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Résumé — Une revue des avancées récentes autour des méthodes de discrétisation, de l’analyse

a posteriori, et des algorithmes adaptatifs pour la modélisation numérique en géosciences —

Cet article de revue traite de deux thématiques de recherche en géosciences qui ont connu

d’importants développements au cours des dernières années. Dans la première partie, on

considère un ingrédient clé pour la résolution numérique du problème d’écoulement de Darcy,

à savoir les schémas de discrétisation des termes de diffusion sur des maillages polygonaux/

polyédriques généraux. On présente différents schémas et on discute en détail de leurs

propriétés numériques fondamentales telles que la stabilité, la consistance et la robustesse. La

deuxième partie de l’article est consacrée au contrôle de l’erreur et à l’adaptivité pour des

problèmes modèles en géosciences. On présente des estimations a posteriori qui garantissent

une borne supérieure de l’erreur totale et qui permettent d’identifier les différentes

composantes d’erreur. Ces estimations sont utilisées pour formuler des critères d’arrêt adap-

tatifs pour des solveurs linéaires et non linéaires ainsi que pour ajuster le pas de temps et pour

raffiner le maillage de façon adaptative. Des essais numériques illustrent le caractère

entièrement adaptatif de tels algorithmes.

Abstract — A Review of Recent Advances in Discretization Methods, a Posteriori Error Analysis,

and Adaptive Algorithms for Numerical Modeling in Geosciences — Two research subjects in geo-

sciences which lately underwent significant progress are treated in this review. In the first part, we

focus on one key ingredient for the numerical approximation of the Darcy flow problem, namely

the discretization of diffusion terms on general polygonal/polyhedral meshes. We present different

schemes and discuss in detail their fundamental numerical properties such as stability, consistency,

and robustness. The second part of the paper is devoted to error control and adaptivity for model

problems in geosciences. We present the available a posteriori estimates guaranteeing the maximal

overall error and show how the different error components can be identified. These estimates are used

to formulate adaptive stopping criteria for linear and nonlinear solvers, time step choice adjustment,

and adaptive mesh refinement. Numerical experiments illustrate such entirely adaptive algorithms.
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INTRODUCTION

Recently, there has been an increased interest and signif-

icant progress in two subjects related to the numerical

approximation of problems in geosciences: the concep-

tion of novel discretization schemes for diffusion terms

on almost arbitrary polygonal/polyhedral meshes, and

the development of a posteriori error estimates and of

adaptive algorithms. The study of new schemes is a

key ingredient to simulate more realistic models includ-

ing complex geometric features and physical properties.

The use of a posteriori-driven algorithms is a promising

way of compensating the increased computational cost

for complex models. This paper provides an overview

of some recent advances in both fields. The material is

organized as follows.

In Section 1, we introduce the basic model of geosci-

ences treated in this work, the compositional multi-

phase Darcy flow problem. Its sub-models, the single-

phase steady, single-phase unsteady, and two-phase

immiscible incompressible unsteady Darcy flow prob-

lems will also be considered in the paper in order to per-

tinently illustrate individual issues.

Section 2 summarizes some recent advances in

discretization schemes for diffusion terms on general

polygonal/polyhedral meshes. After discussing some

general properties that are relevant both from the theo-

retical and practical point of view, we briefly present

three families of numerical methods which have received

extensive attention over the last few years. More specif-

ically, Section 2.3 is devoted to multi-point finite volume

(and mixed finite element) methods, Section 2.4 presents

a few examples of lowest-order variational methods, and

Section 2.5 focuses on discontinuous Galerkin methods.

For all the methods, we provide a concise introduction

stating the main principles, some examples of actual

schemes, and discuss their properties in detail. In the dis-

cussion, we pay special attention to practical issues con-

cerning the implementation and/or the integration into

existing codes.

In Section 3, we then present fully computable, guar-

anteed a posteriori error estimates successively for the

three sub-models mentioned above and for the composi-

tional model itself. These estimates allow us to certify the

error committed in a numerical approximation. More-

over, they enable to distinguish and estimate separately

the different error components, such as the spatial dis-

cretization error, the temporal discretization error, the

linearization error, or the algebraic solver error. This dis-

tinction then gives rise to entirely adaptive algorithms,

where, in addition to the common time step choice and

adaptive mesh refinement, the linear and nonlinear iter-

ative solvers are steered by adaptive stopping criteria.

We shall see that this typically leads to important com-

putational savings.

1 THE COMPOSITIONAL DARCY MODEL

The compositional Darcy model describes the flow of

several fluids through a porous medium occupying the

space region X � Rd , d ¼ 2; 3, over the time interval

ð0; tFÞ. We consider a system where matter is present in

different liquid or gas phases from the set P ¼ fpg, each
containing one or more components from the set C ¼ fcg.
The number of phases and components are respectively

denoted by NP and NC. A synthetic description of the

system which accounts for the fact that a component

may only be present in selected phases is provided by

the binary component-phase matrix M ¼ ðmcpÞceC; peP
such that, for all c e C and all p eP:

mcp ¼
1 if the component c is present in the phase p

0 otherwise

�

For all c e C, we denote by Pc � P the set of phases in

which the component c is present. Symmetrically, for all

p eP, Cp � C denotes the set of components present in

the phase p. The governing equations are inferred from

the general principles of mass and energy conservation

supplemented by a suitable set of algebraic closure rela-

tions. For the sake of simplicity, it is assumed in what

follows that all the phases are present. When this is not

the case, the model can be modified as outlined in the

work of Coats et al. [1], where an additional, discrete-

valued unknown accounting for the phases present in

each point of the domain is added associated to a flash

calculation to enforce local equilibrium. In what follows

we also assume that the temperature is fixed and uniform

and that no energy source or sink is present, so that the

energy balance is trivially verified.

Following [1], the unknowns of the model are the

reference pressure P, the saturations Sp defined as the vol-
umetric fraction occupied by the phase p 2 P, and the

molar fractionsCp;c of each component c e C in the phases

p ePc in which it is present. It is convenient, for all p eP,
to define the vector of molar fractions Cp :¼ ðCc;pÞceCp .
While other choices are possible for the set of unknowns,

this one lends itself to discretizations with arbitrary levels

of implicitness in the time integration schemes and milder

nonlinearities according to [2]. For all p eP, the phase

pressure Pp is obtained by adding the capillary pressure

to the reference pressure:

Pp :¼ P þ Pcp

702 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 69 (2014), No. 4



The reference pressure P can be chosen equal to the

pressure of a given phase. In this case, the corresponding

capillary pressure is identically zero. A more general

choice consists in using as a reference pressure a linear

combination of the phase pressures.

The tensor-valued absolute permeability and the

porosity of the medium are denoted by K and /, respec-
tively. For each phase p eP, the following properties are

relevant to the model (the usual dependence on the

unknowns of the model is provided in brackets):

– molar density, fp Pp;Cp

� �
;

– mass density, qp Pp;Cp

� �
;

– viscosity, lp Pp;Cp

� �
;

– capillary pressure, Pcp Sp
� �

;

– relative permeability, krpðSpÞ.
To account for the presence of injection or produc-

tion wells, for all c e C we denote by qc a source field

defined on the space-time domain X� ð0; tFÞ. A

detailed treatment of well models is out of the scope

of the present review, and is, in perspective, an inter-

esting addition to both the topics addressed herein.

For a discussion on the modeling of singularities in

the context of reservoir engineering, we refer, e.g., to

Ding and Jeannin [3]. The mass balance for each com-

ponent yields:

@tnc þ
P
pePc

$ � fpkrp
lp

Cp;cup
� �

¼ qc 8c e C ð1aÞ

where nc denotes the number of moles for the component

c and, for all p eP, the average phase velocity is given by

Darcy’s law (g denotes the upward-oriented gravity

acceleration):

up ¼ �K rPp þ qpg
� � ð1bÞ

The pore-volume conservation principle states that

the sum of the saturations is equal to one in each point

of the space-time domain, as expressed by the following

algebraic equation: X
peP

Sp ¼ 1 ð1cÞ

The phase quantity of matter conservation principle

requires that the sum of the molar fractions of the com-

ponents present in a given phase be equal to one:

X
ceCp

Cp;c ¼ 1 8p eP ð1dÞ

Additional algebraic laws are obtained by enforcing

the equality of component fugacities, which corresponds

to assuming thermodynamic equilibrium in mass

transfer between phases. For simplicity of exposition,

this topic is not addressed here, and we refer to [1, 4]

for further details. Finally, we assume that the system

(1) is supplemented with no-flow boundary conditions

and that suitable initial conditions are derived, by an

equilibrium computation.

2 DISCRETIZATION OF DIFFUSIVE TERMS

2.1 General Considerations

One of the key ingredients of numerical methods for the

compositional Darcy problem of Section 1 is the discret-

ization of diffusive terms�K$Pp, p eP, appearing in the

expression of the average phase velocity (1b). From the

model standpoint, the permeability field K displays

strong heterogeneities reflecting the different mineral

composition of geological layers. In addition, the upscal-

ing of fine scale heterogeneities or of extensive fracturing

can result in full permeability tensors with large anisot-

ropy ratios. From the discretization standpoint, mesh

generation is often performed in a separate stage, and

is focused on integrating physical and geometric data

from the seismic analysis. As a result, fairly general

meshes can be encountered, featuring, e.g., nonmatching

interfaces corresponding to geological faults or general

polyhedral elements resulting from the degeneration of

hexahedral cells in eroded layers. This is notably the case

in basin modeling, where deposition and erosion as well

as fracturing must be accounted for owing to the long

time scales. In reservoir modeling, polyhedral elements

may also be present in near wellbore regions, where the

use of radial meshes can be prompted by (qualitative)

a priori knowledge of the solution. Nonconforming

h-refinement can also appear at specific locations where

the resolution needs to be increased or when moving

fronts are present [2].

Identifying an appropriate discretization of diffusive

terms is not an easy task, since several and often mutu-

ally contradictory requirements come into play. The

most relevant (in our opinion) can be summarized as

follows.

2.1.1 Consistency on general polyhedral meshes
and for heterogeneous and anisotropic tensors

Roughly speaking, consistency expresses the fact that the

discrete problem is ‘‘not too distant’’ from the continu-

ous one. There are several ways of formulating consis-

tency, either by requiring that the continuous problem

is recovered by extending the discrete formulation to

the continuous one in the limit, or by demanding that
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the discrete problem yields the exact solution in certain

circumstances. The latter formulation is sometimes

referred to as the patch test [5, Chapter 10]. It is

well known that the classical Two-Point Finite Volume

method (TPFV) is consistent only on superadmissible

meshes for which the line segments joining the

center of a cell and the barycenters of its faces

are K�1-orthogonal to the corresponding face [6,

Lemma 2.1].

