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Abstract. An a posteriori error estimator based on an equilibrated flux reconstruction is pro-
posed for defeaturing problems in the context of finite element discretizations. Defeaturing consists
in the simplification of a geometry by removing features that are considered not relevant for the
approximation of the solution of a given PDE. In this work, the focus is on a Poisson equation
with Neumann boundary conditions on the feature boundary. The estimator accounts both for the
so-called defeaturing error and for the numerical error committed by approximating the solution
on the defeatured domain. Unlike other estimators that were previously proposed for defeaturing
problems, the use of the equilibrated flux reconstruction allows us to obtain a sharp bound for the
numerical component of the error. Furthermore, it does not require the evaluation of the normal
trace of the numerical flux on the feature boundary: this makes the estimator well suited for finite
element discretizations, in which the normal trace of the numerical flux is typically discontinuous
across elements. The reliability of the estimator is proven and verified on several numerical exam-
ples. Its capability to identify the most relevant features is also shown, in anticipation of a future
application to an adaptive strategy.
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1. Introduction. The need of solving problems on complex domains, charac-
terized by the presence of geometrical features of different scales and shapes, arises in
many practical applications. In particular, in the process of simulation-based man-
ufacturing, repeated simulations are often to be performed in order to analyze the
impact of design changes or to adjust geometric parameters. In many cases, before
even solving the problem at hand, the first issue to overcome is the definition of the
features themselves and the construction of a suitable computational mesh. For this
reason it can be fundamental to simplify the geometry as much as possible in order
to avoid the definition of those features which may not have an actual impact on the
accuracy of the solution. This process is commonly called defeaturing. Some criteria
based on some a priori knowledge of the computational domain and of the properties
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2440 BUFFA, CHANON, GRAPPEIN, V\'AZQUEZ, AND VOHRAL\'IK

of the materials have been used in the past (see, e.g., [10, 11, 22]). However, in order to
fully automatize the process, an a posteriori criterion is necessary, and many different
proposals can be found in the literature (see [6, 9, 12, 13, 14, 15, 16, 17, 20, 21, 23]).

In this paper we start from the work presented in [4, 5], which proposes an a
posteriori error estimator for analysis-aware defeaturing in the context of the Poisson
equation with Neumann boundary conditions on the feature boundary. In particular,
in [4], an estimator is designed to control the overall error between the exact solution
of the PDE defined in the exact domain and the numerical approximation of the
solution of the corresponding PDE defined in the defeatured domain. This estimator
is made by two components, one accounting for the defeaturing error, i.e., the error
committed by neglecting the features, and the other accounting for the numerical
error committed when solving the problem on the defeatured geometry. The first
component has the big advantage of being explicit with respect to the size of the
geometrical features, and in [5] the authors prove that it is a reliable and efficient
bound for the energy norm of the defeaturing error. The second component is instead
built as a residual-based estimator of the numerical error. The overall estimator is
defined up to two positive parameters, related to the unknown constants appearing
in the bounds of the defeaturing and of the numerical errors. Such parameters need
to be tuned in order to correctly weight the two components.

In order to partially overcome this issue, in this work we propose a novel a pos-
teriori error estimator that is strongly based on [5] for what concerns its defeaturing
component, but which resorts to an equilibrated flux reconstruction (see, among oth-
ers, [1, 7, 3, 18]). Indeed, one of the main drawbacks of residual-based error estimators
is that the reliability constants are usually unknown and problem dependent. On the
contrary, the difference between the numerical and the equilibrated flux provides an
upper bound for the energy norm of the numerical error having reliability constant
equal to 1. Although we do not get rid of the unknown constant related to the de-
featuring component, the use of the equilibrated flux reconstruction also allows us to
avoid the computation of the normal trace of the numerical flux on the feature bound-
ary. This makes the estimator well suited for finite element discretizations, in which
the normal trace of the numerical flux is typically not continuous. On the contrary,
the estimator proposed in [4] was designed to be applied along with an isogeometric
analysis (IGA) discretization.

