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CONVERGENCE AND QUASI-OPTIMAL COST OF ADAPTIVE
ALGORITHMS FOR NONLINEAR OPERATORS INCLUDING

ITERATIVE LINEARIZATION AND ALGEBRAIC SOLVER

ALEXANDER HABERL, DIRK PRAETORIUS, STEFAN SCHIMANKO,
AND MARTIN VOHRALÍK

Abstract. We consider a second-order elliptic boundary value problem with strongly
monotone and Lipschitz-continuous nonlinearity. We design and study its adaptive
numerical approximation interconnecting a finite element discretization, the Banach–
Picard linearization, and a contractive linear algebraic solver. In particular, we identify
stopping criteria for the algebraic solver that on the one hand do not request an overly
tight tolerance but on the other hand are sufficient for the inexact (perturbed) Banach–
Picard linearization to remain contractive. Similarly, we identify suitable stopping cri-
teria for the Banach–Picard iteration that leave an amount of linearization error that
is not harmful for the residual a posteriori error estimate to steer reliably the adaptive
mesh-refinement. For the resulting algorithm, we prove a contraction of the (doubly)
inexact iterates after some amount of steps of mesh-refinement/linearization/algebraic
solver, leading to its linear convergence. Moreover, for usual mesh-refinement rules, we
also prove that the overall error decays at the optimal rate with respect to the number of
elements (degrees of freedom) added with respect to the initial mesh. Finally, we prove
that our fully adaptive algorithm drives the overall error down with the same optimal
rate also with respect to the overall algorithmic cost expressed as the cumulated sum
of the number of mesh elements over all mesh-refinement, linearization, and algebraic
solver steps. Numerical experiments support these theoretical findings and illustrate the
optimal overall algorithmic cost of the fully adaptive algorithm on several test cases.

1. Introduction

Let Ω ⊂ Rd with d ≥ 1 be a bounded Lipschitz domain with polytopal boundary. Given
f ∈ L2(Ω) and a nonlinear operator A : Rd → Rd, we aim to numerically approximate
the weak solution u? ∈ H1

0 (Ω) of the nonlinear boundary value problem

−divA(∇u?) = f in Ω,

u? = 0 on ∂Ω.
(1)
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To this end, we propose an adaptive algorithm of the type

estimate total error and its components

↓
advance algebra/advance linearization/mark and refine mesh elements

(2)

which monitors and adequately stops the iterative linearization and the linear algebraic
solver as well as steers the local mesh-refinement. The goal of this contribution is to
perform a first rigorous mathematical analysis of this algorithm in terms of convergence
and quasi-optimal computational cost.

1.1. Finite element approximation and Banach–Picard iteration. Suppose
that the nonlinearity A in (1) is Lipschitz-continuous (with constant L > 0) and strongly
monotone (with constant α > 0); see Section 2 for details. Then, the main theorem on
monotone operators yields the existence and uniqueness of the weak solution u? ∈ H1

0 (Ω);
see, e.g., [Zei90, Theorem 25.B]. Given a triangulation TH of Ω, the lowest-order finite
element method (FEM) for problem (1) reads as follows: Find u?H ∈ XH :=

{
vH ∈ C(Ω) :

vH |T is affine for all T ∈ TH and vH |∂Ω = 0
}
⊂ H1

0 (Ω) such that

(A(∇u?H), ∇vH)Ω = (f, vH)Ω for all vH ∈ XH . (3)

The discrete solution u?H ∈ XH again exists and is unique, but (3) corresponds to a
nonlinear discrete system which can typically only be solved inexactly.

The most straightforward algorithm for iterative linearization of (3) stems from the
proof of the main theorem on monotone operators which is constructive and relies on the
Banach fixed point theorem: Define the (nonlinear) operator ΦH : XH → XH by

(∇ΦH(wH), ∇vH)Ω = (∇wH , ∇vH)Ω −
α

L2

[
(A(∇wH), ∇vH)Ω − (f, vH)Ω

]
(4)

for all wH , vH ∈ XH . Note that (4) corresponds to a discrete Poisson problem and hence
ΦH(wH) ∈ XH is well-defined. Then, it holds that

‖∇(u?H − ΦH(wH))‖L2(Ω) ≤ qPic ‖∇(u?H − wH)‖L2(Ω) with qPic := (1− α2/L2)1/2 < 1; (5)

see, e.g., [Zei90, Section 25.4]. Based on the contraction ΦH , the Banach–Picard iteration
starts from an arbitrary discrete initial guess and applies ΦH inductively to generate a
sequence of discrete functions which hence converge towards u?H . Note that the com-
putation of ΦH(wh) by means of the discrete variational formulation (4) corresponds to
the solution of a (generically large) linear discrete system with symmetric and positive
definite matrix that does not change during the iterations. In this work, we suppose
that also (4) is solved inexactly by means of a contractive iterative algebraic solver (with
contraction factor qalg < 1), e.g., PCG with optimal preconditioner; see, e.g., [OT14].

1.2. Fully adaptive algorithm. In our approach, we compute a sequence of discrete
approximations uk,j` of u? that have an index ` for the mesh-refinement, an index k for the
Banach–Picard linearization iteration, and an index j for the algebraic solver iteration.

First, we design a stopping criterion for the algebraic solver such that, at linearization
step k − 1 ∈ N0 on the mesh T`, we stop for some index j ∈ N. At the next linearization
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step k ∈ N, the arising linear system reads as follows:

Find uk,?` ∈ X` such that, for all v` ∈ X`,
(∇uk,?` , ∇v`)Ω = (∇uk−1,j

` , ∇v`)Ω −
α

L2

[
(A(∇uk−1,j

` ), ∇v`)Ω − (f, v`)Ω

]
,

(6)

with uniquely defined but not computed exact solution uk,?` = Φ`(u
k−1,j

` ) and computed

iterates uk,j` that approximate uk,?` . Note that (6) is a perturbed Banach–Picard iteration

since it starts from the available u
k−1,j

` , typically not equal to the unavailable uk−1,?
` .

Second, we design a stopping criterion for the perturbed Banach–Picard iteration at

some index k, producing a discrete approximation u
k,j

` .
Finally, we locally refine the triangulation T` on the basis of the Dörfler marking cri-

terion for the local contributions of the residual error estimator η`(u
k,j

` ), and, to lower
the computational effort, employ nested iteration in that the continuation on the new

triangulation T`+1 is started with the initial guess u0,0
`+1 := u

k,j

` .

1.3. Previous contributions.

1.3.1. Inexact linearization. Performing an inexact solve of the linear system of form (6)
gives rise to the “inexact Newton method”; see, e.g., [Deu91, EW94] and the references
therein. Under appropriate conditions, these can asymptotically preserve the convergence
speed of the “exact” Newton method. Note, however, that these approaches only focus
on the finite-dimensional system of nonlinear algebraic equations of the form (3) but do
not see/take into account the continuous problem (1), which is our central issue here.

1.3.2. Taking into account the discretization error. Solving the nonlinear algebraic sys-
tems (3) “exactly” (up to machine precision), only the discretization error is left. Then,
convergence and optimal decay rates of the error ‖∇(u? − u?H)‖L2(Ω) with respect to
the degrees of freedom of FEM adapting the approximation space (mesh) were obtained
in [Vee02, DK08, BDK12, GMZ12], following the seminal contributions [Dör96, MNS00,
BDD04, Ste07, CKNS08] for linear problems. We also refer to [CFPP14] for a gen-
eral framework of convergence of adaptive FEM with optimal convergence rates and an
overview of the state of the art.

1.3.3. Taking into account the discretization and linearization errors. Solving only the
linear algebraic systems (6) “exactly” but (3) inexactly leaves the discretization and lin-
earization errors. Such a setting has been considered in, e.g., [CS07, EAEV11], where
reliable (guaranteed) and efficient a posteriori error estimates were derived. Adaptive al-
gorithms aiming at a balance of the linearization and discretization errors were proposed
and their optimal performance was observed numerically; see, e.g., [BDMS15, BCL15,
CW17, HW18]. Later, theoretical proofs of plain convergence (without rates) were given
in [GMZ11, HW20b], where [HW20b] builds on the unified framework of [HW20a] en-
compassing also the Kačanov and (damped) Newton linearizations in addition to the
Banach–Picard linearization (6).

The own works [GHPS18, GHPS19] considered that the linear systems (6) are solved

exactly at linear cost (so that u
k,j

` = uk,?` with j(`, k) = O(1) in the present notation),
as in the seminal work [Ste07] for the Poisson model problem and in [CG12] for an
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adaptive Laplace eigenvalue computation. Under this so-called realistic assumption on
the algebraic solver, we have proved in [GHPS18] that the overall strategy leads to optimal
convergence rates with respect to the number of degrees of freedom as well as to almost
optimal convergence rates with respect to the overall computational cost. The latter
means that, if the total error converges with rate s > 0 with respect to the degrees of
freedom, then, for all ε > 0, it also converges with rate s − ε > 0 with respect to the
overall computational cost. The proof of [GHPS18] was based on proving first that the

estimator η`(u
k,?
` ) for the final Picard iterates decays with optimal rate s and second

that the number of Picard iterates satisfies k(`) . 1 + log[1 + η`(u
k,?
`+1)/η`(u

k,?
` )]. This

logarithmic bound then led to the bound s − ε for the convergence rate with respect to
the overall computational cost.

Recently in [GHPS19], we have improved the latter result and proved optimal com-
putational cost (i.e., ε = 0), still relying on the assumption that the discrete Poisson
problem (6) is solved exactly at linear cost. The core idea of the new proof follows ideas
from adaptive Uzawa FEM for the Stokes model problem [KS08, DFFGP19]. However,
besides the nonlinearity, the structural difference is that the adaptive Uzawa FEM em-
ploys an outer iteration on the continuous level (i.e., we first linearize and then discretize),
while the approach of [CW17, GHPS18, HW20a, HW20b, GHPS19] is first to discretize
and then to linearize.

1.3.4. Taking into account the discretization, linearization, and algebraic errors. As
in the present setting, the “adaptive inexact Newton method” in [EV13] takes into ac-
count all discretization, linearization, and algebraic error components; see also [CPV14,
DPVY15] and [Pol16] for regularizations on coarse meshes ensuring well-posedness of the
discrete systems in Newton-like linearizations. The goal of the present work is to perform
a first rigorous mathematical analysis of such algorithms in terms of convergence and
optimal decay rate of the error with respect to computational cost.

We stress that such results have already been derived for adaptive wavelet discretiza-
tions [CDD03, Ste14] which provide inherent control of the residual error in terms of the
wavelet coefficients, while the present analysis for standard finite element discretizations
has to rely on the local information of appropriate a posteriori error estimators. Also,
while the present analysis is closely related to that of [GHPS19], we stress that both
works [GHPS18, GHPS19] focused only on linearization and discretization, while here,
we also include the innermost algebraic loop into the adaptive algorithm. In particu-
lar, the technical challenges in the present analysis are much more involved than in the
preceding work [GHPS19] due to the coupling of the two nested inexact solvers.

1.4. Main results: linear convergence, optimal decay rate, and quasi-optimal
cost. The present contribution appears to be the first work that provides a thorough con-
vergence analysis of fully adaptive strategies for nonlinear equations. To describe more
precisely our results, we first note that the sequential nature of the fully adaptive algo-
rithm of Section 1.2 gives rise to an index set

Q :=
{

(`, k, j) ∈ N3
0 : discrete approximation uk,j` is computed by the algorithm

}
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together with an ordering

|(`, k, j)| < |(`′, k′, j′)| def⇐⇒ uk,j` is computed earlier than uk
′,j′

`′ .

Our first main result, formulated in Theorem 3 below, proves that the proposed adaptive
strategy is contractive after some amount of steps and linearly convergent in the sense of

∆k′,j′

`′ ≤ Clinq
|(`′,k′,j′)|−|(`,k,j)|
lin ∆k,j

` for all |(`, k, j)| ≤ |(`′, k′, j′)|, (7)

where Clin ≥ 1 and 0 < qlin < 1 are generic constants and ∆k,j
` is an appropriate quasi-

error quantity involving the error ‖∇(u?−uk,j` )‖L2(Ω) as well as the error estimator η`(u
k,j
` ).