2.1.2 Robustness with respect to the permeability tensor

Technically speaking, robustness is achieved if error

estimates are available that are uniform with respect

to K [7] for a discussion on the robustness of a diffu-

sion-advection model in the presence of impermeable

regions. In practice, this means that the discretization

error can be bounded in terms of a product of a con-

stant independent of K and a power of the meshsize.

Of course, this is only possible if the method is appro-

priately designed and a suitable error measure is

chosen.

2.1.3 Stability

Stability is the ability of the scheme to prevent the ampli-

fication of numerical errors. While the consistency

requirement has been well assimilated by practitioners,

this is often not the case for the equally important stabil-

ity requirement. In what follows, we will mainly focus on

stability in an energy-like or similar norm, which is a suf-

ficient requirement for convergence in the linear case.

Most of the modern schemes successfully embed this

principle. In the nonlinear case, however, tighter forms

of stability are required, which are not easy to obtain

at the discrete level. A particularly relevant form for

degenerate parabolic problems is the discrete maximum

principle, which essentially states that, under suitable

conditions, the extrema of the solution are to be found

on the boundary of the domain. This topic is not

addressed in detail in the following discussion. For fur-

ther insight on the role of themaximum principle in prov-

ing the convergence of discretization schemes for the

Darcy problem, the reader may consult [8, Chapter 6]

and the references therein. A particularly instructive

convergence study of a Finite Volume (FV) method on

superadmissible meshes for unsteady advection-

diffusion problems is carried out by Gallouët et al. [9].

A Discrete-Duality Finite Volume (DDFV) method for

a large class of nonlinear degenerate hyperbolic-

parabolic problems is considered [10] under assumptions

on the mesh that allow us to infer a discrete maximum

principle. Numerical enforcement of the maximum

principle by nonlinear corrections is considered [11], to

which we also refer for an up-to-date bibliographic sec-

tion on this topic.

2.1.4 Low Computational Cost

Low computational cost, both in terms of CPU time

and parallel communications, is a key requirement

in industrial codes, since competition is often based

on reducing the simulation time rather than on

improving the resolution of the model. The demand

for faster simulators is reflected in different ways in

the design of numerical schemes. First, with the nota-

ble exception of the energy equation in basin model-

ing, it is generally admitted that lowest-order

methods are the sole offering an acceptable trade-off

between precision and simulation time. More gener-

ally, a great care must be spent to avoid the explosion

of the number of unknowns while still meeting the

previous requirements. Second, the stencil of the

scheme should be as compact as possible in order to

limit the amount of data exchange in parallel execu-

tions. Indeed, on the one hand, the trend for com-

puter manufacturers is to increase computing power

by adding multiple cores on a single processor rather

than increasing the speed of each core; on the other

hand, the users of commercial simulators are often

interested in increasing the complexity of the model

rather than the mesh resolution. As a result, achieving

parallel efficiency requires to handle situations where

heavy computations are performed on (relatively)

few cells on each processor. In such circumstances,

boundary cells and, hence, parallel data exchanges,

have a major impact on the overall simulation time.

Another related aspect is the availability of efficient

parallel preconditioners for the linear systems arising

from the discretization and the linearization of the

Darcy problem. Although this topic is not addressed

in detail here, it is usually acknowledged that (rela-

tively) standard preconditioners such as the algebraic

multigrid Boomer AMG available in the Hypre

library [12] perform well when FV or FV-like methods

are used and mild heterogeneities are present, while

this is not always the case when discontinuous

Galerkin (dG) discretizations are employed. The issue

of devising good preconditioners for highly heteroge-

neous problems is an active field of research. For a

discussion on this topic as well as for an up-to-date

bibliographic section [13-15]. When it comes to

dG methods, one of the very few contributions available

is the work of Ayuso de Dios and Zikatanov [16].
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2.1.5 Local conservation on the computational mesh

Local conservation is a somewhat controversial point,

since it does not seem mandatory from the analysis point

of view. Moreover, possibly after minor modifications or

after a reconstruction postprocessing procedure, most

discretization methods can exhibit conservation proper-

ties: [17] for mixed finite element and nonconforming

finite element methods on general polygonal meshes,

[18] for cell-centered Galerkin methods, [6, 19] for non-

conforming finite element and generalized FV methods,

[20-22] for dGmethods and [23–27] for conforming finite

element methods. For the purposes of the present work

this property will hence be intended as the availability

of a simple expression for the flux and the Darcy velocity

(1b) rather than its sheer existence. Note that the possibil-

ity of reconstructing locally conservativeDarcy fluxes is a

key ingredient for the a posteriori analysis of Section 3, see

Assumptions 2, 4, and 6 therein. It is thus in this point that

a strong connection between the scheme conception and

understanding and a posteriori analysis appears.

2.1.6 Integrability into Existing Simulators

This last point is essentially dictated by practical con-

siderations. The lifespan of an industrial simulator is

usually of ten years or more, and it is possibly only

slightly shorter when it comes to large-scale academic

codes. During this time, innovations are usually incre-

mental and major changes to incorporate new schemes

may only be considered if a clear trade-off can be iden-

tified. As a result, coping with existing codes can play

a major role in deciding which numerical method is

best-suited for the application at hand. The most

widely used industrial reservoir simulators are based

on traditional FV methods, and modifications to

include radically different schemes are not necessarily

possible or economically viable. Similar considerations

also apply to large-scale academic simulators. The

advances both in the understanding of discretization

methods and in the flexibility of programming lan-

guages have prompted recent projects to build upon

generic bricks that allow to easily modify the numerical

formulation. In the context of geosciences, an example

is provided by the recent work [28, 29] based on the pro-

prietary platform Arcane [30] and inspired by similar

tools for finite element methods [31], whereas an open

source example is provided by the DuMuX project [32].

2.2 Model Problem and Notation

In the rest of this section, we briefly review some relevant

advances in the development and analysis of numerical

schemes for diffusive terms, and highlight the character-

istics of each method based on the points listed in

Section 2.1. For the sake of simplicity, our main focus

is on the steady linear model problem:

�$ � K$uð Þ ¼ f in X

u ¼ 0 on @X
ð2Þ

where X denotes the spatial domain and f models a

source term. Problem (2) coincides with the single-phase,

single-component (NP ¼ NC ¼ 1) Darcy problem pro-

vided gravitational effects are neglected. In this case, u
represents the (unique) phase pressure. The interest in

problem (2) is not merely theoretical, as it is used in prac-

tice as a starting point to infer an expression for the dif-

fusive term �K$Pp, p e P, in the compositional model

of Section 1.

In what follows we denote by T h ¼ fTg a mesh, that is

to say, a collection of open polyhedra called cells or ele-

ments such that RT�T h
�T ¼ �X. The notion of general mesh

is related to the range of element shapes and arrange-

ments for which the numerical scheme possesses the

mathematical requirements of consistency and stability.

As such, its precise definition depends on the scheme

itself. Moreover, it is often not possible to provide an

optimal definition of admissible mesh, but only formu-

late sufficient conditions based on computable quanti-

ties. In practice, we would like to be able to treat (at

least) all meaningful degenerate elements obtained by

suppressing edges of a quadrilaterally-faced hexahedron.

Such elements are encountered in basin modeling as a

result of erosion. In reservoir modeling, we may also

be interested in allowing more general polyhedral ele-

ments to discretize the near wellbore region. A mesh

T h is primarily caracterized by a linear dimension h cor-

responding to the largest diameter of its elements. We

say that a method is convergent if a suitable measure

of the error tends to zero when h does so. From a math-

ematical viewpoint, convergence is equivalent to stability

for a consistent method (this result is sometimes referred

to as the Lax-Ritchmyer theorem).

An important notion for all the discretization meth-

ods discussed in what follows is that of interface,

which defines the way two elements can come into con-

tact. Here, a basic requirement is that nonmatching

interfaces should be supported, i.e., two neighboring

elements should be allowed to share only portions of

their faces. In basin modeling, nonmatching interfaces

may be used to represent faults; in reservoir modeling

they may appear as a consequence of nonconforming

h-adaptivity, i.e., the increase of the local mesh resolu-

tion obtained by subdiving a mesh element leaving its

neighbors untouched. The definition of interface may
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vary from one method to another. As an example,

interfaces are connected and planar for the SUSHI

method of [6], while they can be defined as the inter-

section of two elements (hence non necessarily planar

and possibly non connected) when it comes to dG

methods [22, 33] for a discussion on this subject. For

the multi-point finite volume and lowest-order methods

treated in Sections 2.3 and 2.4 respectively, the planar-

ity requirement on faces may seem stringent in three

space dimensions. However, nonplanar faces can usu-

ally be efficiently treated by approximating them by

a split into planar subfaces. For a rigorous treatment

of non planar faces in the context of Mimetic Finite

Difference Methods (MFDM) [48]. In what follows,

the set of interfaces is denoted by F i
h, the set of bound-

ary faces by F b
h and we let F h :¼ F i

h [ F b
h. For every

element T e T h, we denote by F T the set of faces that

lie on the boundary of T . For every interface F eF i
h,

we choose an arbitrary but fixed orientation for the

unit normal nF and enumerate the elements

T1; T2 e T h such that F � @T1 \ @T2 so that the out-

ward unit normal nT1;F coincides with nF .
Henceforth, we assume that K is piecewise constant

on the mesh T h, i.e., jumps in the permeability can

only occur at interfaces. In practice, this assumption

is always verified in geological modeling since the com-

putational mesh is used as a support for the physical

properties.

2.3 Multi-Point Finite Volume Methods

2.3.1 Principles

A class of schemes that is nowadays very popular in the

oil industry is that of Multi-Point Finite Volume meth-

ods (MPFV), independently introduced in the 90s

[34, 35]. The key idea of MPFV methods is to recover

consistency on general meshes by extending the depen-

dence of diffusive fluxes to cell unknowns other than

the ones associated to the cells sharing a face. The coef-

ficient associated to each cell unknown is usually

obtained by solving a local problem. In what follows

we exemplify these ideas by outlining the G-method

[36], which generalizes the L-method [37]. For a survey

of other constructions, we refer to Aavatsmark [38].

We cite, in particular, the O-method, for which a conver-

gence analysis under very general assumptions on the

permeability tensor has been recently [39].

The FV discretization of problem (2) reads:

�
X
FeFT

jFjd�1UT ;F ¼ hf iT jT jd 8T e T h ð3Þ

where hf iT :¼ jT j�1
d

R
T f and ðUT ;FÞTeT h;F e FT

are

numerical fluxes which satisfy the following local conser-

vation property:

8F eF i
h; F � @T1 \ @T 2; UF :¼ UT1;F ¼ �UT2;F ð4Þ

The single-valued quantity UF is termed interface flux.

