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GUARANTEED AND ROBUST A POSTERIORI BOUNDS
FOR LAPLACE EIGENVALUES AND EIGENVECTORS:

CONFORMING APPROXIMATIONS∗

ERIC CANCÈS† , GENEVIÈVE DUSSON‡ , YVON MADAY§ , BENJAMIN STAMM¶, AND

MARTIN VOHRALÍK‖

Abstract. This paper derives a posteriori error estimates for conforming numerical approxi-
mations of the Laplace eigenvalue problem with a homogeneous Dirichlet boundary condition. In
particular, upper and lower bounds for an arbitrary simple eigenvalue are given. These bounds
are guaranteed, fully computable, and converge with optimal speed to the given exact eigenvalue.
They are valid without restrictions on the computational mesh or on the approximate eigenvector;
we only need to assume that the approximate eigenvalue is separated from the surrounding smaller
and larger exact ones, which can be checked in practice. Guaranteed, fully computable, optimally
convergent, and polynomial-degree robust bounds on the energy error in the approximation of the
associated eigenvector are derived as well, under the same hypotheses. Remarkably, there appears
no unknown (solution-, regularity-, or polynomial-degree-dependent) constant in our theory, and no
convexity/regularity assumption on the computational domain/exact eigenvector(s) is needed. The
multiplicative constant appearing in our estimates depends on (computable estimates of) the gaps
to the surrounding exact eigenvalues. Its two improvements are presented. First, it is reduced by a
fixed factor under an explicit, a posteriori calculable condition on the mesh and on the approximate
eigenvector–eigenvalue pair. Second, when an elliptic regularity assumption on the corresponding
source problem is satisfied with known constants, this multiplicative constant can be brought to the
optimal value of one. Inexact algebraic solvers are taken into account; the estimates are valid on each
iteration and can serve for the design of adaptive stopping criteria. The application of our framework
to conforming finite element approximations of arbitrary polynomial degree is provided, along with
a numerical illustration on a set of test problems.
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1. Introduction. Precise numerical approximation of eigenvalues and eigenvec-
tors is crucial in countless applications. Thus, there has been a long-standing interest
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in answering the question, What is the size of the errors in computed eigenvalues and
eigenvectors? This question is usually tackled via a posteriori error estimates. For
elliptic source problems such as the Laplace one, conclusive answers are today given
by, in particular, the theory of equilibrated fluxes following Prager and Synge [49]; see
Destuynder and Métivet [19], Braess, Pillwein, and Schöberl [8], Ern and Vohraĺık [22],
and the references therein. The structure of the Laplace eigenvalue problem appears
rather richer in comparison with the elliptic source case.

Recently, though, there has been important progress in obtaining guaranteed lower
bounds for the eigenvalues, especially for the first one: Luo, Lin, and Xie [42], Hu
and colleagues [32, 33], Carstensen and Gedicke [16], Yang et al. [64], or Liu [39]
achieve so via the lowest-order nonconforming finite element method, Kuznetsov and
Repin [37] and Šebestová and Vejchodský [54, 55] give numerical-method-independent
estimates based on flux (functional) estimates, Liu and Oishi [41] elaborate fine
a priori approximation estimates for lowest-order conforming finite elements, and,
most recently, Xie, Yue, and Zhang [63] also rely on fluxes. Earlier work comprises
Kato [34], Forsythe [24], Weinberger [62], Bazley and Fox [4], Fox and Rheinboldt [25],
Moler and Payne [45], Kuttler and Sigillito [35, 36], Still [57], Goerisch and He [27],
Plum [48], Behnke et al. [5], and Armentano and Durán [1]; see also the references
therein. Sometimes, though, restrictions may apply. A condition on relative closeness
to the (first) eigenvalue is necessary in [37, Remark 3.2], [54, condition (3.6)], and [55,
condition (5.23)] (in these references, the bounds actually do not converge with the
correct speed); solution of an auxiliary eigenvalue problem for nonconvex domains is
requested [41]; potential overestimation on adaptively generated meshes may hamper
the bounds of [41, 16, 39], relying on a priori estimates and employing the largest
mesh element diameter; an auxiliary global flux problem needs to be solved in [63]; a
saturation assumption may be necessary (see the discussion in [32]).

The question of precision for both eigenvalues and eigenvectors has also been
investigated previously. For conforming finite elements, relying on the a priori error
estimates resumed in Babuška and Osborn [2] and Boffi [7] (see also the references
therein), a posteriori error estimates have been obtained by Verfürth [60], Maday and
Patera [43], Larson [38], Heuveline and Rannacher [31], Durán, Padra, and Rodŕıguez
[20], Grubǐsić and Ovall [29], Rannacher, Westenberger, and Wollner [50], and Šoĺın
and Giani [56]; see also the references therein. These estimates, though, systematically
contain uncomputable terms, typically higher order on fine-enough meshes. Recently,
Wang et al. [61] applied the constitutive relation error methodology to obtain sharp
fully computable estimates.

Let Ω ⊂ Rd, d = 2, 3, be a polygonal/polyhedral domain with a Lipschitz bound-
ary, and let λi, ui be the eigenvalues and associated eigenvectors of the Laplace oper-
ator −∆ on Ω with Dirichlet boundary conditions. The purpose of the present paper
is to derive guaranteed and optimally convergent a posteriori bounds on both an ar-
bitrary separated Laplace eigenvalue and the associated eigenvector for conforming
(variational) methods. Nonconforming methods including nonconforming, discontin-
uous Galerkin, or mixed finite elements are treated in Cancès et al. [12]. We describe
the setting in detail in section 2. Sections 3 and 4 then contain a collection of equiv-
alence inequalities between, respectively, the ith eigenvalue error and the square of
the ith eigenvector energy error, the ith eigenvector energy error and dual norm of
the residual, and between the dual norm of the residual and its computable esti-
mates. These results are valid under one key assumption: λih, the approximation to
λi, needs to be confined like λi−1 < λih < λi+1 (the left inequality of course only
needs to hold when i > 1); see (5.2) below. This can be guaranteed in many cases of



2230 CANCÈS, DUSSON, MADAY, STAMM, AND VOHRALÍK

practical interest by a domain inclusion argument Ω− ⊆ Ω ⊆ Ω+ with known smaller
and larger eigenvalues λi−1 ≤ λi−1(Ω−) and λi+1(Ω+) ≤ λi+1 and by requesting
λi−1 =: λi−1(Ω−) < λih < λi+1 := λi+1(Ω+). Numerical bounds λi−1 ≥ λi−1 (typi-
cally available during the calculation) and λi+1 ≤ λi+1 (obtained on a coarse mesh by
the approach of [41, 16, 39]) can also be used; see Remarks 5.4 and 5.5 below. We also
suppose that the approximation spaces consist of appropriate piecewise polynomials.
For improved versions of our bounds, we additionally need to check the smallness
of the L2(Ω)-norm of the Riesz representation of the residual; see the a posteriori
calculable conditions (5.6) and (5.9) below. These can always be satisfied by refining
the computational mesh/increasing the polynomial degree of the approximate solu-
tion. Note that no condition of Galerkin orthogonality of the residual to the finite
element hat functions needs to be satisfied: the entire analysis is presented in the
context of inexact algebraic solvers. Our estimates are valid on each iteration subject
to the above inclusion of λih and can be used for efficient adaptive stopping criteria
of iterative eigenvalue solvers, as promoted in, e.g., Mehrmann and Miedlar [44] or
Carstensen and Gedicke [16].

In section 5, the results of sections 3–4 are turned into actual a posteriori bounds.
First, upper and lower bounds for the ith eigenvalue are given in Theorems 5.1 and 5.2.
For a finite element approximation with an exact algebraic solver for simplicity, we
obtain

(1.1a) λih − η2
i ≤ λi ≤ λih − η̃2

i

with

ηi = mih‖∇uih + σih,dis‖, η̃i = η̃i(rih)

being fully computable quantities. Here uih is the approximation of the ith exact
eigenvector ui, ‖·‖ is the L2(Ω)-norm, σih,dis is an equilibrated flux reconstruction by
mixed finite element local residual problems, and rih is formed by conforming finite
element local residual liftings. The associated eigenvector energy estimates are given
next, with Theorem 5.7 revealing

(1.1b) ‖∇(ui − uih)‖ ≤ ηi, ηi ≤ Ci‖∇(ui − uih)‖,

where Ci is a constant that only depends on λ1, λi−1, λih, λi+1, on the space di-
mension d, and on some Poincaré–Friedrichs-type constant Ccont,PF together with a
discrete stability constant Cst, both only depending on the shape regularity of the
mesh. In particular, Ci is independent of the polynomial degree of uih, leading to
the polynomial-degree robustness. Moreover, a computable bound on Ci is given. The
constant Ci, however, deteriorates for increasing eigenvalues. We distinguish three
different cases. In Cases A and B of Theorems 5.1, 5.2, and 5.7, the multiplicative
factor mih of the estimator ηi contains the factor max{( λih

λi−1
−1)−1, (1− λih

λi+1
)−1} and

similarly for η̃i; Case B improves the overall size of mih under the fine-enough-mesh
condition (5.6). The results of these two cases hold without any assumption on the
convexity of the computational domain Ω and on the regularity of the weak solutions.
If, additionally, elliptic regularity of the corresponding source problem is known, the
interpolation and stability constants are computable (typically when d = 2 and Ω is
convex), and the condition (5.9) holds, the factor mih in front of the principal term
‖∇uih + σih,dis‖ has the optimal behavior

√
1 +O(h2), as summarized in Case C of

Theorems 5.1, 5.2, and 5.7.
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We show how to apply the above general results to conforming finite elements of
arbitrary order in section 6. Numerical experiments presented in section 7 fully sup-
port the theoretical findings; in particular the necessary conditions hold from quite
coarse meshes. We only treat here simple eigenvalues and associated eigenvectors;
clustered and multiple eigenvalues will be dealt with in a forthcoming contribution.
Finally, building on these results, guaranteed error bounds and fully adaptive strate-
gies with dynamic stopping criteria may become possible for nonlinear eigenvalue
problems; some of our first results in this direction are summarized in [11].