Second, we prove the optimal error decay rate with respect to the number of degrees of
freedom added with respect to the initial mesh in the sense that

sup
(`,k,j)∈Q

(#T` −#T0 + 1)s∆k,j
` <∞ (8)

whenever u? is approximable at algebraic rate s > 0; see Theorem 4 below for the details.
Finally, estimate (7) appears to be also the key argument to prove our most eminent
result, namely the optimal error decay rate with respect to the overall computational cost
of the fully adaptive algorithm which steers the mesh-refinement, the perturbed Banach–
Picard linearization, and the algebraic solver. In short, this reads

sup
(`′,k′,j′)∈Q

( ∑

(`,k,j)∈Q
(`,k,j)≤(`′,k′,j′)

#T`
)s

∆k′,j′

`′ <∞ (9)

whenever u? is approximable at algebraic rate s > 0; see Theorem 5 below for the
details. We stress that under realistic assumptions the sum in (9) is indeed proportional
to the overall computational cost invested into the fully adaptive numerical approximation
of (1), if the cost of all procedures like matrix and right-hand-side assembly, one algebraic
solver step, evaluation of the involved a posteriori error estimates, marking, and local
adaptive mesh refinement is proportional to the number of mesh elements in T` (i.e., the
number of degrees of freedom).

1.5. Outline. The remainder of the paper is organised as follows. In Section 2, we
introduce an abstract setting in which all our results will be formulated, define the exact
weak and finite elements solutions (none of which is available in our setting), and intro-
duce our requirements on mesh-refinement and error estimator. We also give here precise
requirements on the algebraic solver, state our adaptive algorithm and stopping criteria
in all details, and present our main results, including some discussions. The proofs of
some auxiliary results and of Proposition 2 (reliability in Algorithm 1), Theorem 3 (linear
convergence), Theorem 4 (optimal decay rate with respect to the degrees of freedom),
and Theorem 5 (optimal decay rate with respect to the overall computational cost) are
respectively given in Sections 3, 4, 5, and 6. Finally numerical experiments in Section 7
underline the theoretical findings.

Throughout our work, we apply the following convention: In statements of theorems,
lemmas, etc., we explicitly state all constants together with their dependencies. In proofs,
however, we abbreviate A ≤ cB with a generic constant c > 0 by writing A . B.
Moreover, A ' B abbreviates A . B . A.
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2. Adaptive algorithm and main results

In this section, we introduce an abstract setting, in which all our results will be for-
mulated, define the exact weak and finite elements solutions, introduce our requirements
on mesh-refinement, error estimator, and algebraic solver, state our adaptive algorithm,
and present our main results, including some discussions.

2.1. Abstract setting. Let X be a Hilbert space over K ∈ {R,C} with scalar product
(·, ·), corresponding norm ||| · |||, and dual space X ′ (with canonical operator norm ||| · |||′).
Let P : X → K be Gâteaux-differentiable with derivative A := dP : X → X ′, i.e.,

〈Aw, v〉X ′×X = lim
t→0
t∈R

P (w + tv)− P (w)

t
for all v, w ∈ X .

We suppose that the operator A is strongly monotone and Lipschitz-continuous, i.e.,

α |||w − v|||2 ≤ Re 〈Aw −Av, w − v〉X ′×X and |||Aw −Av|||′ ≤ L |||w − v||| (10)

for all v, w ∈ X , where 0 < α ≤ L are generic real constants.
Given a linear and continuous functional F ∈ X ′, the main theorem on monotone

operators [Zei90, Section 25.4] yields existence and uniqueness of the solution u? ∈ X of

〈Au?, v〉X ′×X = 〈F, v〉X ′×X for all v ∈ X . (11)

The result actually holds true for any closed subspace XH ⊆ X , which also gives rise to
a unique u?H ∈ XH such that

〈Au?H , vH〉X ′×X = 〈F, vH〉X ′×X for all vH ∈ XH . (12)

Finally, with the energy functional E := Re (P − F ), it holds that

α

2
|||vH − u?H |||2 ≤ E(vH)− E(u?H) ≤ L

2
|||vH − u?H |||2 for all vH ∈ XH ; (13)

see, e.g., [GHPS18, Lemma 5.1]. In particular, u? ∈ X (resp. u?H ∈ X ?
H) is the unique

minimizer of the minimization problem

E(u?) = min
v∈X
E(v)

(
resp. E(u?H) = min

vH∈XH

E(vH)
)
. (14)

As for linear elliptic problems, it follows from (10)–(12) that the present setting guarantees
the Céa lemma (see, e.g., [Zei90, Section 25.4])

|||u? − u?H ||| ≤ CCéa |||u? − vH ||| for all vH ∈ XH with CCéa := L/α. (15)

2.2. Mesh-refinement. Let TH be a conforming simplicial mesh of Ω, i.e., a partition
of Ω into compact simplices T such that

⋃
T∈TH T = Ω and such that the intersection of

two different simplices is either empty or their common vertex, edge, or face. We assume
that refine(·) is a fixed mesh-refinement strategy, e.g., newest vertex bisection [Ste08].
We write Th = refine(TH ,MH) for the coarsest one-level refinement of TH , where all
marked elements MH ⊆ TH have been refined, i.e., MH ⊆ TH\Th. We write Th ∈
refine(TH), if Th can be obtained by finitely many steps of one-level refinement (with
appropriate, yet arbitrary marked elements in each step). We define T := refine(T0)
as the set of all meshes which can be generated from the initial simplicial mesh T0 of
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Ω by use of refine(·). Finally, we associate to each TH ∈ T a corresponding finite-
dimensional subspace XH $ X , where we suppose that XH ⊆ Xh whenever TH , Th ∈ T
with Th ∈ refine(TH).

For our analysis, we only employ that the shape-regularity of all meshes TH ∈ T is
uniformly bounded by that of T0 together with the following structural properties (R1)–
(R3), where Cson ≥ 2 and Cmesh > 0 are generic constants:

(R1) splitting property: Each refined element is split into finitely many sons, i.e.,
for all TH ∈ T and all MH ⊆ TH , the mesh Th = refine(TH ,MH) satisfies that

#(TH \ Th) + #TH ≤ #Th ≤ Cson #(TH \ Th) + #(TH ∩ Th);
(R2) overlay estimate: For all meshes T ∈ T and Th, Th′ ∈ refine(T ), there exists a

common refinement Th ⊕ Th′ ∈ refine(Th)∩ refine(Th′) ⊆ refine(T ) such that

#(Th ⊕ Th′) ≤ #Th + #Th′ −#T ;

(R3) mesh-closure estimate: For each sequence (T`)`∈N0 of successively refined meshes,
i.e., T`+1 := refine(T`,M`) with M` ⊆ T` for all ` ∈ N0, it holds that

#T` −#T0 ≤ Cmesh

`−1∑

j=0

#Mj.

For newest vertex bisection, we refer to [BDD04, Ste07, Ste08, CKNS08, KPP13,
GSS14] for the validity of (R1)–(R3). For red-refinement with first-order hanging nodes,
details are found in [BN10].

2.3. Error estimator. For each mesh TH ∈ T, suppose that we can compute refine-
ment indicators

ηH(T, vH) ≥ 0 for all T ∈ TH and all vH ∈ XH . (16)

We denote

ηH(VH , vH) :=

( ∑

T∈VH
ηH(T, vH)2

)1/2

for all VH ⊆ TH (17)

and abbreviate ηH(vH) := ηH(TH , vH). As far as the estimator is concerned, we assume
the following axioms of adaptivity from [CFPP14] for all TH ∈ T and all Th ∈ refine(TH),
where Cstab, Crel > 0 and 0 < qred < 1 are generic constants:

(A1) stability: |ηh(VH , vh)− ηH(VH , vH)| ≤ Cstab|||vh − vH ||| for all vh ∈ Xh, vH ∈ XH
and all VH ⊆ TH ∩ Th;

(A2) reduction: XH ⊆ Xh and ηh(Th\TH , vH) ≤ qred ηH(TH\Th, vH) for all vH ∈ XH ;
(A3) reliability: |||u? − u?H ||| ≤ Crel ηH(u?H);
(A4) discrete reliability: |||u?h − u?H ||| ≤ Crel ηH(TH\Th, u?H).

We stress that the exact discrete solutions u?H (resp. u?h) in (A3)–(A4) will never be
computed but are only auxiliary quantities for the analysis.

We refer to Section 7.1 below for precise assumptions on the nonlinearity A(·) of prob-
lem (1) such that the standard residual error estimator satisfies (A1)–(A4) for lowest-order
Courant finite elements; see also Section 7.2–7.3.
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counter discrete solution
available unavailable

running stopping running stopping exact

mesh ` ` u
k,j

` u
k,j

` u?` from (20)

linearization k k u
k,j

` u
k,j

` uk,?` from (21)

algebraic solver j j uk,j` u
k,j

`

Table 1. Counters and discrete solutions in Algorithm 1.

2.4. Algebraic solver. For given linear and continuous functionals G ∈ X ′, we con-
sider linear systems of algebraic equations of the type

(u[H , vH) = G(vH) for all vH ∈ XH (18)

with unique (but not computed) exact solution u[H ∈ XH . We suppose here that we
have at hand a contractive iterative algebraic solver for problems of the form (18). More
precisely, let u0

H ∈ XH be an initial guess and let the solver produce a sequence ujH ∈ XH ,
j ≥ 1. Then, we suppose that there exists a generic constant 0 < qalg < 1 such that

|||u[H − ujH ||| ≤ qalg |||u[H − uj−1
H ||| for all j ≥ 1. (19)

Examples for such solvers are suitably preconditioned conjugate gradients or multigrid;
see, e.g., Olshanskii and Tyrtyshnikov [OT14] and the references therein.

2.5. Adaptive algorithm. For the numerical approximation of problem (11), the
present work considers an adaptive algorithm which steers mesh-refinement with index
`, a (perturbed) contractive Banach–Picard iteration with index k, and a contractive

algebraic solver with index j. On each step (`, k, j), it yields an approximation uk,j` ∈ X`
to the unique but unavailable u?` ∈ X` on the mesh T` defined by

〈Au?` , v`〉X ′×X = 〈F, vH〉X ′×X for all v` ∈ X`. (20)

Reporting for the summary of notation to Table 1, the algorithm reads as follows:

Algorithm 1. Input: Initial mesh T0 and initial guess u0,0
0 = u

0,j

0 ∈ X0, parameters
0 < θ ≤ 1, 0 < λalg < 1, 0 < λPic, 1 ≤ Cmark, counters ` = k = j = 0, tolerance τ ≥ 0.
Repeat the following steps (i)–(vi) (adaptive mesh refinement loop):

(i) Repeat the following steps (a)–(c) (linearization loop):

(a) Define uk+1,0
` := uk,j` and update counters k := k + 1 as well as j := 0.

(b) Repeat the following steps (I)–(IV) (algebraic solver loop):

(I) Update counter j := j + 1.

(II) Consider the problem of finding

uk,?` ∈ X` such that, for all v` ∈ X`,
(uk,?` , v`) = (u

k−1,j

` , v`)−
α

L2
〈Auk−1,j

` − F, v`〉X ′×X
(21)
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and do one step of the algebraic solver applied to (21) starting from

uk,j−1
` , which yields uk,j` (an approximation to uk,?` ).

(III) Compute the local indicators η`(T, u
k,j
` ) for all T ∈ T`.

(IV) If η`(u
k,j
` ) + |||uk,j` − u

k−1,j

` ||| + |||uk,j` − uk,j−1
` ||| ≤ τ , then set ` := `,

k(`) := k, and j(`, k) := j and terminate Algorithm 1.

Until |||uk,j` − uk,j−1
` ||| ≤ λalg

[
η`(u

k,j
` ) + |||uk,j` − u

k−1,j

` |||
]
. (22)

(c) Define j := j(`, k) := j.

Until |||uk,j` − u
k−1,j

` ||| ≤ λPicη`(u
k,j

` ). (23)

(ii) Define k := k(`) := k.

(iii) If η`(u
k,j

` ) = 0, then set ` := ` and terminate Algorithm 1.

(iv) Determine a set M` ⊆ T` with up to the multiplicative constant Cmark minimal
cardinality such that

θ η`(u
k,j

` ) ≤ η`(M`, u
k,j

` ). (24)

(v) Generate T`+1 := refine(T`,M`) and define u0,0
`+1 := u

0,j

`+1 := u
k,j

` .

(vi) Update counters ` := `+ 1, k := 0, and j := 0 and continue with (i).

Output: Sequence of discrete solutions uk,j` and corresponding error estimators η`(u
k,j
` ).