The equilibrated flux reconstruction is built following the steps in [3, 8], solving
mixed local problems on patches of elements and leading to a discrete reconstructed
flux in a Raviart--Thomas finite element space.

The paper is organized in four sections. In section 2 we introduce some notation
and the defeaturing model problem, while in sections 3 and 4 we derive and analyze an
a posteriori error estimator resorting to a generic equilibrated flux reconstruction and
providing a bound for the overall error. Section 5 describes a practical way to build
the equilibrated flux reconstruction, and, finally, in section 6 the proposed estimator
is validated by some numerical experiments.

2. Notation and model problem. In the following we adopt the notation
introduced in [5], which is here recalled for the sake of clarity. Let \omega be any open
k-dimensional manifold in \BbbR d, d = 2,3, and k \leq d. We denote by | \omega | the measure of
\omega , and for any function \varphi defined on \omega , we denote by \varphi \omega its average over \omega . We will
denote by (\cdot , \cdot )\omega the L2-inner product on \omega and by | | \cdot | | \omega the corresponding norm. If
k < d, then \langle \cdot , \cdot \rangle \omega stands for a duality paring on \omega . For future use, let us define the
quantity
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EQUILIBRATED FLUX ESTIMATOR FOR DEFEATURING 2441

(a) Domain with negative
feature.

(b) Domain with positive
feature.

(c) Defeatured geometry.

Fig. 1. Domain with a negative feature, domain with a positive feature, and corresponding
defeatured domain for both configurations.

c\omega :=

\Biggl\{ 
max( - log(| \omega | ), \zeta ) 1

2 if k= 1, d= 2,

1 if k= 2, d= 3,
(2.1)

where \zeta \in \BbbR is the unique solution of \zeta = - log(\zeta ).
Let us consider an open domain \Omega \subset \BbbR d, and let us denote by \partial \Omega its boundary.

We suppose that \Omega contains one feature F \subset \BbbR d, i.e., a geometrical detail of smaller
scale. The boundary of F is denoted by \partial F . For the sake of simplicity of the analysis
that follows, we assume that both \Omega and F are Lipschitz domains.

We consider two main types of features. In particular, a feature F is said to be
\bullet negative if (F \cap \Omega )\subset \partial \Omega and
\bullet positive if F \subset \Omega .

In the following we will refer to \Omega as the exact or original geometry. For the sake of
simplicity we restrict ourselves to the case of an exact geometry with a single feature,
but the generalization to the multiple feature case easily follows from [2, 4].

Remark 2.1. If \Omega is a complicated geometry for which no further information is
known, it is not always straightforward to determine whether a feature is positive or
negative. This choice is often to be made a priori, based on the information at hand,
and, in practice, it is usually based on the history of computer aided design (CAD)
operations used to design \Omega .

Let us now define the so-called defeatured geometry, i.e., \Omega 0 \subset \BbbR d such that

\Omega 0 :=

\Biggl\{ 
int(\Omega \cup F ) if F is negative,

\Omega \setminus F if F is positive.

Hence, if the feature is negative, \Omega \subset \Omega 0 (Figure 1(a)), while if the feature is positive,
\Omega 0 \subset \Omega (Figure 1(b)). In the following, the boundary of \Omega 0 is denoted by \partial \Omega 0.

We denote by \bfitn , \bfitn 0, and \bfitn \bfitF the unitary outward normals, respectively, of \Omega ,
\Omega 0, and F . Let \partial \Omega = \Gamma D \cup \Gamma N, with \Gamma D \cap \Gamma N = \emptyset and \Gamma D \not = \emptyset , and we assume that
\partial F \cap \Gamma D = \emptyset . Let \gamma 0 := \partial F \setminus \Gamma N \subset \partial \Omega 0, and, finally, let \gamma := \partial F \setminus \gamma 0 \subset \partial \Omega , so that
\partial F = \gamma 0\cup \gamma and \gamma 0\cap \gamma = \emptyset . Let us observe that, if \gamma 0 = \emptyset , then we are in the case of a
negative internal feature, i.e., \Omega is a perforated domain (see, for an example, Figures 3
and 11 in section 6).