2. Setting. We denote by H1(Ω) the Sobolev space of L2(Ω) functions with
weak gradients in [L2(Ω)]d and by V := H1

0 (Ω) its zero-trace subspace. Similarly,
H(div,Ω) stands for the space of [L2(Ω)]d functions with weak divergences in L2(Ω).
The notations ∇ and ∇· are used respectively for the weak gradient and divergence.
Moreover, for ω ⊂ Ω, (∇u,∇v)ω stands for

∫
ω
∇u·∇v dx and (u, v)ω for

∫
ω
uv dx; we

also denote ‖∇v‖2ω :=
∫
ω
|∇v|2 dx and ‖v‖2ω :=

∫
ω
v2 dx and drop the index whenever

ω = Ω.

2.1. The Laplace eigenvalue problem. We consider here the following prob-
lem: find eigenvector and eigenvalue pairs (uk, λk), with uk satisfying a homogeneous
Dirichlet boundary condition over ∂Ω and subject to the constraint ‖uk‖ = 1, such
that −∆uk = λkuk in Ω. In a weak form, (uk, λk) ∈ V × R+ with ‖uk‖ = 1 and

(∇uk,∇v) = λk(uk, v) ∀v ∈ V.(2.1)

Actually (cf. Gilbarg and Trudinger [26], Babuška and Osborn [2], Boffi [7], or Strang
and Fix [58]), uk, k ≥ 1, form a countable orthonormal basis of L2(Ω) consisting
of vectors from V , whereas 0 < λ1 < λ2 ≤ λ3 ≤ . . . going to +∞. The smallest
eigenvalue λ1 is positive and simple and the associated eigenvector uk to each simple
λk is unique up to the sign that we fix here by the condition (uk, χk) > 0, where χk ∈
L2(Ω) is typically a characteristic function of Ω (for k = 1) or of its subdomain (for
k > 1). Note that it follows from (2.1) and the scaling ‖uk‖ = 1 that ‖∇uk‖2 = λk.

Below, we shall often employ the Parseval identity, giving for any v ∈ L2(Ω)

‖v‖2 =
∑
k≥1

(v, uk)2.(2.2)

As (uk/
√
λk)k≥1 form an orthonormal basis of V , for which one in particular uses

that (∇uk,∇ul) = λk(uk, ul) = 0 for k 6= l, for any v ∈ V , we also obtain

‖∇v‖2 =
∑
k≥1

(∇v,∇uk)2

λk
=
∑
k≥1

λk(v, uk)2.(2.3)

2.2. Residual and its dual norm. The derivation of a posteriori error esti-
mates usually exploits the concept of the residual and of its dual norm. We will
proceed in this way as well. Let V ′ stand for the dual of V .

Definition 2.1 (residual and its dual norm). For any pair (uih, λih) ∈ V × R,
define the residual Res(uih, λih) ∈ V ′ by

〈Res(uih, λih), v〉V ′,V := λih(uih, v)− (∇uih,∇v) ∀v ∈ V.(2.4a)

Its dual norm is then

‖Res(uih, λih)‖−1 := sup
v∈V, ‖∇v‖=1

〈Res(uih, λih), v〉V ′,V .(2.4b)
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We will also often work with the Riesz representation of the residual r(ih) ∈ V ,

(∇r(ih),∇v) = 〈Res(uih, λih), v〉V ′,V ∀v ∈ V,(2.5a)

‖∇r(ih)‖ = ‖Res(uih, λih)‖−1.(2.5b)

3. Generic equivalences. In extension of some classical results (see [26, 2, 7,
58]), we establish in this section generic equivalence results between the following three
quantities: the ith eigenvalue error ‖∇uih‖2 − λi, which can potentially be negative,
the square of the ith eigenvector energy error ‖∇(ui − uih)‖2, and the square of
the dual norm of the residual ‖Res(uih, λih)‖2−1. These equivalences may for the
moment contain uncomputable terms like the eigenvalues λi−1, λi, λi+1 or the Riesz
representation norm ‖r(ih)‖, but all such terms will be removed later. To proceed
in an abstract way allowing for inexact algebraic solvers, we rather work with the
eigenvalue error given by ‖∇uih‖2 − λi instead of λih − λi; of course these coincide
when the discrete Rayleigh quotient link ‖∇uih‖2 = λih holds, typically upon solver
convergence. A generalization to any self-adjoint operator with compact resolvent can
be found in Cancès et al. [12].

Our first two lemmas are similar in parts to the developments in [35, 37, 54, 55],
giving a computable bound on the L2(Ω) error ‖ui − uih‖. Let i ≥ 1 and define

Cih := min

{(
1− λih

λi−1

)2

,

(
1− λih

λi+1

)2
}
.(3.1)

The left term needs to be disregarded for i = 1.

Lemma 3.1 (L2(Ω) bound via a quadratic residual inequality). Let (uih, λih) ∈
V ×R+ with ‖uih‖ = 1 and (ui, uih) ≥ 0 be the ith approximate eigenvector-eigenvalue
pair, i ≥ 1. Let λi be simple and let λi−1 < λih when i > 1 and λih < λi+1. Then

‖ui − uih‖ ≤ αih :=
√

2C−
1
2

ih ‖r(ih)‖.(3.2)

Proof. Characterizations (2.1), (2.4a), and (2.5a) give

(r(ih), uk) =
(∇uk,∇r(ih))

λk
=
λih(uih, uk)− (∇uih,∇uk)

λk
(3.3)

=
(
λih
λk
− 1
)

(uih, uk).

Consequently, the Parseval equality (2.2) with v = r(ih) yields

‖r(ih)‖2 =
∑
k≥1

(r(ih), uk)2 =
∑
k≥1

(
1− λih

λk

)2

(uih, uk)2.(3.4)

Observe that the function x ∈ R+ 7→
(
1− λih

x

)2
reaches its minimum at x = λih and

is decreasing on (0, λih] and increasing on [λih,∞). Thus the constant Cih in (3.1)
equals mink≥1, k 6=i(1− λih

λk
)2. Further, employing the scalings ‖ui‖ = 1 and ‖uih‖ = 1,

(uih−ui, ui) = (uih, ui)−‖ui‖2 = (uih, ui)−
‖ui‖2

2
− ‖uih‖

2

2
= −1

2
‖ui−uih‖2.(3.5)
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As (ui, uk) = 0 for k ≥ 1, k 6= i from the orthogonality of uk, elaborating (3.4)
further while adding and subtracting Cih(uih−ui, ui)2 and using (3.1) and (3.5) gives

‖r(ih)‖2 =
(
λih
λi
− 1
)2

(uih, ui)2 +
∑

k≥1, k 6=i

(
1− λih

λk

)2

(uih − ui, uk)2

≥
(
λih
λi
− 1
)2

(uih, ui)2 + Cih
∑
k≥1

(uih − ui, uk)2 − Cih(uih − ui, ui)2(3.6)

=
(
λih
λi
− 1
)2

(uih, ui)2 + Cih‖ui − uih‖2 −
Cih
4
‖ui − uih‖4,

where we have also employed (2.2) with v = uih−ui. Dropping the first (nonnegative
and presumably small) term on the right-hand side and denoting eih := ‖ui − uih‖2,
we conclude the validity of the quadratic residual inequality in eih

Cih
4
e2
ih − Ciheih + ‖r(ih)‖2 ≥ 0.(3.7)

From the sign assumption (ui, uih) ≥ 0, employing ‖ui‖ = ‖uih‖ = 1,

eih = ‖ui − uih‖2 = 2− 2(ui, uih) ≤ 2,(3.8)

so that Ciheih ≤ 2‖r(ih)‖2, i.e., (3.2). Note that inspecting more closely the quadratic
inequality (3.7), the improved bound eih ≤ 2 −

√
4− 2α2

ih (
√

2-times better for eih
approaching zero) follows under condition ‖r(ih)‖2 < Cih that we prefer to avoid.

In addition to (3.1), define also (disregarding again the left term for i = 1)

C̃ih := min

{
λi−1

(
1− λih

λi−1

)2

, λi+1

(
1− λih

λi+1

)2
}
.(3.9)

Lemma 3.2 (L2(Ω) bound with respect to ‖∇r(ih)‖). Under the assumptions of
Lemma 3.1, there also holds

‖ui − uih‖ ≤ αih :=
√

2C̃−
1
2

ih ‖∇r(ih)‖.(3.10)

Proof. Developing (2.3) for v = r(ih) via (3.3) gives

‖∇r(ih)‖2 =
∑
k≥1

λk(r(ih), uk)2 =
∑
k≥1

λk

(
1− λih

λk

)2

(uih, uk)2.(3.11)

Next, mink≥1, k 6=i λk(1 − λih
λk

)2 = C̃ih. Thus, similarly to (3.6)–(3.7), with eih :=

‖ui − uih‖2, C̃ih
4 e2

ih − C̃iheih + ‖∇r(ih)‖2 ≥ 0. We conclude as in Lemma 3.1.

Recall the sign characterization (ui, χi) > 0 with χi ∈ L2(Ω), i ≥ 1. The sign
condition (ui, uih) ≥ 0 necessary in Lemmas 3.1 and 3.2 is typically always satisfied;
the following lemma can be used for its rigorous verification.

Lemma 3.3 (sign verification). Let (uih, λih)∈V ×R+ satisfy ‖uih‖= 1, (uih, χi)
> 0, λi−1 < λih when i > 1 and λih < λi+1, and αih ≤ ‖χi‖−1(uih, χi) for αih given
by (3.2) or (3.10). Then the sign condition (ui, uih) ≥ 0 is satisfied.

Proof. Suppose −(ui, uih) > 0. Then the bounds of Lemmas 3.1 and 3.2 hold for
−uih in place of uih, i.e., ‖ui + uih‖ ≤ αih. Consequently, a contradiction follows,

(uih, χi) = −(ui, χi) + (ui + uih, χi) < (ui + uih, χi) ≤ ‖ui + uih‖‖χi‖ ≤ (uih, χi).
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3.1. ith eigenvalue error equivalences. We first show how to exploit the
L2(Ω) bound for equivalence between the eigenvalue error and the eigenvector error.