Some remarks are in order to explain the nature of Algorithm 1. The innermost loop
(Algorithm 1(ib)) steers the algebraic solver. Note here that the exact solution uk,?`
of (21) is not computed but only approximated by the computed iterates uk,j` . For the
linear system (21), the contraction assumption (19) reads as

|||uk,?` − uk,j` ||| ≤ qalg |||uk,?` − uk,j−1
` ||| for all j ≥ 1. (25)

Then, the triangle inequality implies that

1− qalg

qalg

|||uk,?` − uk,j` ||| ≤ |||uk,j` − uk,j−1
` ||| ≤ (1 + qalg) |||uk,?` − uk,j−1

` |||. (26)

Hence, the term |||uk,j` − uk,j−1
` ||| provides a means to estimate the algebraic error |||uk,?` −

uk,j` |||. In particular, the approximation uk,j` is accepted and the algebraic solver is stopped

if the algebraic error estimate |||uk,j` − uk,j−1
` ||| is, up to the threshold λalg, below the

estimate η`(u
k,j
` ) + |||uk,j` − u

k−1,j

` ||| of the discretization and linearization error; see (22).

Since |||uk,1` − uk,0` ||| = |||uk,1` − u
k−1,j

` |||, the stopping criterion (22) would always terminate
the algebraic solver at the first step j = 1 if λalg was chosen greater or equal to 1; this
motivates the restriction λalg < 1.

The middle loop (Algorithm 1(i)) steers the linearization by means of the (perturbed)

Banach–Picard iteration. Lemma 6 below shows that the term |||uk,j` − u
k−1,j

` ||| estimates

the linearization error |||u?` − u
k,j

` |||. Note here that, a priori, only the non-perturbed
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Banach–Picard iteration corresponding to the (unavailable) exact solve of (21) yielding

uk,?` would lead to the contraction

|||u?` − uk,?` ||| ≤ qPic |||u?` − u
k−1,j

` ||| for all (`, k, 0) ∈ Q with k ≥ 1, (27)

where

0 < qPic := (1− α2/L2)1/2 < 1. (28)

The approximation u
k,j

` is accepted and the linearization is stopped if the linearization

error estimate |||uk,j` − u
k−1,j

` ||| is, up to the threshold λPic, below the discretization error

estimate η`(u
k,j

` ); see (23) (here λPic < 1 is not necessary).
Finally, the outermost loop steers the local adaptive mesh-refinement. To this end,

the Dörfler marking criterion (24) from [Dör96] is employed to mark elements T ∈ M`

for refinement, unless η`(u
k,j

` ) = 0, in which case Proposition 2 below ensures that the

approximation u
k,j

` coincides with the exact solution u? of (11). In practice, the compu-

tation is stopped as soon as the computed iterate uk,j` is sufficiently accurate with respect
to a nonzero tolerance τ . Based on the a posteriori error estimate from Proposition 2
below, this motivates the termination in Algorithm 1(IV).

2.6. Index set Q for the triple loop. To analyze the asymptotic convergence be-
havior of Algorithm 1 for tolerance τ = 0, we define the index set

Q :=
{

(`, k, j) ∈ N3
0 : index triple (`, k, j) is used in Algorithm 1

}
. (29)

Since Algorithm 1 is sequential, the index set Q is naturally ordered. For indices
(`, k, j), (`′, k′, j′) ∈ Q, we write

(`, k, j) < (`′, k′, j′)
def⇐⇒ (`, k, j) appears earlier in Algorithm 1 than (`′, k′, j′). (30)

With this order, we can define

|(`, k, j)| := #
{

(`′, k′, j′) ∈ Q : (`′, k′, j′) < (`, k, j)
}
,

which is the total step number of Algorithm 1. We make the following definitions, which
are consistent with that of Algorithm 1, and additionally define j(`, 0) := 0:

` := sup
{
` ∈ N0 : (`, 0, 0) ∈ Q

}
∈ N0 ∪ {∞},

k(`) := sup
{
k ∈ N0 : (`, k, 0) ∈ Q

}
∈ N0 ∪ {∞} if (`, 0, 0) ∈ Q,

j(`, k) := sup
{
j ∈ N0 : (`, k, j) ∈ Q

}
∈ N0 ∪ {∞} if (`, k, 0) ∈ Q.

Generically, it holds that ` = ∞, i.e., infinitely many steps of mesh-refinement take
place when τ = 0. However, our analysis also covers the cases that either the k-loop
(linearization) or the j-loop (algebraic solver) does not terminate, i.e.,

k(`) =∞ if ` <∞ resp. j(`, k) =∞ if ` <∞ and k(`) <∞,

or that the exact solution u? is hit at step (iii) of Algorithm 1 (note that η`(u
k,j

` ) = 0

implies u? = u
k,j

` by virtue of Proposition 2 below).
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To abbreviate notation, we make the following convention: If the mesh index ` ∈ N0

is clear from the context, we simply write k := k(`), e.g., uk,j` := u
k(`),j
` . Similarly, we

simply write j := j(`, k), e.g., u
k,j

` := u
k,j(`,k)

` .

Note that there in particular holds u
k,j

`−1 = u0,0
` = u1,0

` for all (`, 0, 0) ∈ Q with ` ≥
1. Hence, these approximate solutions are indexed three times. This is our notational
choice that will not be harmful for what follows; alternatively, one could only index the
approximate solutions that appear on step (i.b.II) of Algorithm 1.

2.7. Main results. Our first proposition provides computable upper bounds for the
energy error |||u? − uk,j` ||| of the iterates uk,j` of Algorithm 1 at any step (`, k, j) ∈ Q. In

particular, we note that the stopping criteria (22)–(23) ensure reliability of η`(u
k,j

` ) for

the final perturbed Banach–Picard iterates u
k,j

` . The proof ist postponed to Section 3.3.

Proposition 2 (Reliability at various stages of Algorithm 1). Suppose (A1)
and (A3). Then, for all (`, k, j) ∈ Q, it holds that

|||u? − uk,j` ||| ≤ C ′rel





η`(u
k,j
` ) + |||uk,j` − u

k−1,j

` |||+ |||uk,j` − uk,j−1
` |||

if 0 < k ≤ k(`) and 0 < j ≤ j(`, k),

η`(u
k,j

` ) + |||uk,j` − u
k−1,j

` ||| if 0 < k ≤ k(`) and j = j(`, k),

η`(u
k,j

` ) if k = k(`) and j = j(`, k),

η`−1(u
k,j

`−1) if k = 0 and ` > 0.

(31)

The constant C ′rel > 0 depends only on Crel, Cstab, qalg, λalg, qPic, and λPic.

The first main theorem states linear convergence in each step of the adaptive algorithm,
i.e., algebraic solver or linearization or mesh-refinement. The proof is given in Section 4.

Theorem 3 (linear convergence). Suppose (A1)–(A3). Then, there exist λ?alg, λ
?
Pic > 0

such that for arbitrary 0 < θ ≤ 1 as well as for all 0 < λalg < 1 and 0 < λPic with
0 < λalg + λalg/λPic < λ?alg and 0 < λPic/θ < λ?Pic, there exist constants 1 ≤ Clin and
0 < qlin < 1 such that the quasi-error

∆k,j
` := |||u? − uk,j` |||+ |||uk,?` − uk,j` |||+ η`(u

k,j
` ), (32)

composed of the overall error, the algebraic error, and the error estimator, is linearly
convergent in the sense of

∆k′,j′

`′ ≤ Clin q
|(`′,k′,j′)|−|(`,k,j)|
lin ∆k,j

` (33)

for all (`, k, j), (`′, k′, j′) ∈ Q with (`′, k′, j′) ≥ (`, k, j). The constants Clin and qlin depend
only on Crel, Cstab, qred, θ, qalg, λalg, qPic, λPic, α, and L.

Note that ∆k′,j′

`′ = ∆k,j
` when (`′, k′, j′) = (`, k, j), and then (33) holds with equality

for Clin = 1. There are other cases where uk
′,j′

`′ = uk,j` and where uk
′,j′

`′ = uk,j` together

with T`′ = T`, and consequently η`′(u
k′,j′

`′ ) = η`(u
k,j
` ), related to our notational choice for

Q in (29) that also indexes nested iterates. The case with `′ = ` arises for instance when
j = j, j′ = 0, and k′ = k + 1; see step (ia) of Algorithm 1. Note, however, that in
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such a situation, typically uk
′,?
`′ 6= uk,?` , and consequently ∆k′,j′

`′ 6= ∆k,j
` . A situation where

∆k′,j′

`′ = ∆k,j
` for (`′, k′, j′) 6= (`, k, j) can nevertheless also appear and is covered in (33).

For instance, in the above example, when j = j, j′ = 0, k′ = k+ 1, and `′ = `, and where

moreover uk,j` = uk,?` = u?` (so that uk,j` = uk,?` = uk
′,?
`′ = uk

′,j′

`′ = u?`), Algorithm 1 performs
only one step of the algebraic solver on the linearization step k′, so that Clin = 1/qlin leads
to equality in (33) where now |(`′, k′, j′)| − |(`, k, j)| = 1.

The second main result states optimal decay rate of the quasi-error ∆k,j
` of (32) (and

consequently of the total error |||u? − uk,j` |||) in terms of the number of degrees of freedom
added in the space X` with respect to X0. More precisely, the result states that if the
unknown weak solution u of (11) can be approximated at algebraic decay rate s with
respect to the number of mesh elements added in the refinement of T0 (plus one) for a
best-possible mesh, then Algorithm 1 achieves the same decay rate s with respect to the
number of elements actually added in Algorithm 1, (#T` − #T0 + 1), up to a generic
multiplicative constant. The proof of the following Theorem 4 is given in Section 5.

Theorem 4 (optimal decay rate wrt. degrees of freedom). Suppose (A1)–(A4)
and (R1)–(R3). Recall λ?alg, λ

?
Pic > 0 from Theorem 3. Let CPic := qPic/(1 − qPic) > 0,

Calg := qalg/(1−qalg) > 0, and θopt := (1+C2
stabC

2
rel)
−1. Then, there exists θ? such that for

all 0 < λalg, λPic, θ with 0 < θ < min{1, θ?} as well as λalg < 1, 0 < λalg +λalg/λPic < λ?alg,
and 0 < λPic/θ < λ?Pic, it holds that

0 < θ′ :=
θ + Cstab

(
(1 + CPic)Calgλalg +

[
CPic + (1 + CPic)Calgλalg

]
λPic

)

1− λPic /λ?Pic

< θopt, (34)

where the constant θ? > 0 depends only on Cstab, qPic, and qalg. Let s > 0 and define

‖u?‖As := sup
N∈N0

(
(N + 1)s inf

Topt∈T(N)
ηopt(u

?
opt)
)
∈ R≥0 ∪ {∞}, (35)

where ηopt(u
?
opt) is the error estimator corresponding to the exact solution of (12) with

respect to the mesh Topt and

T(N) :=
{
T ∈ T : #T −#T0 ≤ N

}
.

Then, for tolerance τ = 0, there exist copt, Copt > 0 such that

c−1
opt ‖u?‖As ≤ sup

(`,k,j)∈Q
(#T` −#T0 + 1)s∆k,j

` ≤ Copt max{‖u?‖As ,∆
0,0
0 }. (36)

The constant copt > 0 depends only on CCéa = L/α, Cstab, Crel, Cson, #T0, s, and, if
` < ∞, additionally on `. The constant Copt > 0 depends only on Cstab, Crel, Cmark,
1− λPic/λ

?
Pic, CCéa = L/α, C ′rel, Cmesh, Clin, qlin, #T0, and s. The maximum in the right

inequality is only needed if ` = 0. If ` ≥ 1, the maximum max{‖u?‖As ,∆
0,0
0 } can be

replaced by ‖u?‖As.

Note that ∆0,0
0 can be arbitrarily bad due to a bad initial guess u0,0

0 . However, ‖u?‖As

as well as the constant Copt are independent of the initial guess, so that the upper bound

in (36) cannot avoid max{‖u?‖As ,∆
0,0
0 } for the case ` = 0. Such a phenomenon does not

appear at later stages, since the stopping criteria (22) and (23) ensure that, though u
k,j

`
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does not in general coincide with u?` , it is sufficiently accurate. If one restricts the indices
to (`, k, j) ∈ Q with ` ≥ 1, then the upper bound in (36) may omit ∆0,0

0 .
Our last main result states that Algorithm 1 drives the quasi-error down at each possible

rate s not only with respect to the number of degrees of freedom added in the space X`
in comparison with X0, but actually also with respect to the overall computational cost
expressed as a cumulated sum of the number of degrees of freedom. This is an important
improvement of Theorem 4. More precisely, under the same conditions as above, i.e.,
if the unknown weak solution u of (11) can be approximated at algebraic decay rate
s with respect to the number of mesh elements added in the refinement of T0 (plus
one), Algorithm 1 generates a sequence of triple-(`, k, j)-indexed approximations (mesh,
linearization, algebraic solver) such that the quasi-error decays at rate s with respect to
the overall algorithmic cost expressed as the sum of the number of simplices #T` over all
steps (`, k, j) ∈ Q effectuated by Algorithm 1. The proof of the following Theorem 5 is
given in Section 6.