On the exact geometry \Omega we use the Poisson problem as a model problem:\left\{     
 - \Delta u= f in \Omega ,

u= gD on \Gamma D,

\nabla u \cdot \bfitn = g on \Gamma N,

(2.2)
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2442 BUFFA, CHANON, GRAPPEIN, V\'AZQUEZ, AND VOHRAL\'IK

which we will also refer to as the original problem. Defining

H1
0,\Gamma \mathrm{D}

(\Omega ) =
\bigl\{ 
v \in H1(\Omega ) : v| \Gamma \mathrm{D}

= 0
\bigr\} 
, H1

g\mathrm{D},\Gamma \mathrm{D}
(\Omega ) =

\bigl\{ 
v \in H1(\Omega ) : v| \Gamma \mathrm{D}

= gD
\bigr\} 
,

the variational formulation of problem (2.2) reads as follows: find u \in H1
g\mathrm{D},\Gamma \mathrm{D}

(\Omega )
which satisfies

(\nabla u,\nabla v)\Omega = (f, v)\Omega + \langle g, v\rangle \Gamma \mathrm{N}
\forall v \in H1

0,\Gamma \mathrm{D}
(\Omega ).(2.3)

On the defeatured geometry \Omega 0 we consider instead the problem\left\{         
 - \Delta u0 = f in \Omega 0,

u0 = gD on \Gamma D,

\nabla u0 \cdot \bfitn 0 = g on \Gamma N \setminus \gamma ,
\nabla u0 \cdot \bfitn 0 = g0 on \gamma 0,

(2.4)

which we will also refer to as the defeatured problem. With an abuse of notation, in the
negative feature case, we denote by f \in L2(\Omega 0) a suitable L2-extension of f \in L2(\Omega )
to F , while the Neumann datum g0 has to be chosen. The variational formulation of
problem (2.4) reads as follows: find u0 \in H1

g\mathrm{D},\Gamma \mathrm{D}
(\Omega 0) which satisfies, \forall v \in H1

0,\Gamma \mathrm{D}
(\Omega 0),

(\nabla u0,\nabla v)\Omega 0
= (f, v)\Omega 0

+ \langle g, v\rangle \Gamma \mathrm{N}\setminus \gamma + \langle g0, v\rangle \gamma 0 .(2.5)

Let us consider a partition \scrT h of \Omega 0 consisting of closed triangles K for d= 2, or
tetrahedrons for d= 3, such that \Omega 0 =

\bigcup 
K\in \scrT h

K. Hereby, we suppose that the mesh
faces match with the boundaries \Gamma D, \Gamma N \setminus \gamma , and \gamma 0. Let us then introduce the set

Qh =\scrP p(\scrT h) :=
\bigl\{ 
qh \in L2(\Omega 0) : qh| K \in \scrP p(K), \forall K \in \scrT h

\bigr\} 
,(2.6)

with \scrP p(K) denoting the set of polynomials of degree at most p\geq 1 on K \in \scrT h, and

V 0
h =

\bigl\{ 
qh \in \scrC 0(\Omega 0)\cap Qh : qh| \Gamma \mathrm{D}

= 0
\bigr\} 
, Vh :=

\bigl\{ 
qh \in \scrC 0(\Omega 0)\cap Qh : qh| \Gamma \mathrm{D}

= gD
\bigr\} 
.