Theorem 3.4 (eigenvalue bounds). Let uih ∈V with ‖uih‖= 1, i≥ 1, be arbitrary
subject to ‖ui − uih‖ ≤ αih for some αih ∈ R+. Then

‖∇(ui − uih)‖2 − λiα2
ih ≤ ‖∇uih‖2 − λi ≤ ‖∇(ui − uih)‖2.(3.12)

Under the additional assumption α2
1h ≤ 2, there also holds, for the first eigenpair,

1
2

(
1− λ1

λ2

)(
1− α2

1h

4

)
‖∇(u1 − u1h)‖2 ≤ ‖∇u1h‖2 − λ1.(3.13)

Proof. Using the weak solution characterization (2.1) and (3.5),

‖∇uih‖2 − λi = ‖∇(uih − ui)‖2 + 2(∇(uih − ui),∇ui)(3.14)

= ‖∇(uih − ui)‖2 + 2λi(ui, uih − ui)
= ‖∇(uih − ui)‖2 − λi‖ui − uih‖2.

Dropping the (nonpositive and presumably small) last term, the upper bound in (3.12)
follows; estimating it using ‖ui − uih‖ ≤ αih, we arrive at the lower bound in (3.12).

The bound (3.13) only seems to hold for the first eigenpair. To prove it, we
use (2.2)–(2.3) for v = u1 − u1h. First,

‖∇(u1 − u1h)‖2 − λ1‖u1 − u1h‖2 =
∑
k≥1

(λk − λ1)(u1 − u1h, uk)2(3.15)

=
∑
k≥2

(λk − λ1)(u1 − u1h, uk)2.

Using λk ≥ λ2 for k ≥ 2, λ2 > λ1, (3.5) for i = 1, and the Cauchy–Schwarz inequality,

‖∇(u1−u1h)‖2−λ1‖u1−u1h‖2 ≥ (λ2−λ1)
∑
k≥1

(u1−u1h, uk)2−(λ2−λ1)(u1−u1h, u1)2

= (λ2 − λ1)‖u1 − u1h‖2 −
λ2 − λ1

4
‖u1 − u1h‖4.

Using ‖u1− u1h‖ ≤ α1h and reemploying (2.2) for v = u1− u1h, we arrive at, second,

‖∇(u1 − u1h)‖2 − λ1‖u1 − u1h‖2 ≥ (λ2 − λ1)‖u1 − u1h‖2 − α2
1h
λ2 − λ1

4
‖u1 − u1h‖2

=
∑
k≥1

(λ2 − λ1)
(

1− α2
1h

4

)
(u1 − u1h, uk)2.

Summing this with (3.15) with weights 1
2 yields

‖∇(u1 − u1h)‖2 − λ1‖u1 − u1h‖2

≥
∑
k≥1

{
λk − λ1

2
+
λ2 − λ1

2

(
1− α2

1h

4

)}
(u1 − u1h, uk)2.

Now notice that, using (2.3) for v = u1 − u1h,

1
2

(
1− λ1

λ2

)(
1− α2

1h

4

)
‖∇(u1 − u1h)‖2 =

∑
k≥1

λk
2

(
1− λ1

λ2

)(
1− α2

1h

4

)
(u1 − u1h, uk)2.
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A simple calculation (note 1
2 ≤ (1− α2

1h
4 ) ≤ 1) shows that

λk − λ1

2
+
λ2 − λ1

2

(
1− α2

1h

4

)
≥ λk

2

(
1− λ1

λ2

)(
1− α2

1h

4

)
, k ≥ 1.

Thus

‖∇(u1 − u1h)‖2 − λ1‖u1 − u1h‖2 ≥
1
2

(
1− λ1

λ2

)(
1− α2

1h

4

)
‖∇(u1 − u1h)‖2,

and (3.13) follows using (3.14).

3.2. ith eigenvector error equivalences. We next investigate the equiva-
lence between the eigenvector error ‖∇(ui − uih)‖ and the dual norm of the residual
‖Res(uih, λih)‖−1. Recall the definition (3.1) and also set

Cih := 1 if i = 1, Cih := max

{(
λih
λ1
− 1
)2

, 1

}
if i > 1.(3.16)

Furthermore, let

γih :=

{
‖∇(ui − uih)‖2 if λi ≤ ‖∇uih‖2 is known to hold,
max{‖∇(ui − uih)‖2, λiα2

ih} otherwise;
(3.17)

we refer to Remark 5.5 below for the discussion when λi ≤ ‖∇uih‖2.

Theorem 3.5 (eigenvector bounds). Let (uih, λih) ∈ V × R+ with ‖uih‖ = 1,
i ≥ 1, be arbitrary subject to ‖ui − uih‖ ≤ αih for some αih ∈ R+. Let λi be simple
and let λi−1 < λih when i > 1, and λih < λi+1. Then

‖∇(ui − uih)‖2 ≤ ‖Res(uih, λih)‖2−1 + (λih + λi)α2
ih,(3.18a)

‖Res(uih, λih)‖2−1 ≤
(∣∣λih − ‖∇uih‖2∣∣+ γih

)2
λi

+ Cih‖∇(ui − uih)‖2.(3.18b)

Let in addition α2
ih ≤ 2λ1

λi
. Then there also holds

‖∇(ui − uih)‖2 ≤ C−1
ih

(
1− λi

λ1

α2
ih

4

)−1

‖Res(uih, λih)‖2−1.(3.19)

Proof. Starting from (3.11), adding and subtracting Cihλi(uih − ui, ui)2, using
(ui, uk) = 0 for k ≥ 1, k 6= i, (3.5), and the Cauchy–Schwarz inequality, we observe

‖∇r(ih)‖2≥λi
(
λih
λi
− 1
)2

(uih, ui)2+Cih
∑
k≥1

λk(uih − ui, uk)2−Cihλi(uih − ui, ui)2

= λi

(
λih
λi
− 1
)2

(uih, ui)2 + Cih‖∇(ui − uih)‖2 − Cih
4
λi‖ui − uih‖4

≥ Cih‖∇(ui − uih)‖2 − Cih
4
λi‖ui − uih‖4.
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Using the Poincaré–Friedrichs inequality ‖ui − uih‖2 ≤ 1
λ1
‖∇(ui − uih)‖2,

‖∇r(ih)‖2 ≥ Cih‖∇(ui − uih)‖2 − Cih
4

λi
λ1
‖∇(ui − uih)‖2α2

ih,

where we have also employed ‖ui − uih‖ ≤ αih. Thus (3.19) follows via (2.5b).
The proof of Lemma 3.1 gives supk≥1, k 6=i(1− λih

λk
)2 = Cih, recalling (3.16). Thus,

(3.11) together with the Cauchy–Schwarz inequality and ‖ui‖ = ‖uih‖ = 1 gives

‖∇r(ih)‖2 ≤ λi
(
λih
λi
− 1
)2

+ Cih
∑

k≥1, k 6=i

λk(uih − ui, uk)2

≤ (λih − λi)2

λi
+ Cih‖∇(ui − uih)‖2.

Using the inequalities (3.12) and the definition (3.17) of γih,

|λih − λi| ≤
∣∣λih − ‖∇uih‖2∣∣+ |‖∇uih‖2 − λi| ≤

∣∣λih − ‖∇uih‖2∣∣+ γih,

so that (3.18b) is proven.
Finally, (3.18a) can be seen as in, e.g., Carstensen and Gedicke [15, Lemma 3.1]

combined with ‖ui − uih‖ ≤ αih.

4. Dual norm of the residual equivalences. We now estimate the dual resid-
ual norm ‖Res(uih, λih)‖−1 for uih ∈ V a piecewise polynomial of degree p ≥ 1 and
λih ∈ R. For the upper bound, following [49, 19, 8, 22] and [21, 47, 46] for inexact
solvers (see also the references therein), we introduce an equilibrated flux reconstruc-
tion. This is a vector field σih constructed from the local residual of (uih, λih) by
solving patchwise mixed finite element problems such that

σih ∈ Vh ⊂ H(div,Ω),(4.1a)

∇·σih = λihuih − ρih, λ
− 1

2
1 ‖ρih‖ sufficiently small.(4.1b)

Inversely, local conforming residual liftings following [3, section 5.1], [51, section 4.1.1],
[22, section 3.3] will allow us to construct rih ∈ Xh ⊂ V leading to a lower bound on
‖Res(uih, λih)‖−1.

4.1. Meshes and discrete spaces. We first introduce some more notation.
Let henceforth {Th}h be a family of matching simplicial partitions of the domain Ω,
shape regular in the sense that the ratio of each element diameter to the diameter of its
largest inscribed ball is uniformly bounded by a constant κT > 0. We denote by K a
generic element of Th. The set of vertices is denoted by Vh, with interior vertices V int

h ,
vertices located on the boundary Vext

h , and a generic vertex a. We call Ta the patch
of elements of Th which share the vertex a ∈ Vh, ωa the corresponding subdomain,
and nωa its outward unit normal. We often tacitly extend functions defined on ωa by
zero outside of ωa, whereas Vh(ωa) stands for the restriction of the space Vh to ωa.
Next, ψa for a ∈ Vh stands for the piecewise affine “hat” function taking value 1 at
the vertex a and zero at the other vertices. Remarkably, (ψa)a∈Vh form a partition of
unity via

∑
a∈Vh ψa = 1|Ω.

Let Ps(K), s ≥ 0, stand for polynomials of total degree at most s on K ∈ Th,
and Ps(Th) for piecewise polynomials on Th, without any continuity requirement. Let
also Vh × Qh ⊂ H(div,Ω) × L2(Ω) stand for the Raviart–Thomas–Nédélec (RTN)
mixed finite element spaces of degree p + 1, i.e., Vh := {vh ∈ H(div,Ω); vh|K ∈
[Pp+1(K)]d + Pp+1(K)x} and Qh := Pp+1(Th); see Brezzi and Fortin [10] or Roberts
and Thomas [52]. We also denote by ΠQh the L2(Ω)-orthogonal projection onto Qh.
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4.2. Equilibrated flux reconstruction for inexact solvers. Let rih ∈ Pp(Th)
be a discontinuous piecewise p-degree polynomial that lifts the misfit in the Galerkin
orthogonality of the residual Res(uih, λih), i.e.