Theorem 5 (optimal decay rate wrt. overall computational cost). Let the as-
sumptions of Theorem 4 be verified. Then

c−1
opt ‖u?‖As ≤ sup

(`′,k′,j′)∈Q

( ∑

(`,k,j)∈Q
(`,k,j)≤(`′,k′,j′)

#T`
)s

∆k′,j′

`′ ≤ C ′opt max{‖u?‖As ,∆
0,0
0 }. (37)

The maximum in the right inequality is only needed if ` = 0. If ` ≥ 1, the maximum
max{‖u?‖As ,∆

0,0
0 } can be replaced by ‖u?‖As. While copt > 0 is the constant of Theorem 4,

the constant C ′opt > 0 reads C ′opt := (#T0)sCoptClin

(
1− q1/s

lin

)−s
.

Analogously to the comments after Theorem 4, the upper estimate in (37) cannot
avoid max{‖u?‖As ,∆

0,0
0 } for the case `′ = ` = 0. As above, if one restricts the indices to

(`′, k′, j′), (`, k, j) ∈ Q with `′, ` ≥ 1, then the upper bound in (37) may omit ∆0,0
0 .

Note that for any reasonable algebraic solver on mesh T`, the cost of its one step
is proportional to #T`. This also holds true for matrix and right-hand-side assembly
in (21), evaluation of the residual estimators η`(u

k,j
` ), Dörfler marking, and local adaptive

mesh refinement by, e.g., newest vertex bisection, while the cost of evaluation of the
stopping criteria (22) and (23) is of O(1). Thus, the sum in (37) is indeed proportional
to the overall computational cost invested into the numerical approximation of (1) by
Algorithm 1.

3. Auxiliary results

3.1. Some observations on Algorithm 1. This section collects some elementary
observations on Algorithm 1 in what concerns nested iteration and stopping criteria. The
given initial value of Algorithm 1 reads

u0,0
0 = u

0,j

0 = u0,?
0 ∈ X0. (38)

If (`, 0, 0) ∈ Q with ` ≥ 1, then

u0,?
` := u0,0

` := u
0,j

` := u
k,j

`−1 ∈ X`−1 ⊆ X`. (39)
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If (`, k, 0) ∈ Q, then the initial guess for the algebraic solver reads

uk,0` =





u0,0
0 for ` = 0,

u
k,j

`−1 if k = 0 and ` ≥ 1,

u
k−1,j

` if k > 0,

(40)

i.e., the algebraic solver employs nested iteration. The stopping criterion (22) of Algo-
rithm 1 guarantees that j(`, k) ≥ 1 if k > 0 and, for all (`, k, j) ∈ Q, it holds that

|||uk,j` − u
k,j−1

` ||| ≤ λalg

[
η`(u

k,j

` ) + |||uk,j` − u
k−1,j

` |||
]

for j = j(`, k), (41)

|||uk,j` − uk,j−1
` ||| > λalg

[
η`(u

k,j
` ) + |||uk,j` − u

k−1,j

` |||
]

for j < j(`, k), (42)

i.e., the algebraic error estimate |||uk,j` − uk,j−1
` ||| only drops below the discretization plus

linearization error estimate at the stopping iteration j = j(`, k).

The final iterates u
k,j

` of the algebraic solver are used to obtain the perturbed Banach–

Picard iterates u
k+1,j

` for k > 0; see (21). The stopping criterion (23) of Algorithm 1
guarantees that k(`) ≥ 1 and, for all (`, k, j) ∈ Q, it holds that

|||uk,j` − u
k−1,j

` ||| ≤ λPic η`(u
k,j

` ) for k = k(`), (43)

|||uk,j` − u
k−1,j

` ||| > λPic η`(u
k,j

` ) for k < k(`), (44)

i.e., the linearization error estimate |||uk,j` − u
k−1,j

` ||| only drops below the discretization
error estimate at the stopping iteration k = k(`).

3.2. Contraction of the perturbed Banach–Picard iteration. Assumption (19)
immediately implies the algebraic solver contraction (25) and reliability (26) of the al-

gebraic error estimate |||uk,j` − uk,j−1
` |||. Similarly, one step of the non-perturbed Banach–

Picard iteration (21) (i.e., with an exact algebraic solve of problem (21) with the datum

u
k−1,j

` ) leads to contraction (27) and consequently to the reliability

1− qPic

qPic

|||u?` − uk,?` ||| ≤ |||uk,?` − u
k−1,j

` ||| ≤ (1 + qPic) |||u?` − u
k−1,j

` ||| (45)

of the unavailable linearization error estimate |||uk,?` − u
k−1,j

` |||. As our first result, we
now show that, for sufficiently small stopping parameters 0 < λalg in (22), we also get
that the perturbed Banach–Picard iteration is a contraction. Recall that u?` ∈ X` is the

(unavailable) exact discrete solution given by (20), that uk,?` ∈ X` is the (unavailable)

exact linearization solution given by (21), and that u
k,j

` ∈ X` is the computed solution for
which the algebraic solver is stopped; see (22) (resp. (41)–(42)) for the stopping criterion.

Lemma 6. There exists λ?alg > 0 depending only on qalg and qPic such that

0 < q′Pic :=
qPic +

qalg
1−qalg λ

?
alg

1− qalg
1−qalg λ

?
alg

< 1. (46)
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Moreover, for all stopping parameters 0 < λalg < 1 and 0 < λPic from (22)–(23) such that
0 < λalg + λalg/λPic < λ?alg, it holds that

|||u?` − u
k,j

` ||| ≤ q′Pic |||u?` − u
k−1,j

` ||| for all 1 ≤ k < k(`). (47)

This also implies that

1− q′Pic

q′Pic

|||u?` − u
k,j

` ||| ≤ |||u
k,j

` − u
k−1,j

` ||| ≤ (1 + q′Pic) |||u?` − u
k−1,j

` |||. (48)

Proof. Clearly, (48) follows from (47) by the triangle inequality as in (26) and (45).
Moreover, (46) is obvious for sufficiently small λ?alg, since qPic = (1 − α2/L2)1/2 < 1
from (28) and 0 < qalg < 1 is fixed from (19). To see (47), first note that

|||u?` − u
k,j

` ||| ≤ |||u?` − uk,?` |||+ |||uk,?` − u
k,j

` |||
(27)

≤ qPic|||u?` − u
k−1,j

` |||+ |||uk,?` − u
k,j

` |||,
where the first term corresponds to the unperturbed Banach–Picard iteration (21) and
the second to the algebraic error. Second, note that, since 1 ≤ k < k(`),

|||uk,?` − u
k,j

` |||
(26)

≤ qalg

1− qalg

|||uk,j` − u
k,j−1

` |||
(41)

≤ qalg

1− qalg

λalg

[
η`(u

k,j

` ) + |||uk,j` − u
k−1,j

` |||
]

(44)
<

qalg

1− qalg

(λalg + λalg/λPic) |||uk,j` − u
k−1,j

` |||

≤ qalg

1− qalg

(λalg + λalg/λPic)
[
|||u?` − u

k,j

` |||+ |||u?` − u
k−1,j

` |||
]
.

Combining the latter estimates with the assumption λalg + λalg/λPic < λ?alg, we see that

|||u?` − u
k,j

` ||| ≤ (qPic +
qalg

1− qalg

λ?alg) |||u?` − u
k−1,j

` |||+ qalg

1− qalg

λ?alg |||u?` − u
k,j

` |||.

If 0 < λ?alg is sufficiently small, this shows (46)–(47) and concludes the proof. �

3.3. Proof of Proposition 2 (reliable error control in Algorithm 1). We are
now ready to prove the estimates (31).

Proof of Proposition 2. First, let (`, k, j) ∈ Q with 0 < k ≤ k(`) and 0 < j ≤ j(`, k).
Due to stability (A1), reliability (A3), and the contraction properties (26) resp. (45), it
holds that

|||u? − uk,j` ||| ≤ |||u? − u?` |||+ |||u?` − uk,j` |||
(A3)

. η`(u
?
`) + |||u?` − uk,j` |||

(A1)

. η`(u
k,j
` ) + |||u?` − uk,j` ||| ≤ η`(u

k,j
` ) + |||u?` − uk,?` |||+ |||uk,?` − uk,j` |||

(45)

. η`(u
k,j
` ) + |||uk,?` − u

k−1,j

` |||+ |||uk,?` − uk,j` |||
≤ η`(u

k,j
` ) + |||uk,j` − u

k−1,j

` |||+ 2|||uk,?` − uk,j` |||
(26)

. η`(u
k,j
` ) + |||uk,j` − u

k−1,j

` |||+ |||uk,j` − uk,j−1
` |||.

(49)

This proves (31) for the case 0 < k ≤ k(`) and 0 < j ≤ j(`, k).
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If j = j(`, k), we can improve estimate (49) using the stopping criterion (41). Similarly,
if k = k(`) and j = j(`, k), we can improve estimate (49) using the stopping criteria (41)
and (43). Finally, for k = 0, ` > 0 and hence j = j = 0, it directly follows from nested
iteration (39) and the previous case k = k(`− 1) resp. j = j(`− 1, k) that

|||u? − u0,0
` |||

(40)
= |||u? − uk,j`−1|||

(31)

. η`−1(u
k,j

`−1). (50)

This concludes the proof. �

3.4. An auxiliary adaptive algorithm. Due to Lemma 6, the iterates u
k,j

` are
contractive in the index k. Consequently, Algorithm 1 fits into the framework of [GHPS18]

upon defining u` from [GHPS18] as u` := u
k,j

` for the case where k(`) <∞ and j(`, k) <
∞, i.e., both the algebraic and the linearization solvers are stopped by (22)–(23) on
the mesh T`. Note that the assumption (` + n + 1, 0, 0) ∈ Q below ensures this for all
meshes T`′ with 0 ≤ `′ ≤ ` + n. Then, we can rewrite [GHPS18, Lemma 4.9, eq. (4.10)]
and [GHPS18, Theorem 5.3, eq. (5.5)] in the current setting to conclude two important

properties: First, the estimators η`(u
k,j

` ) available at step (iv) of Algorithm 1 are, up to
a constant, equivalent to the estimators η`(u

?
`) corresponding to the unavailable exact

linearization u?` of (20). And second, the estimators η`(u
k,j

` ) are linearly convergent.

Lemma 7 ([GHPS18, Lemma 4.9, Theorem 5.3]). Recall λ?alg > 0 and 0 < q′Pic < 1 from

Lemma 6. Define λ?Pic :=
1−q′Pic

q′PicCstab
> 0 and note that it depends only on qPic, qalg, and Cstab.

Then, for all 0 < θ ≤ 1, all 0 < λalg < 1 and 0 < λPic with 0 < λalg + λalg/λPic < λ?alg

and 0 < λPic/θ < λ?Pic, and all (`, k, j) ∈ Q with k <∞ and j <∞, it holds that

(1− λPic/λ
?
Pic) η`(u

k,j

` ) ≤ η`(u
?
`) ≤ (1 + λPic/λ

?
Pic) η`(u

k,j

` ). (51)

Moreover, there exist CGHPS > 0 and 0 < qGHPS < 1 such that

η`+n(u
k,j

`+n) ≤ CGHPS q
n
GHPS η`(u

k,j

` ) for all (`+ n+ 1, 0, 0) ∈ Q. (52)

The constants CGHPS and qGHPS depend only on L, α, Crel, Cstab, qred, qalg, and qPic, as
well as on the adaptivity parameters θ, λalg, and λPic. �

As a result of Lemma 7 and Proposition 2, we get the following lemma for the quasi-
error of (32) on stopping indices k(`), j(`, k). Please note that when ` <∞, the summa-
tion below only goes to `− 1, as the arguments rely on (52) which needs finite stopping
indices k(`) and j(`, k) on each mesh T`.