In the TPFV method, the interface flux only depends on

the (scalar-valued) cell unknowns uT1 and uT2 which are

meant to approximate representative values of the solu-

tion in the cells T 1 and T2, respectively. More specifi-

cally, for all T e T h, we identify a point xT e T away

from the boundary of T to which the value uT is associ-

ated. For all T e T h and all F eFT , denote by dT ;F the

orthogonal distance between xT and F. Using a finite dif-

ference approximation of the directional derivative

along nF and enforcing relation (4), we infer:

UF ¼ a1a2
a1 þ a2

ðuT2 � uT1Þ; ai :¼
KjTi

nF � nF
dTi;F

This expression yields a consistent method only if

the mesh satisfies the superadmissibility condition

[6, Lemma 2.1]. To remedy this lack of consistency,

Aavatsmark et al. [37] propose a local reconstruction

based on d þ 1 cells which share a same node usually

referred to as the L-method. In Figure 1a, we show a

two-dimensional example where these faces are denoted

by F1 and F2. The key idea is to reconstruct a piecewise

affine function on the gray patch only depending on the

values of the unknowns uT , uT1 , and uT2 and of the perme-

ability field in the cells T , T1, and T 2. This piecewise affine

reconstruction is obtained by enforcing pressure continu-

ity and flux conservation across F1 and F2. The interface

fluxes UF1 and UF2 are then obtained replacing the exact

solution u by the piecewise affine reconstruction in the

expression�ðK$uÞjT � nFi , i e f1; 2g. It can be shown that

this reconstruction requires the solution of a d � d linear

system.An explicit expression for the entries of the system

is provided in [36, Lemma 3.1], to which we refer for a

more formal and detailed presentation. When the perme-

ability field is heterogeneous, this construction outper-

forms a Lagrange interpolation based on the cell values

uT , uT1 , uT2 in terms of consistency, since the resulting

piecewise gradient embeds a dependence on the jumps

of K via Equation (4).

It is a simple matter to realize that, for a given inter-

face F eF i
h, there are multiple choices for a second face

to perform the construction outlined above (Fig. 1b).

As a result, several different flux expressions are in prin-

ciple available. The key idea of the G-method is to define

UF as a linear combination of all possible fluxes with

weights chosen in such a way as to enhance a selected
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property for the method. A criterion geared towards

increased stability is proposed in [36, Section 3.4]. In a

different context where the construction is used as a trace

interpolator, an accuracy-oriented criterion is discussed

in [40, Section 2.3].

2.3.2 A Numerical Example in Basin Modeling

To assess the properties of the G-method method and

provide a comparison with the other methods discussed

in what follows, we consider the benchmark problem in

basin modeling originally proposed in [36]. The results

are obtained using the unified implementation discussed

in [29]. Convergence is studied on amesh family obtained

by successive refinements of the two-dimensional basin

mesh depicted in Figure 2, which contains both quadran-

gular and triangular elements as a result of erosion. We

consider the following analytical solution:

u xð Þ ¼ sin px1ð Þ sin px2ð Þ; K ¼ � 0

0 1

� �
ð5Þ

with the right-hand side f determined by (2). The anisot-

ropy ratio � is taken equal to 0:1, corresponding to a

permeability which is ten times smaller in the vertical

than in the horizontal direction.

In Figure 3, we evaluate the performance of several

schemes including the G-method, with respect to differ-

ent metrics. Accuracy is evaluated in terms of the error

on the pressure (L2-error) and on its gradient (H1-error),

both computed with a quadrature rule using the cell cen-

ter as a quadrature node. For multi-point schemes, a

piecewise constant gradient was reconstructed according

to [36, Equation (2.5)]. We emphasize that the error on

the gradient is perhaps the most significant measure,

since it closely relates to fluxes, which are the quantities

of interest in oil-related problems. The order of conver-

gence is classically expressed relating the error to the

meshsize h, and it measures how fast the error tends to

zero as the meshsize does so. When dealing with solu-

tions that are sufficiently regular, one can expect that

the error scales as a power of h, corresponding to the dif-

ferent slopes of the curves in the log-log plots of Figures

3a and 3b. Since the comparison includes schemes which

feature a different number of unknowns for a given

Figure 2

Two-dimensional stratigraphic mesh. The actual aspect

ratio is x:y = 10:1.

xT

xT 1

xT 2

F1

F2

a)

F F

F F

b)

Figure 1

Local reconstruction. a) Notation; b) possible choices for the second face used to reconstruct UF (thick dashed lines).
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Figure 3

Accuracy and memory consumption analysis for example (2) in basin modeling. The ccG scheme is detailed in Section 2.4.2. The data

are taken from reference [29].
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mesh, a fairer comparison consists in relating the error to

the number of unknowns NDOF, which we do in Figures

3c and 3d. The memory consumption can be evaluated

by plotting the error as a function of the number of non-

zero entries in the linear system corresponding to the dis-

cretization of problem (2), which is the contents of

Figures 3e and 3f.

2.3.3 Discussion

We conclude by summarizing the features of MPFV

methods in terms of the points identified in Section 2.1:

– consistency. The comparison in Figures 3a-d shows

that, although MPFV are consistent by construction,

the lack of an embedded stability mechanism some-

times results in the loss of convergence. This is the

case, e.g., for the L-method on the first three levels

of mesh refinement. Moreover, while MPFV methods

stand the competition when the L2-error is considered,
this is often not the case for the H1-error;

– robustness. The local problems introduced to con-

struct numerical fluxes in MPFV methods embed a

dependence on the permeability tensor. In a way, this

adds to the robustness of the method since accuracy

may be retained in the heterogeneous anisotropic case.

In some cases, however, the conditioning of the local

problems may be dramatically affected by rough per-

meability tensors, resulting in highly inaccurate recon-

structions. For some methods, the local problems may

even be ill-posed, and backup strategies must be

devised; for the G-method [36, Section 3.1]; for the

O-method [41, Example 3.10], and [17, Remark 4.2];

– stability. As we have already mentioned, convergence

may sometimes be lost owing to the absence of an

intrinsic stability mechanism in MPFV methods.

Although stability can be proved in some circum-

stances [36, Lemma 3.4], this typically requires

assumptions on the mesh and on the permeability ten-

sor that are either too stringent or difficult to check in

practice;

– low computational cost. This is one of the key advan-

tages of MPFV methods, which feature only one

unknown per cell as is the case for the classical TPFV

method. A major difference is, however, that the sten-

cil is typically extended to the neighbors in the sense of

nodes. While this is acceptable in most of the cases

(most notably for quasi-hexahedral meshes), it can

sometimes lead to very large stencils when tetrahedral

meshes are used. The difference with respect to other

methods can be appreciated, e.g., in Figures 3e and 3f.

As regards the solution of the resulting linear system,

one point that deserves to be mentioned is that AMG

preconditioners may be less efficient than in the TPFV

case since the global matrix is no longer an M-matrix.

When stability is lost, the presence of eigenvalues with

opposite sign may significantly affect the solution of

the linear system (even when the solution remains

unique);

– local conservation. MPFV are classical finite volume

methods, hence they inherently provide a simple

expression for interface fluxes;

– integrability into existing simulators. A common

practice in finite volume codes is to express the links

between cells in terms of a graph. MPFVmethods nat-

urally fit this approach, since the sole difference with

respect to the TPFV scheme lies in the number of con-

nections. In this respect, they are the easiest method to

integrate into existing simulators. A possible difficulty

that deserves to be mentioned is that the stencil of

MPFV methods includes neighbors in the sense of

nodes, which may require to redesign the communica-

tion patterns in parallel codes.

2.3.4 Mixed Finite Element Methods

We would like to emphasize here that mixed finite ele-

ment methods, in particular the lowest-order Raviart-

Thomas scheme, [42, 43], can be viewed as a member

of the MPFV family. Indeed [44, 41], they can likewise

be implemented with one unknown per mesh element

and local flux expressions can be obtained upon solution

of local problems on patches of elements. They are in

particular tightly related to the MPFA O-method on

simplicial meshes (with the matrix equivalent in two

space dimensions) [41, 45, 46]. Moreover, mixed finite

elements can easily be defined on general polygonal/

polyhedral meshes [17]. At the same time, they do not

suffer from the loss of convergence as discussed in point

“Consistency” in Section 2.3.3 above and as observed in

Figure 3, neither they exhibit stability problems as those

discussed in point “Stability” in Section 2.3.3 above. A

detailed discussion of these issues can be found in [17].

2.4 Variational Lowest-Order Methods on General
Meshes

2.4.1 Principles

In recent years, several newmethods have been proposed

that successfully address the stability issues of MPFV

methods. These methods include, in particular, the

Mimetic Finite Difference (MFD) methods of Brezzi

et al. [47-49], the Hybrid Finite Volume (HFV) methods

of Eymard et al. [6, 50], the Mixed Finite Volume (MFV)

method of Droniou and Eymard [51], the finite

volume vision of mixed finite elements [17, 41], and the
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cell-centered Galerkin methods introduced in [40, 52].

The close relation between these methods has been

recently investigated in [53, 54], where a different for-

malism is presented leading to Gradient Schemes;

[17] gives yet another equivalence viewpoint. Another

emerging formalism that deserves to be mentioned is

that of Compatible Discrete Operators (CDO) recently

proposed by Bonelle and Ern [55]. We would also like

to mention at this point the recent review by Droniou

[56], which contains several complements with respect

to the present work. In what follows we collectively

refer to these methods as Variational Lowest-Order

(VLO) methods. While this naming is by no means

standard, it underlines the fact that, unlike classical

finite volume methods, they are inspired by the weak

formulation of the problem.

These schemes rely on a weak or variational formula-

tion and often share significant similarities with mixed or

nonconforming Finite Element (FE) methods. To illus-

trate some important ideas, we focus on two examples

that are related to nonconforming FE methods. In what

follows we assume for the sake of simplicity that the

source term f is square-integrable. Moreover, zero pres-

sure boundary conditions are considered, so that the nat-

ural space for the solution is V :¼ H1
0ðXÞ (the space of

square-integrable functions with square-integrable weak

derivatives that vanish on @X). The weak formulation of

problem (2) consists in finding u e V such that:

a u; vð Þ :¼
Z
X
K$u � $v ¼

Z
X
fv 8v eV ð6Þ

Problem (6) classically admits a unique solution as a

consequence of the Poincaré inequality:

j vj jjL2 Xð Þ � CXj $vj jjL2ðXÞd ð7Þ

where CX > 0 only depends on the spatial domain X.
Inequality (7) states that the L2-norm of the gradient is

a norm and not just a seminorm in V . In other words, if

a function v eV is such that jj$vjjL2ðXÞd ¼ 0, then v is the
null function. This allows, in particular, to infer a stability

result for the bilinear form a provided the permeability

tensor K is uniformly elliptic. This means that diffusion

occurs along every direction at every point of a cell.