〈Res(uih, λih), vh〉V ′,V = λih(uih, vh)− (∇uih,∇vh) = (rih, vh) ∀vh ∈ Pp(Th) ∩ V.
(4.2)

A simple elementwise construction of rih is proposed in [47, equation (5.2)]. Typically,
rih = 0 for an “exact” discrete algebraic solve that we do not suppose here.

We construct σih in two steps. First, solve the following homogeneous local Neu-
mann (Neumann–Dirichlet close to the boundary) discrete problems on patches ωa.

Definition 4.1 (equilibrated flux reconstruction). For a ∈ Vh, set

Va
h := {vh ∈ Vh(ωa); vh·nωa = 0 on ∂ωa},

Qa
h := {qh ∈ Qh(ωa); (qh, 1)ωa = 0},

a ∈ V int
h ,

Va
h := {vh ∈ Vh(ωa); vh·nωa = 0 on ∂ωa \ ∂Ω},

Qa
h := Qh(ωa),

a ∈ Vext
h .

Then define σih,dis :=
∑

a∈Vh σ
a
ih,dis ∈ Vh, where σa

ih,dis ∈ Va
h solve

σa
ih,dis := arg min

vh∈Va
h,

∇·vh=ΠQh (λihuihψa−∇uih·∇ψa−rihψa)

‖ψa∇uih + vh‖ωa ∀a ∈ Vh.
(4.3)

Note that the Euler–Lagrange equations for (4.3) give the standard mixed finite
element formulation (cf. [22, Remark 3.7]): find σa

ih,dis ∈ Va
h and pah ∈ Qa

h such that

(σa
ih,dis,vh)ωa − (pah,∇·vh)ωa = −(ψa∇uih,vh)ωa ∀vh ∈ Va

h,(4.4a)

(∇·σa
ih,dis, qh)ωa = (λihuihψa −∇uih·∇ψa − rihψa, qh)ωa ∀qh ∈ Qa

h.(4.4b)

Consequently, ∇·σih,dis = λihuih − rih; cf., e.g., [47, Appendix A].
Now, proceeding as in [46], one can construct in a multilevel way a second flux

reconstruction σih,alg ∈ Vh such that ∇·σih,alg = rih. Consequently, setting σih :=
σih,dis + σih,alg, (4.1b) follows with ρih = 0. Other strategies are pursued in [21, 47].
These approaches yield

∇·σih,alg = rih − ρih(4.5)

with ρih 6= 0 and are based on precomputing some algebraic solver iterations in order
to ensure that ‖ρih‖ is sufficiently small with respect to the two other contributions
in (4.9a) below, more precisely verifying (4.9b).

4.3. Conforming local residual liftings. To estimate ‖Res(uih, λih)‖−1 from
below, we solve conforming primal counterparts of problems (4.4), without the term
with rih. On each patch ωa around the vertex a ∈ Vh, define

H1
∗ (ωa) := {v ∈ H1(ωa); (v, 1)ωa = 0}, a ∈ V int

h ,(4.6a)

H1
∗ (ωa) := {v ∈ H1(ωa); v = 0 on ∂ωa ∩ ∂Ω}, a ∈ Vext

h ,(4.6b)

and let Xa
h be an arbitrary discrete subspace of H1

∗ (ωa), typically Pp+1(Ta)∩H1
∗ (ωa).
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Definition 4.2 (conforming local Neumann problems). Define raih ∈ Xa
h by

(∇raih,∇vh)ωa = 〈Res(uih, λih), ψavh〉V ′,V ∀vh ∈ Xa
h

for each a ∈ Vh. Then set rih :=
∑

a∈Vh ψar
a
ih.

The functions raih are discrete Riesz projections of the local residual with hat-
weighted test functions. As all ψar

a
ih ∈ H1

0 (ωa), rih ∈ V , though raih 6∈ V .

4.4. Dual norm of the residual equivalences. Following Carstensen and
Funken [13, Theorem 3.1], Braess, Pillwein, and Schöberl [8, section 3], or [22,
Lemma 3.12], there exists a constant Ccont,PF only depending on the mesh regularity
parameter κT such that

‖∇(ψav)‖ωa ≤ Ccont,PF‖∇v‖ωa ∀v ∈ H1
∗ (ωa), ∀a ∈ Vh.(4.7)

Moreover, the key result of Braess Pillwein, and Schöberl [8, Theorem 7] (see [23,
Corollaries 3.3 and 3.6] for three space dimensions) states that the reconstructions of
Definition 4.1 satisfy the following stability property:

‖ψa∇uih + σa
ih,dis‖ωa(4.8)

≤ Cst sup
v∈H1

∗(ωa); ‖∇v‖ωa=1
{〈Res(uih, λih), ψav〉V ′,V − (rih, ψav)ωa}.

The constant Cst > 0 again only depends on κT , and a computable upper bound on
Cst is given in [22, Lemma 3.23]. We can summarize the main result of this section.

Theorem 4.3 (residual equivalences). Let (uih, λih) ∈ Pp(Th) ∩ V × R be arbi-
trary. Then, for σih,dis of Definition 4.1 and rih of Definition 4.2,

‖Res(uih, λih)‖−1 ≤ ‖∇uih + σih,dis‖+ ‖σih,alg‖+ λ
− 1

2
1 ‖ρih‖,(4.9a)

‖∇uih + σih,dis‖+ ‖σih,alg‖+ λ
− 1

2
1 ‖ρih‖ ≤ 3(d+ 1)CstCcont,PF‖Res(uih, λih)‖−1

when ‖σih,alg‖+ λ
− 1

2
1 ‖ρih‖ ≤ (2(d+ 1)CstCcont,PF)−1‖∇uih + σih,dis‖,(4.9b)

〈Res(uih, λih), rih〉V ′,V
‖∇rih‖

≤ ‖Res(uih, λih)‖−1.(4.9c)

Proof. Fix v ∈ V with ‖∇v‖ = 1. Using definition (2.4a), adding and subtracting
(σih,∇v), and employing the Green theorem and the equilibrium (4.1b) yield

〈Res(uih, λih), v〉V ′,V = λih(uih, v)− (∇uih,∇v) = (ρih, v)− (∇uih + σih,∇v).

Thus, definition (2.4b) of the dual norm of the residual and the Cauchy–Schwarz,
Poincaré–Friedrichs, and triangle inequalities yield the bound (4.9a). This actually
also holds for Vh being the cheaper RTN space of order p and not p+1, as (4.1b) still
holds. To prove (4.9b), we proceed as in [46, Appendix B], while treating the weak
norm ‖Res(uih, λih)‖−1 as in Ciarlet and Vohraĺık [18, Theorems 3.3 and 4.7]. One
builds here crucially on inequalities (4.7) and (4.8) and relies on the choice p+1 for Vh.
Finally, the bound (4.9c) is trivial from (2.4b) by taking v = rih ∈ V . Importantly,
this can further be bounded from below by a Hilbertian sum of ‖∇raih‖ωa , which can
be seen as in [47, Remark 2]. Thus, this bound is meaningful.
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5. Guaranteed and fully computable upper and lower bounds. We com-
bine here the different results of the previous sections to derive the actual guaranteed
and fully computable bounds for eigenvalues (in section 5.1) and eigenvectors (in sec-
tion 5.2). A discussion of the results is provided in section 5.3. We will sometimes use
ζ(ih) ∈ V , the solution of the Laplace source problem −∆ζ(ih) = r(ih) in Ω, ζ(ih) = 0
on ∂Ω, i.e.,

(∇ζ(ih),∇v) = (r(ih), v) ∀v ∈ V.(5.1)

We also denote by Vh := P1(Th)∩V the lowest-order conforming finite element space,
i.e., the span of ψa over all a ∈ V int

h , and by h the maximal diameter of all K ∈ Th.

5.1. Eigenvalues. We first tackle the upper and lower bounds for the ith eigen-
value λi. We discuss the necessary auxiliary bounds below in Remark 5.4.

Theorem 5.1 (guaranteed lower bounds for the ith eigenvalue). Let the ith
eigenvalue, i ≥ 1, be simple and suppose the auxiliary bounds λ1 ≤ λ1, λi ≤ λi,
λi+1 ≤ λi+1, as well as λi−1 ≤ λi−1 when i > 1, for λ1, λi, λi+1, λi−1 > 0. Let
(uih, λih) be any element of Pp(Th)∩ V ×R+ verifying ‖uih‖ = 1 and the inequalities

λi−1 < λih when i > 1, λih < λi+1.(5.2)

Let next σih,dis and rih be respectively constructed following Definitions 4.1 and 4.2,
let σih,alg ∈ Vh verify (4.5) for an inexact solver, and define

ηi,res := ‖∇uih + σih,dis‖+ ‖σih,alg‖+ λ
− 1

2
1 ‖ρih‖.

