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Abstract

This paper presents a methodology for computing upper and lower
bounds for both the algebraic and total errors in the context of the con-
forming finite element discretization of the Poisson model problem and an
arbitrary iterative algebraic solver. The derived bounds do not contain
any unspecified constants and allow estimating the local distribution of
both errors over the computational domain. Combining these bounds,
we also obtain guaranteed upper and lower bounds on the discretization
error. This allows to propose novel mathematically justified stopping cri-
teria for iterative algebraic solvers ensuring that the algebraic error will lie
below the discretization one. Our upper algebraic and total error bounds
are based on locally reconstructed fluxes in H(div,Ω), whereas the lower
algebraic and total error bounds rely on locally constructed H1

0 (Ω)-liftings
of the algebraic and total residuals. We prove global and local efficiency of
the upper bound on the total error and its robustness with respect to the
approximation polynomial degree. Relationships to the previously pub-
lished estimates on the algebraic error are discussed. Theoretical results
are illustrated on numerical experiments for higher-order finite element
approximations and the preconditioned conjugate gradient method. They
in particular witness that the proposed methodology yields a tight esti-
mate on the local distribution of the algebraic and total errors over the
computational domain and illustrate the associate cost.
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1 Introduction

Most a posteriori error analyses of numerical approximations of partial differ-
ential equations still assume that the discretized algebraic problem is solved
exactly. This is an unrealistic assumption that cannot be satisfied in large scale
numerical computations. There is, fortunately, a growing body of work avoiding
it, based on different approaches, see, e.g., [19, 5, 8, 49, 60, 47, 54, 11, 31, 34, 7,
53, 2, 24], the references given in the survey [3, Section 4], and in the monograph
[38, Chapter 12]. Despite this development, a rigorous, mathematically justi-
fied, cheap, and accurate estimation of the discretization and algebraic errors
that would allow for their comparison in practical computations is not, in our
opinion, a fully solved problem. On the algebraic side, such comparison should
include localization of the algebraic error. Since the algebraic computation aims
at approximating the inverse of the discrete operator with respect to the given
right-hand side, the algebraic error is of global nature and its distribution over
the computational domain can be very different from the distribution of the
discretization error; see, e.g., [45] and the references therein. To point out chal-
lenges that any approach that aims at mathematically rigorous incorporation of
the algebraic error into a posteriori error analysis must consider, we now discuss
several ways of how the algebraic error in numerical PDEs is estimated.

The conjugate gradient (CG) method minimizes the energy norm of the
algebraic error over the Krylov subspaces associated with a symmetric positive
definite matrix A and the initial residual; see, e.g., [32], [36, Section 2.2]. The
estimates for the error of the CG approximations are widely studied; see, e.g.,
[28, 12, 55, 41], and the references given there. The estimates can be associated
with the relationship of CG to the Gauss quadrature; see, e.g., [36, Section 3.5].
We will briefly discuss the upper bound based on the Gauss–Radau quadrature;
see [17, 28, 30, 42] and called in [2, p. A1548] “[t]he only guaranteed upper
bound for the A-norm of the CG error”. Considering a preassigned node λ,
0 < λ < λmin(A), where λmin(A) is the smallest eigenvalue of the matrix A,
the Gauss–Radau quadrature gives indeed, assuming exact arithmetic, an upper
bound on the energy norm of the algebraic error. In [2, Section 4.2] the Poincaré
inequality adaptive approach for bounding λmin(A) from below and setting the
value of λ is proposed.

Numerically, however, the situation is very subtle. In short, if 0 < λ �
λmin(A), then the Gauss–Radau quadrature bound may largely overestimate the
actual error. On the other hand, for λ very close to λmin(A), which can make
the upper bound tight, it might be impossible to compute the upper bound to
a sufficient accuracy because of numerical instabilities. The derivation of the
estimate includes (implicitly or explicitly) inversion of the matrix λI−Ti, where
I stands for the identity matrix and Ti is the Jacobi matrix associated with the
ith CG iteration. For λ very close to λmin(A) ≤ λmin(Ti), and, at the same
time, λmin(Ti) very close to λmin(A), the matrix λI − Ti may become close
to numerically singular. It should be emphasized that the numerical difficulty
may not be immediately visible from the final formulas giving the bound; see,
e.g., [42]. The numerical stability analysis provided in [30] explained that al-
though the estimates based on the relationship of CG with the Gauss–Radau
quadrature can be very useful, they cannot be considered generally applicable
guaranteed and computable upper bounds for the energy norm of the algebraic
error. The meaning of the terms guaranteed and computable is within numerical
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linear algebra restricted only to the cases where the results are justified for all
possible input data by a rigorous numerical stability analysis.

Multigrid or, more general, multilevel computations can serve as a second
example. Here a standard assumption for a posteriori bounds on the algebraic
error, which might require further substantial analysis, is that the algebraic
problem on the coarsest grid is solved exactly ; see, e.g., [5, 54]. Moreover, the
literature known to the authors does not provide computable upper bounds on
the algebraic and the total errors. This topic has recently been addressed in [46].
Alternatively, in the multilevel context the a priori arguments are often used;
see the discussion in Section 3.3.

A remarkable early concept relating the algebraic and discretization errors
is represented by the Cascadic Conjugate Gradient method; see [19, 52]. In [19],
the algebraic error is estimated assuming the superlinear convergence behavior
of the CG method in the subsequent iterations, and using several heuristics
and empirically chosen parameters. The analysis of [52] relies on the upper
bound for the CG method based on Chebyshev polynomials that is typically
not descriptive, and its refined version based on composite polynomials may not
hold in finite precision computations; see [27]. The CG iterations can exhibit
locally the so-called staircase behavior (see [36, Chapter 5]) that makes the
analysis difficult.

The general a posteriori error estimation framework of [51] provides a guar-
anteed upper bound on the total error independent of the algebraic solver. How-
ever, the estimates do not generally allow to distinguish and compare the parts
of the error corresponding to different sources and seem not suitable for con-
structing stopping criteria for iterative solvers.

The widely used residual-based error estimators (see, e.g., [54, 6, 2] and the
references in [58]) provide upper bounds on the total error (and possibly on its
components) with unspecified generic constants that can be of large value. The
proposed practical stopping criteria and algorithms then require an empirical
choice of these constants. A review of these and other approaches can be found
in the survey [3]; see also the discussion in the Introduction of [34].

The presented paper elaborates further on the ideas used in [34] for finite
volume discretizations, and a more general framework in [24]; see also their ap-
plication to discontinuous Galerkin finite element discretizations in [21]. Here
we consider the conforming finite element setting and derive an upper bound on
the total error that will be proved locally efficient and polynomial-degree-robust
in the spirit of [9, 25]. All results account for the presence of the algebraic
error of an arbitrary iterative solver. The paper newly presents a guaranteed
upper bound on the algebraic error and thoroughly discusses its relationship to
formulas derived purely algebraically. Fast and reliable numerical computations
using iterative algebraic solvers rely on meaningful stopping criteria. The stop-
ping criteria from [34, 24] are modified here in order to avoid a possible early
stopping that could invalidate the computed results.

The paper is organized as follows. The diffusion model problem considered
in the paper and the notation are described in Section 2. In Section 3 we
discuss known results on estimating the algebraic error using algebraic worst-
case bounds, a priori arguments, and techniques using additional iteration steps
of the algebraic solver. Section 4 gives, following previously published results,
an upper and a lower bound on the total error. In Section 5 we derive new
upper and lower bounds on the algebraic error and discuss the relationship of
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the upper bound to the bounds presented in Section 3. Section 6 is devoted to
estimates of the discretization error and to discussion of the stopping criteria.
We also derive there new mathematically justified stopping criteria balancing
the algebraic and discretization errors. We finally illustrate the obtained results
numerically in Section 7 and give a concluding discussion in Section 8. We
provide the details on the quasi-equilibrated flux reconstruction in Appendix A.
The proofs of the global and local efficiency of the presented upper bound on
the total error are given in Appendix B.

2 Setting and notation

Let Ω ⊂ Rd, d = 2, 3, be a polygonal (polyhedral) domain (open, bounded, and
connected set). We consider the Poisson model problem: find u : Ω → R such
that

−∇· (∇u) = f in Ω, u = 0 on ∂Ω, (2.1)

that can be equivalently written as the system of two first order equations for the
scalar-valued potential u and the vector-valued function called flux σ ≡ −∇u,[

∇ I
0 ∇·

] [
u
σ

]
=

[
0
f

]
in Ω, u = 0 on ∂Ω.

Assuming f ∈ L2(Ω), the weak form of the model problem (2.1) is as follows:
find u ∈ V ≡ H1

0 (Ω) such that

(∇u,∇v) = (f, v) ∀v ∈ V, (2.2)

where H1
0 (Ω) denotes the standard Hilbert space of L2(Ω) functions whose weak

derivatives are in L2(Ω) and with trace vanishing on ∂Ω. For v, w ∈ L2(Ω),
(v, w) stands for

∫
Ω
v(x)w(x) dx (and similarly in the vector-valued case). Here-

after ‖ · ‖ denotes the L2 norm, ‖w‖ ≡ (w,w)1/2, w ∈ L2(Ω). Owing to (2.2),
the flux σ is in the space H(div,Ω) of the functions in [L2(Ω)]d with the weak
divergence in L2(Ω); see, e.g., [16, Section 6.13].

Let Th be a simplicial mesh of Ω. We suppose that the mesh is conforming
in the sense that, for two distinct elements of Th, their intersection is either an
empty set or a common `-dimensional face, 0 ≤ ` ≤ d− 1. We denote a generic
element of Th by K and its diameter by hK . We denote by Pp(K), p ≥ 0, the
space of pth order polynomial functions on an element K and by Pp(Th) the
broken polynomial space spanned by vh|K ∈ Pp(K) for all K ∈ Th.