To formulate a convergent approximate version of (6),

it is necessary to devise a bilinear form ah which:
– provides a good approximation of a, i.e., is consistent

possibly up to an error which decreases with the mesh-

size h;
– is stable based on a discrete version of (7). A key ingre-

dient for obtaining these properties is to design a suit-

able approximation of the gradient.

2.4.2 Hybrid Finite Volume and Cell-Centered Galerkin
Methods

In this section, we present two examples of VLO meth-

ods which, up to minor modifications, were proposed

in [6, 40], respectively.

A remark that can be exploited to design a gradient

approximation is that Green’s formula [57, Theo-

rem 3.2.1] together with the planarity of faces yields,

for all T e T h and v smooth enough:

jT jdh$viT ¼
Z
T
$v ¼

Z
@T

vnT ¼
X
FeFT

jFjd�1hviFnT ;F ð8Þ

where, for X � X, huiX denotes the average value of u
on X , while nT ;F is the unit normal to F pointing out

of T . Equation (8) suggests that, introducing the face

unknowns vF :¼ ðvFÞFeF h
and interpreting them as

average values over faces, a gradient approximation is

given by the piecewise constant function GhðvF Þ such

that:

GhðvF ÞjT ¼ GT ðvF Þ � 1

jT jd
X
FeF T

jFjd�1vFnT ;F 8T e T h

ð9Þ

This choice is consistent in the following sense. For all

v eV , letting vF ¼ ðhviFÞFeF h
, there holds:

GhðvF ÞjT ¼ h$viT 8T e T h ð10Þ
It is assumed henceforth that vF ¼ 0 for all F eF b

h,

which amounts to strongly enforcing the zero pressure

boundary condition. A drawback of the gradient

approximation defined by (9) is that it does not satisfy

a discrete version of (7), that is to say, one can have

jjGhðvF ÞjjL2ðXÞd ¼ 0 even if vF is not null. This is the case,

e.g., for the mesh depicted in Figure 4, where a (tedious)

hand calculation shows that the matrix of the linear sys-

tem obtained enforcing GhðvF ÞjT ¼ 0 for all T e T h has a

kernel of dimension equal to 2.

Stabilizing Using Residuals

A possible strategy to recover a discrete Poincaré

inequality consists in adding a consistent subgrid correc-

tion to the expression (9). For every cell T e T h, we fix

one interior point xT e T such that T is star-shaped with

respect to xT . We introduce the cell unknowns

vT :¼ ðvT ÞTeT h
which can be interpreted as approxima-

tions of the solution values at cell centers, and define

the function GhðvT ;vF Þ such that, for all T e T h and

all F e FT :

GhðvT ;vF ÞjPT ;F ¼ GT ðvF Þ þ RT ;FðvT ;vF Þ ð11Þ
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with PT ;F denoting the F-based pyramid with apex xT
(Fig. 5) and:

RT ;FðvT ;vF Þ � g
dT ;F

vF � vT � GT vFð Þ � xF � xTð Þð ÞnT ;F
ð12Þ

where dT ;F denotes again the orthogonal distance

between xT and F, xF is the barycenter of F, and g > 0
is a user-defined parameter. The discretization of (6)

reads:

Find u :¼ ðuT ; uF Þ such that, for all v :¼ ðvT ;vF Þ there
holds:

ahfvh ðu;vÞ :¼
Z
X
KGhðuÞ � GhðvÞ ¼

X
TeT h

jT jdhf iT vT ð13Þ

It can be shown that the bilinear form ahfvh admits the

following alternative expression:

ahfvh u;vð Þ ¼
X
TeT h

jT jdKjTGT ðuF Þ � GT ðvF Þ

þ
X
TeT h

X
FeFT

jPT ;F jdKjTRT ;FðuÞ � RT ;FðvÞ
ð14Þ

To interpret the correction (12),we introduce the piece-

wise affine reconstruction Rh such that, for all T e Th

RhðvÞjT ðxÞ ¼ vT þ GT ðvF Þ � ðx� xT Þ 8x e T ð15Þ

where v :¼ ðvT ;vF Þ. Plugging (15) into (12) yields:

RT ;FðvÞ ¼ g
dT ;F

vF � hRhðvÞiFð Þ

As a result, since jPT ;F jd ¼ jFjd�1dT ;F
d , the term in the sec-

ond line of (14) can be alternatively written:

X
TeT h

X
FeFT

g2jFjd�1

d dT ;F
ðuF � hRhðuÞiFÞðvF � hRhðvÞiFÞ

which shows that it is nothing but a least squares penal-

ization of the difference between uF and hRhðuÞiF . The
consistency of this term stems from the fact that it van-

ishes when the exact solution is piecewise affine on T h.

Different choices are possible for the penalty parame-

ter g in (12). The choice g ¼ ffiffiffi
d

p
is advocated in [6] since

it allows to recover the TPFV method on superadmissi-

ble meshes, whereas it has been recently shown in [19]

that the choice g ¼ d leads to interesting analogies with

the Crouzeix-Raviart element. The fact that the discrete

gradient (11) satisfies a discrete Poincaré inequality has

been proved in [6, Section 5.1] with finite volume tech-

niques. An analogous result can be obtained with finite

element techniques using [19, Proposition 15] together

with [58, Theorem 6.1].

Stabilizing Using Jumps

Starting from (15), an alternative way of recovering a dis-

crete Poincaré inequality is to introduce a least-square

penalization of interface jumps inspired by the work of

Arnold [59] leading to cell-centeredGalerkin (ccG)meth-

ods. For all F eF i
h with F � @T1 \ @T2, we introduce the

jump and (weighted) average operators defined by:

sut :¼ ujT1
� ujT2

; fug :¼ k2
k1 þ k2

ujT1
þ k1
k1 þ k2

ujT2

T

FT,F

Figure 5

Cell center and face-based pyramid PT,F.

0 1 2 3 4 5

1

2

3

4

Figure 4

Example of polygonal mesh where the gradient reconstruc-

tion (9) does not satisfy a discrete Poincaré inequality.

Interface unknowns are marked with a dot, boundary face

unknowns are set equal to zero to strongly enforce the

homogeneous Dirichlet boundary condition.
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where ki :¼ KjTi
nF :nF represents the permeability in the

normal direction. For the sake of brevity, on boundary

faces we conventionally set sut ¼ fug ¼ u. Stability

hinges in this case on the following discrete Poincaré

inequality valid for piecewise H1 functions on T h (cf.

[60] and also [22, Corollary 5.4]):

jjvjjL2ðXÞ � r2 jj$hvjj2L2ðXÞd þ
X
FeF h

h�1
F jjsvtjj2L2ðFÞ

 !1
2

where $h denotes the element-by-element broken gradi-

ent operator and hF is the face diameter. The penaliza-

tion of jumps is realized by the bilinear form:

jh u; vð Þ ¼
X
FeFh

Z
F
gkharh

�1
F sutsvt ð16Þ

where khar ¼ k1k2=ðk1 þ k2Þ on interfaces and khar ¼ k on
boundary faces, while g > 0 is a user-dependent param-

eter. Let Vh denote the vector space of cell- and face-

DOFs, and let V ccg
h :¼ RhðVhÞ be the space of

piecewise affine functions obtained from the reconstruc-

tion (15). The discretization of problem (2) reads:

Find uh e V ccg
h such that:

aswiph uh; vhð Þ ¼
Z
X
fvh 8vh eV ccg

h ð17Þ

where:

aswiph uh; vhð Þ :¼
Z
X
K$huh � $hvh þ jh uh; vhð Þ

�
X
FeF h

Z
F

n
suht K$hvhf g � nF

þ K$huhf g � nFsvht
o

ð18Þ

The terms in the first line of (18) are responsible for

consistency and stability, whereas those in the second

and third lines respectively ensure consistency and sym-

metry. The bilinear form (18) was introduced in the con-

text of domain decomposition methods for degenerate

advection-diffusion problems [61]. A general analysis

for dG methods for degenerate advection-diffusion

problems inspired by similar mechanisms was later

established in [7]. We emphasize that in problem (17)

we use the discrete space V ccg
h instead of a full broken

polynomial space (as is the case for dG methods). This

results in fewer degrees of freedom with respect to the

corresponding lowest-order dG method discussed in

Section 2.5.

2.4.3 Discussion

It is useful to summarize the features of VLO methods

with respect to the points identified in Section 2.1:

– consistency. Variational lowest-order methods are

consistent on quite general meshes and often for het-

erogeneous anisotropic permeability tensors. In the

examples of Section 2.4.2, this comes at the cost of

introducing additional face unknowns in the construc-

tion. A possible remedy consists in eliminating face

unknowns by interpolating their values in terms of

cell-centered unknowns. In this case, special proce-

dures are required to retain consistency when hetero-

geneities are present. For a discussion, we refer to [40,

Section 2.3], where interpolation relies on the con-

struction of [36];

– robustness. Unlike MPFV methods, VLO methods do

not inherently require local constructions which may

lead to ill-posed problems. On the other hand, the

underlying discrete space has some degree of global reg-

ularity (e.g., the continuity of face-averaged values

proved in [19]), which narrows the range of singularities

in the exact solution that can be accurately represented

with respect to dG methods (cf. Section 2.5.1). Robust-

ness with respect to K can be proved in some circum-

stances. The use of local interpolation procedures to

reduce the number of unknowns, however, makes it dif-

ficult to obtain general results;

– stability. As discussed in Section 2.4.2, stability is

ensured by introducing penalty terms that allow to

control the L2-norm of discrete functions in terms of

the L2-norm of the (reconstructed) gradient. However,

tighter forms of stability such as the discrete maxi-

mum principle are generally not available;

– low computational cost. While the methods presented

in Section 2.4.2 have more unknowns than cell-

centered finite volume methods, several reduction

strategies are available. As already mentioned, one

possibility consists in interpolating face unknowns in

terms of cell unknowns. Although the local construc-

tions required for interpolation have similar problems

as the ones used in MPFV methods, this can be fixed

by locally maintaining face unknowns as proposed in

[6]. In general, the stencils of the resulting methods are

larger than those ofMPFVmethods.When possible, a

second strategy to reduce the number of unknowns

consists in solving the discrete problems in terms of

face unknowns only, see the discussion in [6]. The lin-

ear systems resulting from VLO discretizations can be

solved efficiently with standard preconditioners when

mild homogeneities are present. Unlike MPFV meth-

ods, the embedded stability ensures that the matrices

are definite;
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– local conservation. When interface unknowns are

kept, the local conservation properties of VLO meth-

ods can be formulated in terms of numerical fluxes

whose expression can be obtained analytically. In this

case, the interface unknowns act as Lagrange multipli-

ers of the flux continuity constraint. For further

details we refer [6, 18];

– integrability into existing simulators. Even when a

simple expression for the numerical flux is available,

VLO methods are less easily integrated into existing

numerical codes when compared to MPFV methods.