Set

cih := max

{(
λih

λi−1
− 1
)−1

,

(
1− λih

λi+1

)−1
}
,(5.3a)

c̃ih := max

{
λ
− 1

2
i−1

(
λih

λi−1
− 1
)−1

, λ
− 1

2
i+1

(
1− λih

λi+1

)−1
}
,(5.3b)

with the left terms in the max disregarded for i = 1. Then

‖∇uih‖2 − η2
i ≤ λi,(5.4)

where we distinguish the following three cases:
Case A (no smallness assumption). If (ui, uih) ≥ 0 is known to hold, define αih :=√

2c̃ihηi,res; if only (uih, χi) > 0 holds, set αih :=
√

2(1 − ‖uih − Πiuih‖)−
1
2 c̃ihηi,res,

where Πiuih stands for the L2(Ω)-orthogonal projection of uih on the span of χi.
Then (5.4) holds with

η2
i := η2

i,res +
(
λih + λi

)
α2
ih.(5.5)

Case B (improved estimates under a smallness assumption). Let (uih, χi) > 0,
define αih :=

√
2c̃ihηi,res, and request

αih ≤ min

{(
2λ1

λi

) 1
2

, ‖χi‖−1(uih, χi)

}
.(5.6)
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Then, (5.4) holds with

η2
i := c2ih

(
1− λi

λ1

α2
ih

4

)−1

η2
i,res.(5.7)

Case C (optimal estimates under elliptic regularity assumption). Let (uih, χi) > 0
and assume that the solution ζ(ih) of problem (5.1) belongs to the space H1+δ(Ω),
0 < δ ≤ 1, so that the approximation and stability estimates

min
vh∈Vh

‖∇(ζ(ih) − vh)‖ ≤ CIh
δ|ζ(ih)|H1+δ(Ω),(5.8a)

|ζ(ih)|H1+δ(Ω) ≤ CS‖r(ih)‖(5.8b)

are satisfied. Define αih :=
√

2cih
[
CICSh

δηi,res +λ−
1
2

1

(
‖σih,alg‖+ λ

− 1
2

1 ‖ρih‖
)]

and let

αih ≤ ‖χi‖−1(uih, χi).(5.9)

Then (5.4) holds with η2
i given by (5.5).

Theorem 5.2 (improved guaranteed upper bounds for the i-th eigenvalue). Let
the assumptions of Theorem 5.1 be satisfied, with the auxiliary bounds λ1 ≤ λ1, λi ≤
λi ≤ λi, for λ1, λi, λi > 0. Let also λi ≤ ‖∇uih‖2; see Remark 5.5 below. Set

cih := 1 if i = 1, cih := max

{(
λih
λ1
− 1
)2

, 1

}
if i > 1,

dih := λ2
i c

2
ih + 4λi

〈Res(uih, λih), rih〉2V ′,V
‖∇rih‖2

+ 4λicih
∣∣λih − ‖∇uih‖2∣∣ .

Then

λi ≤ ‖∇uih‖2 − η̃2
i(5.10)

with, in Cases A and C,

η̃2
i := max

{
−λiα2

ih +
1
2

(√
dih −

(
λicih + 2

∣∣λih − ‖∇uih‖2∣∣)) , 0} ,(5.11)

and, in Case B, for i = 1 only,

η̃2
1 := max

{
1
4

(
1− ‖∇u1h‖2

λ2

)(
1− α2

1h

4

)(√
d1h −

(
λ1 + 2

∣∣λ1h − ‖∇u1h‖2
∣∣)) , 0} .

(5.12)

Remark 5.3 (exact solvers). The results of Theorems 5.1 and 5.2, as well as,
Theorem 5.7 below, are presented in a general context of inexact algebraic solvers. For
exact solvers, where the algebraic residual representer rih in (4.2) is zero, σih,alg = 0,
ρih = 0, and the condition in (4.9b) is void. Also, when the Rayleigh quotient link
‖∇uih‖2 = λih holds, ‖∇uih‖2 can be replaced by λih, and typically λi := λih; see
Remark 5.5 below.

Remark 5.4 (auxiliary bounds λ1, λi, and λi+1). A straightforward consequence
of the min-max principle for self-adjoint operators (see, e.g., Gilbarg and Trudinger
[26]) is that Ω ⊆ Ω+ ⇒ λk(Ω+) ≤ λk and Ω− ⊆ Ω ⇒ λk ≤ λk(Ω−) for all k ≥ 1,
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where λk(Ω±) is the kth eigenvalue on Ω±. We can then obtain all λ1, λi, and
λi+1 necessary in Theorem 5.1 by this domain inclusion for Ω+ with known exact
eigenvalues (typically rectangular d-parallelepipeds or d-spheres; cf. [59]). In what
concerns λi, a very precise choice is to use λi := ‖∇uih‖2 − η2

i , where η2
i was first

computed with a rather rough bound λi. For λi+1, if the analytic bounds are too
rough to be useful, guaranteed and easily computable numerical bounds can be used
from Liu and Oishi [41] (on convex domains for d = 2), Carstensen and Gedicke [16], or
Liu [39], typically on a coarse mesh. Finally, as a “practical gratis” strategy for λi+1,
one may simply use λ(i+1)h computed by the linear algebra toolbox when solving for
(λih, uih); see, e.g., Saad [53] and the references therein. Then Theorems 5.1 and 5.7
no longer hold stricto sensu, but sharp bounds are still observed in practice.

Remark 5.5 (auxiliary bounds λi−1 and λi). When (uih, λih) is given by the
conforming finite element method of section 6 below, with an exact solver leading to
satisfaction of (6.1), there holds λi ≤ λih = ‖∇uih‖2 and similarly λi−1 ≤ λ(i−1)h =
‖∇u(i−1)h‖2, leading to rather precise auxiliary bounds λi and λi−1. For the first
eigenvalue, there holds λ1 ≤ ‖∇u1h‖2 for any u1h ∈ H1

0 (Ω). For the ith eigenvalue,
i > 1, we in general need to resort to the min-max principle giving

λi ≤ max
ξ∈Ri, ‖ξ‖=1

‖∇
∑i
k=1 ξkukh‖2

‖
∑i
k=1 ξkukh‖2

for an arbitrary linearly independent i-tuple (u1h, . . . , uih), where ‖ξ‖2 =
∑i
k=1 ξ

2
k.

Remark 5.6 (constants CI and CS). Let Ω be a convex polygon in R2. Then
it is classical that the solution ζ(ih) of (5.1) belongs to H2(Ω) and |ζ(ih)|H2(Ω) =
‖∆ζ(ih)‖ = ‖r(ih)‖, so that δ = 1 and CS = 1; see Grisvard [28, Theorem 4.3.1.4].
In this situation, calculable bounds on CI can be found in Liu and Kikuchi [40] and
Carstensen, Gedicke, and Rim [17] (see also Liu and Oishi [41, section 2] and the
references therein); in particular, for a mesh formed by isosceles right-angled triangles,
CI ≤ 0.493√

2
.

We now prove Theorems 5.1 and 5.2, separately for each case.

Proof (Case A).
(1) Lower bound of Theorem 5.1. If (ui, uih) ≥ 0 is known to hold, we can

start from the L2(Ω) bound (3.10). If this is not the case but (uih, χi) > 0
holds, we first inspect the proof of Lemma 3.2 to obtain an alternative L2(Ω)
estimate. We have −2(ui, uih) = −2(ui, uih − Πiuih) −2(ui,Πiuih). Note
that the second term is negative by the sign assumption (ui, χi) > 0 on ui.
So, instead of (3.8), as ‖ui‖ = 1 and ‖uih −Πiuih‖ < 1,

‖ui − uih‖2 ≤ 2 + 2‖uih −Πiuih‖ =: δih < 4.

Consequently, the quadratic inequality in the proof of Lemma 3.2 implies
‖ui − uih‖2 ≤ ‖∇r(ih)‖2C̃−1

ih (1 − δih/4)−1. Thus, the bound (4.9a) and as-
sumption (5.2) enable us to give a computable upper bound on the L2(Ω)
error by the estimator αih; note that min{a, b}− 1

2 = max{a− 1
2 , b−

1
2 }, link-

ing the constant C̃ih of (3.9) with c̃ih of (5.3b). Consequently, the bound
in (5.4) follows by combining the upper bounds in (3.12), (3.18a), and once
again (4.9a).

(2) Upper bound of Theorem 5.2. We start from the lower bound in (3.12). We
then need to bound ‖∇(ui − uih)‖2 from below, for which we use (3.18b).
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Relying on the simplifying assumption λi ≤ ‖∇uih‖2, satisfied namely in
cases discussed in Remark 5.5, γih of (3.17) simplifies to ‖∇(ui − uih)‖2.
Thus (3.18b) forms a quadratic inequality for ‖∇(ui − uih)‖2, yielding, in
combination with (4.9c),

‖∇(ui − uih)‖2 ≥ 1
2

(√
dih −

(
λicih + 2

∣∣λih − ‖∇uih‖2∣∣)) .(5.13)

Thus (5.10) with the estimator (5.11) follows.

Proof (Case B). The proof proceeds as above. Note that conditions in (5.6) imply
that αih ≤

√
2λ1
λi

and αih ≤ ‖χi‖−1(uih, χi) for αih of (3.10). We can thus use
Lemma 3.3 to find that (ui, uih) is indeed nonnegative, Lemma 3.2 for the L2(Ω)
bound, and the improved estimates (3.19) of Theorem 3.5 and (3.13) of Theorem 3.4.
For the latter, which seems to hold only for the first eigenpair, we also employ the
inequality 1− ‖∇u1h‖2

λ2
≤ 1− λ1

λ2
and (5.13) for i = 1.

Proof (Case C). The proof is as in Case A (with (ui, uih) ≥ 0), but it relies on
Lemma 3.1 instead of Lemma 3.2. It additionally uses the Aubin–Nitsche trick; cf. [9,
Theorem 5.4.8], [28, Theorem 4.3.1.4], or [6]. By (5.1), (2.5a), and (4.2)

‖r(ih)‖2 = (∇ζ(ih),∇r(ih)) = (∇(ζ(ih) − ζih),∇r(ih)) + (rih, ζih),

where ζih ∈ Vh is the minimizer in (5.8a). Employing (4.5), the Green theorem, the

Poincaré–Friedrichs inequality ‖ζih‖ ≤ λ
− 1

2
1 ‖∇ζih‖, and stability ‖∇ζih‖ ≤ ‖∇ζ(ih)‖,

(rih, ζih) = −(σih,alg,∇ζih) + (ρih, ζih) ≤
(
‖σih,alg‖+ λ

− 1
2

1 ‖ρih‖
)
‖∇ζ(ih)‖.

Noting that (5.1) gives ‖∇ζ(ih)‖ ≤ λ
− 1

2
1 ‖r(ih)‖, the Cauchy–Schwarz inequality, esti-

mates (5.8), and the characterization (2.5b) altogether give

‖r(ih)‖ ≤ CICSh
δ‖Res(uih, λih)‖−1 + λ

− 1
2

1

(
‖σih,alg‖+ λ

− 1
2

1 ‖ρih‖
)
.