Let
Vh ≡

{
vh ∈ Pp (Th) ∩ C(Ω) | vh = 0 on ∂Ω

}
⊂ H1

0 (Ω)

be the usual finite element space of continuous, piecewise pth order polynomial
functions, p ≥ 1. The discrete formulation corresponding to the problem (2.2)
reads: find uh ∈ Vh such that

(∇uh,∇vh) = (f, vh) ∀vh ∈ Vh. (2.3)

The (exact) solution uh of (2.3) satisfies the Galerkin orthogonality

(∇(uh − u),∇vh) = 0 ∀vh ∈ Vh. (2.4)
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Let ψj ∈ Vh, j = 1, . . . , N , denote a basis of Vh, Ψ = {ψ1, . . . , ψN}. Employ-
ing these functions in (2.3) gives rise to the system of linear algebraic equations

AU = F, (2.5)

where uh =
∑N
j=1 Ujψj = ΨU, U = [Uj ] is the vector of unknowns, the sys-

tem matrix A = [Aj`] is symmetric and positive definite, Aj` = (∇ψ`,∇ψj),
j, ` = 1, . . . , N , and the right-hand side vector F = [Fj ] is given by Fj = (f, ψj),
j = 1, . . . , N . Within this model problem setting, we consider an iterative al-
gebraic solver approximating the exact solution U of (2.5). At the i-th step,
i = 0, 1, 2, . . ., we obtain the approximation Ui = [Uij ] and the algebraic residual

vector Ri = [Rij ] with

Ri ≡ F− AUi. (2.6)

By uih we denote the approximation to the solution u of (2.2) determined by the

coefficient vector Ui, uih ≡
∑N
j=1 U

i
jψj = ΨUi. We also rewrite (2.6) in a func-

tional setting. For this purpose, let a function rih ∈ L2(Ω) be a representation
of the algebraic residual vector Ri satisfying

(rih, ψj) = Rij , j = 1, . . . , N. (2.7)

Two examples are given in Section 5.1 below. Then (2.6) can be rewritten as

(rih, ψj) = (f, ψj)− (∇uih,∇ψj) ∀j = 1, . . . , N (2.8)

and, together with (2.3), it also implies

(rih, vh) = (f, vh)− (∇uih,∇vh) = (∇(uh − uih),∇vh) ∀vh ∈ Vh. (2.9)

This representation will play the key role in the construction of the estimators
below as it allows to bound from above the energy norm of the algebraic er-
ror. A function satisfying (2.7) was used for error estimation also in [5]. The
construction proposed in Section 5.1 below is different and computationally less
costly.

The total error between the exact solution u and the approximate solution
uih is measured in the energy norm ‖∇(u− uih)‖. Analogously, the algebraic
energy norm of the error uh − uih is

‖∇(uh − uih)‖ = ‖U − Ui‖A =
(
(U − Ui),A(U − Ui)

)1/2
= (A−1Ri,Ri)1/2 = ‖Ri‖A−1 ,

where (V,U) denotes the standard inner product of the vectors U and V,
‖V‖ ≡ (V,V)1/2 stands for the Euclidean norm of the vector V, and ‖A‖ is
the induced spectral norm of the matrix A.

3 Algebraic bounds

This section presents some well-known algebraic bounds, with a few comments
towards the conjugate gradient method and multilevel methods.
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3.1 The L2 (Euclidean) norm residual bound

The simplest algebraic error upper bound consists in

‖∇(uh − uih)‖ = ‖Ri‖A−1 ≤ ‖A−1‖1/2 · ‖Ri‖. (3.1)

For a symmetric positive definite matrix, the norm ‖A−1‖ is given by the re-
ciprocal of the smallest eigenvalue of the matrix A. It is clear that for A ill-
conditioned, the bound (3.1) can significantly overestimate the algebraic error.
Note that equality is attained for a vector Ri collinear with the eigenvector
corresponding to the smallest eigenvalue of A.

Even this simplest worst-case bound may not be easy to compute. The
smallest eigenvalue of A is typically not available, and, if it is close to zero,
then the cost of its reliable and accurate approximation may not be negligible;
see, e.g., [39, 40]. We derive easily computable L2 norm residual bounds in
Section 5.2 below, based on the residual representation rih in (2.7); see the
estimates (5.3), (5.4), and (5.8).

3.2 Bounds using additional algebraic iterations

The following simple idea was to our knowledge first presented for algebraic
error estimates in [30, pp. 262–263] for the CG method; see also [55, 41]. For
estimating the total error it was then used in [34] and in [24], where an arbitrary
algebraic solver was considered.

The triangle inequality gives, at the cost of ν > 0 additional iterations,

‖U −Ui‖A ≤ ‖Ui+ν −Ui‖A + ‖U −Ui+ν‖A = ‖Ui+ν −Ui‖A + ‖Ri+ν‖A−1 . (3.2)

Assuming that for a given parameter γ > 0, the choice of ν ensures

‖A−1‖1/2 · ‖Ri+ν‖ ≤ γ‖Ui+ν − Ui‖A, (3.3)

we have, using (3.1), an easily computable upper bound

‖U − Ui‖A ≤ (1 + γ)‖Ui+ν − Ui‖A. (3.4)

Moreover,

‖Ui+ν − Ui‖A ≤ ‖U − Ui‖A + ‖U − Ui+ν‖A ≤ ‖U − Ui‖A + γ‖Ui+ν − Ui‖A,

so that, assuming that 0 < γ < 1, we get the lower bound

(1− γ)‖Ui+ν − Ui‖A ≤ ‖U − Ui‖A. (3.5)

Here (3.4) and (3.5) show that the accuracy of the estimate ‖Ui+ν − Ui‖A is
controlled by the user-specified parameter γ.

We must, however, take into account the following principal issue. If

‖U − Ui+ν‖A = ‖Ri+ν‖A−1 � ‖A−1‖1/2 · ‖Ri+ν‖,

the value of ν satisfying (3.3) can be very large. In the worst case, the value of ν
can be even comparable with the size of the problem. Such situation is highly
improbable in practical problems where preconditioning is used in order to get
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a reasonable convergence behavior. Still, for a given parameter γ, the smallest
ν1, respectively ν2, satisfying

‖Ri+ν1‖A−1 ≤ γ‖Ui+ν1 − Ui‖A resp. ‖A−1‖1/2 · ‖Ri+ν2‖ ≤ γ‖Ui+ν2 − Ui‖A,
(3.6)

where both sides of the inequalities depend on ν1 respectively ν2, can signifi-
cantly differ with ν1 � ν2. Section 7.1 below presents a numerical illustration.

Estimating the algebraic error in the CG method in [30, pp. 262-263] con-
sidered performing ν additional iterations and using the relation

‖U − Ui‖2A = ‖Ui+ν − Ui‖2A + ‖U − Ui+ν‖2A = ‖Ui+ν − Ui‖2A + ‖Ri+ν‖2A−1

(3.7)

that is based on the global A-orthogonality of the CG direction vectors. The
detailed rounding error analysis (see [55, (4.9)], [56, (3.7)] with the reference to
the original paper [32]) leads to the following mathematical (exact arithmetic)
equivalent of (3.7)

‖U − Ui‖2A = (µCG,i,ν
alg )2 + ‖Ri+ν‖2A−1 . (3.8)

This relation can be derived assuming only local orthogonality that is well-pre-
served also in finite precision CG computations as a consequence of enforc-
ing numerically the orthogonality among the consecutive direction vectors and
residuals. Therefore (3.8) holds, apart from a small inaccuracy proportional to
machine precision, also for the computed quantities. The same, however, has
not been proved for (3.7).

In [55, 56], it was shown how to compute µCG,i,ν
alg at a negligible cost directly

from the coefficients in the CG recurrences; see also [29], [41, Section 5.3]. The
resulting lower bound

µCG,i,ν
alg ≤ ‖U − Ui‖A (3.9)

holds until the ratio ‖U−Ui‖A/‖U−U0‖A becomes close to the machine precision
(for details see [55, Section 10]), and it is tight providing that the actual energy
norm of the error decreases reasonably fast. Analogously to (3.3), assuming
(nontrivially) that for a given parameter γ > 0, the number ν > 0 of additional
iteration steps is such that

‖A−1‖ · ‖Ri+ν‖2 ≤ γ2(µCG,i,ν
alg )2,

then µCG,i,ν
alg gives (neglecting the terms proportional to machine precision)

(µCG,i,ν
alg )2 ≤ ‖U − Ui‖2A ≤ (1 + γ2) (µCG,i,ν

alg )2. (3.10)

In conclusion, the general bounds in (3.4) and (3.5) do not require any addi-
tional assumptions. Their value can be determined directly from the computed
quantities Ui,Ui+ν . The bounds for the CG method in (3.10) can be evaluated
at almost no cost, but their validity for numerically computed approximations
Ui,Ui+ν had to be proved using a careful numerical stability analysis. As a re-
ward, which is based on the particular properties of the CG method, we get an
improved accuracy of the bounds, with the factor characterizing the gap between
the lower and the upper bound reduced from (1 + γ)/(1− γ) in (3.4)–(3.5) to√

1 + γ2 in (3.10).
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3.3 A priori arguments in multilevel methods

Convergence of multilevel methods is typically proved using the a priori con-
traction argument

‖U − Ui+1‖A ≤ γ‖U − Ui‖A,

where 0 < γ < 1. Then the triangle inequality immediately gives the algebraic
error bound

‖U − Ui‖A ≤
1

1− γ
‖Ui+1 − Ui‖A.

Though such bounds with a priori determined constant γ can be useful (see,
e.g., [7, (2.17)–(2.18)] and the references therein), we believe, as discussed in
the introduction, that a posteriori bounds such as that of [5] or its unknown-
constant-free improvement in [46] are preferable.

4 Estimating the total error

We give in this section computable upper and lower bounds on the total error.
The upper bound based on flux reconstruction following [18, 10, 34, 24, 25]
is derived in a form where the component associated with the algebraic error
actually turns out to give its upper bound; see Section 5. The lower bound on
the total error is given in Section 4.4 using conforming residual reconstruction.
We will frequently use the following representation of the energy norm of the
total error

‖∇(u− uih)‖ = sup
v∈V, ‖∇v‖=1

(∇(u− uih),∇v). (4.1)

4.1 Concept of the flux reconstructions

The motivation for our approach is to mimic the continuous world, where (us-
ing (4.1), (2.2), the Green theorem, and the Cauchy–Schwarz inequality),

‖∇(u− uih)‖ = inf
d∈H(div,Ω),∇·d=f

sup
v∈V, ‖∇v‖=1

{(f −∇·d, v)− (∇uih + d,∇v)}

= inf
d∈H(div,Ω),∇·d=f

‖∇uih + d‖;

the equality occurs for d = σ = −∇u. We also wish to use an upper bound
on the algebraic error based on the representation rih. This allows to relate the
algebraic and discretization error components.