Indeed, dealing with interface unknowns, whether

they are kept or interpolated, may require substantial

modifications of the data structures and of the way

parallelism is handled.

2.5 Discontinuous Galerkin Methods

2.5.1 Principles

The key idea of dGmethods is to search the approximate

solution in a space of piecewise polynomial functions

that are fully discontinuous at interfaces, i.e., for an inte-

ger k � 1:

Vk
h :¼ v e L2ðXÞ j vjT ePk

dðTÞ; 8T e T h


 �
where Pk

dðTÞ denotes the restriction to T of polynomial

functions of total degree � k. The main advantage of

considering fully discontinuous functions is that sharp

gradients or singularities affect the numerical solution

only locally, which is not the case when considering dis-

crete spaces endowed with some form of global regular-

ity. This feature was first recognized in 1973 [62], who

introduced a dG discretization of a steady neutron trans-

port problem. The first analysis for steady first-order

PDE is due to Lesaint and Raviart [63-65]. However,

dG methods only reached popularity in the 90s, when

Cockburn and Shu considered their application to

time-dependent hyperbolic PDE in conjunction with

explicit Runge-Kutta schemes [66, 67]. For PDE with

diffusion, dG methods originate from the work of

Nitsche on boundary-penalty methods in the early 70s

[68, 69] and the use of Interior Penalty (IP) techniques

to weakly enforce continuity conditions imposed on the

solution or its derivatives across interfaces [59, 70-72].

In the late 90s, following the success of Runge-Kutta

dG methods applied to hyperbolic problems, a new

interest arose in dG formulations of diffusion terms.

An extension of the techniques of Cockburn and Shu

to problems with diffusion was considered [73] in the

context of compressible flows. A unified analysis of dG

methods for diffusive terms can be found in the work

of Arnold et al. [74], while a unified analysis encompass-

ing both diffusive and hyperbolic PDE has been derived

[75-77].

The use of dG methods in geosciences has been con-

sidered in several works, mainly focusing on reactive

transport, where advection terms play an important role;

cf., e.g., Sun and Wheeler [78, 79] or Bastian et al. [80]

and references therein. In this context, a key point is to

ensure the robustness of the method in the vanishing

or zero permeability limit. This problem has been

addressed by Houston et al. [81], and Di Pietro et al.

[7]. The latter work provides the backbone for the discus-

sion in the following section.

2.5.2 Degenerate Advection-Diffusion

Following [7], we show how the features of dG methods

can be exploited to construct a discretization which is

robust with respect to vanishing (or even zero) perme-

ability. We modify (2) to include advection and reaction

terms:

$ � �K$uþ buð Þ þ lu ¼ f in X

u ¼ 0 on @X	 ð19Þ

where b is an incompressible vector-valued velocity field,

l > 0 is a reaction coefficient, while:

@X	 :¼ x e @X j ðKn � nÞðxÞ > 0 or b � n < 0gf ð20Þ

(n denotes here the unit normal vector pointing out of

X). To include the case when the permeability tensor

vanishes along one direction, the boundary condition

is only enforced on the portion of @X where either

normal diffusion is present, or where the advective flow

enters the domain. Problem (19) is representative of a

class of reactive transport models encountered, e.g., in

CO2 storage simulation. It has been shown in [7] that

the solution to (19) features singularities along the dis-

continuities of the permeability field. In particular,

jumps occur when the advection field flows from a non-

permeable to a permeable region, as shown in Figure 6.

Jump singularities are not naturally handled by methods

such as the ones described in Section 2.4.2, since the gra-

dient reconstruction (9) is inherently based on the

approximation of single-valued traces. On the contrary,

discontinuities can be captured by dG methods provided

they occur at element boundaries and not inside ele-

ments. To make sure that the appropriate interface con-

ditions are automatically selected:

– diffusive penalization of interface jumps should only

occur when the permeability in the normal direction

is nonzero on both sides of an interface. This is the
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case, e.g., for the bilinear form aswiph , where the har-

monic averaging in (16) makes the penalty term van-

ish if k1k2 ¼ 0;
– advective penalization of interface jumps should

incorporate a mechanism to enforce boundary condi-

tions on the inflow portion of oX	 and interface

condition on the interface between permeable and

nonpermeable regions.

It has been shown in [7] that this is the case when

upwind fluxes are considered, corresponding to the bilin-

ear form:

aupwh ðuh; vhÞ :¼ �
Z
X
uhðb � $hvhÞ þ

X
FeF h

Z
F
Uupw

h ðuhÞsvht

where, letting bF :¼ b � nF for all F eF h and setting, for a

real x, x
 :¼ 1=2ðjxj þ xÞ:

Uupw
h ðuhÞ :¼

bFfuhg þ 1
2 jbF jsuht if F eF i

h

b
F uh if F eF b
h

(

The discretization of problem (19) reads:

Find uh eVk
h such that, for all vh eVk

h :

aswiph uh; vhð Þ þ aupwh uh; vhð Þ þ
Z
X
luhvh ¼

Z
X
fvh ð21Þ

An important difference with respect to the methods

of Section 2.4.2 is that, this time, the discrete problem

is formulated for an arbitrary order k � 1. As an exam-

ple, convergence results for the problem described in

Figure 6 are provided in Figure 7.

2.5.3 Discussion

We briefly revise the features of dGmethods with respect

to the points identified in Section 2.1:

– consistency. Since dG methods are (nonconforming)

finite element methods, consistency can be inter-

preted as an orthogonality property for the numer-

ical error u� uh. This has the important

consequence that higher-order approximations can

be considered, since the convergence rate is not lim-

ited by the consistency error. The use of high-order

methods in subsoil modeling, although not com-

mon, can be justified when complex flow patterns

are present [82];

– robustness. As shown in the previous section, it is pos-

sible to design dG methods that are robust with

respect to variations of the physical parameters of

the problem. Indeed, the additional flexibility result-

ing from the use of fully discontinuous polynomial

β

β

K = 

K = 0

2.0

1.5

1.0

0.5

0.0

0.0

-1.0

1.0

-0.5

0.51.0
u

π

Figure 6

Jumps singularity occurring when the advection field b flows from a nonpermeable (etched) to a permeable (shaded) region.
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spaces allows to represent singularities in the solution

which would otherwise affect the overall precision.

More generally, coarse features can be expected to

have only local effects, leaving the numerical solution

in the far field unperturbed;

– stability. The stability of dG method is inherent to the

use of penalty terms which allow to control the jumps

of the discrete solution at interfaces. A relevant point

in the example of Section 2.5.2 is that these terms can

be finely tuned to avoid unnecessary (or unphysical)

numerical diffusion. As is the case for all of MPFA

and VLO methods, the discrete maximum principle

is not available in general;

– low computational cost. Discontinuous Galerkin

methods are usually the most expensive among the

methods considered in this review. In fact, a fully dis-

continuous polynomial representation requires to

introduce as many cell DOFs as the coefficients of a

polynomial in Pk
d. Moreover, the resulting linear sys-

tems are usually more difficult to solve, although stan-

dard preconditioners are still usable when mild

heterogeneities are present;

– local conservation. Although this point is not detailed

here for the sake of conciseness, it has been long

known that dG methods enjoy local conservation

properties expressed in terms of continuous numerical

fluxes [20-22, 74];

– integrability into existing simulators. Discontinuous

Galerkin methods are generally difficult to integrate

into existing finite volume codes, while this is gener-

ally easier for finite element codes. One point in favor

of dG methods is that the connectivity is analogous to

that of the TPFVmethod, which therefore can be used

as a model to design communications in parallel

implementations.

3 A POSTERIORI ERROR ANALYSIS AND ADAPTIVE
ALGORITHMS

This last section of our paper is devoted to a posteriori

error estimates and adaptive algorithms for the consid-

ered problems in geosciences. The use of a posteriori

estimates enables to control the error and a posteriori-dri-

ven algorithms appear as a promising way of compensat-

ing the increased computational cost for complexmodels.

Recently, the a posteriori theory has advanced consider-

ably and is now available for most of the discretization

methods discussed in Section 2. Moreover, this theory

has been unified such that it can be presented indepen-

dently of the particular numerical discretization. We use

such a spirit here, while following the recent contributions

[27, 83-93]. The basic idea of this approach can be traced

back at least to the Prager and Synge equality [94] and has

been used in a posteriori error estimation from the 70s; we

refer for a general orientation to the monographs [23,

95-98] and for milestone contributions [24-26, 99-105].

For a general orientation in error components distinction

and adaptive nonlinear and linear solvers [106-109].

Rather engineering approaches have also been previously

proposed; let us in particular refer to [2].

3.1 General Considerations

A posteriori error estimates aim at giving bounds on the

error between the known numerical approximation, say

100
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Figure 7

Convergence of the dG method (21) for the problem of Figure 6.
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uhs, and the unknown exact solution, say u, that can be

computed in practice, once the approximate solution

uhs is known. They typically take the form:

jjju� uhsjjj �
XN
n¼1

X
TeT n

h

ðgnT Þ2
8<
:

9=
;

1
2

ð22Þ

where gnT ¼ gnT ðuhsÞ is a quantity linked to the discrete

time tn and mesh element T , computable from uhs, called
an element estimator. In (22), jjj�jjj is some space-time

error measure, like the energy norm. Estimate (22) is

written directly for an unsteady problem; for steady

problems, we simply set N :¼ 1 and leave out the tempo-

ral indices n. Then, jjj�jjj is only a space error measure

and we use the notation uh for the approximate solution.

Detailed notation is given below.

One may formulate the following six properties to

describe an optimal a posteriori error estimate:

(i) ensure that (22) holds and that the element esti-

mators gnT are fully computable from uhs (guaran-
teed upper bound);

(ii) ensure that, for all 1 � n � N and all T e T n
h, g

n
T

represents a lower bound for the actual error on

the time interval ðtn�1; tn� and in the vicinity of

the element T , up to a generic constant; this means

that there exists a constant C > 0 such that:

gnT � Cjjju� uhsjjj tn�1;tnð ��TT
ð23Þ

where TT stands for the element T and its neigh-

bors (local efficiency);

(iii) ensure that the effectivity index defined as the

ratio of the estimated and actual error:

I eff :¼
PN

n¼1

P
TeT n

h
ðgnT Þ2

n o1
2

u� uhsj jj jj j ð24Þ

goes to one as the computational effort grows

(asymptotic exactness);

(iv) guarantee the three previous properties indepen-

dently of the parameters of the problem and of

their variations (robustness);

(v) give estimators gnT which can be evaluated locally

(only performing calculations in the element T or

in its neighborhood TT and on the time levels

n� 1, n, nþ 1) (small evaluation cost);

(vi) distinguish and estimate separately the different

error components (error components identifica-

tion).