5.2. Eigenvectors. We now summarize our estimate on the energy error in the
approximation of the ith eigenvector, as well as its efficiency and robustness.

Theorem 5.7 (guaranteed and robust bound for the ith eigenvector error). Let
the assumptions of Theorem 5.1 be verified. Then the energy error can be bounded via

‖∇(ui − uih)‖ ≤ ηi,(5.14)

where ηi is defined in the Cases A and C by (5.5) and in Case B by (5.7), with
appropriate αih. Under condition (4.9b), all these estimators ηi are efficient as

η2
i,res ≤ 32(d+ 1)2C2

stC
2
cont,PF

((∣∣λih − ‖∇uih‖2∣∣+ γih
)2

λi
+ Cih‖∇(ui − uih)‖2

)
.

(5.15)

Proof. The guaranteed error bound (5.14) follows as in Theorem 5.1 upon com-
bining the upper bounds in estimates (3.18) or (3.19) together with (4.9a). The
efficiency (5.15) is a consequence of (4.9b) and of (3.18b).
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5.3. Comments. We collect here comments about Theorems 5.1, 5.2, and 5.7.

Remark 5.8 (stopping criteria). The polynomial-degree-robust efficiency (5.15)
holds under the condition (4.9b) only, which is a typical inexactness (stopping) cri-
terion. For the elliptic regularity Case C, though, it appears wise to rather stop the
iterations when λ

− 1
2

1

(
‖σih,alg‖+ λ

− 1
2

1 ‖ρih‖
)

is comparable to the first term in αih.

Remark 5.9 (sharpness and comparison of the different bounds of Theorems 5.1
and 5.7). The advantage of Case A is that it holds on an arbitrarily coarse mesh,
provided that only the structural assumption (5.2) holds. It may, however, lead
to a larger overestimation of the error. Case B, under the fine-enough-mesh condi-
tion (5.6), then significantly improves the multiplicative factor in front of the central

term ηi,res = ‖∇uih + σih,dis‖+ ‖σih,alg‖+ λ
− 1

2
1 ‖ρih‖, in limit to the factor cih given

by (5.3a). The bound of Case B still holds without any regularity/convexity/dimen-
sion assumption and all the quantities appearing are known. Finally, also the factor
cih is asymptotically removed in Case C, when δ > 0 and h → 0. Here, however,
elliptic regularity is needed; see Remark 5.6.

Remark 5.10 (dependence on the maximal element diameter h). The maximal
element diameter h is not present at all in Cases A and B of Theorem 5.1 and it does
not necessarily need to tend to zero in Case C: it only appears as a multiplicative
factor of the principal estimator ηi,res. This stands in contrast to previous guaranteed
results like [41, Theorem 4.3], [16, Theorem 3.2], or [39, Theorem 2.1].

Remark 5.11 (polynomial-degree robustness). The multiplicative factor in the
parenthesis in (5.15) takes the form ‖∇(ui − uih)‖2

(
Cih + ‖∇(ui−uih)‖2

λi

)
for an ex-

act algebraic solver in the context of the finite element method (6.1) below. Noting
that ‖∇(ui−uih)‖2

λi
≤ 2(λi+λih)

λi
(in fact this term becomes negligible with mesh refine-

ment/increasing the polynomial degree), we conclude that the result of Theorem 5.7 is
fully robust with respect to the polynomial degree p of uih: all the constants in the com-
parison between the error ‖∇(ui − uih)‖ and the estimate featuring ‖∇uih + σih,dis‖
are independent of p. Note, though, that the factor Cih given by (3.16) deteriorates
for higher eigenvalues.

Remark 5.12 (error localization and mesh adaptivity). Since there holds η2
i,res ≤

3
∑
K∈Th

(
‖∇uih + σih,dis‖2K +‖σih,alg‖2K + λ−1

1 ‖ρih‖2K
)
, these local contributions

of the estimators of Theorems 5.1 and 5.7 can directly be used in adaptive mesh
refinement based on marking strategies. This is tightly linked to Remark 5.10.

6. Application to conforming finite elements. We verify in this section the
conditions of the application of our results to the conforming finite element method.

Let Vh := Pp(Th) ∩ V for a given polynomial degree p ≥ 1. In the finite element
method, the exact ith eigenpair (uih, λih) ∈ Vh × R+ is such that (uih, ujh) = δij ,
1 ≤ i, j ≤ dimVh, and

(∇uih,∇vh) = λih(uih, vh) ∀vh ∈ Vh,(6.1)

with the signs ideally fixed by (ui, uih) ≥ 0, practically by (uih, χi) > 0. Thus, upon
verifying (5.2) and possibly checking (5.6) or (5.9), all the results of Theorems 5.1,
5.2, and 5.7 hold for any p ≥ 1. Note that an inexact solution of (6.1) in the form (4.2)
is taken into account. Should (6.1) hold, rih in (4.2) vanishes and, moreover, choosing
vh = uih in (6.1) yields ‖∇uih‖2 = λih.



2244 CANCÈS, DUSSON, MADAY, STAMM, AND VOHRALÍK

Table 1
Unit square, structured mesh. Validation of assumptions (5.2) and (5.9).

N h ndof λ2 − λ1h (5.2) ‖χ1‖−1(u1h, χ1)− α1h (5.9)

λ1=1.5π2

λ2=4.5π2

3 0.4714 16 19.04 (X) -0.64 (×)
4 0.3536 25 21.55 (X) 0.12 (X)
5 0.2828 36 22.69 (X) 0.40 (X)

λ1=0.5π2

λ2=3π2

3 0.4714 16 4.233 (X) -3.49 (×)
4 0.3536 25 6.743 (X) -0.66 (×)
5 0.2828 36 7.887 (X) 0.02 (X)

7. Numerical experiments. We finally numerically illustrate the estimates
of Theorems 5.1, 5.2, and 5.7 on three test cases in R2, for conforming finite ele-
ments (6.1) of order p = 1. We actually only use the cheaper RTN space of degree
p = 1 for the flux equilibration instead of p + 1. This still gives guaranteed bounds
(see the proof of Theorem 4.3), and we do not observe any asymptotic loss of effi-
ciency. The implementation was done in the FreeFem++ code [30]. When we only
consider one eigenvalue, it is implicitly assumed that we have chosen χ1 = 1 for the
sign characterization. We consider five test settings with an exact solver and illustrate
the use of an inexact solver in a sixth one.

7.1. First eigenvalue on the unit square. We start by testing the framework
on a unit square Ω = (0, 1)2 and focus on the first eigenvalue. The eigenvalues
on a square of size H being π2(k2 + l2)/H2, k, l = 1, . . . ,∞, the first and second
eigenvalues are λ1 = 2π2 and λ2 = 5π2, respectively. In consequence, we can easily
choose different λ1 ≤ λ1 and λ2 ≤ λ2 for the auxiliary eigenvalue bounds and analyze
the sensitivity of our results with respect to these choices. The first eigenfunction is
given by u1(x, y) = sin(πx) sin(πy). We focus here on the refined elliptic regularity
of Case C, since d = 2 and the domain is convex, with constants CS = 1 and δ = 1
given in Remark 5.6.

7.1.1. Structured mesh. We first illustrate in Table 1 how quickly the com-
putable conditions (5.2) and (5.9) are satisfied under a uniform refinement of a struc-
tured mesh. We take CI = 0.493√

2
following Remark 5.6 and consider N = 3, 4, 5

subdivisions of each boundary of Ω for the two choices λ1 = 1.5π2, λ2 = 4.5π2 and
λ1 = 0.5π2, λ2 = 3π2, respectively. Note that the finite element space on the coarsest
mesh such that all conditions are satisfied contains 25, respectively, 36, degrees of
freedom only. Indeed, it turns out that our conditions are rather mild.

Next, Figure 1 (left) illustrates the convergence of the error λ1h−λ1 as well as of its
lower and upper bounds η̃2

1 , η2
1 given by Case C of Theorems 5.2 and 5.1, respectively.

We also plot the eigenfunction energy error ‖∇(u1 − u1h)‖ and its upper bound η1
of Theorem 5.7, Case C. The convergence rates are optimal as expected from the
theory.

We present in Table 2 precise numbers of the lower and upper bounds λ1h− η2
1 ≤

λ1 ≤ λ1h − η̃2
1 on the exact eigenvalue λ1, the effectivity indices of the lower and

upper bounds η̃2
1 ≤ λ1h − λ1 ≤ η2

1 of the error λ1h − λ1, and the effectivity index of
the upper bound ‖∇(u1 − u1h)‖ ≤ η1, given respectively by

Ilbλ,eff :=
λ1h − λ1

η̃2
1

, Iubλ,eff :=
η2

1

λ1h − λ1
, Iubu,eff :=

η1

‖∇(u1 − u1h)‖
.(7.1)
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Fig. 1. Unit square. Error in the eigenvalue and eigenvector approximation, its lower bound
(eigenvalue only), and its upper bound for the choice λ1 = 1.5π2, λ2 = 4.5π2; sequence of structured
(left) and unstructured but quasi-uniform (right) meshes; Case C.

Table 2
Unit square, structured mesh. Lower and upper bounds on the exact eigenvalue λ1, the effec-

tivity indices, and size of the relative λ1 confidence interval; λ1 = 1.5π2, λ2 = 4.5π2; Case C.

N h ndof λ1 λ1h λ1h − η2
1 λ1h − η̃2

1 Ilbλ,eff Iubλ,eff Eλ,rel Iubu,eff

10 0.1414 121 19.7392 20.2284 19.3256 19.9566 1.80 1.85 3.21e-02 1.35
20 0.0707 441 19.7392 19.8611 19.7058 19.7539 1.14 1.27 2.44e-03 1.13
40 0.0354 1681 19.7392 19.7697 19.7349 19.7404 1.04 1.14 2.79e-04 1.07
80 0.0177 6561 19.7392 19.7468 19.7384 19.7394 1.02 1.11 4.91e-05 1.05

160 0.0088 25921 19.7392 19.7411 19.7390 19.7392 1.02 1.10 1.14e-05 1.05

We observe rather sharp results, and this also for the relative size of the first eigenvalue
confidence interval

Eλ,rel := 2
(λ1h − η̃2

1)− (λ1h − η2
1)

(λ1h − η̃2
1) + (λ1h − η2

1)
.(7.2)

7.1.2. Unstructured mesh. Consider now a sequence of unstructured quasi-
uniform meshes, obtained by an initial partition of each boundary edge into N inter-
vals. Conditions (5.2) and (5.9) turn out here to be satisfied similarly as in Table 1.