Practically, a reconstructed flux is a piecewise polynomial function in the
Raviart–Thomas–Nédélec subspace Vh of the infinite-dimensional space H(div,Ω).
It is constructed in an inexpensive local way, around each node of the mesh Th,
and it satisfies, on each iteration step i ≥ 1,

∇·dih = fh − rih. (4.2)

Here fh is a piecewise polynomial approximation of the source term f satisfying

(f − fh, 1)K = 0 ∀K ∈ Th. (4.3)

The precise definition of the space Vh and the detailed construction of dih
following [24, Section 6.2.4] are given in Appendix A.
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4.2 Upper bound using the L2 norm of the algebraic resid-
ual representation

Similarly to Section 3.1, to illustrate the ideas, we first present a simple upper
bound on the total error following [34, Section 7.1]. It typically yields a large
overestimation. It follows from (4.1), the weak formulation (2.2), the construc-
tion (4.2), and the Green theorem that

‖∇(u− uih)‖ = sup
v∈V, ‖∇v‖=1

{
(f − fh, v) + (rih, v)− (∇uih + dih,∇v)

}
. (4.4)

Using (4.3) and the Poincaré inequality on the mesh elements,

(f − fh, v) ≤ ηosc‖∇v‖, ηosc ≡

( ∑
K∈Th

η2
osc,K

)1/2

, ηosc,K ≡
hK
π
‖f − fh‖K ;

(4.5)
see, e.g., [24, p. A1767]. The Friedrichs inequality states that there exists a
generic constant 0 < CF ≤ 1 such that

‖v‖ ≤ CFhΩ‖∇v‖ ∀v ∈ V, (4.6)

where hΩ denotes the diameter of the domain Ω. The value of CF can be
bounded1 using, e.g., [50, Chapter 18]. Thus, from the Cauchy–Schwarz in-
equality and from (4.6),

(rih, v) ≤ ‖rih‖‖v‖ ≤ ‖rih‖CFhΩ‖∇v‖, (4.7)

(∇uih + dih,∇v) ≤ ‖∇uih + dih‖‖∇v‖. (4.8)

Then (4.4) immediately gives the upper bound on the total error

‖∇(u− uih)‖ ≤ ηosc + CFhΩ‖rih‖+ ‖∇uih + dih‖. (4.9)

The part ηosc measures the oscillations in the right-hand side f and it is often
negligible in comparison to the discretization error. The part CFhΩ‖rih‖ in (4.9)
bounds the algebraic error; see (5.3) below. Finally, we will associate the last
term ‖∇uih + dih‖ with estimating the discretization error as in [24].

4.3 Upper bound using additional algebraic iterations

Following [24], the idea of using ν > 0 additional iterations described in Sec-
tion 3.2 can be analogously applied here to substantially improve the bound (4.9).

Given the computed approximation uih, we construct the algebraic residual
representation rih satisfying (2.7) and a reconstructed flux dih ∈ Vh satisfy-
ing (4.2). After ν > 0 additional iterations of the algebraic solver, giving the
approximation ui+νh , we construct ri+νh satisfying (2.7) with i replaced by i+ ν
and a reconstructed flux di+νh ∈ Vh satisfying ∇·di+νh = fh − ri+νh . Thus,

rih = −∇·dih + fh = −∇·dih +∇·di+νh + ri+νh (4.10)

1For example, for a square domain Ω ⊂ R2 we can take CF = 1/(2π), corresponding to the
smallest eigenvalue of the Laplace operator; see, e.g., [50, relation (18.48) on p. 196]
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and we have as above

‖∇(u− uih)‖ = sup
v∈V, ‖∇v‖=1

{(f − fh, v) + (dih − di+νh ,∇v)

+(ri+νh , v)− (∇uih + dih,∇v)},

which immediately leads to, cf. [24, Theorem 3.6]:

Theorem 1 (Upper bound on the total error). Let u be the weak solution
given by (2.2) and let uih ∈ Vh be its approximation given at the ith algebraic
solver iteration with the corresponding algebraic residual representation rih given
by (2.8). Let a reconstructed flux dih ∈ Vh satisfy (4.2). Consider ν > 0
additional algebraic iterations, resulting in ri+νh and di+νh . Then

‖∇(u− uih)‖ ≤ ηi,νtotal ≡ ηosc + ‖di+νh − dih‖+ CFhΩ‖ri+νh ‖+ ‖∇uih + dih‖,

where the data oscillation term ηosc is given by (4.5) and CFhΩ is the constant
from the Friedrichs inequality (4.6).

Remark 1. The statement of Theorem 1 deserves several comments that point
out to the results presented later in the text. We typically choose ν in concor-
dance with the theoretical justification (global efficiency) of Theorem 7 below;
see also (7.3c) in the numerical experiments. Local efficiency of ηi,νtotal is proved
in Appendix B for i and ν based on local stopping criteria. Note that the sum
‖di+νh − dih‖ + CFhΩ‖ri+νh ‖ gives an upper bound on the algebraic error (see
Theorem 3 below), whereas the term ‖∇uih + dih‖ can be associated, at least in
the case of a small algebraic error, with the discretization error; see the further
results in Section 6 and Section 7.4.

4.4 Lower bound

Following the ideas in [4, Section 5.1], [51, Section 4.1.1], or [25, Section 3.3],
we bound the total error ‖∇(u − uih)‖ from below using the solution of local
conforming finite element problems.

Let Vh denote the set of mesh vertices with subsets V int
h for interior vertices

and Vext
h for boundary ones. Let ψa ∈ P1(Th)∩H1(Ω) stand for the hat function

associated with a vertex a ∈ Vh (i.e., ψa(a) = 1, ψa(a
′) = 0 for a 6= a′ ∈ Vh).

We denote by Ta the union of elements sharing the vertex a ∈ Vh and by ωa the
corresponding open subdomain.

For each vertex a ∈ Vh, consider the infinite-dimensional space H1
∗ (ωa)

H1
∗ (ωa) ≡

{
v ∈ H1(ωa); (v, 1)ωa

= 0 a ∈ V int
h ,

v ∈ H1(ωa); v = 0 on ∂ωa ∩ ∂Ω a ∈ Vext
h .

(4.11)

For the functions from the space H1
∗ (ωa) the following Poincaré–Friedrichs-type

inequalities hold: there exists a positive constant CPF,ωa
, depending on the

shape of the elements of the patch Ta but not on their diameters, and a positive
constant Ccont,PF,ωa

≡ 1+CPF,ωa
hωa
‖∇ψa‖∞,ωa

(see, e.g., [25, inequality (3.29)])
such that

‖v‖ωa
≤ CPF,ωa

hωa
‖∇v‖ωa

∀v ∈ H1
∗ (ωa), (4.12)

‖∇(ψav)‖ ≤ Ccont,PF,ωa
‖∇v‖ωa

∀v ∈ H1
∗ (ωa). (4.13)

10



For convex patches Ta around the interior vertices a we have CPF,ωa
= 1/π; see,

e.g., [48]. For nonconvex patches we refer to [25, 57] and the references therein.
For a shape-regular mesh hωa

‖∇ψa‖∞,ωa
= O(1) (see, e.g., [15, relation (3.1.43)

on p. 124]), giving Ccont,PF,ωa
= O(1); see the discussion in [25, Remark 3.24].

For each vertex a ∈ Vh, let W a
h be a finite-dimensional subspace of H1

∗ (ωa).
The simplest choice, which we use in numerical experiments in Section 7.4, is
W a
h ≡ Pp (Ta) ∩H1

∗ (ωa). We then have the following bound:

Theorem 2 (Lower bound on the total error). Let u be the weak solution
given by (2.2) and let uih ∈ Vh be its approximation given at the ith algebraic
solver iteration with the corresponding algebraic residual representation rih given
by (2.8). For each vertex a ∈ Vh, let mh,a ∈W a

h be the solution of

(∇mh,a,∇vh)ωa
= (f, ψavh)ωa

− (∇uih,∇(ψavh))ωa
∀vh ∈W a

h .

Set mh ≡
∑

a∈Vh
ψamh,a ∈ V . Then

‖∇(u− uih)‖ ≥ µitotal ≡
∑

a∈Vh
‖∇mh,a‖2ωa

‖∇mh‖
.

Proof. Since mh ∈ V by construction, we have from (4.1)

‖∇(u− uih)‖ = sup
v∈V, ‖∇v‖=1

(∇(u− uih),∇v)

≥ 1

‖∇mh‖
(∇(u− uih),∇mh)

=
1

‖∇mh‖
∑
a∈Vh

(∇(u− uih),∇(ψamh,a))ωa

=
1

‖∇mh‖
∑
a∈Vh

{(f, ψamh,a)ωa
− (∇uih,∇(ψamh,a))ωa

}

=
1

‖∇mh‖
∑
a∈Vh

‖∇mh,a‖2ωa
,

where we have used the fact that ψamh,a ∈ H1
0 (ωa) for all vertices a ∈ Vh and

the definition of mh,a.

Remark 2. The bound µitotal can further be localized using (4.13) as

µitotal ≥

{∑
a∈Vh

‖∇mh,a‖2ωa

}1/2

(d+ 1)1/2Ccont,PF
,

where Ccont,PF ≡ maxa∈Vh Ccont,PF,ωa
. Denoting by VK the vertices of an ele-

ment K and using the fact that each simplex has (d + 1) vertices, this can be
seen from

‖∇mh‖2 =
∑
K∈Th

∥∥∥∥ ∑
a∈VK

(∇(ψamh,a))|K
∥∥∥∥2

K

≤ (d+ 1)
∑
K∈Th

∑
a∈VK

‖∇(ψamh,a)‖2K

= (d+ 1)
∑
a∈Vh

‖∇(ψamh,a)‖2ωa
≤ (d+ 1)C2

cont,PF

∑
a∈Vh

‖∇mh,a‖2ωa
.
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5 Estimating the algebraic error

We will now derive upper bounds on the algebraic error with the help of the
representation of the algebraic residual rih satisfying (2.7) and of the flux re-
construction dih of Section A. We will make links to the bounds of Section 3
derived purely algebraically and to the total error bounds of the previous sec-
tion. Section 5.4 recalls the lower bounds on the algebraic error of Section 3
and proposes a (function-based) construction of a lower bound analogously to
Section 4.4.

5.1 Representation of the algebraic residual

We first propose two piecewise polynomial representations of the algebraic resid-
ual rih satisfying (2.7).

The choice rih ∈ Vh = Pp(Th) ∩ H1
0 (Ω) given by (2.7) requires solving the

linear algebraic system with the global mass matrix

GCi = Ri, Gj` ≡ (ψ`, ψj), j, ` = 1, . . . , N. (5.1)

Then rih = ΨCi = ΨG−1Ri. This representation of the algebraic residual has
been considered in [5, Section 4], where it is called the discrete residual.

Equation (5.1) represents a global problem of the same size as (2.5). In order
to avoid performing a global solve, we introduce a piecewise discontinuous poly-
nomial representation rih ∈ Pp(Th) using mutually independent local problems.
For the ease of notation, the construction below is described for the Lagrangian
basis of Vh. Denote by nj the number of mesh elements forming the support
of the basis function ψj , j = 1, . . . , N . Then, for each element K ∈ Th, define
rih|K ∈ Pp(K), rih|∂Ω = 0, such that

(rih, ψj)K = Rij/nj for ψj nonvanishing on K. (5.2)

Summing (5.2) over all elements K ∈ Th, we see that (2.7) indeed holds. De-
noting by RiK the vector on the right-hand side of (5.2) and by GK the local
mass matrix

(GK)j` ≡ (ψ`, ψj)K for ψ`, ψj nonvanishing on K,

we have
rih|K = Ψ|K(G−1

K RiK) ∀K ∈ Th.