Lemma 8. Suppose that 0 < λalg +λalg/λPic < λ?alg (from Lemma 6) as well as 0 < θ ≤ 1
and 0 < λPic/θ < λ?Pic (from Lemma 7). With the convention `− 1 =∞ if ` =∞, there
holds summability

`−1∑

`=`′+1

∆
k,j

` ≤ C ∆
k,j

`′ for all (`′, k, j) ∈ Q, (53)

where C > 0 depends only on L, α, Crel, Cstab, qred, θ, qalg, qPic, λalg, and λPic.
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Proof. Define ∆̃k
` := |||u?−uk,j` |||+η`(u

k,j

` ) as the sum of overall error plus error estimator.

In comparison with (32), ∆̃k
` omits the algebraic error term but is only defined for the

algebraic stopping indices j(`, k). With Proposition 2 and the linear convergence (52),
we get that

`−1∑

`=`′+1

∆̃k
`

(31)

.
`−1∑

`=`′+1

η`(u
k,j

` )
(52)

. η`′(u
k,j

`′ )

`−1∑

`=`′+1

q`−`
′

GHPS . ∆̃k
`′ .

Let (`′, k, j) ∈ Q. By definition (32), it holds that

∆
k,j

`′ = |||u? − uk,j`′ |||+ |||u
k,?
`′ − u

k,j

`′ |||+ η`′(u
k,j

`′ ) = ∆̃k
`′ + |||uk,?`′ − u

k,j

`′ |||.
Moreover, note that

|||uk,?`′ − u
k,j

`′ |||
(26)

. |||uk,j`′ − u
k,j−1

`′ |||
(41)

. η`′(u
k,j

`′ ) + |||uk,j`′ − u
k−1,j

`′ |||
(43)

. η`′(u
k,j

`′ ) ≤ ∆̃k
`′ .

This proves the equivalence ∆
k,j

`′ ' ∆̃k
`′ for all (`′, k, j) ∈ Q and concludes the proof. �

4. Proof of Theorem 3 (linear convergence)

This section is dedicated to the proof of Theorem 3. The core is the following lemma
that extends Lemma 8 to our setting with the triple indices.

Lemma 9. Suppose that 0 < λalg +λalg/λPic < λ?alg (from Lemma 6) as well as 0 < θ ≤ 1
and 0 < λPic/θ < λ?Pic (from Lemma 7). Then, there exists Csum > 0 such that

∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

∆k,j
` ≤ Csum ∆k′,j′

`′ for all (`′, k′, j′) ∈ Q. (54)

The constant Csum depends only on Crel, Cstab, qred, θ, qalg, λalg, qPic, λPic, α, and L.

Proof. Step 1. We prove that

Ak,j
` := |||u?` − uk,j` |||+ |||uk,?` − uk,j` |||+ η`(u

k,j
` ) ' ∆k,j

` for all (`, k, j) ∈ Q. (55)

Note that Ak,j
` and ∆k,j

` only differ in the first term, where the overall error is replaced
by the (inexact) linearization error. According to the Céa lemma (15), it holds that

|||u?` − uk,j` ||| ≤ |||u? − uk,j` |||+ |||u? − u?` |||
(15)

. |||u? − uk,j` ||| ≤ ∆k,j
` .

This implies that Ak,j
` . ∆k,j

` . To see the converse inequality, note that

|||u? − uk,j` ||| ≤ |||u? − u?` |||+ |||u?` − uk,j` |||
(A3)

. η`(u
?
`) + |||u?` − uk,j` |||

(A1)

. η`(u
k,j
` ) + |||u?` − uk,j` ||| ≤ Ak,j

` .

This proves ∆k,j
` . Ak,j

` and concludes this step.
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Step 2. We prove some auxiliary estimates. First, we prove that the algebraic error
|||uk,?` − uk,j−1

` ||| dominates the modified total error Ak,j
` , before the algebraic stopping

criterion (22) is reached, i.e.,

Ak,j
` . |||uk,?` − uk,j−1

` ||| for all (`, k, j) ∈ Q with k ≥ 1 and 1 ≤ j < j(`, k). (56)

To this end, note that

|||u?` − uk,j` ||| ≤ |||u?` − uk,?` |||+ |||uk,?` − uk,j` |||
(45)

. |||uk,?` − u
k−1,j

` |||+ |||uk,?` − uk,j` |||

≤ 2 |||uk,?` − uk,j` |||+ |||uk,j` − u
k−1,j

` |||
(26)

. |||uk,j` − uk,j−1
` |||+ |||uk,j` − u

k−1,j

` |||.
Since 1 ≤ j < j(`, k), we conclude (56) from

Ak,j
` = |||u?` − uk,j` |||+ |||uk,?` − uk,j` |||+ η`(u

k,j
` )

. |||uk,j` − uk,j−1
` |||+ |||uk,j` − u

k−1,j

` |||+ η`(u
k,j
` )

(42)

. |||uk,j` − uk,j−1
` |||

(26)

. |||uk,?` − uk,j−1
` |||.

Second, we consider the use of nested iteration when passing to the next perturbed
Banach–Picard step. We prove that

|||uk,?` − uk,0` ||| . A
k−1,j

` for all (`, k, 0) ∈ Q with k ≥ 1. (57)

To this end, simply note that

|||uk,?` − uk,0` |||
(40)
= |||uk,?` − u

k−1,j

` |||
(45)

. |||u?` − u
k−1,j

` ||| ≤ A
k−1,j

` .

Third, we prove that

A
k,j

` . Ak,j
` for all (`, k, j) ∈ Q, (58)

related to the algebraic error contraction. Note that k = 0 implies j = 0, so that (58)
trivially holds for k = 0 with equality. Let now k ≥ 1. We first consider the last but one
algebraic iteration step j = j(`, k)− 1 ≥ 0. There holds that

A
k,j

` = |||u?` − u
k,j

` |||+ |||uk,?` − u
k,j

` |||+ η`(u
k,j

` )

≤ |||u?` − u
k,j−1

` |||+ |||uk,?` − u
k,j−1

` |||+ η`(u
k,j

` ) + 2 |||uk,j` − u
k,j−1

` |||
(A1)

. A
k,j−1

` + |||uk,j` − u
k,j−1

` |||
(26)

. A
k,j−1

` + |||uk,?` − u
k,j−1

` ||| ' A
k,j−1

` .

This proves (58) for j = j(`, k)−1 ≥ 0. Note that this argument also applies when j = 1.
If 0 ≤ j ≤ j(`, k)− 2, we employ the last estimate and (56) to conclude (58) from

A
k,j

` . A
k,j−1

`

(56)

. |||uk,?` − u
k,j−2

` |||
(25)

≤ |||uk,?` − uk,j` ||| ≤ Ak,j
` .

Fourth, we prove that the linearization error |||u?`−u
k−1,j

` ||| dominates the modified total

error A
k,j

` , before the linearization stopping criterion (23) is reached, i.e.,

A
k,j

` . |||u?` − u
k−1,j

` ||| for all (`, k, j) ∈ Q with 1 ≤ k < k(`). (59)
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To see this, note that 1 ≤ k < k(`) yields that

A
k,j

` = |||u?` − u
k,j

` |||+ |||uk,?` − u
k,j

` |||+ η`(u
k,j

` )
(26)

. |||u?` − u
k,j

` |||+ |||u
k,j

` − u
k,j−1

` |||+ η`(u
k,j

` )

(41)

. |||u?` − u
k,j

` |||+ |||u
k,j

` − u
k−1,j

` |||+ η`(u
k,j

` )
(48)

. |||uk,j` − u
k−1,j

` |||+ η`(u
k,j

` )

(44)

. |||uk,j` − u
k−1,j

` |||
(48)

. |||u?` − u
k−1,j

` |||,
where we employ Lemma 6 and hence require 0 < λalg +λalg/λPic to be sufficiently small.

Fifth, we consider the use of nested iteration when refining the mesh. We prove that

A
0,j

` . η`−1(u
k,j

`−1) ≤ A
k,j

`−1 for all (`, k, j) ∈ Q. (60)

To this end, note that

|||u?` − u
k,j

`−1||| ≤ |||u? − u?` |||+ |||u? − u
k,j

`−1|||
(15)

. |||u? − uk,j`−1|||
(31)

. η`−1(u
k,j

`−1). (61)

Next, recall from (39) that u0,?
` = u

0,j

` = u
k,j

`−1. From (A1) used on non-refined mesh
elements and (A2) used on refined mesh elements, we hence conclude that

A
0,j

`

(39)
= |||u?` − u

k,j

`−1|||+ η`(u
k,j

`−1)
(61)

. η`−1(u
k,j

`−1) + η`(u
k,j

`−1) ≤ 2 η`−1(u
k,j

`−1).

Sixth, we prove that

A
k,j

` . A
k,j

` for all (`, k, j) ∈ Q. (62)

We first consider k = k(`)− 1 ≥ 0. Note that

|||uk,?` − u
k−1,j

` ||| ≤ |||u?` − uk,?` |||+ |||u?` − u
k−1,j

` |||
(27)

. |||u?` − u
k−1,j

` ||| ≤ A
k−1,j

` . (63)

Hence, the triangle inequality leads to

A
k,j

` = |||u?` − u
k,j

` |||+ |||uk,?` − u
k,j

` |||+ η`(u
k,j

` )

(A1)

. |||u?` − u
k−1,j

` |||+ |||uk,?` − u
k−1,j

` |||+ |||uk,j` − u
k−1,j

` |||+ η`(u
k−1,j

` )

. A
k−1,j

` + |||uk,j` − u
k−1,j

` |||
(48)

. A
k−1,j

` + |||u?` − u
k−1,j

` ||| ≤ 2 A
k−1,j

` .

This proves (62) for k = k(`)− 1. Note that the same argument also applies when k = 1.
If 0 ≤ k ≤ k(`)− 2, then

A
k,j

` . A
k−1,j

`

(59)

. |||u?` − u
k−2,j

` |||
(47)

≤ |||u?` − u
k,j

` ||| ≤ A
k,j

` ,

also using that q′Pic ≤ 1. This concludes the proof of (62).
Seventh, we consider the use of nested iteration when passing to the next perturbed

Banach–Picard step. We prove that

Ak,0
` . A

k−1,j

` for all (`, k, 0) ∈ Q with k ≥ 1. (64)
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Using (57) and recalling the definition uk,0` = u
k−1,j

` , it holds that

Ak,0
` = |||u?` − u

k−1,j

` |||+ |||uk,?` − uk,0` |||+ η`(u
k−1,j

` ) . A
k−1,j

` ,

which is the claim (64).
Step 3. This step collects auxiliary estimates following from the geometric series and

the contraction properties of the linearization and the algebraic solver. First, with the
convention j(`, k)− 1 =∞ when j(`, k) =∞, it holds that

j(`,k)−1∑

j=i+1

Ak,j
` . |||uk,?` − uk,i` ||| ≤ Ak,i

` for all (`, k, i) ∈ Q with k ≥ 1. (65)

This follows immediately from

j(`,k)−1∑

j=i+1

Ak,j
`

(56)

.

j(`,k)−1∑

j=i+1

|||uk,?` − uk,j−1
` |||

(25)

≤ |||uk,?` − uk,i` |||
∞∑

j=i

qj−ialg . |||uk,?` − uk,i` |||.

Analogously, with the convention that k(`) − 1 = ∞ when k(`) = ∞, the contrac-
tion (47) of the perturbed Banach–Picard iteration leads to

k(`)−1∑

k=i+1

A
k,j

` . |||u?` − u
i,j

` ||| ≤ A
i,j

` for all (`, i, j) ∈ Q. (66)

This follows immediately from

k(`)−1∑

k=i+1

A
k,j

`

(59)

.
k(`)−1∑

k=i+1

|||u?` − u
k−1,j

` |||
(47)

. |||u?` − u
i,j

` |||
∞∑

k=i

(q′Pic)
k−i . |||u?` − u

i,j

` |||.

With the analogous convention `− 1 =∞ when ` =∞, we finally prove that

`−1∑

`=i+1

A
k,j

` . A
k,j

i for all (i, k, j) ∈ Q. (67)

This follows from Step 1 and

`−1∑

`=i+1

A
k,j

`

(55)'
`−1∑

`=i+1

∆
k,j

`

(53)

. ∆
k,j

i

(55)' A
k,j

i .