The convergence plots for this case are presented in Figure 1 (right), showing a
similar behavior as for the structured meshes. This time, we use the upper bound on
CI according to [40, (46)]:

CI = 0.493 max
K∈Th

1 + | cos(θK)|
sin(θK)

√
ν+(αK , θK)

2
h

[40]
K

hK
.

We refer to [40] for the definition of h[40]
K and other notation. We observe in Table 3

that the results are similar to structured meshes; in particular the case of λ1 = 0.5π2,
λ2 = 3π2 is less sensitive to the unstructured mesh (not presented).

7.2. First eigenvalue on an L-shaped domain: Mesh adaptivity. We next
consider the L-shaped domain Ω := (−1, 1)2 \ [0, 1]×[−1, 0], where λ1 ≈ 9.6397238440
is known to high accuracy [59]. Including Ω into the square Ω+ = (−1, 1)2 (cf.
Remark 5.4), we take λ1 = λ1(Ω+) = π2/2, whereas λ2 = 15.1753 from Table 1 of
[39] is employed. We test here Cases A and B within an adaptive refinement strategy.
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Table 3
Unit square, unstructured mesh. Lower and upper bounds on the exact eigenvalue λ1, the ef-

fectivity indices, and size of the relative λ1 confidence interval; λ1 = 1.5π2, λ2 = 4.5π2; Case C.

N h ndof λ1 λ1h λ1h − η2
1 λ1h − η̃2

1 Ilbλ,eff Iubλ,eff Eλ,rel Iubu,eff

10 0.1698 143 19.7392 20.0336 17.9458 20.0336 – 7.09 1.40e-01 2.65
20 0.0776 523 19.7392 19.8139 19.6366 19.7909 3.24 2.37 7.83e-03 1.54
40 0.0413 1975 19.7392 19.7573 19.7307 19.7434 1.30 1.47 6.42e-04 1.21
80 0.0230 7704 19.7392 19.7436 19.7383 19.7396 1.10 1.20 6.41e-05 1.09

160 0.0126 30666 19.7392 19.7403 19.7391 19.7393 1.07 1.12 1.04e-05 1.06

Table 4
L-shaped domain, adaptive mesh refinement. Validation of the assumptions (5.2) and (5.6) for

λ1 = π2/2 and λ2 = 15.1753.

Level h ndof λ2 − λ1h (5.2) α1h
√
λ1h/2λ1 (5.6) ‖χ1‖−1(u1h, χ1)− α1h (5.6)

1 0.7500 22 1.8223 (X) 2.97 (×) -6.17 (×)
4 0.7071 34 3.8799 (X) 0.94 (X) -1.27 (×)

10 0.5000 140 5.2053 (X) 0.33 (X) 0.13 (X)
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10000

Case A Case B

ndof

η21
λ1h − λ1
η̃21
η1
‖∇(u1−u1h)‖

1/(ndof)1/2

1/ndof

Fig. 2. L-shaped domain, adaptive mesh refinement. Mesh of the adaptive algorithm on step 18
(left) and error in the first eigenvalue and eigenvector approximation, its lower bound (eigenvalue
only), and its upper bound (right); Cases A and B.

To do so, we use the local character of our estimators; see Remark 5.12. We
employ the Dörfler marking with θ = 0.6 and the newest vertex bisection mesh re-
finement.

Table 4 illustrates whether the conditions (5.2) and (5.6) are satisfied under this
adaptive refinement. Figure 2 (right) illustrates the error in the eigenvalue and the
eigenvector and their bounds (5.4), (5.10), and (5.14). Optimal convergence rates are
indicated by dashed lines. The initial mesh is structured with 22 degrees of freedom
and the conditions (5.2) and (5.6) are all satisfied starting from 140 degrees of freedom.
The transition from Case A to Case B in Theorems 5.1, 5.2, and 5.7 is marked by
a dotted line. Figure 2 (left) then depicts an adaptively refined mesh and Table 5
presents more details on the errors and efficiencies.

7.3. First eigenvalue on a domain with a hole: Mesh adaptivity. We
next consider a domain with a polygonal hole; see Figure 3 (left) illustrating the mesh
used at iteration 20 of our adaptive mesh refinement strategy. The lower bounds
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Table 5
L-shaped domain, adaptive mesh refinement. Lower and upper bounds on the first exact eigen-

value λ1, the effectivity indices, and the size of the relative λ1 confidence interval; λ1 = π2/2 and
λ2 = 15.1753; Case B.

Level ndof λ1 λ1h λ1h − η2
1 λ1h − η̃2

1 Ilbλ,eff Iubλ,eff Eλ,rel Iubu,eff
10 140 9.6397 9.9700 6.3175 9.9260 7.50 11.06 4.44e-01 3.31
15 561 9.6397 9.7207 9.0035 9.7075 6.17 8.86 7.53e-02 2.98
20 2188 9.6397 9.6601 9.4887 9.6566 5.88 8.43 1.75e-02 2.88
25 8513 9.6397 9.6449 9.6019 9.6440 5.77 8.31 4.37e-03 2.75
30 24925 9.6397 9.6415 9.6266 9.6412 5.73 8.26 1.51e-03 2.51

Fig. 3. Domain with a hole, adaptive mesh refinement. Mesh of the adaptive algorithm at
iteration 20 (left) and the lower and upper bounds for the exact eigenvalue λ1 (right); Case B.

Table 6
Domain with a hole, adaptive mesh refinement. Lower and upper bounds on the exact eigenvalue

λ1 as a function of the degrees of freedom; Case B.

ndof 2494 3390 4508 5879 7602 10047 13640 18163 23494 30533

λ1h − η̃2
1 60.541 60.494 60.455 60.422 60.401 60.387 60.376 60.367 60.359 60.354

λ1h − η2
1 37.223 43.710 48.428 52.058 54.275 55.680 56.799 57.719 58.436 58.910

λ1 and λ2 on the first and second eigenvalues have been obtained once and for all
before starting the adaptive algorithm following the estimates derived in [39], on a
uniform mesh with 1143 nodes. Figure 3 (right) shows the interval between our lower
(λ1h − η2

1) and upper (λ1h − η̃2
1) bounds on the first eigenvalue, relying on Case B of

Theorems 5.1 and 5.2, whose assumptions hold starting from 2494 degrees of freedom;
Table 6 states the numbers. Note that the interval size (λ1h−η̃2

1)−(λ1h−η2
1) = η2

1−η̃2
1

behaves like 1/ndof.

7.4. Higher eigenvalues. We now test the upper and lower bounds for higher
eigenvalues. First we consider the unit triangle with vertices (0, 0), (1, 0), (0, 1) and
a family of structured meshes. The auxiliary lower bounds are obtained by a compu-
tation on a fixed coarse mesh with 2145 triangles following [39], which results in

λ1 = 49.2883, λ2 = 98.4296, λ3 = 127.937, λ4 = 166.975, λ5 = 196.439.
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Fig. 4. Triangular domain, structured meshes. Errors in the first four eigenvalue and eigen-
vector approximations, their lower bounds (eigenvalues only), and their upper bounds; Case C.

Table 7
Triangular domain, uniform mesh refinement. Lower and upper bounds on the first four exact

eigenvalues λi, the effectivity indices, and the sizes of the relative λi confidence intervals; Case C.

N h ndof λi λih λih − η2
i λih − η̃2

i Ilbλ,eff Iubλ,eff Eλ,rel Iubu,eff
40 0.0354 861 49.3480 49.4789 49.3197 49.3607 1.11 1.22 8.29e-04 1.10
80 0.0177 3321 49.3480 49.3807 49.3442 49.3493 1.04 1.12 1.03e-04 1.06

160 0.0088 13041 49.3480 49.3562 49.3473 49.3482 1.03 1.09 1.94e-05 1.05
320 0.0044 51681 49.3480 49.3501 49.3478 49.3481 1.05 1.08 5.49e-06 1.04
640 0.0022 205761 49.3480 49.3485 49.3480 49.3480 1.02 1.08 1.07e-06 1.02
40 0.0354 861 98.6960 99.2953 97.8659 99.1171 3.36 2.39 1.27e-02 1.54
80 0.0177 3321 98.6960 98.8457 98.6376 98.7242 1.23 1.39 8.77e-04 1.18

160 0.0088 13041 98.6960 98.7335 98.6903 98.6985 1.07 1.15 8.29e-05 1.08
320 0.0044 51681 98.6960 98.7054 98.6952 98.6964 1.04 1.10 1.29e-05 1.05
640 0.0022 205761 98.6960 98.6984 98.6959 98.6961 1.03 1.08 2.54e-06 1.02
40 0.0354 861 128.3049 129.2175 126.6899 129.2175 – 2.77 2.30e-02 1.65
80 0.0177 3321 128.3049 128.5334 128.1923 128.4923 5.56 1.49 2.34e-03 1.22

160 0.0088 13041 128.3049 128.3620 128.2940 128.3429 3.00 1.19 3.81e-04 1.09
320 0.0044 51681 128.3049 128.3191 128.3032 128.3139 2.70 1.12 8.30e-05 1.06
640 0.0022 205761 128.3049 128.3084 128.3045 128.3071 2.62 1.10 1.99e-05 1.03
40 0.0354 861 167.7833 169.3980 158.1506 169.3980 – 6.97 9.48e-02 2.62
80 0.0177 3321 167.7833 168.1858 167.2205 168.1858 – 2.40 6.94e-03 1.55

160 0.0088 13041 167.7833 167.8838 167.7437 167.8831 142.86 1.39 8.31e-04 1.18
320 0.0044 51681 167.7833 167.8084 167.7795 167.8052 7.80 1.15 1.53e-04 1.07
640 0.0022 205761 167.7833 167.7896 167.7827 167.7886 6.29 1.09 3.49e-05 1.02

Figure 4 gives the convergence plots for the first four eigenvalues and Table 7 provides
more details on absolute numbers and efficiency. As the domain is convex (Case C), we
obtain excellent upper bounds for the error in all four eigenvalue/eigenvector pairs.
The lower bound of the eigenvalue error (the improved eigenvalue upper bound of
Theorem 5.2) is, however, degrading for higher eigenvalues.
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Fig. 5. L-shaped domain, unstructured meshes. Error in the first four eigenvalue and eigen-
vector approximations, their lower bounds (eigenvalues only), and their upper bounds; Cases A and
B.