Construction (5.2) requires solving the system of the size 1
2 (p+ 1)(p+ 2) sepa-

rately on each element K ∈ Th.

5.2 Bound using the L2 norm of the residual representa-
tion

Similarly to (4.1), using (2.9) and (4.7), the energy norm of the algebraic error
satisfies

‖∇(uh − uih)‖ = sup
vh∈Vh,‖∇vh‖=1

(∇(uh − uih),∇vh) = sup
vh∈Vh, ‖∇vh‖=1

(rih, vh)

≤ CFhΩ‖rih‖.
(5.3)
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We first discuss the bound (5.3) for the representation rih constructed globally
using (5.1). The discussion shows the relationship of (5.3) to the algebraic
worst-case bounds of Section 3.1 and the role of the Friedrichs inequality con-
stant CFhΩ. In the case (5.1),

‖rih‖2 = (ΨG−1Ri,ΨG−1Ri) = (G−1Ri)TG(G−1Ri) = (Ri)TG−1Ri = ‖Ri‖2G−1 ,

and therefore

‖∇(uh − uih)‖ = ‖U − Ui‖A = ‖Ri‖A−1 ≤ CFhΩ‖Ri‖G−1 . (5.4)

An analogous estimate for the finite volume method is given in [34, Section 7.1],
where it was observed in numerical experiments that this estimate can signifi-
cantly overestimate the algebraic error. We note that

‖Ri‖2A−1 = (Ri,A−1Ri) = (G−1/2Ri,G1/2A−1G1/2G−1/2Ri)

≤ ‖G1/2A−1G1/2‖ · ‖G−1/2Ri‖2 = ‖G1/2A−1G1/2‖ · ‖Ri‖2G−1 .
(5.5)

Because (5.4) holds also for the special choice of Ri giving the equality in (5.5)

(when G−1/2Ri is collinear with the eigenvector of G1/2A−1G1/2 corresponding
to its largest eigenvalue), we have

‖G1/2A−1G1/2‖ ≤ (CFhΩ)2. (5.6)

This means that the reciprocal of the squared Friedrichs inequality constant
(CFhΩ)−2 (and through that the related smallest eigenvalue of the continuous
operator; see, e.g., [50, Section 18]) gives a computable lower bound on the

smallest eigenvalue of the (preconditioned) matrix G−1/2AG−1/2 (cf. also [33],
[2, Section 4.2]),

1

(CFhΩ)2
≤ min
λ∈sp(G−1/2AG−1/2)

λ. (5.7)

The local construction (5.2) leads to

‖∇(uh − uih)‖ ≤ CFhΩ

( ∑
K∈Th

‖rih‖2K

)1/2

= CFhΩ

( ∑
K∈Th

‖RiK‖2G−1
K

)1/2

. (5.8)

There holds

‖∇(uh − uih)‖ ≤ CFhΩ‖Ri‖G−1 ≤ CFhΩ

( ∑
K∈Th

‖RiK‖2G−1
K

)1/2

, (5.9)

i.e., the bound (5.8) is weaker than the bound (5.4). The second inequality
in (5.9) can be proved, e.g., using the results well-established in the domain
decomposition methods; see, e.g., [20, Section 7.8]. A purely algebraic proof is
given in [44, Section 5.2].

5.3 Upper bound using additional algebraic iterations

Analogously to Sections 3.2 and 4.3, we can bound the algebraic error using
ν additional iteration steps. From (2.9), (4.10), and the Green theorem, for
vh ∈ Vh,

(∇(uh − uih),∇vh) = (rih, vh) = (dih − di+νh ,∇vh) + (ri+νh , vh). (5.10)
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Thus the following upper bound on the algebraic error immediately follows from
(5.3):

Theorem 3 (Upper bound on the algebraic error). Let the assumptions of
Theorem 1 be satisfied. Then

‖∇(uh − uih)‖ ≤ ηi,νalg ≡ ‖d
i+ν
h − dih‖+ CFhΩ‖ri+νh ‖.

Remark 3. The upper bound of Theorem 3 on the algebraic error allows evalua-
tion of the local indicators ηi,νalg,K ≡ ‖d

i+ν
h −dih‖K +CFhΩ‖ri+νh ‖K for the mesh

elements K ∈ Th, with subsequently using these indicators for estimating the
local distribution of the algebraic error ‖∇(uh−uih)‖K . This can indeed be very
useful in localization of the significant components of the algebraic error over
the discretization domain Ω, which represents an important problem; see [45]
and the numerical illustrations in Section 7.2.

In order to show the relationship between (5.10) and (3.2), we note that,
using (2.9),

(dih − di+νh ,∇vh) = (rih − ri+νh , vh) = (∇(ui+νh − uih),∇vh),

so that

‖Ui+ν − Ui‖A = sup
vh∈Vh, ‖∇vh‖=1

(∇(ui+νh − uih),∇vh) ≤ ‖di+νh − dih‖.

Employing also (5.3) for i + ν in place of i, the upper bound of Theorem 3
appears weaker than the algebraic bound (3.2),

‖U − Ui‖A ≤ ‖Ui+ν − Ui‖A + ‖Ri+ν‖A−1 ≤ ‖di+νh − dih‖+ ‖Ri+ν‖A−1 .

The fluxes dih (and di+νh ) are, however, essential for bounding the total error
in Theorem 1 and, importantly, the algebraic estimator in Theorem 1 indeed
bounds the algebraic error as we see from Theorem 3.

5.4 Lower bound

As seen in Section 3.2 (see (3.3)–(3.5)), a lower bound on the algebraic error is
given by

(1− γ)‖Ui+ν − Ui‖A ≤ ‖U − Ui‖A
whenever CFhΩ‖ri+νh ‖ ≤ γ‖Ui+ν−Ui‖A with a parameter 0 < γ < 1. For the CG

method, the estimator µCG,i,ν
alg of (3.9) should be used instead. Alternatively, we

can construct (cf. [46, Theorem 5.2]) a lower bound using homogeneous Dirichlet
problems on patches ωa, a ∈ Vh, (or larger subdomains of Ω):

Theorem 4 (Lower bound on the algebraic error). Let the assumptions of
Theorem 2 be satisfied. For each vertex a ∈ Vh, let mh,a ∈ Vh ∩H1

0 (ωa) be the
solution of

(∇mh,a,∇vh)ωa
= (f, vh)ωa

− (∇uih,∇vh)ωa
∀vh ∈ Vh ∩H1

0 (ωa).

Set mh ≡
∑

a∈Vh
mh,a ∈ Vh. Then

‖∇(uh − uih)‖ ≥ µialg ≡
∑

a∈Vh
‖∇mh,a‖2ωa

‖∇mh‖
.
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Proof. Using (5.3) and the fact that mh ∈ Vh,

‖∇(uh − uih)‖ ≥ 1

‖∇mh‖
(∇(uh − uih),∇mh) =

∑
a∈Vh

‖∇mh,a‖2ωa

‖∇mh‖
.

6 Estimating the discretization error and con-
struction of stopping criteria

A posteriori estimation of the discretization error ‖∇(u − uh)‖ is rather com-
plicated as both u and uh are unknown. The standard approaches proposed in
literature are based on additional assumptions or properly justified heuristics
on the algebraic error. Using

‖∇(u− uih)‖2 = ‖∇(u− uh)‖2 + ‖∇(uh − uih)‖2 (6.1)

that follows from the Galerkin orthogonality (2.4) and the results of the two
previous sections, we give upper and lower bounds on the discretization error.
We then propose global and local stopping criteria for a linear algebraic solver.
In distinction with the previous works [34, Section 6.1] or [24, Section 3.3],
the new stopping criteria guarantee that the iterations will not be stopped
prematurely.

6.1 Lower bound

The first result follows easily from (6.1) and from the bounds of Theorems 2
and 3:

Theorem 5 (Lower bound on the discretization error). Let the assumptions of
Theorems 2 and 3 hold. Let µitotal > ηi,νalg. Then

‖∇(u− uh)‖ ≥ µi,νdiscr ≡
[(
µitotal

)2 − (ηi,νalg

)2
]1/2

.

In practice the assumption µitotal > ηi,νalg may not be satisfied in the iterations

where ‖∇(uh − uih)‖ ≈ ‖∇(u− uih)‖. The accuracy of the bound in Theorem 5

becomes good from the point where ηi,νalg gets small enough; see Section 7.4 for
numerical illustrations.

6.2 Upper bound

One can similarly combine the upper bound on the total error of Theorem 1 and
the lower bound on the algebraic error of Theorem 4 (note that ηi,νtotal ≥ µialg):

Theorem 6 (Upper bound on the discretization error). Let the assumptions of
Theorems 1 and 4 hold. Then

‖∇(u− uh)‖ ≤ ηi,νdiscr ≡
[(
ηi,νtotal

)2

−
(
µialg

)2]1/2

.

When the CG method is used for solving the algebraic system (2.5), µCG,i,ν
alg of

(3.9) is suggested to be used instead of µialg above.
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6.3 Stopping criteria balancing the error components

Stopping criteria for algebraic iterative solvers typically aim at stopping the
iterations when the algebraic error does not substantially contribute to the total
error. Using the (global) energy norm, it seems natural to require that

‖∇(uh − uih)‖ ≤ γalg‖∇(u− uh)‖ , (6.2a)

where γalg > 0 is a prescribed tolerance. As mentioned above, the spatial
distribution of the discretization error and of the algebraic error can be very
different from each other and the criterion (6.2a) may not be descriptive; see [45].
Therefore one may rather require that

‖∇(uh − uih)‖ωa
≤ γalg,ωa

‖∇(u− uh)‖ωa
∀a ∈ Vh. (6.2b)

The stopping criteria proposed in [34, Section 6.1] or [24, Section 3.3] re-
placed ‖∇(uh − uih)‖ and ‖∇(u− uh)‖ above by their computable estimates of

the form (in the present setting) ηi,νalg and ‖∇uih + dih‖. Such criteria seem to
work well in practice and allow to prove efficiency of the total error bound (see
also Theorem 7 below), but they do not guarantee (6.2a) and there is a danger
that the algebraic iterations can be stopped prematurely.

Using the upper bound on the algebraic error ηi,νalg of Theorem 3 and the

lower bound on the discretization error µi,νdiscr of Theorem 5, we propose the
stopping criterion

ηi,νalg ≤ γalgµ
i,ν
discr (6.3)

that guarantees balancing the error components while implying the validity of
(6.2a). Note that (6.3) is equivalent to requesting

ηi,νalg ≤ γ̃algµ
i
total with γ̃alg ≡ γalg/(1 + γ2

alg)1/2 < 1.