Step 4. From now on, let (`′, k′, j′) ∈ Q be arbitrary. Suppose first that ` = ∞,
i.e., both algebraic and linearization solvers terminate at some finite values k(`) for all
` ≥ 0 and j(`, k) for all ` ≥ 0 and all k ≤ k(`), whereas infinitely many steps of mesh-
refinement take place. By the definition of our index set Q in (29) (which in particular
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features nested iterates), it holds that

∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` =

∞∑

`=`′+1

(
A0,0
` +

k(`)∑

k=1

(
Ak,0
` +

j(`,k)∑

j=1

Ak,j
`

))

+

k(`′)∑

k=k′+1

(
Ak,0
`′ +

j(`′,k)∑

j=1

Ak,j
`′

)
+

j(`′,k′)∑

j=j′+1

Ak′,j
`′

.
∞∑

`=`′+1

k(`)∑

k=1

j(`,k)∑

j=1

Ak,j
` +

k(`′)∑

k=k′+1

j(`′,k)∑

j=1

Ak,j
`′ +

j(`′,k′)∑

j=j′+1

Ak′,j
`′ ,

(68)

where we have employed estimates (60) and (64) in order to start all the summations
from k = 1 and j = 1.

We consider the three summands in (68) separately. For the first sum, we infer that

∞∑

`=`′+1

k(`)∑

k=1

j(`,k)∑

j=1

Ak,j
`

(65)

.
∞∑

`=`′+1

k(`)∑

k=1

(A
k,j

` + |||uk,?` − uk,0` |||)
(57)

.
∞∑

`=`′+1

k(`)∑

k=1

(A
k,j

` + A
k−1,j

` )

.
∞∑

`=`′+1

(
A

0,j

` +

k(`)∑

k=1

A
k,j

`

) (66)

.
∞∑

`=`′+1

(
A

0,j

` + A
k,j

`

)(60)

.
∞∑

`=`′+1

(
A
k,j

`−1 + A
k,j

`

)

. A
k,j

`′ +
∞∑

`=`′+1

A
k,j

`

(67)

. A
k,j

`′

(62)

. A
k′,j
`′

(58)

. Ak′,j′

`′ . (69)

If k′ = k(`′), the second sum in the bound (68) disappears. If k′ < k(`′), we infer that

k(`′)∑

k=k′+1

j(`′,k)∑

j=1

Ak,j
`′

(65)

.
k(`′)∑

k=k′+1

(A
k,j

`′ + |||uk,?`′ − uk,0`′ |||)
(57)

.
k(`′)∑

k=k′+1

(A
k,j

`′ + A
k−1,j

`′ )

. A
k′,j
`′ +

k(`′)∑

k=k′+1

A
k,j

`′

(66)

. A
k′,j
`′ + A

k,j

`′

(62)

≤ A
k′,j
`′

(58)

. Ak′,j′

`′ .

(70)

If j′ = j(`′, k′), the third sum in the bound (68) disappears. If j′ < j(`′, k′), we infer that

j(`′,k′)∑

j=j′+1

Ak′,j
`′

(65)

≤ A
k′,j
`′ + Ak′,j′

`′

(58)

. Ak′,j′

`′ . (71)

Summing up (68)–(71), we see that, provided that ` =∞,

∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` . Ak′,j′

`′ . (72)
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Step 5. Suppose that ` < ∞ and k(`) = ∞, i.e., for the mesh T`, the linearization
loop does not terminate. Moreover, let `′ < `. Then, it holds as in (68) that

∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` .

∞∑

k=1

j(`,k)∑

j=1

Ak,j
` +

`−1∑

`=`′+1

k(`)∑

k=1

j(`,k)∑

j=1

Ak,j
` +

k(`′)∑

k=k′+1

j(`′,k)∑

j=1

Ak,j
`′ +

j(`′,k′)∑

j=j′+1

Ak′,j
`′ . (73)

We argue as before to see that

`−1∑

`=`′+1

k(`)∑

k=1

j(`,k)∑

j=1

Ak,j
`

(69)

. Ak′,j′

`′ ,

k(`′)∑

k=k′+1

j(`′,k)∑

j=1

Ak,j
`′

(70)

. Ak′,j′

`′ , and

j(`′,k′)∑

j=j′+1

Ak′,j
`′

(71)

. Ak′,j′

`′ . (74)

It only remains to estimate

∞∑

k=1

j(`,k)∑

j=1

Ak,j
`

(65)

.
∞∑

k=1

(
A
k,j

` + |||uk,?` − uk,0` |||
) (57)

. A
0,j

` +
∞∑

k=1

A
k,j

`

(66)

. A
0,j

`

(60)

. A
k,j

`−1 ≤ A
k,j

`′ +

`−1∑

`=`′+1

A
k,j

`

(67)

. A
k,j

`′

(62)

. A
k′,j
`′

(58)

. Ak′,j′

`′ .

(75)

Altogether, provided that `′ < ` <∞ and k(`) =∞, we again obtain (72).
Step 6. Suppose that ` < ∞ and k(`) = ∞, i.e., for the mesh T`, the linearization

loop does not terminate, and moreover, `′ = `. Arguing as in (75) and (71), it holds that

∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` .

∞∑

k=k′+1

j(`′,k)∑

j=1

Ak,j
`′ +

j(`′,k′)∑

j=j′+1

Ak′,j
`′ . Ak′,j′

`′ . (76)

Step 7. Suppose that ` <∞, where k(`) <∞ and hence j(`, k) =∞, i.e., the linear
solver does not terminate for the linearization step k(`). Suppose moreover `′ < `. Then,
it holds that

∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` .

∞∑

j=1

Ak,j
` +

k(`)−1∑

k=1

j(`,k)∑

j=1

Ak,j
` +

`−1∑

`=`′+1

k(`)∑

k=1

j(`,k)∑

j=1

Ak,j
`

+

k(`′)∑

k=k′+1

j(`′,k)∑

j=1

Ak,j
`′ +

j(`′,k′)∑

j=j′+1

Ak′,j
`′ .

(77)

We argue as before to see that

`−1∑

`=`′+1

k(`)∑

k=1

j(`,k)∑

j=1

Ak,j
`

(69)

. Ak′,j′

`′ ,

k(`′)∑

k=k′+1

j(`′,k)∑

j=1

Ak,j
`′

(70)

. Ak′,j′

`′ , and

j(`′,k′)∑

j=j′+1

Ak′,j
`′

(71)

. Ak′,j′

`′ .

For the first sum in (77), we get that
∞∑

j=1

Ak,j
`

(65)

. |||uk,?` − uk,0` |||
(57)

. A
k−1,j

`

(69)

. Ak′,j′

`′ . (78)
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Finally, the second sum in (77) can be bounded analogously to (75) in Step 5 by Ak′,j′

`′ .
Altogether, we obtain (72) provided that `′ < ` <∞, k(`) <∞, and j(`, k) =∞.

Step 8. Suppose that ` <∞, where k(`) <∞ and hence j(`, k) =∞, i.e., the linear
solver does not terminate for the linearization step k(`). Suppose moreover `′ = ` but
k′ < k(`′). Then, it holds that

∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` .

∞∑

j=1

Ak,j
`′ +

k(`′)−1∑

k=k′+1

j(`′,k)∑

j=1

Ak,j
`′ +

j(`′,k′)∑

j=j′+1

Ak′,j
`′ . (79)

We argue as before to see that

∞∑

j=1

Ak,j
`′

(78)

. Ak′,j′

`′ ,

k(`′)−1∑

k=k′+1

j(`′,k)∑

j=1

Ak,j
`′

(70)

. Ak′,j′

`′ , and

j(`′,k′)∑

j=j′+1

Ak′,j
`′

(71)

. Ak′,j′

`′ .

Hence, we obtain (72) provided that `′ = ` <∞, k′ < k(`′) <∞, and j(`′, k) =∞.
Step 9. Suppose that ` <∞, where k(`) <∞ and hence j(`, k) =∞, i.e., the linear

solver does not terminate for the linearization step k(`). Suppose `′ = ` and k′ = k(`′).

Then, the sum in (72) reduces to
∑∞

j=j′+1 Ak′,j
`′ and (65) yields the inequality (72).

Step 10. Suppose that `, k(`), j(`, k(`)) < ∞ and that Algorithm 1 finished on

step (iii) when η`(u
k,j

` ) = 0 for tolerance τ = 0. From (31), we see that η`(u
k,j

` ) = 0

implies u? = u
k,j

` , i.e., the exact solution was found. Moreover, through the stopping

criteria (23) and (22), we see that u
k−1,j

` = u
k,j−1

` = u
k,j

` , so that (48) gives u?` = u
k,j

` , and

finally (26) gives uk,?` = u
k,j

` . Thus A
k,j

` = 0.

Let `′ < `. Then, as in (73),

∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` .

k(`)∑

k=1

j(`,k)∑

j=1

Ak,j
` +

`−1∑

`=`′+1

k(`)∑

k=1

j(`,k)∑

j=1

Ak,j
` +

k(`′)∑

k=k′+1

j(`′,k)∑

j=1

Ak,j
`′ +

j(`′,k′)∑

j=j′+1

Ak′,j
`′ .

Here, the last three terms are estimated as in (74), whereas for the first one, we can

proceed as in (75), crucially noting that the last summand A
k,j

` is zero.
If `′ = `, three cases are possible. The first case is k′ < k. Then

∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` .

k(`′)∑

k=k′+1

j(`′,k)∑

j=1

Ak,j
`′ +

j(`′,k′)∑

j=j′+1

Ak′,j
`′ ,

which is controlled as in (74). The second case is k′ = k but j′ < j, where directly

∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` =

j(`′,k′)∑

j=j′+1

Ak′,j
`′

(65)

. Ak′,j′

`′ ,

since A
k′,j
`′ = 0. In the third case, k′ = k and j′ = j, the sum is void, and (72) follows.
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Step 11. Finally, if `, k(`), j(`, k(`)) < ∞ and Algorithm 1 finished on step (IV) for
tolerance τ > 0, (72) follows immediately simplifying Step 4.

Step 12. Combining Steps 4–11 that cover all possible runs of Algorithm 1 with
Step 1, we finally see that

∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

∆k,j
`

(55)'
∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` . Ak′,j′

`′
(55)' ∆k′,j′

`′ for all (`′, k′, j′) ∈ Q.

This concludes the proof of (54). �

Proof of Theorem 3. The proof is split into two steps.
Step 1. For the convenience of the reader, we recall an argument from the proof

of [CFPP14, Lemma 4.9]: For M ∈ N ∪ {∞}, let C > 0 and αn ≥ 0 satisfy that

M∑

n=N+1

αn ≤ C αN for all N ∈ N0 with N < min{M,∞}.

Then,

(1 + C−1)
M∑

n=N+1

αn ≤
M∑

n=N+1

αn + αN =
M∑

n=N

αn for all N ∈ N0.

Inductively, it follows for all N,m ∈ N0 with N +m < min{M + 1,∞} that

(1 + C−1)m
M∑

n=N+m

αn ≤
M∑

n=N+1

αn + αN =
M∑

n=N

αn.

We thus conclude for all N,m ∈ N0 with N +m < min{M + 1,∞} that

αN+m ≤
M∑

n=N+m

αn ≤ (1 + C−1)−m
M∑

n=N

αn ≤ (1 + C) (1 + C−1)−mαN .

Step 2. Since the index set Q is linearly ordered with respect to the total step counter
|(·, ·, ·)|, Lemma 9 and Step 1 imply that

∆k′,j′

`′ ≤ Clin q
|(`′,k′,j′)|−|(`,k,j)|
lin ∆k,j

` for all (`, k, j), (`′, k′, j′) ∈ Q with (`′, k′, j′) ≥ (`, k, j),

where Clin = 1 + Csum and qlin = Csum/(Csum + 1). This concludes the proof. �

5. Proof of Theorem 4 (optimal decay rate wrt. degrees of freedom)

The first result of this section proves the left inequality in (36):

Lemma 10. Suppose (R1) as well as (A1), (A2), and (A4). Let s > 0 and assume
‖u?‖As > 0. For tolerance τ = 0, it then holds that

‖u?‖As ≤ copt sup
(`′,k′,j′)∈Q

(#T`′ −#T0 + 1)s∆k′,j′

`′ , (80)

where the constant copt > 0 depends only on CCéa = L/α, Cstab, Crel, Cson, #T0, s, and,
if ` <∞, additionally on `.
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Proof. The proof is split into three steps. First, we recall from [BHP17, Lemma 22] that

#Th/#TH ≤ #Th −#TH + 1 ≤ #Th for all TH ∈ T and all Th ∈ refine(TH). (81)

Step 1. We consider the three non-generic cases with ` <∞. First, let k(`) <∞, and

j(`, k) < ∞. Then, Algorithm 1 was terminated in Step (iii) with η`(u
k,j

` ) = 0. Due to

the Céa lemma (15) and Proposition 2, it follows that

|||u? − u?` |||
(15)

. |||u? − uk,j` |||
(31)

. η`(u
k,j

` ) = 0

and hence u? = u?` = uk,?` = u
k,j

` and η`(u
?
`) = 0.