Property (i) above allows to give a truly computable

upper bound on jjju� uhsjjj and thus to certify the error

committed in a numerical simulation. Property (ii) enables

topredict the localizationof the error. It is possible to satisfy

it entirely for steady problems. It then enables to detect the

areas of the computational domain X where the error is

large.Knowing such areas, one can concentratemore effort

therein, by performing an adaptive mesh refinement. For

unsteady problems, one typically only arrives at:

X
TeT n

h

ðgnT Þ2
8<
:

9=
;

1=2

� Cjjju� uhsjjjðtn�1;tn� ð25Þ

in place of (23). This justifies theoretically the localiza-

tion of the error in time but not in space. Property (iii)

ensures the optimality of the upper bound; if the error

is quite small and the estimator predicts a large value,

it may satisfy properties (i) and (ii), but is probably not

very useful as it significantly overestimates the error.

Property (iv) is one of the most important in practice.

In real-life problems, parameters and coefficients such

as the size of the computational domain X, the final

simulation time tF, space and time steps h and s, the
permeability tensor K, the porosity /, the viscosities l,
the sources q, and the nonlinear state functions for non-

linear problems may be very large or small or vary

abruptly; an estimator satisfying property (iv) ensures

that its results will be equally good in all possible situa-

tions. Property (v) then guarantees that the computa-

tional cost needed for the evaluation of the estimators

gnT will be much smaller than the cost required to obtain

the approximate solution uhs itself (recall that typically
a global problem needs to be solved in order to obtain

the approximate solution for steady problems and one

such a problem needs to be solved at each time step for

implicit time discretizations of unsteady problems).

Finally, the numerical error u� uhs typically consists of

several error components. Thefirst one is the discretization

error, which further splits into temporal (for unsteady

problems) and spatial errors.These result fromtheapprox-

imation properties of the time stepping procedure and of

the numerical scheme, and from the current temporal

and spatial meshes. Another typical error component is

the algebraic error, linked to the imprecision in the solution

of the associated systems of linear algebraic equations. For

nonlinear problems, the linearization error, linked to

incomplete convergence of iterative nonlinear solvers such

as the Newton method, arises equally. Property (vi) is

essential for the identification of the discretization (spatial

and temporal), linearization, and algebraic errors and for

entire adaptivity, relying not solely on adaptive mesh

refinement but employing crucially adaptive stopping cri-

teria for linear and nonlinear solvers.

In the subsequent sections,wewill illuminate the current

knowledge on a posteriori error estimates for problems in

geosciences. We start by the model steady linear problem
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(2) and arrive up to the compositional Darcy flow model

discussed in Section 1. The error estimates are derived

under very general assumptions that allow to cover all

the discretization methods discussed in Section 2, taking

advantage of the unified framework developed in [27, 86,

87, 88, 92], see also the references therein.

3.2 Single-Phase Steady Darcy Flow

Let us first consider the single-phase Darcy flow (2). In

order tomake the presentation independent of the numer-

ical scheme at hand, we suppose that uh is piecewise regu-
lar, typically a piecewise polynomial function on themesh

T h. This in particular allows for uh being nonconforming,

i.e., not contained in the energy space H1
0ðXÞ.

3.2.1 Controlling a Posteriori the Error

To give an a posteriori error estimate for the generic

approximation uh we follow [87, 88, 90, 92]; henceforth

we assume that we are able to construct two functions

sh and rh such that:

Assumption 1 (Potential reconstruction)

There exists a scalar function sh eH1
0ðXÞ, termed poten-

tial reconstruction.

Assumption 2 (Equilibrated flux reconstruction)

There exists a vector function rh eHðdiv;XÞ such that:

ð$ � rh; 1ÞT ¼ ðf ; 1ÞT 8T e T h

termed equilibrated flux reconstruction.

The two above assumptions mimic two essential prop-

erties of the exact solution of (2). First, since the exact

pressure u belongs to the space H1
0ðXÞ, its jumps across

interfaces vanish as detailed, e.g., in [22, Lemma 1.23],

and its trace on oX is zero. Second, the exact (Darcy) flux

given by �K$u belongs to the space Hðdiv;XÞ, which
implies, in particular, that its normal component is con-

tinuous across interfaces in a proper sense. Last, for the

exact flux it holds that its divergence is equal to the

source term f . Assumptions 1 and 2 mimic these proper-

ties on the discrete level. In conforming numerical meth-

ods such as vertex-centered FV or conforming FE, the

approximate solution itself satisfies uh eH1
0ðXÞ. Then,

we simply set sh :¼ uh. Otherwise, sh satisfying Assump-

tion 1 is chosen as close as possible to uh. Similarly, in

flux-conforming numerical methods such as cell-cen-

tered FV or mixed finite elements, a discrete flux satisfy-

ing Assumption 2 is readily available and can be taken

for rh. Otherwise, rh satisfying Assumption 2 is chosen

as close as possible to �K$huh.
Suppose f e L2ðXÞ, K symmetric, bounded, and uni-

formly positive definite, and recall that the energy norm

for problem (2) is defined as jjjvjjj :¼ jjK1=2$vjjL2ðXÞd .

For functions v only piecewise H1 on the mesh

T h, we extend it to a semi-norm by setting

jjjvjjj :¼ jjK1=2 $hvjjL2ðXÞd . Then we have, see [87, 90,

92, 94]

Theorem 1 A posteriori error estimate, steady single

phase flow

Let u be the exact (weak) solution of (2), let uh be its

arbitrary (piecewise regular) approximation, and let

Assumptions 1 and 2 hold. Then:

jjju� uhjjj �
X
TeT h

ðgF;T þ gR;T Þ2 þ
X
TeT h

g2NC;T

8<
:

9=
;

1=2

where the nonconformity estimators gNC;T are given by:

gNC;T :¼ jjK1=2$hðuh � shÞjjT

the flux estimators gF;T are given by:

gF;T :¼ jjK1=2$huh þK�1=2rhjjT

and the residual estimators gR;T are given by:

gR;T :¼ CP;ThT

c1=2K;T

jjf � $ � rhjjT

In Theorem 1, CP;T is the constant from the Poincaré

inequality, equal to 1=p whenever the element T is con-

vex, and cK;T is the smallest eigenvalue of the permeabil-

ity tensor K on the element T .
Remark 1 (Estimators of Theorem 1)

The estimator gNC;T of Theorem 1 is related to the

H1
0ðXÞ-constraint on the pressures and evaluates the pos-

sible departure of uh from H1
0ðXÞ. The estimator gF;T is

related to constitutive law saying that the flux is given

by �K$u (this is precisely the Darcy law (1b) when the

gravitational effects are neglected) and to the

Hðdiv;XÞ-constraint on the fluxes and evaluates the

departure of �K$huh from Hðdiv;XÞ. Finally, the last

estimator gR;T is related to the strong form (2) and to

the condition of flux being in equilibrium with the

sources.

It follows from Theorem 1 that the a posteriori esti-

mate for the energy norm of the approximation error

for problem (2) is certified, so that property (i) of Sec-

tion 3.1 is satisfied. With appropriate choices of the

reconstructions sh and rh, it can be shown that also the

properties (ii)-(v) hold true; property (iii) may not hold

fully (but effectivity indices below two are usually

observed), and, similarly, property (iv) does generally

not hold with respect to the heterogeneities and anisotro-

pies of the diffusion tensor K. More precisely, robustness

with respect to heterogeneities do holds whenever a path
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with monotonous growth of the diffusivity around each

node exists [110, Hypothesis 2.7]. This monotonicity

assumption is not necessary for schemes using harmonic

averaging and dual meshes [91] and the discussion

therein. Robustness with respect to anisotropies typi-

cally does not hold for the energy (semi-)norm but

may hold for other (weaker) norms [91, Remark 5.9].

Finally, the estimate of Theorem 1 assumes that the sys-

tem of linear equations associated to the given numerical

method is solved exactly. Identification of the algebraic

and discretization errors in the spirit of property (vi),

leading to stopping criteria for iterative liner solvers,

was undertaken in [89] and in a broader setting in [27].

Details with in particular the constructions of sh and

rh for various numerical methods can be found in [87,

90, 92].

3.2.2 Refining Adaptively the Mesh

If follows from the fact that property (ii) of Section 3.1 is

satisfied that the estimators of Theorem 1 allow us to

predict the spatial distribution of the error. This is illus-

trated in Figure 8a, where the estimators for the cell-

centered TPFV scheme approximation of (2) are shown,

whereas in Figure 8b, the actual error distribution over

the mesh elements is plotted. We can see that our predic-

tion matches nicely the reality. It is then natural to refine

the mesh adaptively, around those elements where the

estimators predict a high error value. Such a concept is

crucial especially in presence of singularities in the exact

solution: then the mesh can be almost exclusively refined

in such places, as we can witness it in Figure 9. Both

these examples, as well as the one in Figure 10, are

given for problem (2) with a model domain

X ¼ ð�1; 1Þ � ð�1; 1Þ, zero source term f, isotropic but

inhomogeneous diffusion tensor K being � multiple of

the identity tensor in the first and third quadrant and

by the identity tensor in the two remaining quadrants,

and with an inhomogeneous Dirichlet boundary condi-

tion instead of the homogeneous one. This problem

admits an analytical solution featuring a singularity at

the origin [90]. We consider two cases � ¼ 5
and � ¼ 100 corresponding to Figure 8 and Figure 9,

respectively.

Finally, in Figure 10, we first asses the precision of our

estimators: we plot both the energy error jjju� uhjjj and
the estimate of Theorem 1, for � ¼ 5 (Fig. 10a) and for

� ¼ 100 (Fig. 10b). We see that our estimators overesti-

mate the actual error only mildly. Second, Figure 10

compares the situation of classical uniform mesh refine-

ment with the adaptive mesh refinement based on our

estimators. We see that the same precision can be

achieved for significantly fewer unknowns in the adap-

tive case with respect to the uniform one. Equivalently,

the error for the same number of unknowns is much

smaller in the adaptive case. Actually, the error decrease

in function of the number of unknowns is very slow

(owing to the low regularity of the solution) in the uni-

form case, whereas it recovers the best possible speed

in the adaptive case [90].
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Estimated (a) and actual (b) error distribution, permeability ratio 1:5, single-phase steady Darcy flow. The pictures are taken from

reference [90].
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3.3 Single-Phase Unsteady Darcy Flow

To lay the foundations for time-dependent problems, we

consider the unsteady version of the model problem (2).