Following [34, equation (6.3)] or [24, equations (3.13)–(3.15)] a local stopping
criterion that mimics (6.2b) can be set as

‖di+νh − dih‖ωa
+ CFhΩ‖ri+νh ‖ωa

≤ γ̃alg,ωa

‖∇mh,a‖ωa

Ccont,PF,ωa

∀a ∈ Vh. (6.4)

Unfortunately, the error estimator of Theorem 3 is not guaranteed to locally
bound the algebraic error from above, so that (6.2b) may not be, in general,
satisfied. Nevertheless, the criterion (6.4) is sufficient to prove the local efficiency
of the total error estimator ηi,νtotal (see Theorem 8 in Appendix B below) and it
seems to ensure the local balance of the algebraic and discretization errors; see
numerical experiments in Section 7.5.

7 Numerical illustrations

For numerical illustration we use two Poisson test problems that were consid-
ered, e.g., in [37, 1].
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Figure 1: Left: solution (7.1) of the peak problem. Right: solution (7.2) of the
L-shape problem.

Peak problem The model problem (2.1) with the square domain Ω ≡ (0, 1)×
(0, 1) and the right-hand side f chosen so that the solution u is given by

u(x, y) = x(x− 1)y(y − 1) exp
(
−100 (x− 0.5)

2 − 100 (y − 0.117)
2
)
, (7.1)

illustrated in Figure 1 (left). In the experiments, we discretize the problem
on an adaptively refined mesh with 3 463 nodes using the piecewise quadratic
polynomials. The corresponding algebraic system has 13 633 unknowns.

L-shape problem We take Ω ≡ (−1, 1)× (−1, 1) \ [0, 1]× [−1, 0] and solve

−∆u = 0 in Ω, u = uD on ∂Ω,

where the (inhomogeneous) Dirichlet boundary condition uD is chosen so that
the solution u is in polar coordinates (r, θ) given by

u(r, θ) = r2/3 sin

(
2

3
θ

)
, (7.2)

illustrated in Figure 1 (right). The extension of our estimates to uD 6= 0 is
possible following [22]. In particular, the flux reconstruction of Appendix A and
the upper bound of Theorem 3 for the algebraic error remain unchanged. In the
upper bound (4.9) and in Theorem 1, an additional term corresponding to the
approximation of uD by a piecewise polynomial function is added. This term is
neglected in the experiments. We discretize the problem on an adaptively refined
mesh with 628 nodes using the piecewise cubic polynomials. The corresponding
algebraic system has here 5 098 unknowns.

The experiments are performed in Matlab R2014b with Partial Differential
Equation Toolbox. We use our implementation of arbitrary degree conforming
finite element method and of Raviart–Thomas–Nédélec spaces. We set p′ = p,
i.e., the reconstructed fluxes dih are of the same order as the FEM approximation
uih. The algebraic system (2.5) is solved using the CG method preconditioned
by the incomplete Cholesky decomposition with zero fill-in (Matlab ichol com-
mand) and starting with the zero initial guess. The exact solutions of the
algebraic systems are approximated using the build-in Matlab “backslash” di-
rect solver; in the performed numerical experiments, the algebraic error in this
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approximate solution is negligible. We point out that the experiments do not
aim at the preconditioning tuned to the problem, but at demonstrating fairly
the issues that might be encountered in practical use of the presented bounds.

The initial (uniform) meshes are generated using the Matlab Delaunay tri-
angulation (initmesh command). For generating the sequence of adaptively
refined meshes we, for the reproducibility of the results, refine according to
the actual distribution of the discretization error, i.e., we compute (up to a
quadrature error that is in the given experiments negligible) the discretization
error ‖∇(u − uh)‖K on each element of the triangulation (recall that uh is for
the purpose of the experiments sufficiently accurately approximated using the
direct solution of the algebraic system). We mark the smallest subset of ele-
ments that contributes to the squared energy norm of the discretization error
by at least 25%. This requires ordering the elements according to the error size,
which is in practice usually avoided, e.g., by proceeding as in [23, Section 5.2]
or [54, pp. 10–11]. The refinement of the mesh uses the newest-vertex-bisection
algorithm implemented in the Matlab refinemesh command.

7.1 Algebraic error: the cost of the additional iterations
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Figure 2: Peak problem: PCG convergence and the values of ν1, ν2, ν3 deter-
mined by (7.3) for different choices of γrem.

We first compare the cost of the upper bounds on the algebraic error of
Sections 3.2 and 5.3 in terms of the number ν of the additional algebraic iter-
ations. For the given tolerance γrem = 1, 0.5, 0.1, we identify ν1, ν2, and ν3 as
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the smallest values satisfying

‖Ri+ν1‖A−1 ≤ γrem‖Ui+ν1 − Ui‖A, (7.3a)

‖A−1‖1/2 · ‖Ri+ν2‖ ≤ γrem‖Ui+ν2 − Ui‖A, (7.3b)

CFhΩ‖ri+ν3h ‖ ≤ γrem‖di+ν3h − dih‖, (7.3c)

for each iteration step i. The number of additional iterations ν1 of (7.3a) is
always smaller than ν2, ν3. We recall, however, that ‖Ri+ν1‖A−1 = ‖U−Ui+ν1‖A
is not available in practice. The criterion (7.3b) corresponds to the worst-case
algebraic bound for ‖Ri+ν2‖A−1 described in Section 3.1; see (3.6). For the
purpose of the present study we (tightly) approximate the norm ‖A−1‖ using
the Matlab eigs command estimating the smallest eigenvalue of A. Finally, the
criterion (7.3c) corresponds to the computable upper bound of Theorem 3 on
the algebraic error based on the flux reconstruction.
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Figure 3: L-shape problem: PCG convergence and the values of ν1, ν2, ν3

determined by (7.3) for different choices of γrem.

In the experiments (see Figures 2 and 3) we observe relatively large values of
ν2 and ν3, with ν2 ≤ ν3. The large value of ν3 indicates a possible nonnegligible
cost of the upper bound of Theorem 3 (and also of the upper bound of Theorem 1
on the total error). The comparison with ν1 reveals that there may be a room
for further improvements. However, as demonstrated below, for the cost of the
additional ν3 iterations, we get in our experiments upper bounds for the total
and algebraic errors with very favorable effectivity indices and, in particular, a
remarkably accurate information on the local distribution of these errors.

We also comment on the difference between the upper bound on the alge-
braic error (5.8) corresponding to the locally constructed representation of the
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algebraic residual and the bound (5.4) corresponding to the global construc-
tion of rih; see the inequality (5.9). In our numerical experiments, the relative
overestimation (∑

K∈Th ‖R
i
K‖2G−1

K

)1/2 − ‖Ri‖G−1

‖Ri‖G−1

is below 18% (peak problem), respectively below 12% (L-shape problem).

7.2 Algebraic error: effectivity indices and localization

In this section we study how far the upper bounds on the algebraic error are
from the actual error. For the ease of notation, let, corresponding to the bounds
of Sections 3.2 and 5.3,

ηi,ν1alg,1 ≡ ‖U
i+ν1 − Ui‖A + ‖Ri+ν1‖A−1 , (7.4a)

ηi,ν2alg,2 ≡ ‖U
i+ν2 − Ui‖A + ‖A−1‖1/2 · ‖Ri+ν2‖, (7.4b)

ηi,ν3alg,3 ≡ ‖d
i+ν3
h − dih‖+ CFhΩ‖ri+ν3h ‖. (7.4c)

Here ν1, ν2, and ν3 are determined by (7.3). For these bounds, the effectivity
indices

Iieff(ηi,ν•alg,•) ≡
ηi,ν•alg,•

‖U − Ui‖A
(7.5)

are given in Figures 4–6. They confirm our expectation (see (3.4) and (3.5))
that Iieff(ηi,ν•alg,•) ≈ 1+γrem, so that, for the cost of ν• additional iterations, we get
the estimates with the efficiency controlled by the parameter γrem. In Figure 5,
we give additionally the effectivity index

Iieff(µCG,i,ν
alg ) ≡

µCG,i,ν
alg

‖U − Ui‖A

that illustrates the efficiency of the lower bound µCG,i,ν
alg (see (3.9)) from [55, 56],

with the values of ν fixed for the peak and the L-shape problems to ν = 5,
10 and 2, 5 respectively. We note that Iieff(µCG,i,ν

alg ) strongly depends on the
decrease of the energy norm of the algebraic error between the iteration steps
i and i + ν. With a more powerful preconditioner resulting in a faster PCG
convergence, analogous results will be achieved for much smaller number of
additional algebraic iterations.

As discussed in Remark 3, the flux-reconstruction-based upper bound of
Theorem 3 allows evaluating the local indicators ‖di+νh − dih‖K + CFhΩ‖ri+νh ‖K
and estimating the local distribution of the algebraic error ‖∇(uh − uih)‖K . As
we can see in Figures 7 and 8, the local indicators provide a remarkably accurate
description of the local distribution of the algebraic error. We observed similarly
good results also in other iteration steps, choices of γrem = 0.1, 1, and other test
problems. Please note that the algebraic error can be localized in parts of the
discretization domain Ω where the discretization error can be small, see [45]
and Figures 10 and 11 below. We point out that the algebraic error does not
equilibrate over the domain using the adaptive mesh refinement.
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Figure 4: Effectivity indices Iieff(ηi,ν•alg,•) (7.5) of the algebraic error upper
bounds (7.4) in the peak (left) and L-shape problems (right). The values of
ν1, ν2, ν3 are determined by (7.3) with γrem = 1. Here ηi,νkalg,k is simply denoted
as ηk.
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Figure 5: Effectivity indices Iieff(ηi,ν•alg,•) (7.5) of the algebraic error upper

bounds (7.4) and the effectivity index Iieff(µCG,i,ν
alg ) of the lower bound µCG,i,ν

alg

with the fixed values of ν in the peak (left) and L-shape problems (right). The
values of ν1, ν2, ν3 are determined by (7.3) with γrem = 0.5. Here ηi,νkalg,k and

µCG,i,ν
alg are simply denoted as ηk and µν , respectively.
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Figure 6: Effectivity indices Iieff(ηi,ν•alg,•) (7.5) of the algebraic error upper
bounds (7.4) in the peak (left) and L-shape problems (right). The values of
ν1, ν2, ν3 are determined by (7.3) with γrem = 0.1. Here ηi,νkalg,k is simply de-
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Figure 7: Peak problem, iteration i = 137: elementwise distribution of the
algebraic error ‖∇(uh − uih)‖K and the local algebraic error indicators ‖di+νh −
dih‖K + CFhΩ‖ri+νh ‖K . The value of ν, ν = 48, is determined by (7.3c) with
γrem = 0.5.
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Figure 8: L-shape problem, iteration i = 39: elementwise distribution of the
algebraic error ‖∇(uh − uih)‖K and the local algebraic error indicators ‖di+νh −
dih‖K + CFhΩ‖ri+νh ‖K . The value of ν, ν = 18, is determined by (7.3c) with
γrem = 0.5.