In the following, for the sake of simplicity, we assume f \in Qh. Similarly, let us consider
the partition of \partial \Omega 0 induced by the elements of \scrT h, and let us denote its restriction
to (\Gamma N \setminus \gamma )\cup \gamma 0 by \partial \Omega N

0,h. Introducing

gN =

\Biggl\{ 
g on \Gamma N \setminus \gamma ,
g0 on \gamma 0,

we assume gN to be an element of the broken space \scrP p(\partial \Omega N
0,h), defined in the same

manner as (2.6). Hence, the finite element approximation of (2.5) reads as follows:
find uh0 \in Vh which satisfies, \forall vh \in V 0

h ,\bigl( 
\nabla uh0 ,\nabla vh

\bigr) 
\Omega 0

= (f, vh)\Omega 0
+ \langle g, vh\rangle \Gamma \mathrm{N}\setminus \gamma + \langle g0, vh\rangle \gamma 0 .(2.7)

Let us remark that our aim is to never solve problem (2.2) but to design a proper
a posteriori error estimator capable of controlling the energy norm of the error com-
mitted by approximating the exact solution of (2.2) by uh0 . We will refer to this error
as the overall error, as it accounts both for the error introduced by defeaturing and
for the error introduced by the numerical approximation of u0. In particular, we aim
at designing an estimator based on an equilibrated flux reconstruction, which has the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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EQUILIBRATED FLUX ESTIMATOR FOR DEFEATURING 2443

(a) Domain with a positive feature F . (b) Extension F̃ of the positive feature
and boundary nomenclature.

Fig. 2. Example of geometry with a positive feature F and extension of F to \~F .

advantage of bounding the numerical error with a sharp reliability constant equal to 1.
The flux reconstruction will be used to bound also the defeaturing error even if, in
this case, we will not get rid of the unknown constant. In the following we provide
the definition of the overall error for the negative and positive feature case, referring
again to [5].

Negative feature: In this case \Omega \subset \Omega 0; hence we restrict u0 to \Omega , and we define
the overall error as | | \nabla (u - uh0 | \Omega )| | \Omega .

Positive feature: This case is slightly more complicated, since u0 and its finite
element approximation are defined only on \Omega 0 and \Omega 0 \subset \Omega . Hence, in order to define
the overall error, we need to extend u0 to the feature F .

However, meshing F and solving a problem on it may be nontrivial, in particular
if F has a complex boundary. Hence we follow the steps in [5]: we consider a suitable
extension \~F \subset \BbbR d of F , being as simple as possible, in particular F \subset \~F and \gamma 0 \subset 
(\partial \~F \cap \partial F ), as reported in Figure 2. Let \gamma be decomposed as \gamma = int(\gamma s \cup \gamma r) where
\gamma s = \gamma \cap \partial \~F is the portion of \gamma shared by \partial F and \partial \~F and \gamma r = \gamma \setminus \gamma s (Figure 2(b)).
We denote by \~\bfitn the unitary outward normal of \~F and we set \~\gamma = \partial \~F \setminus \partial F . On \~F we
solve the problem \left\{         

 - \Delta \~u0 = f in \~F ,

\~u0 = u0 on \gamma 0,

\nabla \~u0 \cdot \~\bfitn = \~g on \~\gamma ,

\nabla \~u0 \cdot \~\bfitn = g on \gamma s,

(2.8)

where, with an abuse of notation, we still denote by f any L2-extension of the forcing
term to \~F and the Neumann datum \~g on \~\gamma has to be chosen. Introducing

H1
u0,\gamma 0(

\~F ) =
\Bigl\{ 
v \in H1( \~F ) : v| \gamma 0 = u0| \gamma 0

\Bigr\} 
,

the variational formulation of (2.8) is as follows: find \~u0 \in H1
u0,\gamma 0(

\~F ) which satisfies,

\forall v \in H1
0,\gamma 0(

\~F ),

(\nabla \~u0,\nabla v) \~F = (f, v) \~F + \langle \~g, v\rangle \~\gamma + \langle g, v\rangle \gamma \mathrm{s} .(2.9)

We denote by \~uh0 the finite element approximation of \~u0 on a partition \widetilde \scrT h of \~F . Note
that this partition does not need to conform to \gamma . We suppose, however, that the
mesh faces match with \gamma 0, \~\gamma , and \gamma s and that \scrT h matches with \widetilde \scrT h on \gamma 0. Let