For the sake of simplicity, we take for the theoretical

developmentsK to be the identity matrix, so that we look

for u such that:

otu� $ � ð$uÞ ¼ f in X� ð0; tFÞ
u ¼ 0 on @X� ð0; tFÞ

uð�; 0Þ ¼ u0 in X

ð26Þ

for some given initial pressure u0. Let tn, 0 � n � N , be a

strictly increasing sequence of discrete times such that

t0 ¼ 0 and tN ¼ tF. We introduce the time intervals

In :¼ ðtn�1; tn� and the time steps sn :¼ tn � tn�1 for all

1 � n � N . On each tn, we suppose a (possibly different)

mesh T n
h. Again, to make the presentation as general as

possible, and to include all the space discretization

schemes discussed in Section 2, we suppose that uhs is

such that unh :¼ uhsð�; tnÞ is piecewise regular (typically

piecewise polynomial) on T n
h, and that uhs is continuous

and piecewise affine with respect to time. We assume the
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temporal discretization that is fully implicit, backward

Euler. We follow in our presentation [86, 87, 92].

3.3.1 Controlling a Posteriori the Error

Let the source function f e L2ðX� ð0; tFÞÞ be for simplic-

ity piecewise constant in time, where we denote

f n :¼ f jIn , and let the initial condition u0 e L2ðXÞ. The
exact solution lies in the space Y :¼ fy eX ;oty eX 0g, with
X :¼ L2ð0; tF;H1

0ðXÞÞ and X 0 ¼ L2ð0; tF;H�1ðXÞÞ. The

space-time energy norm is given by, for y eX :

jjyjjX :¼
Z tF

0
j$yj jj2 tð Þdt

� �1=2

ð27Þ

We extend it to only piecewise regular functions in

space while replacing the usual gradient $ by the broken

one $h. It appears impossible so far to obtain (23) or (25)

from property (ii) for the energy norm (27). For this

reason, we [102], augment the energy norm by a dual

norm of the time derivative as:

jyj jjY :¼ jyj jjX þ j@tyj jjX 0 ð28Þ

with:

j@tyj jjX 0 :¼
Z tF

0
j@tyj jj2H�1 tð Þdt

� �1=2

Then, property (ii) (the local in time but global in

space version (25)) can be obtained.

We make the following equivalents of Assumptions 1

and 2:

Assumption 3 (Potential reconstruction)

There exists a scalar function shs, continuous and piece-
wise affine in time and satisfying snh :¼ shs �; tnð Þ e H1

0ðXÞ,
such that, for all 1 � n � N and for all T e T n

h:

ð@ts
n
hs; 1ÞT ¼ ð@tu

n
hs; 1ÞT ð29Þ

where snhs :¼ shsjIn and unhs :¼ uhsjIn . We call shs a poten-

tial reconstruction.

Remark 2 (Condition (29))

Condition (29) is necessary as we shall estimate the

error in the augmented j�j jjY -norm of (28). For a similar

estimate in the j�j jjX -norm of (27), it would not be

necessary.

Assumption 4 (Equilibrated flux reconstruction)

There exists a vector function rhs, piecewise constant in

time, such that, for all 1 � n � N , rnh :¼ rhsjIn eHðdiv;XÞ
and:

ðf n � @tu
n
hs � $ � rnh; 1ÞT ¼ 0 8T e T n

h

We call rhs an equilibrated flux reconstruction.

We then have [86, 87, 92]:

Theorem 2 (A posteriori error estimate, unsteady sin-

gle phase flow)

Let u be the exact (weak) solution of (26) and let uhs be
its arbitrary piecewise regular in space and continuous and

piecewise affine in time approximation. Let Assumptions 3

and 4 be satisfied. Then:

ju� uhsj jjY �
XN
n¼1

ðgnspÞ2
( )1

2

þ
XN
n¼1

ðgntmÞ2
( )1

2

þ gIC ð30Þ

with, for all 1 � n � N , the spatial and temporal error

estimators given respectively by:

ðgnspÞ2 :¼
X
TeT n

h

3fsnð9ðgnR;T þ gnF;T Þ2 þ ðgnNC;2;T Þ2Þ

þ
Z
In

ðgnNC;1;T Þ2ðtÞ dtg

ðgntmÞ2 :¼
X
TeT n

h

3snjj$ðsnh � sn�1
h Þjj2T

For all T e T n
h, the residual estimator, the flux estima-

tor, and the nonconformity estimators are given respec-

tively by:

gnR;T :¼ CP;ThT jjf n � @ts
n
hs � $ � rnhjjT

gnF;T :¼ jj$snh þ rnhjjT

gnNC;1;T ðtÞ :¼ jj$hðshs � uhsÞðtÞjjT ; 8t e In

gnNC;2;T :¼ CP;ThT jj@tðshs � uhsÞnjjT
Finally, the initial condition estimator is given by:

gIC :¼ 21=2jjs0h � u0jj

It follows from Theorem 2 that the augmented norm

error (28) in approximation of problem (26) is certified

by the a posteriori error estimate (30), so that property

(i) of Section 3.1 is satisfied. With appropriate choices

of the reconstructions shs and rhs, it can be shown that

property (ii), with (25) in place of (23), holds true (the

efficiency is local in time but unfortunately only global

in space as discussed in Sect. 3.1). Concerning property

(iii), it typically only gives effectivity indices around five.

Finally, all properties (iv)-(vi) hold true. It is important

that property (iv) does hold with respect to the final time

tF, so that the overestimation factor does not depend on

the length of the simulation. Finally, as stipulated by

property (vi), the estimators gnsp and gntm decompose the
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error into its two components, the spatial and temporal

ones.

In Figure 11, we give a numerical illustration of the

robustness with respect to the final time tF. We consider

problem (26) posed on the domain X : ¼ ð0; 3Þ � ð0; 3Þ
with K ¼ 0:5I (I being the identity matrix), f ¼ 0, and
with u0 and an inhomogeneous Dirichlet boundary con-

dition given by the exact solution uðx; tÞ ¼ exeyet

e3 . Three

square meshes of X with 10� 10, 30� 30, 90� 90 grids

and associated time steps 0:3, 0:1, 0:03333 are consid-

ered. A vertex-centered finite volume scheme with back-

ward Euler time stepping is tested in Figure 11a for

tF ¼ 1:5 and in Figure 11b for tF ¼ 3. The results confirm
experimentally that the effectivity indices are indepen-

dent of the final time. For illustration,we give the effectiv-

ity indices also for the energy norm (27) andappropriately

modified estimators inFigure 12.Although in this casewe

have no theoretical support, we numerically observe effi-

ciency and the same robustness with respect to the final

time; moreover, here the effectivity indices are closer to

the optimal value of one.

3.3.2 Adaptivity: Mesh and Time Step (De)refinement

The distinction of the spatial and temporal error compo-

nents of Theorem 2 is a basic theoretical ingredient for

adaptivity in unsteady problems, where both the spatial

meshes T n
h and the time steps sn can be refined and dere-

fined during the simulation. An example of a resulting

adaptive algorithm and numerical illustrations of the

computational benefits of such a space-time adaptive

approach can be found in [111], see also Algorithm 1

below.

3.4 The Two-Phase Unsteady Darcy Flow

We now move in our presentation further to the sim-

plest multi-phase flow model: we consider a simplifica-

tion of the compositional model of Section 1 with only

two phases present and one component identified with

each phase. The results of Sections 3.2 and 3.3 were

recently extended to such a case in [83] for vertex-cen-

tered finite volume discretizations and in [93] in a gen-

eral, discretization scheme-independent setting,

developing the ideas of [27, 85, 86, 89]. We focus here

particularly on property (vi) from Section 3.1 and on

its practical benefits; all the mathematical details can

be found in [83, 93].

3.4.1 Controlling a Posteriori the Error

Suppose again an implicit Euler time discretization. In

analogy with Sections 3.2 and 3.3, to give an a posteriori

error estimate for general approximations ðSp;hs;Pp;hsÞ,
p eP fixed, without specifying the spatial discretization

scheme, we make the two following assumptions:

Assumption 5 (Pressure reconstructions)

There exist two scalar functions s1;hs, s2;hs, continuous
and piecewise affine in time and satisfying

sn1;h :¼ s1;hs �; tnð Þ e H1
0ðXÞ, sn2;h :¼ s2;hs �; tnð Þ e H1

0ðXÞ.
We call s1;hs, s2;hs pressure reconstructions.
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Effectivity indices for final times a) tF = 1.5 and b) tF = 3, augmented norm error ju� uhsj jjY , single-phase unsteady Darcy flow.
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Remark 3 (Assumption 5)

In a proper mathematical formulation of the two-

phase flowmodel [83] there are two quantities which pos-

sess the same continuity as the weak potential in (26):

these are the global pressure and the complementary

pressure (Kirchhoff transform). For nonconforming dis-

cretizations, where the discrete versions of these quanti-

ties are not continuous, the scalar functions s1;hs, s2;hs
represent their continuous (in the sense of traces) recon-

structions. Alternatively, when one knows for instance

that the two phase pressures Pp, p e P, should physically

be continuous, then s1;hs, s2;hs may represent their recon-

structions.

Assumption 6 (Equilibrated phase flux reconstructions)

There exist two vector functions rp;hs, p eP, piecewise
constant in time, such that, for all 1 � n � N ,

rp;h
n : ¼ rp;hsjIn eHðdiv;XÞ, p eP, verifying:

ðqnp � @tð/Snp;hsÞ � $ � rnp;h; 1ÞT ¼ 0 8T e T n
h

We call rp;hs, p eP, equilibrated phase flux reconstruc-

tions.

For the following result, we suppose that we are on a

certain time step tn, 1 � n � N , that some iterative line-

arization (e.g., the Newton one) has been applied to

the system of nonlinear algebraic equations resulting

from the given numerical method and that we are on

its step k, and that in order to solve the arising system

of linear equations, some iterative linear solver has been

applied, with the current step i. The corresponding satu-

ration-pressure approximation couple on the time inter-

val In is denoted by ðSn;k;ip;hs ;P
n;k;i
p;hsÞ.

Theorem 3 (A posteriori error estimate, two-phase

flow)

Let ðSp;PpÞ for one chosenp � P be the exact (weak) sat-

uration and pressure. Let ðSp;hs;Pp;hsÞ be their arbitrary

piecewise regular in space and continuous and piecewise

affine in time approximations. Let Assumptions 5 and 6 be

satisfied. Let a time step tn, 1 � n � N , a linearization step

k � 1, and an algebraic solver step i � 1 be given. Then:

jjjðSp � Sn;k;ip;hs ;Pp � Pn;k;i
p;hsÞjjjIn � gn;k;isp þ gn;k;itm þ gn;k;ilin þ gn;k;ialg

ð31Þ

where gn;k;isp , gn;k;itm , gn;k;ilin , and gn;k;ialg are respectively the spatial,

temporal, linearization, and algebraic error estimators.

The precise form of the error measure jjj � jjjIn , as well
as of the error estimators gn;k;isp , gn;k;itm , gn;k;ilin , gn;k;ialg , in partic-

ular for the different discretization schemes of Section 2,

can be found in [83, 93].