22



7.3 Bounding and localizing the total error

We now illustrate the upper bound ηi,νtotal of Theorem 1. Figure 9 depicts the
total error ‖∇(u−uih)‖, the upper bound, and the error indicators ‖∇uih+dih‖,
‖di+νh −dih‖, and CFhΩ‖ri+νh ‖. We observe that ηi,νtotal tightly follows the actual
value of the error. The parameter γrem in (7.3c) is set to 0.5.
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Figure 9: Total error ‖∇(u − uih)‖, the upper bound of Theorem 1, and the
error indicators ‖∇uih + dih‖, ‖d

i+ν
h − dih‖, and CFhΩ‖ri+νh ‖ in the peak (left)

and L-shape problems (right). The value of ν is determined by (7.3c) with
γrem = 0.5.
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Figure 10: Peak problem: elementwise distribution of the total error
‖∇(u− uih)‖K and the local error indicators ηosc,K + ‖di+νh − dih‖K +
CFhΩ‖ri+νh ‖K + ‖∇uih + dih‖K in the iteration i = 137 with ν = 48.

In Figures 10 and 11 we give the comparison of the local distribution of the
total error ‖∇(u−uih)‖K and the sum ηosc,K +‖di+νh −dih‖K +CFhΩ‖ri+νh ‖K +
‖∇uih + dih‖K of the local indicators. Here the iteration step i and the num-
ber ν of additional iterations are set as the smallest values determined by the
conditions (B.3a)–(B.3b) as described in Appendix B with γalg = γrem = 0.5.

7.4 Estimating the discretization error

We illustrate the discretization error bounds of Section 6. In Figures 12 and 13
we plot these bounds together with the estimator ‖∇uih + dih‖ that we have
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Figure 11: L-shape problem: elementwise distribution of the total er-
ror ‖∇(u− uih)‖K and the local error indicators ηosc,K + ‖di+νh − dih‖K +
CFhΩ‖ri+νh ‖K + ‖∇uih + dih‖K in the iteration i = 39 with ν = 18. We plot in
both figures the part [−0.02, 0.02]× [−0.02, 0.02] of the discretization domain Ω.

identified with the discretization error in Theorem 1. As in the previous exper-
iments, the number ν of additional iterations is determined by (7.3c) with γrem

= 0.5.
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Figure 12: Peak problem: the discretization error ‖∇(u − uh)‖, the estimate

‖∇uih + dih‖, the upper bound ηi,νdiscr of Theorem 6 with µCG,i,ν
alg , and the lower

bound µi,νdiscr of Theorem 5 (left); the efficiency of the estimates (right).

Estimating the discretization error via Theorems 5 and 6 is naturally in-
accurate in the iterations where the energy norm of the total error is mostly
dominated by the algebraic error; cf. upper left parts of Figures 2 and 3. When
the algebraic error drops below the discretization error, our upper and lower
bounds get close to each other and provide a tight estimate for the discretiza-
tion error.

In all performed experiments with the Poisson model problem (here we
present just a small sample), we have observed that ‖∇uih+dih‖ > ‖∇(u−uh)‖,
i.e., the estimate ‖∇uih + dih‖ gave an upper bound on the actual discretiza-
tion error. However, an extrapolation from these observations can lead to false
statements. As demonstrated below in Section 7.6 on the test problem with
inhomogeneous diffusion tensor, the component associated with the discretiza-
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Figure 13: L-shape problem: the discretization error ‖∇(u− uh)‖, the estimate

‖∇uih + dih‖, the upper bound ηi,νdiscr of Theorem 6 with µCG,i,ν
alg , and the lower

bound of Theorem 5 (left); the efficiency of the estimates (right).

tion error drops, in some iterations, below the energy norm of the discretization
error. This emphasizes a need for guaranteed bounds on the errors and a need
for mathematically justified stopping criteria that ensure balancing the error
components as in (6.2).

7.5 Local stopping criteria and the spatial distribution of
errors

We use the L-shape problem to illustrate that the local stopping criterion (6.4)
prevents the algebraic error from dominating locally, as it can happen under
the global criteria; cf. the numerical experiments of [45]. We consider the
approximation u47

h determined by the global stopping criterion (6.3) with γalg ≡
0.5 (the value of ν = 20 is determined by (7.3c) with γrem ≡ 0.5), and the
approximation u79

h satisfying the proposed local stopping criterion (6.4) with
γ̃alg,ωa

≡ γalg,ωa
/(1+γ2

alg,ωa
)1/2, γalg,ωa

≡ γalg, ∀a ∈ Vh (the number ν = 20 of the
additional algebraic iterations is here determined by (B.8a) with γrem,K ≡ γrem,
∀K ∈ Th).

Figure 14 depicts the differences u−u47
h , u−u79

h and uh−u47
h , uh−u79

h that
visualize the total and algebraic errors respectively. We note that the algebraic
part uh − u47

h substantially affects the shape of u − u47
h in most of the domain

Ω. This is not the case for u − u79
h as |u(x) − uh(x)| ≥ 10−7 in most of the

domain Ω.

7.6 Numerical results for a problem with inhomogeneous
diffusion tensor

In order to further demonstrate a possible use of the presented methodology for
obtaining the bounds on the total error and its components, we consider also the
test problem with inhomogeneous diffusion tensor proposed in [43, Section 5.3]
(based on the formulas published in [35]),

−∇ · (S∇u) = 0 in Ω ≡ (−1, 1)× (−1, 1), u = uD on ∂Ω, (7.6)
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Figure 14: L-shape problem: the difference u− u47
h counting for the total

error of the approximation u47
h determined by the global stopping criterion (6.3)

(upper left), its analogy u− u79
h for the approximation u79

h determined by the
local stopping criterion (6.4) (upper right), the algebraic part uh − u47

h (bottom
left), and its analogy uh − u79

h (bottom right). Vertical axes are scaled by 10−5,
10−5, 10−5, and 10−9, respectively.

where the domain Ω is divided into four subdomains Ωi corresponding to the
axis quadrants numbered counterclockwise. The diffusion tensor S is a piece-
wise constant multiple of the identity matrix, S|Ωi

≡ siI, with s1 = s3 ≈
161.4, s2 = s4 = 1. These values and the Dirichlet boundary condition uD
are used such that the solution u of (7.6) exhibits a singularity at the ori-
gin, u ∈ H1.1−ε(Ω), ∀ε > 0. We discretize the problem using piecewise affine
functions on adaptively refined mesh with 8040 nodes. The adaptive mesh re-
finement and the setting for iterative algebraic solver are analogous to those
described above for peak and L-shape test problems. The stopping criteria are
given by (B.3) with with γalg = γrem = 0.5.

The left part of Figure 15 gives, analogously to Figure 9, the energy norm of
the total error ‖S1/2∇(u−uih)‖, its upper bound ηi,νtotal of Theorem 1 modified for
the test problem (7.6), and the corresponding error indicators ‖S1/2∇uih + S−1/2dih‖,
‖S−1/2(di+νh − dih)‖, and CFhΩc

−1/2
S ‖ri+νh ‖. Here cS denotes a uniform lower

bound on the smallest eigenvalue of S in Ω; in the considered test problem,
cS = 1. In this experiment, we can in some iterations observe

‖S1/2∇uih + S−1/2dih‖ < ‖S1/2∇(u− uh)‖,

i.e. the indicator ‖S1/2∇uih + S−1/2dih‖ associated with the discretization error
‖S1/2∇(u−uh)‖ does not provide, in general, its upper bound; cf. the discussion
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in Sections 6.3 and 7.4. The right part of Figure 15 depicts the effectivity indices

ηi,νtotal

‖S1/2∇(u− uih)‖
,

‖S−1/2(di+νh − dih)‖+ CFhΩc
−1/2
S ‖ri+νh ‖

‖S1/2∇(uh − uih)‖
(7.7)

of the upper bounds on the total and algebraic errors, respectively. We can see
a similar behavior as for the Laplace operator; cf. Figure 9. Figure 16 gives,
analogously to Figures 7–8, the local distribution of the algebraic error and the
corresponding local error indicators. The local indicators provide again a very
accurate description of the local distribution of the algebraic error; however, the
evaluation of the error estimators is very costly because of ν = 50 additional
algebraic iterations.
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Figure 15: Problem with inhomogeneous diffusion tensor: total error ‖S1/2∇(u−
uih)‖, the upper bound ηi,νtotal of Theorem 1 modified for the test prob-
lem (7.6), and the corresponding error indicators ‖S1/2∇uih + S−1/2dih‖,
‖S−1/2(di+νh − dih)‖, and CFhΩc

−1/2
S ‖ri+νh ‖ (left); effectivity indices (7.7) of the

upper bounds (right).
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Figure 16: Problem with inhomogeneous diffusion tensor, iteration i = 50:
elementwise distribution of the algebraic error ‖S1/2∇(uh−uih)‖K and the local

algebraic error indicators ‖S−1/2(di+νh −dih)‖K+CFhΩc
−1/2
S ‖ri+νh ‖K . The value

of ν, ν = 50, is determined by (7.3c) with γrem = 0.5.
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8 Conclusions and open questions

We have exposed in this paper in detail the methodology of H(div,Ω)-conforming
flux and H1

0 (Ω)-conforming residual reconstructions for estimating total, alge-
braic, and discretization errors for finite element discretizations and iterative al-
gebraic solvers. The proposed upper and lower bounds are guaranteed and they
contain no undetermined constants. We have used them for proposing stopping
criteria for algebraic solvers that balance the algebraic and discretization errors
and avoid stopping the algebraic iterations prematurely. As demonstrated on
the model problems, they can practically localize very well the distribution of
all errors and they can also avoid a possible local dominance of the algebraic
error. The results provide a rigorous background for error estimators that can
be extended to various problems and discretization techniques, including non-
linearity; see [24] for nonlinear problems and [59, 13] for unsteady nonlinear
problems in an industrial application.

One part of the cost to be paid consists in a possibly nonnegligible amount of
additional algebraic iterations that need to be performed. We have studied and
reported this cost on two model examples in a rather unfavorable setting without
a powerful preconditioner that would ensure very fast convergence and decrease
this part of the cost to minimum. We believe that the presented methodology
can be useful for many practical problems. Nevertheless, finding less costly
alternatives within the presented framework is highly desirable and it represents
one of our active research directions.

Acknowledgment. The authors wish to thank Ivana Pultarová, in particular
for pointing out to us the inequality (5.9) including its proof. The authors are
also grateful to anonymous referees for their numerous helpful comments.