We now apply the same setting to the L-shaped domain where we obtain again
the auxiliary lower bounds by the method presented in [39] for a coarse structured
mesh with 3201 triangles resulting in

λ1 = 9.60692, λ2 = 15.1695, λ3 = 19.6932, λ4 = 29.4166, λ5 = 31.7363.

Figure 5 plots the convergence of the errors and of the estimators, whereas Table 8 pro-
vides more details on the efficiency. We now observe that the efficiency also degrades
for the upper bound of the eigenvalue and eigenvector errors. Further, improved lower
bounds of the eigenvalue error are not available for the considered meshes for i > 1.
This appears as the resulting η̃i are all equal to zero (see (5.11), respectively, (5.12)),
so that our eigenvalue upper bound stays that of the finite element method. For all
meshes and all considered eigenvalues, though, our estimates still give a rather tight
guaranteed eigenvalue confidence interval and quite reasonable eigenvector effectivity
indices. We can also observe by a jump of the blue curve (η2

i ) the change between
Cases A and B. The critical mesh size where this change occurs seems to degrade with
increasing eigenvalues.

7.5. Inexact algebraic eigenvalue solvers. We finally consider inexact eigen-
value solvers. Since we are using FreeFem++, we rely on an algebraic eigenvalue solver
based on the ARPACK package that is built in to FreeFem++. Here a user-specified
tolerance can be provided and we choose it in a mesh-dependent way as tol(h) = h2

to materialize an inexact solver. We set σih,dis following Definition 4.1. In order
to compute σih,alg in (4.5), we proceed as in [47] and the references therein and
first compute a second reconstructed flux σ̂ih,dis corresponding to some additional
algebraic iterations (here corresponding to the tolerance h2/100 in ARPACK); then
σih,alg := σ̂ih,dis − σih,dis. Figure 6 demonstrates that we still obtain excellent lower
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Table 8
L-shaped domain, uniform mesh refinement. Lower and upper bounds on the first four exact

eigenvalues λi, the effectivity indices, and the sizes of the relative λi confidence intervals; Cases A
and B.

N h ndof λi λih λih − η2
i λih − η̃2

i Ilbλ,eff Iubλ,eff Eλ,rel Iubu,eff
40 0.0839 1437 9.6397 9.6955 9.1450 9.6870 6.59 9.87 5.76e-02 3.16
80 0.0459 5674 9.6397 9.6588 9.4719 9.6559 6.52 9.78 1.92e-02 3.15

160 0.0234 21878 9.6397 9.6467 9.5779 9.6456 6.58 9.86 7.04e-03 3.16
320 0.0125 86810 9.6397 9.6423 9.6167 9.6419 6.63 9.93 2.62e-03 3.14
640 0.0059 352256 9.6397 9.6407 9.6310 9.6406 6.73 9.98 9.94e-04 2.77
40 0.0839 1437 15.1973 15.2440 14.2080 15.2440 – 22.17 1.64e-01 4.70
80 0.0459 5674 15.1973 15.2092 14.9577 15.2092 – 21.11 4.09e-02 4.60

160 0.0234 21878 15.1973 15.2002 15.1378 15.2002 – 20.87 1.02e-02 4.57
320 0.0125 86810 15.1973 15.1980 15.1825 15.1980 – 20.81 2.55e-03 4.55
640 0.0059 352256 15.1973 15.1974 15.1936 15.1974 – 20.81 6.36e-04 4.09
40 0.0839 1437 19.7392 19.8216 18.7524 19.8216 – 12.97 1.75e-01 3.59
80 0.0459 5674 19.7392 19.7597 19.5056 19.7597 – 12.38 4.44e-02 3.52

160 0.0234 21878 19.7392 19.7444 19.6805 19.7444 – 12.23 1.14e-02 3.50
320 0.0125 86810 19.7392 19.7405 19.7246 19.7405 – 12.19 2.84e-03 3.48
640 0.0059 352256 19.7392 19.7395 19.7356 19.7395 – 12.20 7.01e-04 3.07
40 0.0839 1437 29.5215 29.7057 -154.6818 29.7057 – 1000.68 – 31.53
80 0.0459 5674 29.5215 29.5675 -10.5379 29.5675 – 871.81 3.08e+00 29.51

160 0.0234 21878 29.5215 29.5331 26.5255 29.5331 – 258.67 2.59e-01 16.08
320 0.0125 86810 29.5215 29.5244 28.8467 29.5244 – 231.37 6.37e-02 15.16
640 0.0059 352256 29.5215 29.5222 29.3595 29.5222 – 225.32 1.56e-02 13.45

0.01 0.1
0.0001

0.001

0.01

0.1

1

10

100

h

η21
λ1h − λ1
η1
‖∇(u1 − u1h)‖

Fig. 6. Triangular domain, structured meshes, inexact solver. Error in the first eigenvalue and
eigenvector approximation and its upper bound for a uniform refinement; the convergence plots for
an exact solver are indicated in gray; Case C.

and upper bounds. Adaptive stopping criteria of the form (4.9b), leading to savings
in algebraic solver iterations, are not investigated here.

7.6. Comparison with existing results. We finally compare our results with
some existing ones from [16, 41, 39]. In what concerns the unit square and the first
eigenvalue of section 7.1, our estimates appear sharper while comparing Table 2 with
the estimates presented in [16, Figure 6.2]. For the L-shaped domain and uniformly
refined meshes of section 7.4 for the first eigenvalue, we also obtain better results than
those presented in [16, Figure 6.4], where an efficiency issue appears; compared to the
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Table 9
Triangular domain, structured meshes. Comparison of different methods; CR is the Crouzeix–

Raviart method based approach presented in [16] and the constants indicated in the reference.

λ1 = 49.348 In this work Liu and Oishi [41] CR with [39] CR with [14]
Lower bound: 49.341 49.254 49.288 49.225
Upper bound: 49.351 49.400 49.402

λ2 = 98.696 In this work Liu and Oishi [41] CR with [39] CR with [14]
Lower bound: 98.562 98.352 98.430 98.179
Upper bound: 98.762 98.931 98.944

Table 10
L-shaped domain, structured meshes. Comparison of different methods; CR is the Crouzeix–

Raviart method based approach presented in [16] and the constants indicated in the reference.

λ1 = 9.6380 In this work Liu and Oishi [41] CR with [39] CR with [17]
Lower bound: 9.380 9.559 9.609 9.600
Upper bound: 9.665 9.670 9.682

λ2 = 15.197 In this work Liu and Oishi [41] CR with [39] CR with [17]
Lower bound: 14.632 14.950 15.175 15.152
Upper bound: 15.225 15.225 15.226

results presented in [41, Table 5.5], we observe that our lower bound λ1h − η2
1 of the

exact eigenvalue is a little less sharp, whereas the upper bound λ1h− η̃2
1 is not present

in [41]. Recall also from section 1 that our estimates are much cheaper here than
those of [41] (there is no auxiliary eigenvalue problem to solve). For adaptive meshes,
we observe that our efficiency of the confidence interval for the first eigenvalue as
measured in [16] by 1

2 (η2
1 − η̃2

1)/|λ1− λ1h + 1
2 (η̃2

1 + η2
1)| is approaching 1.086, which is

much better than in [16, Figure 6.5].
To facilitate the comparisons, we finally present in Tables 9 and 10 several meth-

ods for the tests of [41, Table 5.2 (h = 1/64) and Table 5.3 (h = 1/32)]. We compare
in particular the approach presented in this article, the lowest-order conforming finite
elements from [41], and the lowest-order Crouzeix–Raviart (CR) method presented
in [16], with explicit upper bound of the interpolation constants derived in either [14]
or [39]. For the eigenvalue upper bounds in the CR case, we evaluate the Rayleigh
quotient on the P1 conforming nodal averaging of the original eigenvectors.

On the convex triangle, the present approach seems to give the sharpest results,
whereas on the L-shaped domain, the method based on the CR finite elements with
the constant from [39] is better for the lower bound. Recall, though, that important
advantages of the present theory are that it additionally gives a guaranteed control
of the eigenvector error by the same estimators, is not specific to a particular scheme
but yields general results that are here applied to any order conforming finite ele-
ment method and extended in [12] to basically any numerical scheme, and achieves
polynomial-degree robustness. It can also be noted that the present estimators take
elementwise form immediately suitable for adaptive mesh refinement.
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[3] I. Babuška and T. Strouboulis, The finite element method and its relia-
bility, in Numerical Mathematics and Scientific Computation, Oxford Uni-
versity Press, New York, 2001, https://global.oup.com/academic/product/
the-finite-element-method-and-its-reliability-9780198502760?cc=fr&lang=en&.

[4] N. W. Bazley and D. W. Fox, Lower bounds for eigenvalues of Schrödinger’s equation, Phys.
Rev., (2), 124 (1961), pp. 483–492.

[5] H. Behnke, U. Mertins, M. Plum, and C. Wieners, Eigenvalue inclusions via domain de-
composition, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 456 (2000), pp. 2717–2730,
http://www.jstor.org/stable/2665455.

[6] H. Blum and M. Dobrowolski, On finite element methods for elliptic equations on domains
with corners, Computing, 28 (1982), pp. 53–63, https://doi.org/10.1007/BF02237995.

[7] D. Boffi, Finite element approximation of eigenvalue problems, Acta Numer., 19 (2010),
pp. 1–120, https://doi.org/10.1017/S0962492910000012.
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