3.4.2 Adaptivity: Stopping the Linear and Nonlinear Solvers
and (De)refining the Mesh and Time Step

Theorem 3 enables to control the overall error in a

numerical approximation of the two-phase flow prob-

lem. In addition to Sections 3.2 and 3.3, however, it

allows to identify the different error components in the

spirit of property (vi) from Section 3.1. It is thus suitable

for designing an entirely adaptive algorithm, with adap-

tive stopping criteria for both linear and nonlinear solv-

ers, adaptive time step choice, and adaptive mesh

refinement and derefinement. We now illustrate numeri-

cally such adaptive procedures.
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Effectivity indices for final times a) tF = 1.5 and b) tF = 3, energy norm error jju� uhsjjX , single-phase unsteady Darcy flow.
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We consider an immiscible incompressible two-phase

flow test case taken from [112], with P :¼ fw; ng. We

neglect the gravity terms, use the Brooks–

Corey relations, define the computational domain

X ¼ 0; 300ð Þm � 0; 300ð Þm, the final time tF ¼ 4� 106 s,
the porosity / ¼ 0:2, the permeability tensor

K ¼ 10�11Im2, the sources qw ¼ qn ¼ 0 s�1, and the

viscosities lw ¼ 5� 10�4 kg:m�1:s�1 and

ln ¼ 2� 10�3 kg:m�1:s�1. The wetting and nonwetting

residual saturations srw and srn from theBrooks–Coreymodel

arebothsetequal tozero,whereas theentrypressure is takenas

pd ¼ 5� 103 kg:m�1:s�2. The initial wetting saturation is

taken as s0w ¼ 0:2 everywhere except of the lower left (injec-

tion) corner ofX, where we set s0w ¼ 0:95. A flow gradient is

imposed by setting the Dirichlet boundary conditions as 0:95
and 3:45� 106 kg:m�1:s�2 in the lower left corner and to

0:2 and 2:41� 106 kg:m�1:s�2 in the upper right corner, for

the wetting saturation and pressure respectively; elsewhere

homogeneous Neumann boundary condition are considered.

We consider a cell-centered TPFV space discretization, fully

implicit time discretization, theNewtonmethod for the linear-

ization,andtheGeneralizedMinimalResidual (GMRes)alge-

braic solver with Jacobi (diagonal) preconditioning for the

arising systems of linear equations.All the examples are taken

from [93], where all the details can be found.

In Figure 13a, for a fixed discrete time and Newton

step, we track the dependence of the different estima-

tors of Theorem 3 on the GMRes iterations. We see

that all gn;k;isp , gn;k;itm , and gn;k;ilin stabilize after a few

GMRes iterations, whereas gn;k;ialg as expected decreases

with GMRes iterations. Classically, one would wait

until the algebraic relative residual becomes very small,

say smaller than 10�13. In the present case, this

requires 1 530 GMRes iterations. Our adaptive stopping

criterion instead says that it is sufficient that the

algebraic error estimate gn;k;ialg is some user-given constant

calg smaller than the sum gn;k;isp þ gn;k;itm þ gn;k;ilin , expressing

that there is no need to continue with algebraic solver

iterations once the algebraic error does not influence

the overall error significantly. For calg ¼ 10�3, such a

criterion only requires 435 GMRes iterations. In

Figure 13b, we then plot the different estimators as

function of the Newton iterations, at the same discrete

time. 11 iterations are necessary to reach the classical

stopping criterion requiring the L1 difference (with

appropriate weighting) between two consecutive pres-

sure and saturation approximations to be smaller or

equal to 10�11, whereas only 3 iterations are sufficient

to arrive at the adaptive stopping criterion

gn;k;ilin � clinðgn;k;isp þ gn;k;itm Þ with clin ¼ 10�3.

The overall gains achievable thanks to our approach

are then illustrated in Figure 14. In Figure 14a, we plot

the number of necessary Newton iterations on each time

step for both the adaptive and classical stopping criteria.

We can see that they are considerably smaller in the

adaptive case. It is to be emphasized that in particular

much fewer Jacobian matrix assemblies are necessary

in our approach. In Figure 14b, the cumulative number

of GMRes iterations is given as function of time. From

this last graph, we can conclude that in the adaptive

approach the number of cumulative GMRes iterations

is approximately 12-times smaller compared to that in

the classical one.

The above usage of a posteriori error estimates seems

to be rather new.More common is the procedure already

described in Section 3.3.2, consisting in equilibration of

gn;k;isp with gn;k;itm and in equilibration of the individual

element components gn;k;isp;T of gn;k;isp through adaptive time
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and space mesh refinement and derefinement. Adaptive

algorithms and numerical experiments in such a spirit

are presented in [93]. A simplified example can be sum-

marized as follows:

Algorithm 1 (An entirely adaptive algorithm)

1. Assembly the initial conditions. Set n ¼ 1;
2. Set up the system of nonlinear algebraic equations on

time tn;
a Initialize the iterative linearization (typically by

the last available approximations). Set k ¼ 1;
b Set up the system of linear algebraic equations on

linearization step k;
Initialize the iterative linear solver (typically by

the last available approximations). Set i ¼ 1;
Perform one or several linear solver steps (in

the latter case increase i appropriately). This
gives the approximation ðSn;k;ip;hs ;P

n;k;i
p;hsÞ;

From the numerical method at hand, build the

pressure reconstructions s1;hs, s2;hs and the equil-
ibrated phase flux reconstructions rp;hs, p eP;
Evaluate the estimators gn;k;isp , gn;k;itm , gn;k;ilin ,

gn;k;ialg ;

Check the convergence criterion for the linear

solver:

gn;k;ialg � calg gn;k;isp þ gn;k;itm þ gn;k;ilin

� �
ð32Þ

If this criterion is not satisfied, increase i and go back to
step 3(c)ii;

(d) Check the convergence criterion for the nonlinear

solver:

gn;k;ilin � clin gn;k;isp þ gn;k;itm

� �
ð33Þ

If this criterion is not satisfied, set k :¼ k þ 1 and go

back to step 3b;

4. Check whether the spatial and temporal errors are com-

parable in the sense that:

gn;k;isp � gn;k;itm ð34Þ

whether the spatial errors are equally distributed in the

computational domain in the sense that:

gn;k;isp;T are comparable for all TeT n
h ð35Þ

and whether the total error is small enough in the sense

that:

gn;k;isp þ gn;k;itm þ gn;k;ilin þ gn;k;ialg � en ð36Þ

where en is a user-given precision for the maximal error

on the time interval In. If this is the case, and tn < tF, set
n :¼ nþ 1 and go to step 2. If not, refine the time step

sn and/or the space mesh T n
h and go to step 2.

Remark 4 (Computational cost)

The above algorithm is essentially a very standard res-

olution algorithm. Its basic novel ingredients are the esti-

mators gn;k;isp , gn;k;itm , gn;k;ilin , gn;k;ialg ; according to property (v)

of Section 3.1, their evaluation price is very small. The

simplest adaptivity to implement in an existing program

is then that of the adaptive stopping criteria (32) and

(33). This basically consists in replacing two source code

lines. It is more demanding to implement (34), (35),

and (36).
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a) Number of Newton iterations on each time step and b) cumulative number of GMRes iterations as a function of time, two-phase

Darcy flow. The pictures are taken from reference [93].
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3.5 Compositional Unsteady Darcy Flow

We finally return back to the compositional multi-phase

Darcy model introduced in Section 1. We recently in

[113] adapted the developments presented in Section 3.4

for two-phase flows to this setting.

In [113], we have in particular derived an equiva-

lent of Theorem 3 for the compositional multi-phase

flow. Thus the overall error can be controlled and

moreover its individual components identified. Simi-

larly to Section 3.4.2, entirely adaptive algorithms

were proposed for the compositional multi-phase flow

case [113]. Results similar to those reported in Figures

13 and 14 were obtained, enabling in particular sub-

stantial computational gains just by employing adap-

tive stopping criteria for linear and nonlinear

solvers. To illustrate the capability of our estimators

to detect likewise the distribution of the spatial error,

typically concentrated around the moving saturation

front, we plot in Figure 15 the element contributions

of the spatial estimator gn;k;isp at two different discrete

times. Refining and derefining the mesh adaptively

while following the front (and choosing adaptively

the time step size) is likely to still increase the compu-

tational attractiveness of our approach. One example

of a simpler model problem with similar numerical

difficulties for which an entirely adaptive algorithm

has already been successfully put in place is discussed

in [84].
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Development of a refinement criterion for adaptive mesh
refinement in steam-assisted gravity drainage simulation,
Comput. Geosci. 15, 1, 17-34.

3 Ding D., Jeannin L. (2001) A new methodology for singu-
larity modelling in flow simulations in reservoir engineer-
ing, Comput. Geosci. 5, 93-119.
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of a finite volume scheme for the convection-diffusion
equation with L1 data, Math. Comp. 81, 279, 1429-1454.

10 Andreianov B., Bendahmane M., Karlsen K.H. (2010)
Discrete duality finite volume schemes for doubly nonlin-
ear degenerate hyperbolic-parabolic equations, J. Hyper-
bolic Diff. Equ. 7, 1, 1-67.

11 Cancès C., Cathala M., Le Potier C. (2013) Monotone cor-
rections for generic cell-centered finite volume approxima-
tions of anisotropic diffusion equations, Numer. Math.
125, 387–417.

12 Falgout R.D., Yang U.M. (2002) Hypre: a library of high
performance preconditioners, in Preconditioners, Lecture
Notes in Computer Science, 632-641.

13 Scheichl R., Vassilevski P.S., Zikatanov L.T. (2012) Muti-
level methods for elliptic problems with highly varying
coefficients on non-aligned coarse grids, SIAM J. Numer.
Anal. 50, 3, 1675-1694.
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piecewise H1 functions, SIAM J. Numer. Anal. 41, 1,
306-324.

61 Burman E., Zunino P. (2006) A domain decomposition
method for partial differential equations with non-nega-
tive form based on interior penalties, SIAM J. Numer.
Anal. 44, 1612-1638.

62 Reed W.H., Hill T.R. (1973) Triangular mesh methods
for the neutron transport equation. Technical Report
LA-UR-73-0479, http://lib-www.lanl.gov/cgi-bin/getfile?
00354107.pdf, Los Alamos Scientific Laboratory, Los
Alamos, NM.

63 Lesaint P. (1973) Finite element methods for symmetric
hyperbolic equations, Numer. Math. 21, 244-255.

64 Lesaint P. (1975) Sur la résolution des systèmes hyperbol-
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Fürst J., Halama J., Herbin R., Hubert F. (eds), Finite
Volumes for Complex Applications VI, pp. 821-837,
Berlin, Heidelberg, Springer-Verlag. ISBN 978-3-642-
20670-2.

88 Hannukainen A., Stenberg R., Vohralı́k M. (2012) A uni-
fied framework for a posteriori error estimation for the
Stokes problem, Numer. Math. 122, 4, 725-769.
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