A Details of the flux reconstruction

In this appendix we present the construction of the flux dih. It follows [24,
Section 6.2.4] (see also [18, 10]) with the difference in the construction of the
algebraic residual representation rih satisfying (2.7), which allows to bound the
algebraic error in Theorem 3.

For K ∈ Th, let RTNp′(K) ≡ [Pp′(K)]d+xPp′(K) be the Raviart–Thomas–
Nédélec finite element space of order p′ ≥ 0. We set

RTN−1
p′ (Th) ≡

{
vh ∈ [L2(Ω)]d,vh|K ∈ RTNp′(K) ∀K ∈ Th

}
and RTNp′(Th) ≡ RTN−1

p′ (Th)∩H(div,Ω). We use a similar notation for these

spaces on various patches. Let RTNN,0
p′ (Ta) be the subspace of RTNp′(Ta) with

zero normal flux through the boundary ∂ωa for a ∈ V int
h and through ∂ωa\∂Ω

for a ∈ Vext
h (corresponding to a homogeneous Neumann condition). Let P∗p′(Ta)

be spanned by piecewise p′th order polynomials on Ta, with zero mean on Ta
when a ∈ V int

h .
For all vertices a ∈ Vh, we first solve the following mixed finite element

problems on the patches Ta: find dih,a ∈ RTNN,0
p′ (Ta) and qh,a ∈ P∗p′(Ta), p′ = p
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or p′ = p+ 1, such that

(dih,a,vh)ωa
− (qh,a,∇·vh)ωa

= −(ψa∇uih,vh)ωa
, (A.1a)

(∇·dih,a, χh)ωa
= (fhψa −∇uih · ∇ψa, χh)ωa

− (rihψa, χh)ωa
(A.1b)

for all (vh, χh) ∈ RTNN,0
p′ (Ta)× P∗p′(Ta). Then we set

dih ≡
∑
a∈Vh

dih,a. (A.1c)

We typically choose fh to be the L2(Ω)-orthogonal projection of f onto the
space of the piecewise polynomials of degree p′, and rih ∈ Pp(Th); see Sec-
tion 5.1. Since ψa ∈ Vh, (2.8) gives the Neumann compatibility condition of the
problem (A.1a)–(A.1b),

(∇uih,∇ψa)ωa
= (f, ψa)ωa

− (rih, ψa)ωa
.

Consequently, we can in (A.1b) take all test functions χh ∈ Pp′(Ta), which allows
to show that dih given by (A.1) satisfies (4.2), i.e., that ∇·dih = fh − rih holds.
Indeed, let K ∈ Th and let vh ∈ Pp′(K) be fixed. Since

∑
a∈Vh

ψa|K = 1 and∑
a∈Vh

∇ψa|K = 0 (ψa form a partition of unity on K), we infer

(∇·dih, vh)K =
∑
a∈Vh

(∇·dih,a, vh)K =
∑
a∈Vh

[
(fhψa −∇uih · ∇ψa, vh)K − (rihψa, vh)K

]
= (fh, vh)K − (rih, vh)K ,

and (4.2) is proved as fh − rih ∈ Pp′(Th).

We now briefly comment on the algorithmic construction of dih in (A.1).

Denote by by Φa the basis of RTNN,0
p′ (Ta), and by X̃a the basis of P∗p′(Ta), Then

we construct dih as

dih =
∑
a∈Vh

ΦaD
i

a,

where D
i

a forms the part of the vector Dia solving the algebraic form of (A.1a)–
(A.1b)

KaD
i
a = Eia, Ka =

[
Ka −K̃a(
K̃a

)T
0

]
, Dia =

[
D
i

a

Dia

]
. (A.2)

Here
(
Ka

)
kj

= (φj , φk)ωa
and

(
K̃a

)
k`

= (χ̃` , ∇·φk)ωa
with φj ,φk ∈ Φa,

χ̃` ∈ X̃a. The right-hand side vector is given as

Eia = Ea,f − Ea,ui
h
− Ea,rih

=

[
0

Ea,f

]
−

[
Ea,ui

h

Ea,ui
h

]
−

[
0

Ea,rih

]
,

where

(Ea,ui
h
)k = (ψa∇uih,φk)ωa

, φk ∈ Φa,

(Ea,f )` = (fψa, χ̃`)ωa
, (Ea,ui

h
)` = (∇uih · ∇ψa, χ̃`)ωa

, (Ea,rih
)` = (rihψa, χ̃`)ωa

, χ̃` ∈ X̃a.

29



Since uih = ΨUi, where, recall, Ψ is the basis of Vh, we have uih|ωa
= ΨaU

i
a for

Ψa ⊂ Ψ a subset of basis functions that are nonvanishing on ωa and Uia the
associated entries of Ui. Then

Ea,ui
h

= Ea,Ψa
Uia, Ea,Ψa

=

[
Ea,Ψa

Ea,Ψa

]
,

(
Ea,Ψa

)
kj

= (ψa∇ψj ,φk)ωa
,(

Ea,Ψa

)
`j

= (∇ψj · ∇ψa, χ̃`)ωa
,

where ψj ∈ Ψa, φk ∈ Φa, χ̃` ∈ X̃a. Similarly, denoting by Xa the basis of Pp(Ta),
we have for the coefficient vector R̂ia such that rih|ωa

= XaR̂ia,

Ea,rih
= Ea,Xa

R̂ia, Ea,Xa
=

[
0

Ea,Xa

]
,

(
Ea,Xa

)
`j

= (χjψa, χ̃`)ωa
,

where χj ∈ Xa, χ̃` ∈ X̃a. Consequently, the vector Dia can be assembled as

Dia = K−1
a Ea,f −

(
K−1

a Ea,Ψa

)
Uia −

(
K−1

a Ea,Xa

)
R̂ia. (A.3)

This means that we can solve the system with Ka only once with multiple right-
hand sides [Ea,f ,Ea,Ψa

,Ea,Xa
] prior the start of the iterative solution of (2.5)

and, at any iteration i, get the local coefficients D
i

a of the flux reconstruction dih
simply by matrix-vector multiplication and summing the vectors. This is par-
ticularly appealing when the error estimator is evaluated many times (e.g. when
many iterations of the algebraic solver are performed). Note that assembling
Ka, Ea,f , Ea,Ψa

, Ea,Ψa
, a ∈ Vh, and solving the systems corresponding to (A.3)

can be done in parallel (indeed, the individual patch problems (A.2) are mu-
tually independent). Also, this can be done independently of assembling the
system (2.5).

B Efficiency of the total error bound

We prove in this appendix the global and local efficiency of the upper bound of
Theorem 1, which follows and extends the results in [24, 25, 46]. To simplify
the presentation, we require that the source term f is piecewise polynomial,
f ∈ Pp′−1(Th). Consequently, we choose fh = f , and the oscillation term van-
ishes, ηosc = 0.

The following lemma extends [14, Theorem 3.1] and [9, p. 1191] (see also [25,
Lemma 3.12]) to the inexact algebraic solver case considered in this paper.
Recall the space H1

∗ (ωa) introduced in (4.11).

Lemma 1. Let a ∈ Vh and let ma ∈ H1
∗ (ωa) be the solution of

(∇ma,∇v)ωa
= (f, ψav)ωa

−
(
∇uih,∇(ψav)

)
ωa
−
(
rih, ψav

)
ωa

∀v ∈ H1
∗ (ωa).

(B.1)
Then there holds

‖∇ma‖ωa
≤ Ccont,PF,ωa

(
‖∇(u− uih)‖ωa

+ ‖di+νh − dih‖ωa

)
+CPF,ωa

hωa
‖ri+νh ‖ωa

.

Proof. From (B.1) and since, for v ∈ H1
∗ (ωa), ψav ∈ H1

0 (ωa), we have, employ-
ing (2.2),

(∇ma,∇v)ωa
=
(
∇(u− uih),∇(ψav)

)
ωa
−
(
rih, ψav

)
ωa
.

30



The Cauchy–Schwarz inequality and the bound (4.13) give(
∇(u− uih),∇(ψav)

)
ωa
≤ ‖∇(u− uih)‖ωa

Ccont,PF,ωa
‖∇v‖ωa

.

Using (4.10), the Cauchy–Schwarz inequality, and (4.12),(
rih, ψav

)
ωa

=
(
∇·di+νh −∇·dih + ri+νh , ψav

)
ωa

=
(
− di+νh + dih,∇(ψav)

)
ωa

+
(
ri+νh , ψav

)
ωa

≤ ‖di+νh − dih‖ωa
Ccont,PF,ωa

‖∇v‖ωa
+ ‖ri+νh ‖ωa

‖ψa‖∞,ωa
‖v‖ωa

≤ ‖di+νh − dih‖ωa
Ccont,PF,ωa

‖∇v‖ωa
+ ‖ri+νh ‖ωa

CPF,ωa
hωa
‖∇v‖ωa

.

Finally, using
‖∇ma‖ωa

= sup
v∈H1

∗(ωa),‖∇v‖=1

(∇ma,∇v)ωa

and combining the above results yields the desired bound.

The following crucial result has been shown in [9, Theorem 7] (see also [25,
Corollary 3.16]) in the two-dimensional case. The three-dimensional proof is
in [26, Corollary 3.3].

Lemma 2. Let dih,a be given by (A.1) with p′ = p+ 1 and let ma be given by
(B.1). Let f ∈ Pp(Th). Then there exists a constant Cst,ωa

> 0 depending only
on the shape of elements of the patch Ta but not on their diameters such that

‖ψa∇uih + dih,a‖ωa
≤ Cst,ωa

‖∇ma‖ωa
. (B.2)

The constant Cst,ωa
is not computable. It can, however, be bounded from

above considering a finite-dimensional subspace of H1
∗ (ωa) and solving the dis-

crete version of the problem (B.1); see [25, Lemma 3.23]. Hereafter we denote

Ccont,PF ≡ max
a∈Vh

Ccont,PF,ωa
, CPF ≡ max

a∈Vh
CPF,ωa

, Cst ≡ max
a∈Vh

Cst,ωa
.

