(·,tn)‖0,Ω
,

where cn
h is the piecewise linear approximate solution at time tn: for the FV–

FE and FV–NCFE schemes, we consider directly the resulting approximations,
whereas for the FV and MFE schemes, a local postprocessing is used (we use the
notation PFV and PMFE). We refer to [41] for the details. We define a discrete
L∞(0,T ;L2(Ω )) projection relative error by

max
n∈{1,2,...,N}

‖c̃n
h(·)− c̃(·,tn)‖0,Ω

‖c(·,tn)‖0,Ω
,

where c̃n
h is the piecewise constant approximate solution at time tn. For the FV–FE

and FV–NCFE schemes, we consider the solutions piecewise constant on the dual
volumes, whereas for the FV and MFE scheme, we use the piecewise constant
results on the triangles. The function c̃ is given by the mean values of the exact
solution c on the dual volumes for the combined schemes and on the triangles
for the FV and MFE schemes. A quintic (7-point) numerical integration formulae
was used for the approximate evaluation of the error. Finally, since in this case the
solution does not take the value 0, directly the Newton method was used for the
linearization (with the stopping criterion 10−8).

In the first tested case (constant coefficients), the discrete L∞(0,T ;L2(Ω )) rela-
tive errors were comparable for all the schemes on the finest mesh. For the discrete
L∞(0,T ;L2(Ω )) projection relative error, there are some minor differences—the
lowest error is produced by the mixed finite element method and the highest by the
finite volume one. In the second tested case (discontinuous coefficients), the dif-
ferences are more important. In what concerns the discrete L∞(0,T ;L2(Ω )) errors,
the FV–NCFE scheme gave much better results than the FV–FE scheme. One of
the possible reasons is that the latter scheme employs the arithmetic average of the
heterogeneities associated with the triangles. The results of the FV–NCFE scheme
were on the other hand comparable to that given by the elementwise linear post-
processed solution of the MFE scheme. Again the differences are more important
for the L∞(0,T ;L2(Ω )) projection error. Finally, the experimental order of con-
vergence for all the compared schemes was O(h,4t) for fine meshes and a little
bit better for coarser meshes.

The computational cost of the different schemes was also compared in [41].
In general, the FV–FE scheme requires much less CPU time than the FV–NCFE
one, since its unknowns are associated with vertices, whereas in the FV–NCFE
scheme, the unknowns are associated with edges. However, the higher precision
of the FV–NCFE scheme in the tested cases was important enough to persist to the
“efficiency graph” (plotting the error against the CPU time), especially for prob-
lems with discontinuous coefficients and inhomogeneous and anisotropic diffu-
sion tensors. The mixed finite element method in its original formulation requires
quite an increased CPU time. However, considering its equivalent finite volume
form [43] where the degrees of freedom are only associated with the triangles, it
is also very competitive, although not as fast as the FV scheme.

As a conclusion, we find that the FV–NCFE scheme proposed and studied in
this paper represents an easy extension of the finite volume method to general
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Method \r 0 1 2 3 4 5
PMFE 0.02608 0.00761 0.00259 0.00110 0.00053 0.00026
FV–FE 0.03961 0.01345 0.00537 0.00238 0.00111 0.00054
FV–NCFE 0.01990 0.00680 0.00293 0.00143 0.00072 0.00036

Table 7.4 Discrete L∞(0,T ;L2(Ω)) relative errors, coefficients (7.2), mesh B

Method \r 0 1 2 3 4 5
MFE 0.00821 0.00389 0.00199 0.00102 0.00052 0.00027
FV–FE 0.13895 0.04848 0.01713 0.00619 0.00230 0.00089
FV–NCFE 0.03122 0.01210 0.00475 0.00197 0.00087 0.00040

Table 7.5 Discrete L∞(0,T ;L2(Ω)) projection relative errors, coefficients (7.2), mesh B

meshes and inhomogeneous and anisotropic diffusion tensors, which is simpler,
more straightforward, and more finite volume-like than the mixed finite element
method, but gives comparable results.

8 Appendix: Technical lemmas

We give here some technical lemmas that were needed in paper.

Lemma 8.1 Let us consider the elliptic problem

−∇ · (S∇p) = q in Ω , (8.1a)
p = 0 on ∂ Ω , (8.1b)

where q ∈ L2(Ω ). Then the stiffness matrix for the Lagrange multipliers of the
hybridization of the lowest-order Raviart–Thomas mixed finite element method on
the simplicial mesh Th has the form

MD,E = − ∑
K∈Th

(SK∇ϕE ,∇ϕD)0,K D,E ∈ D
int
h , (8.2)

where

SK =
( 1
|K|

∫

K
S−1 dx

)−1
∀K ∈ Th . (8.3)

Proof The hybridization of the lowest-order Raviart–Thomas mixed finite ele-
ment method for the problem (8.1a)–(8.1b) reads (cf. [12, Section V.1.2]): find
uh ∈ Vh, ph ∈ Φh, and λh ∈ Λh such that

∑
K∈Th

{
(S−1uh,vh)0,K − (∇ ·vh, ph)0,K + 〈vh ·n,λh〉∂ K

}
= 0 ∀vh ∈ Vh , (8.4a)