Second, let k(`) <∞ but j(`, k) =∞, i.e., the algebraic solver does not stop. Accord-
ing to Theorem 3, it holds that

∆k,j
` = |||u? − uk,j` |||+ |||uk,?` − uk,j` |||+ η`(u

k,j
` )→ 0 as j →∞.

Hence, we obtain that u? = u?` = uk,?` . From stability (A1), it follows that

0 ≤ η`(u
?
`)

(A1)

. η`(u
k,j
` ) + |||u?` − uk,j` ||| → 0 as j →∞.

Hence, we see that η`(u
?
`) = 0.

Finally, let k(`) = ∞, i.e., the linearization solver does not stop. Analogously to the
previous case, we obtain that

∆
k,j

` = |||u? − uk,j` |||+ |||uk,?` − u
k,j

` |||+ η`(u
k,j

` )→ 0 as k →∞.
Hence, we get that u? = u?` . Again, stability (A1) yields that η`(u

?
`) = 0.

In any case, ` <∞ implies that η`(u
?
`) = 0 and hence

‖u?‖As = sup
0≤N<#T`−#T0

(
(N + 1)s inf

Topt∈T(N)
ηopt(u

?
opt)
)
.

The term N + 1 within the supremum can be estimated by

N + 1 ≤ #T` −#T0

(R1)

≤ (C`
son − 1) #T0.

Moreover, (A1), (A2), and (A4) yield quasi-monotonicity ηopt(u
?
opt) . η0(u?0) (see, e.g.,

[CFPP14, Lemma 3.5]). Altogether, we thus arrive at

‖u?‖As . η0(u?0) ≤ sup
`′∈N0

(#T`′ −#T0 + 1)s η`′(u
?
`′). (82)

Step 2. We consider the generic case that ` = ∞ and η`(u
k,j

` ) > 0 for all ` ∈ N0.
Algorithm 1 then guarantees that #T` →∞ as `→∞. Thus, we can argue analogously
to the proof of [CFPP14, Theorem 4.1]: Let N ∈ N. Choose the maximal `′ ∈ N0 such
that #T`′ −#T0 + 1 ≤ N . Then, T`′ ∈ T(N). The choice of N guarantees that

N + 1 ≤ #T`′+1 −#T0 + 1
(81)

≤ #T`′+1 ≤ Cson#T`′
(81)

≤ Cson#T0 (#T`′ −#T0 + 1). (83)

This leads to

(N + 1)s inf
Topt∈T(N)

ηopt(u
?
opt) . (#T`′ −#T0 + 1)s η`′(u

?
`′),
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and we immediately see that this also holds for N = 0 with `′ = 0. Taking the supremum
over all N ∈ N0, we conclude that

‖u?‖As . sup
`′∈N0

(#T`′ −#T0 + 1)s η`′(u
?
`′). (84)

Step 3. With stability (A1) and the Céa lemma (15), we see for all (`′, 0, 0) ∈ Q that

η`′(u
?
`′)

(A1)

. |||u? − u?`′ |||+ |||u? − u0,0
`′ |||+ η`′(u

0,0
`′ )

(15)

. |||u? − u0,0
`′ |||+ η`′(u

0,0
`′ ) ≤ ∆0,0

`′ .

With (82) and (84), we thus obtain that

‖u?‖As . sup
(`′,0,0)∈Q

(#T`′ −#T0 + 1)s η`′(u
?
`′) ≤ sup

(`′,k′,j′)∈Q
(#T`′ −#T0 + 1)s ∆k′,j′

`′ .

This concludes the proof. �

To prove the upper estimate in (36), we need the comparison lemma from [CFPP14,
Lemma 4.14] for the error estimator of the exact discrete solution u?` ∈ X`.

Lemma 11. Suppose (R1)–(R2) as well as (A1), (A2), and (A4). Let 0 < θ′ < θopt :=
(1 + C2

stabC
2
rel)
−1. Then, there exist constants C1, C2 > 0 such that for all s > 0 with

0 < ‖u?‖As <∞ and all TH ∈ T, there exists RH ⊆ TH which satisfies

#RH ≤ C1C
−1/s
2 ‖u?‖1/s

As
ηH(u?H)−1/s, (85)

as well as the Dörfler marking criterion

θ′ηH(u?H) ≤ ηH(RH , u
?
H). (86)

The constants C1, C2 depend only on Cstab and Crel. �

Proof of Theorem 4. The proof is split into four steps. Without loss of generality, we
may assume that ‖u?‖As <∞.

Step 1. Due to the assumptions λalg +λalg/λPic ≤ λ?alg (from Lemma 6) and λPic/θ <
λ?Pic (from Lemma 7), we get that λalg ≤ λ?alg λPic ≤ λ?alg λ

?
Pic θ. Hence, it holds that

θ′ =
θ + Cstab

(
(1 + CPic)Calgλalg +

[
CPic + (1 + CPic)Calgλalg

]
λPic

)

1− λPic /λ?Pic

≤
θ + Cstab

(
(1 + CPic)Calgλ

?
algλ

?
Picθ +

[
CPic + (1 + CPic)Calgλ

?
algλ

?
Picθ
]
λ?Picθ

)

1− θ
which converges to 0 as θ → 0. As a consequence, (34) holds for sufficiently small θ.

Clearly, the parameters λalg, λPic, θ > 0 can be chosen such that all assumptions are
fulfilled. First, choose θ > 0 such that 0 < θ < min{1, θ?}. Then, choose λPic > 0 such
that 0 < λPic/θ < λ?Pic. Finally, choose 0 < λalg < 1 such that λalg + λalg/λPic < λ?alg.

Step 2. Recall that CPic = qPic/(1 − qPic) and Calg = qalg/(1 − qalg). Provided that
(`+1, 0, 0) ∈ Q, it follows from the contraction properties (26) resp. (45), and the stopping
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criteria (41) resp. (43) that

|||u?` − u
k,j

` ||| ≤ |||u?` − uk,?` |||+ |||uk,?` − u
k,j

` |||
(45)

≤ CPic |||uk,?` − u
k−1,j

` |||+ |||uk,?` − u
k,j

` |||
≤ (1 + CPic)|||uk,?` − u

k,j

` |||+ CPic |||uk,j` − u
k−1,j

` |||
(26)

≤ (1 + CPic)Calg|||uk,j` − u
k,j−1

` |||+ CPic |||uk,j` − u
k−1,j

` |||
(41)

≤ (1 + CPic)Calgλalg η`(u
k,j

` ) +
[
CPic + (1 + CPic)Calgλalg

]
|||uk,j` − u

k−1,j

` |||
(43)

≤
(

(1 + CPic)Calgλalg +
[
CPic + (1 + CPic)Calgλalg

]
λPic

)
η`(u

k,j

` )

(34)
= C−1

stab

(
θ′
(
1− λPic/λ

?
Pic

)
− θ
)
η`(u

k,j

` ).

Step 3. Let R` ⊆ T` be the subset from Lemma 11 with θ′ from (34). From Step 2,
we obtain that

η`(R`, u
?
`)

(A1)

≤ η`(R`, u
k,j

` ) + Cstab|||u?` − u
k,j

` |||
≤ η`(R`, u

k,j

` ) +
(
θ′
(
1− λPic/λ

?
Pic

)
− θ
)
η`(u

k,j

` ).
(87)

With the equivalence (51), Lemma 11, and estimate (87), we see that

θ′
(
1− λPic/λ

?
Pic

)
η`(u

k,j

` )
(51)

≤ θ′η`(u
?
`)

(86)

≤ η`(R`, u
?
`)

(87)

≤ η`(R`, u
k,j

` ) +
(
θ′
(
1− λPic/λ

?
Pic

)
− θ
)
η`(u

k,j

` ).

Thus, we are led to

θ η`(u
k,j

` ) ≤ η`(R`, u
k,j

` ).

Hence, R` satisfies the Dörfler marking criterion (24) used in Algorithm 1. By the (quasi-)
minimality of M` in (24), we infer that

#M` . #R`

(85)

. ‖u?‖1/s
As
η`(u

?
`)
−1/s (51)' ‖u?‖1/s

As
η`(u

k,j

` )−1/s.

Recall from (40) that u
0,j

`+1 = u
k,j

` . Thus, (60) and the equivalence (55) lead to

η`(u
k,j

` )−1/s
(60)

. (A
0,j

`+1)−1/s (55)' (∆
0,j

`+1)−1/s.

Overall, we end up with

#M` . ‖u?‖1/s
As

(∆
0,j

`+1)−1/s for all (`+ 1, 0, 0) ∈ Q. (88)

The hidden constant depends only on Cstab, Crel, Cmark, 1− λPic/λ
?
Pic, CCéa = L/α, C ′rel,

and s.
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Step 4. With linear convergence (33) and the geometric series, we see that

∑

(˜̀,k̃,̃j)∈Q
(˜̀,k̃,̃j)≤(`,k,j)

(∆k̃,̃j˜̀ )−1/s
(33)

. (∆k,j
` )−1/s

∑

(˜̀,k̃,̃j)∈Q
(˜̀,k̃,̃j)≤(`,k,j)

(q
1/s
lin )|(`,k,j)|−|(

˜̀,k̃,̃j)| . (∆k,j
` )−1/s (89)

with hidden constants depending only on Clin, qlin, and s. For (`, k, j) ∈ Q such that
(`+ 1, 0, 0) ∈ Q and such that T` 6= T0, Step 3 and the closure estimate (R3) lead to

#T` −#T0 + 1 ' #T` −#T0

(R3)

.
`−1∑

˜̀=0

#M˜̀ (88)

. ‖u?‖1/s
As

∑̀

˜̀=0

(∆
0,j˜̀ )−1/s

≤ ‖u?‖1/s
As

∑

(˜̀,k̃,̃j)∈Q
(˜̀,k̃,̃j)≤(`,k,j)

(∆k̃,̃j˜̀ )−1/s
(89)

. ‖u?‖1/s
As

(∆k,j
` )−1/s.

Replacing ‖u?‖As with max{‖u?‖As ,∆
0,0
0 }, the overall estimate trivially holds for T` = T0.

This proves that

(#T` −#T0 + 1)s∆k,j
` .

{
max{‖u?‖As ,∆

0,0
0 }, if (`+ 1, 0, 0) ∈ Q and ` ≥ 0,

‖u?‖As , if (`+ 1, 0, 0) ∈ Q and ` ≥ 1.
(90)

It remains to consider the cases where (`, k, j) ∈ Q but (` + 1, 0, 0) 6∈ Q, as well as
the case T` = T0. In the first case, in holds that 1 ≤ ` = ` < ∞, and one of the cases
discussed in detail in Step 1 of Lemma 10 arises.

First, let 2 ≤ ` = ` <∞. Since `− 1 ≥ 1 and (`, 0, 0) ∈ Q, (90) shows that

(#T`−1 −#T0 + 1)s∆
k,j

`−1 . ‖u?‖As .

Moreover, Lemma 9 leads to ∆k,j
` . ∆

k,j

`−1. Therefore, we obtain from (83) that

#T` −#T0 + 1 ≤ Cson#T0(#T`−1 −#T0 + 1). (91)

Altogether, (90) holds for this case as well.
Second, let ` = ` = 1. Then, we can rely on the inequality

(#T1 −#T0 + 1)s∆k,j
1

(91)

≤ Cson(#T0) ∆k,j
1

(54)

. ∆
k,j

0

(32)
= |||u? − uk,j0 |||+ |||uk,?0 − u

k,j

0 |||+ η0(u
k,j

0 )

(26)

. |||u? − u?0|||+ |||u?0 − u
k,j

0 |||+ |||u
k,j

0 − u
k,j−1

0 |||+ η0(u
k,j

0 )

(43)

. |||u? − u?0|||+ |||u?0 − u
k,j

0 |||+ |||u
k,j

0 − u
k−1,j

0 |||+ η0(u
k,j

0 )

(48)

. |||u? − u?0|||+ |||u
k,j

0 − u
k−1,j

0 |||+ η0(u
k,j

0 )

(43)

. |||u? − u?0|||+ η0(u
k,j

0 )
(51)

. |||u? − u?0|||+ η0(u?0)
(A3)

. η0(u?0) ≤ ‖u?‖As .