We now state the main result on the global efficiency of the estimators of
Theorem 1, both for the global stopping criteria in the sense of [34, 24] and for
the secure stopping criterion in the sense of (6.3), relying on the estimator µitotal

of Theorem 2:

Theorem 7 (Global efficiency). Let the estimators of Theorem 1 satisfy the
global stopping criteria

CFhΩ‖ri+νh ‖ ≤ γrem‖di+νh − dih‖, (B.3a)

‖di+νh − dih‖ ≤ γalg‖∇uih + dih‖ (B.3b)

with positive parameters γrem, γalg such that

γalgCst

(
Ccont,PF + γrem

CPF maxa∈Vh hωa

CFhΩ

)
≤ 1

2(d+ 1)
. (B.4)

Alternatively, instead of (B.3)–(B.4), let

CFhΩ‖ri+νh ‖ ≤ γrem‖di+νh − dih‖, (B.5a)

‖di+νh − dih‖ ≤
γalg

(1 + γ2
alg)1/2

µitotal (B.5b)
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without any requirement on γrem, γalg, supposing only

CPF maxa∈Vh hωa

CFhΩ
≤ Ccont,PF

that is typically satisfied, apart possibly the coarsest meshes. Let the assumptions
of Lemma 2 hold. Then the upper bound of Theorem 1 is globally efficient,

ηi,νtotal ≤ Cglob. eff.‖∇(u− uih)‖

with the global efficiency constant

Cglob. eff. ≡ (1 + γalg + γalgγrem)2(d+ 1)CstCcont,PF.

Recall that VK stands for the vertices of the elementK and that the functions
mh,a are specified in Theorem 2. Then the local version of Theorem 7 proving
the local efficiency under the local stopping criteria is as follows:

Theorem 8 (Local efficiency). Let, for an element K ∈ Th, the estimators of
Theorem 1 satisfy the local stopping criteria

CFhΩ‖ri+νh ‖K′ ≤ γrem,K‖di+νh − dih‖K′ ∀K ′ ∈ Th such that K ′ ∩K 6= ∅,
(B.6a)

‖di+νh − dih‖ωa
≤ γalg,K‖∇uih + dih‖K ∀a ∈ VK (B.6b)

with positive parameters γrem,K , γalg,K such that

γalg,KCst

(
Ccont,PF + γrem,K

CPF maxa∈VK hωa

CFhΩ

)
≤ 1

2(d+ 1)
. (B.7)

Alternatively, instead of (B.6)–(B.7), let, for all a ∈ VK ,

CFhΩ‖ri+νh ‖ωa
≤ γrem,K‖di+νh − dih‖ωa

, (B.8a)

‖di+νh − dih‖ωa
≤ γalg,K

(1 + γ2
alg,K)1/2

‖∇mh,a‖ωa

Ccont,PF,ωa

, (B.8b)

without any requirement on γrem,K , γalg,K , supposing only

CPF maxa∈VK hωa

CFhΩ
≤ Ccont,PF

that is typically satisfied, apart possibly the coarsest meshes. Let the assumptions
of Lemma 2 hold. Then we have the local efficiency of the upper bound,

‖di+νh −dih‖K +CFhΩ‖ri+νh ‖K +‖∇uih+dih‖K ≤ Cloc. eff.,K

∑
a∈VK

‖∇(u−uih)‖ωa

with the local efficiency constant

Cloc. eff.,K ≡ (1 + γalg,K + γalg,Kγrem,K)2CstCcont,PF.
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of Theorem 7. From the flux construction (A.1) of dih, using (B.2),

‖∇uih + dih‖2 =
∑
K∈Th

∥∥∥ ∑
a∈VK

(ψa∇uih + dih,a)
∥∥∥2

K

≤ (d+ 1)
∑
K∈Th

∑
a∈VK

‖ψa∇uih + dih,a‖2K = (d+ 1)
∑
a∈Vh

‖ψa∇uih + dih,a‖2ωa

≤ (d+ 1)C2
st

∑
a∈Vh

‖∇ma‖2ωa
,

as any element K ∈ Th has d+ 1 vertices. From Lemma 1, we have[ ∑
a∈Vh

‖∇ma‖2ωa

]1/2

≤
[ ∑
a∈Vh

C2
cont,PF,ωa

‖∇(u− uih)‖2ωa

]1/2

+

[ ∑
a∈Vh

C2
cont,PF,ωa

‖di+νh − dih‖2ωa

]1/2

+

[ ∑
a∈Vh

C2
PF,ωa

(hωa
)2‖ri+νh ‖2ωa

]1/2

.

Therefore, using
[∑

a∈Vh
‖z‖2ωa

]1/2
= (d+ 1)1/2‖z‖,

‖∇uih + dih‖ ≤ (d+ 1)CstCcont,PF‖∇(u− uih)‖
+ (d+ 1)CstCcont,PF‖di+νh − dih‖ + (d+ 1)CstCPFmax

a∈Vh
hωa
‖ri+νh ‖. (B.9)

From the stopping criteria (B.3),

‖∇uih + dih‖ ≤ (d+ 1)CstCcont,PF‖∇(u− uih)‖

+ (d+ 1)γalgCst

(
Ccont,PF + γrem

CPF maxa∈Vh hωa

CFhΩ

)
‖∇uih + dih‖,

and from (B.4),

‖∇uih + dih‖ ≤ 2(d+ 1)CstCcont,PF‖∇(u− uih)‖.

Finally, we get the assertion for the stopping criteria (B.3),

ηi,νtotal = ‖di+νh − dih‖+ CFhΩ‖ri+νh ‖+ ‖∇uih + dih‖
≤ (1 + γalg + γalgγrem)‖∇uih + dih‖ ≤ Cglob. eff.‖∇(u− uih)‖.

The efficiency under the stopping criteria (B.5) actually does not request
any restrictive assumptions of the form (B.4). Using (B.5b) and the bound of
Theorem 2,

‖di+νh − dih‖ ≤
γalg

(1 + γ2
alg)1/2

‖∇(u− uih)‖.

Now a combination with (B.9) and (B.5a) gives

‖∇uih + dih‖ ≤ (d+ 1)CstCcont,PF‖∇(u− uih)‖

+ (d+ 1)
γalg

(1 + γ2
alg)1/2

Cst

(
Ccont,PF + γrem

CPF maxa∈Vh hωa

CFhΩ

)
‖∇(u− uih)‖,
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so that the assertion for the stopping criteria (B.5) follows with the constant

(d+1)Cst

(
Ccont,PF +

γalg

(1+γ2
alg)1/2

Ccont,PF + γrem
γalg

(1+γ2
alg)1/2

CPF maxa∈Vh hωa

CFhΩ

)

≤ (1 + γalg + γalgγrem)(d+ 1)CstCcont,PF ≤
Cglob. eff.

2
.

of Theorem 8. For the proof of the local efficiency, we first note that

‖∇uih + dih‖K ≤
∑
a∈VK

‖ψa∇uih + dih,a‖ωa
≤
∑
a∈VK

Cst,ωa
‖∇ma‖ωa

.

From Lemma 1,

‖∇uih + dih‖K ≤ CstCcont,PF

∑
a∈VK

‖∇(u− uih)‖ωa

+ CstCcont,PF

∑
a∈VK

‖di+νh − dih‖ωa
+ CstCPF max

a∈VK
hωa

∑
a∈VK

‖ri+νh ‖ωa
. (B.10)

Thus, under the stopping criteria (B.6),

‖∇uih + dih‖K ≤ CstCcont,PF

∑
a∈VK

‖∇(u− uih)‖ωa

+ (d+ 1)Cstγalg,K

(
Ccont,PF + γrem,K

CPF maxa∈VK hωa

CFhΩ

)
‖∇uih + dih‖K .

From (B.7), we further obtain

‖∇uih + dih‖K ≤ 2CstCcont,PF

∑
a∈VK

‖∇(u− uih)‖ωa
,

so that finally

‖di+νh − dih‖K + CFhΩ‖ri+νh ‖K + ‖∇uih + dih‖K
≤ (1 + γalg,K + γalg,Kγrem,K)‖∇uih + dih‖

≤ Cloc. eff.,K

∑
a∈VK

‖∇(u− uih)‖ωa
.

Let m̃a ∈ H1
∗ (ωa) be the solution of

(∇m̃a,∇v)ωa
= (f, ψav)ωa

−
(
∇uih,∇(ψav)

)
ωa

∀v ∈ H1
∗ (ωa),

in the continuous counterpart to mh,a of Theorem 2 and similarly to (B.1). The
fact thatmh,a is a projection of m̃a fromH1

∗ (ωa) ontoW a
h gives ‖∇mh,a‖ωa

≤ ‖∇m̃a‖ωa
.

Proceeding as in the proof of Lemma 1 with rih = 0, we get the inequality
‖∇m̃a‖ωa

≤ Ccont,PF,ωa
‖∇(u− uih)‖ωa

, so that

‖∇mh,a‖ωa
≤ Ccont,PF,ωa

‖∇(u− uih)‖ωa
.
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Thus, under the secure local stopping criterion (B.8b), we obtain

‖di+νh − dih‖ωa
≤ γalg,K

(1 + γ2
alg,K)1/2

‖∇(u− uih)‖ωa
,

and, employing (B.10) and (B.8a),

‖∇uih + dih‖K ≤ CstCcont,PF

∑
a∈VK

‖∇(u− uih)‖ωa

+Cst
γalg,K

(1 + γ2
alg,K)1/2

(
Ccont,PF + γrem,K

CPF maxa∈VK hωa

CFhΩ

) ∑
a∈VK

‖∇(u−uih)‖ωa
.

The claim in this case thus follows from

Cst

(
Ccont,PF +

γalg,K

(1+γ2
alg,K)1/2

Ccont,PF + γrem,K
γalg,K

(1+γ2
alg,K)1/2

CPF maxa∈VK hωa

CFhΩ

)

≤ (1 + γalg,K + γalg,Kγrem,K)CstCcont,PF ≤
Cloc. eff.,K

2
.
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for convex domains, Arch. Rational Mech. Anal., 5 (1960), pp. 286–292
(1960).

[49] R. Rannacher, Error control in finite element computations. An intro-
duction to error estimation and mesh-size adaptation, in Error control and
adaptivity in scientific computing (Antalya, 1998), vol. 536 of NATO Sci.
Ser. C Math. Phys. Sci., Kluwer Acad. Publ., Dordrecht, 1999, pp. 247–278.

38



[50] K. Rektorys, Variational methods in mathematics, science and engineer-
ing, D. Reidel Publishing Co., Dordrecht-Boston, Mass., second ed., 1980.
Translated from the Czech by Michael Basch.

[51] S. Repin, A posteriori estimates for partial differential equations, vol. 4
of Radon Series on Computational and Applied Mathematics, Walter de
Gruyter GmbH & Co. KG, Berlin, 2008.

[52] V. V. Shaidurov, Some estimates of the rate of convergence for the cas-
cadic conjugate-gradient method, Comput. Math. Appl., 31 (1996), pp. 161–
171.

[53] D. J. Silvester and V. Simoncini, An optimal iterative solver for
symmetric indefinite systems stemming from mixed approximation, ACM
Trans. Math. Software, 37 (2011), pp. Art. 42, 22.

[54] R. Stevenson, Optimality of a standard adaptive finite element method,
Found. Comput. Math., 7 (2007), pp. 245–269.
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