− ∑
K∈Th

(∇ ·uh,φh)0,K = −(q,φh)0,Ω ∀φh ∈ Φh , (8.4b)

∑
K∈Th

〈uh ·n,µh〉∂ K = 0 ∀µh ∈ Λh . (8.4c)
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Here, Vh is the space of elementwise linear vector functions such that uh ∈ Vh sat-
isfies uh|K = (aK +dKx, bK +dKy) if d = 2 and uh|K = (aK +dKx, bK +dKy, cK +
dKz) if d = 3 for all K ∈ Th, Φh is the space of elementwise constant scalar func-
tions, and Λh is the space of sidewise constant scalar Lagrange multipliers. For
all D ∈ Dh, we denote λh|σD by λD and require λD = 0 for all D ∈ D ext

h . We now
extend the ideas of [14], where the tensor S is supposed piecewise constant on Th.

Let us set λ̃h := ∑
D∈Dh

λDϕD. Using (3.13), we have

∑
σD∈EK

λD|σD|nσD = |K| ∑
σD∈EK

λD∇ϕD|K = |K|∇λ̃h|K .

Then denoting the unit coordinate vectors as ei and taking, respectively, vh = ei in
K, 1 ≤ i ≤ d, vh = 0 otherwise as the test functions in (8.4a), we come to

∫

K
S−1uh dx+ |K|∇λ̃h|K = 0 ∀K ∈ Th .

Next we note that the stiffness matrix does not depend on q and hence we can pose
q = 0. Considering φh = 1 on K and zero otherwise in (8.4b), this yields dK = 0
for all K ∈ Th. Hence uh|K = −SK∇λ̃h|K with SK given by (8.3). It now suffices
to substitute this into (8.4c) to obtain a system for the Lagrange multipliers λD,
D ∈ D int

h , with the matrix given by (8.2). ut

Lemma 8.2 Let us consider the function B(s), s ∈ R, B(s) = β (s)s−
∫ s

0 β (τ)dτ ,
with β satisfying Assumption (A1). Then B(s) ≥ s2cβ /2 for all s ∈ R.

Proof Let us first consider a given s ≥ 0. We then have for each h > 0

B(s+h)−B(s)
h

=
β (s+h)−β (s)

h
s+β (s+h)−

1
h

∫ s+h

s
β (τ)dτ .

This gives, using the fact that β (s+h)−β (s)≥ cβ h, which follows from Assump-
tion (A1), and the continuity of β

liminf
h→0+

B(s+h)−B(s)
h

≥ cβ s .

Hence, using the fact that B(0) = 0 and that s2cβ /2 = 0 for s = 0, we have B(s) ≥
s2cβ /2 for all s ≥ 0. The proof for s < 0 proceeds similarly. ut

Lemma 8.3 Let β satisfy Assumption (A2). Then [β (s)]2 ≤ 2C2
β +4L2

β P2 +4L2
β s2

for all s ∈ R.

Proof If s ∈ [−P,P], the assertion of the lemma is trivially satisfied, since by As-
sumption (A2), |β (s)| ≤Cβ . If s > P, then using the Lipschitz continuity of β on
[P,+∞), one has

β (s) = β (P)+β (s)−β (P) ≤ β (P)+Lβ (s−P)

and similarly for s < −P. Thus, using the inequality (a± b)2 ≤ 2(a2 + b2) and
|β (±P)| ≤Cβ , one has, for |s|> P,

[β (s)]2 ≤ 2C2
β +4L2

β P2 +4L2
β s2 . ut
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Lemma 8.4 Let Ω ⊂ R
p, p > 1, be an open bounded set, {an,n ∈ N} a sequence

of functions from L2(Ω ), defined by zero on Rp \Ω , hn a sequence of non-negative
real values with limn→∞ hn = 0, and C > 0. Let the functions an satisfy

∫

Ω

(
an(x+η)−an(x)

)2
dx ≤C|η|+hn ∀η ∈ R

p , ∀n ∈ N . (8.5)

Then

∀ε > 0 ∃ζ > 0 ∀η ∈R
p, |η|< ζ ∀n ∈N

∫

Ω

(
an(x+η)−an(x)

)2
dx ≤ ε .

(8.6)

Proof Let us consider a fixed ε > 0. Let n0 be such that ∀n > n0, |hn| < ε/2. The
continuity in mean of the functions a1, . . . ,an0 implies

∫

Rp

(
ai(x+η)−ai(x)

)2
dx −→ 0 as |η| → 0 ∀i ∈ {1, . . . ,n0} ,

or, more precisely,

∀i ∈ {1, . . . ,n0} ∀ε∗ > 0 ∃ζ ∗
i > 0 ∀η∗ ∈ R

p, |η∗| < ζ ∗
i∫

Rp

(
ai(x+η∗)−ai(x)

)2
dx ≤ ε∗ . (8.7)

We set ε∗ = ε in (8.7) and define ζ ∗ := mini=1,...,n0 ζ ∗
i . Since n0 < ∞, ζ ∗ > 0. It is

finally enough to choose
ζ = min

{
ζ ∗,

ε
2C

}
.

Indeed, for n < n0, estimate (8.6) is valid due to (8.7). For n > n0, (8.5) and the
fact that |hn| < ε/2 yields the assertion of the lemma. ut
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