(92)

Thus, (90) holds for this case as well.
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Finally, let ` = ` = 0. Then, linear convergence (33) proves that

∆k,j
0

(33)

. ∆0,0
0 . (93)

Hence, (90) also holds for this case, and we conclude the proof of (36). �

6. Proof of Theorem 5 (optimal decay rate wrt. computational cost)

Proof of Theorem 5. Note that #T`′ − #T0 + 1 = 1 ≤ #T0 for `′ = 0 and #T`′ −
#T0 + 1 ≤ #T ′` for `′ > 0, so that the left inequality in (37) immediately follows from the
left inequality in (36). In order to prove the right inequality in (37), let (`′, k′, j′) ∈ Q.
Employing the right inequality in (36) (cf. (90)), the geometric series proves that

∑

(`,k,j)∈Q
(`,k,j)≤(`′,k′,j′)

#T`
(81)

≤ #T0

∑

(`,k,j)∈Q
(`,k,j)≤(`′,k′,j′)

(#T` −#T0 + 1)

(36)

≤ #T0C
1/s
opt max{‖u?‖As ,∆

0,0
0 }1/s

∑

(`,k,j)∈Q
(`,k,j)≤(`′,k′,j′)

(∆k,j
` )−1/s

(33)

≤ #T0C
1/s
opt C

1/s
lin

1

1− q1/s
lin

max{‖u?‖As ,∆
0,0
0 }1/s(∆k′,j′

`′ )−1/s.

Rearranging this estimate, we end up with

sup
(`′,k′,j′)∈Q

( ∑

(`,k,j)∈Q
(`,k,j)≤(`′,k′,j′)

#T`
)s

∆k′,j′

`′ . max{‖u?‖As ,∆
0,0
0 },

where the hidden constant depends only on Cstab, Crel, Cmark, 1− λPic/λ
?
Pic, CCéa = L/α,

C ′rel, Cmesh, Clin, qlin, #T0, and s. This proves the right inequality in (37). �

7. Numerical experiments

In this section, we present numerical experiments to underpin our theoretical findings.
We compare the performance of Algorithm 1 for

• different values of λalg ∈ {10−1, 10−2, 10−3, 10−4},
• different values of λPic ∈ {1, 10−1, 10−2, 10−3, 10−4},
• different values of θ ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1}.

As model problems serve nonlinear boundary value problems which arise, e.g., from non-
linear material laws in magnetostatic computations, where the mesh-refinement is steered
by newest vertex bisection.

As an algebraic solver for the linear problems arising from the Banach–Picard iteration,
we use PCG with multilevel additive Schwarz preconditioner from [Füh14, Section 7.4.1]
which is an optimal preconditioner, i.e., the condition number of the preconditioned
system is uniformly bounded; cf. also [GHPS19, Section 2.9].
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7.1. Model problem. Let Ω ⊂ Rd, d ≥ 2, be a bounded Lipschitz domain with
polytopal boundary Γ = ∂Ω split into relatively open and disjoint Dirichlet and Neumann
boundaries ΓD,ΓN with |ΓD| > 0, i.e., Γ = ΓD ∪ ΓN. While the numerical experiments in
Section 7.4–7.5 only consider d = 2, we stress that the following model problem is covered
by the abstract theory for any d ≥ 2. For f ∈ L2(Ω) and g ∈ L2(Γ), find u? such that:

−div (µ(x, |∇u?(x)|2)∇u?(x)) = f(x) in Ω,

u?(x) = 0 on ΓD,

µ(x, |∇u?(x)|2) ∂nu
?(x) = g(x) on ΓN,

(94)

where the scalar nonlinearity µ : Ω × R≥0 → R satisfies the following properties (M1)–
(M4), similarly considered in [GMZ12, GHPS18]:

(M1) There exist constants 0 < γ1 < γ2 <∞ such that

γ1 ≤ µ(x, t) ≤ γ2 for all x ∈ Ω and all t ≥ 0. (95)

(M2) There holds µ(x, ·) ∈ C1(R≥0,R) for all x ∈ Ω, and there exist constants 0 < γ̃1 <
γ̃2 <∞ such that

γ̃1 ≤ µ(x, t) + 2t
d

dt
µ(x, t) ≤ γ̃2 for all x ∈ Ω and all t ≥ 0. (96)

(M3) Lipschitz continuity of µ(x, t) in x, i.e., there exists a constant Lµ > 0 such that

|µ(x, t)− µ(y, t)| ≤ Lµ|x− y| for all x, y ∈ Ω and all t ≥ 0. (97)

(M4) Lipschitz continuity of t d
dt
µ(x, t) in x, i.e., there exists a constant L̃µ > 0 such

that

|t d

dt
µ(x, t)− t d

dt
µ(y, t)| ≤ L̃µ|x− y| for all x, y ∈ Ω and all t ≥ 0. (98)

7.2. Weak formulation. The weak formulation of (94) reads as follows: Find u ∈
H1

D(Ω) := {w ∈ H1(Ω) : w = 0 on ΓD} such that
∫

Ω

µ(x, |∇u?(x)|2)∇u? · ∇v dx =

∫

Ω

fv dx+

∫

ΓN

gv ds for all v ∈ H1
D(Ω). (99)

With respect to the abstract framework of Section 2.1, we take X = H1
D(Ω), K = R, and

(·, ·) = (∇·, ∇·) with |||v||| = ‖∇v‖L2(Ω). We obtain (11) with operators

〈Aw, v〉X ′×X =

∫

Ω

µ(x, |∇w(x)|2)∇w(x) · ∇v(x) dx, (100a)

〈F, v〉X ′×X =

∫

Ω

fv dx+

∫

ΓN

gv ds (100b)

for all v, w ∈ X . We recall from [GHPS18, Proposition 8.2] that (M1)–(M2) implies that
A is strongly monotone (with α := γ̃1) and Lipschitz continuous (with L := γ̃2), so that
(94) fits into the setting of Section 2.1. Moreover, (M3)–(M4) are required to prove the
well-posedness and the properties (A1)–(A4) of the residual a posteriori error estimator.
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Figure 1. Z-shaped domain Ω ⊂ R2 with initial mesh T0 and ΓD marked
by a thick blue line (left) and L-shaped domain Ω ⊂ R2 with initial mesh
T0 (right).

7.3. Discretization and a posteriori error estimator. Let T0 be a conforming
initial triangulation of Ω into simplices T ∈ T0. For each TH ∈ T, consider the lowest-
order FEM space

XH :=
{
v ∈ C(Ω) : v|Γ = 0 and v|T ∈ P1(T ) for all T ∈ TH

}
. (101)

As in [GMZ12, Section 3.2], we define for all T ∈ TH and all vH ∈ XH , the corresponding
weighted residual error indicators

ηH(T, vH)2 := |T |2/d‖f + div (µ(·, |∇vH |2)∇vH)‖2
L2(T )

+ |T |1/d‖[(µ(·, |∇vH |2)∇vH) · n]‖2
L2(∂T∩Ω),

(102)

where [·] denotes the usual jump of discrete functions across element interfaces, and n is
the outer normal vector of the considered element.

Due to (M3), the error estimator is well-posed, since the nonlinearity µ(x, t) is Lipschitz
continuous in x. Then, reliability (A3) and discrete reliability (A4) are proved as in the
linear case; see, e.g., [CKNS08] for the linear case or [GMZ12, Theorem 3.3] and [GMZ12,
Theorem 3.4], respectively, for strongly monotone nonlinearities.

The verification of stability (A1) and reduction (A2) requires the validity of a certain
inverse estimate. For scalar nonlinearities and under the assumptions (M1)–(M4), the
latter is proved in [GMZ12, Lemma 3.7]. Using this inverse estimate, the proof of (A1)
and (A2) follows as for the linear case; see, e.g., [CKNS08] for the linear case or [GMZ12,
Section 3.3] for scalar nonlinearities. We note that the necessary inverse estimate is, in
particular, open for non-scalar nonlinearities. In any case, the arising constants in (A1)–
(A4) depend also on the uniform shape regularity of the triangulations generated by
newest vertex bisection.

7.4. Experiment with known solution. We consider the Z-shaped domain Ω ⊂ R2

from Figure 1 (left) with mixed boundary conditions and the nonlinear problem (94) with
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µ(x, |∇u?(x)|2) := 2 + 1√
1+|∇u?(x)|2

. This leads to the bounds α = 2 and L = 3 in (10).

We prescribe the solution u? in polar coordinates (x, y) = r(cosφ, sinφ) with φ ∈ (−π, π)

u?(x, y) := rβ cos(β φ) with β = 4/7 (103)

and compute f and g in (94) accordingly. We note that u? has a generic singularity at
the re-entrant corner (x, y) = (0, 0).

In Figure 2, we compare uniform mesh-refinement (θ = 1) to adaptive mesh-refinement

(0 < θ < 1) for different values of λalg and λPic. We plot the error estimator η`(u
k,j

` )
over the number of elements N := #T`. First (top), we fix θ = 0.5, λPic = 10−2,
and choose λalg ∈ {10−1, 10−2, 10−3, 10−4}. We see that uniform mesh-refinement leads
to the suboptimal rate of convergence O(N−2/7), whereas Algorithm 1 with adaptive
mesh-refinement regains the optimal rate of convergence O(N−1/2), independently of the
actual choice of λalg. We observe the very same if we fix θ = 0.5, λalg = 10−2, and
choose λPic ∈ {1, 10−1, 10−2, 10−3, 10−4} (middle), or if we fix λalg = λPic = 10−2 and vary
θ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} (bottom). Since we know from Proposition 2 and the estimate

|||uk,?` − u
k,j

` |||
(26)

. |||uk,j` − u
k,j−1

` |||
(41)

. η`(u
k,j

` ) + |||uk,j` − u
k−1,j

` |||
(43)

. η`(u
k,j

` )

that η`(u
k,j

` ) ' ∆
k,j

` , this empirically underpins Theorem 4.
In Figure 3, we analogously choose different combinations of θ, λalg, and λPic. We plot

the error estimator η`′(u
k′,j′

`′ ) over the cumulative sum
∑

(`,k,j)≤(`′,k′,j′) #T`. Independently

of θ, λalg, and λPic, we observe optimal order of convergence O
((∑

(`,k,j)≤(`′,k′,j′) #T`
)−1/2)

with respect to the overall computational cost, in accordance with Theorem 5.
In Figure 4, we also consider the total number of PCG iterations cumulated over all

Picard steps on the given mesh for different combinations of θ, λalg, and λPic. We observe
that independently of the choice of these parameters, the total number of PCG iterations
stays uniformly bounded. Additionally, we see that for larger values of λalg and λPic, as
well as for smaller values of θ, the total number of PCG iterations is smaller.

7.5. Experiment with unknown solution. We consider the L-shaped domain Ω ⊂
R2 from Figure 1 (right) and the nonlinear problem (94) with f(x) = 1 and µ(x, |∇u?(x)|2)

:= 1 + ln(1+|∇u?|2)
1+|∇u?|2 . Then, (M1)–(M4) hold with α ≈ 0.9582898 and L ≈ 1.5423438.

In Figure 5, we again test Algorithm 1 with varying θ, λalg, and λPic. We plot the error

estimator η`(u
k,j

` ) over the number of elements N := #T`. Uniform mesh-refinement
leads to the suboptimal rate of convergence O(N−1/3), whereas Algorithm 1 regains the
optimal rate of convergence O(N−1/2). Again, this empirically confirms Theorem 4. The
latter rate of convergence even appears to be robust with respect to θ, λalg, and λPic.

In Figure 6, we plot the estimator η`′(u
k′,j′

`′ ) over the cumulative sum
∑

(`,k,j)≤(`′,k′,j′) #T`.
Independently of the choice of the parameters θ, λalg, and λPic, we observe the optimal

order of convergence O
((∑

(`,k,j)≤(`′,k′,j′) #T`
)−1/2)

with respect to the overall computa-

tional cost, which empirically underpins Theorem 5.
In Figure 7, we finally consider the total number of PCG iterations cumulated over all

Picard steps on the given mesh. We observe that independently of the choice of θ, λalg,
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Figure 2. Optimal decay rate wrt. degrees of freedom, example from Sec-

tion 7.4. Error estimator η`(u
k,j

` ) on mesh T`, perturbed Banach–Picard
iteration k, and PCG step j of Algorithm 1 with respect to the number of
elements N of the mesh T` for various parameters θ, λPic, and λalg.

and λPic, the total number of PCG iterations stays uniformly bounded. Additionally, we
see that for larger values of λalg and λPic, as well as for smaller values of θ, the total
number of PCG iterations is smaller.
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