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2444 BUFFA, CHANON, GRAPPEIN, V\'AZQUEZ, AND VOHRAL\'IK

\widetilde Qh =\scrP p(\widetilde \scrT h) :=\Bigl\{ 
qh \in L2( \~F ) : qh| K \in \scrP p(K), \forall K \in \widetilde \scrT h\Bigr\} ,(2.10)

and let us introduce

\widetilde V 0
h = \{ qh \in \scrC 0( \~F )\cap \widetilde Qh : qh| \gamma 0 = 0\} ,\widetilde Vh := \{ qh \in \scrC 0( \~F )\cap \widetilde Qh : qh| \gamma 0 = uh0 | \gamma 0\} .

We assume for simplicity that f | \~F \in \widetilde Qh. Considering the partition of \partial \~F induced by

the elements of \widetilde \scrT h and denoting its restriction to \gamma s \cup \~\gamma as \partial \~FN
h , we also assume that

\~gN =

\Biggl\{ 
g on \gamma s,

\~g on \~\gamma 

is an element of the broken space \scrP p(\partial \~FN
h ). The finite element approximation of

problem (2.9) is hence as follows: find \~uh0 \in \widetilde Vh which satisfies, \forall v \in \widetilde V 0
h ,\bigl( 

\nabla \~uh0 ,\nabla vh
\bigr) 
\~F
= (f, vh) \~F + \langle \~g, vh\rangle \~\gamma + \langle g, vh\rangle \gamma \mathrm{s} .(2.11)

Finally, we define the extended defeatured solution and its numerical approximation
as

ud :=

\Biggl\{ 
u0 in \Omega 0,

\~u0 in \~F ,
uhd :=

\Biggl\{ 
uh0 in \Omega 0,

\~uh0 in \~F ,
(2.12)

while the overall error is | | \nabla (u - uhd)| | \Omega .
Remark 2.2. We here assume that the boundary of the feature is part of the

Neumann boundary of the domain. The theoretical analysis of a feature with Dirichlet
boundary is more involved as it requires the use of negative Sobolev spaces, and it
will be the subject of a dedicated work.

3. Negative feature a posteriori error estimator. In this section we propose
a reliable estimator for the overall error | | \nabla (u - uh0 | \Omega )| | \Omega , in the case of a single negative
feature. To simplify the notation, in the following we omit the explicit restriction of
uh0 (and u0) to \Omega .

Let us consider the solution to problem (2.5): introducing the flux \bfitsigma =  - \nabla u0,
we have that \bfitsigma \in \bfitH (div,\Omega 0), \nabla \cdot \bfitsigma = f ,  - \bfitsigma \cdot \bfitn 0 = g on \Gamma N \setminus \gamma , and  - \bfitsigma \cdot \bfitn 0 = g0 on
\gamma 0. At the discrete level, a suitable definition of flux is more involved. Indeed \nabla uh0 /\in 
\bfitH (div,\Omega 0) and hence the divergence equation and the Neumann boundary condition
are not exactly satisfied. The idea behind the equilibrated flux reconstruction is to
use the discrete solution uh0 to build a discrete flux \bfitsigma h such that \bfitsigma h \in \bfitH (div,\Omega 0) is
an approximation of \bfitsigma satisfying\left\{     

\nabla \cdot \bfitsigma h = f in \Omega 0,

\bfitsigma h \cdot \bfitn 0 = - g on \Gamma N \setminus \gamma ,
\bfitsigma h \cdot \bfitn 0 = - g0 on \gamma 0.

(3.1)

We will give more details about how an equilibrated flux reconstruction can actually
be computed in section 5, following [3, 8]. For the time being we assume that we have
\bfitsigma h at our disposal.
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EQUILIBRATED FLUX ESTIMATOR FOR DEFEATURING 2445

Referring to the notation introduced in section 2, let us introduce, on \gamma , the
quantity

dh\gamma := g+\bfitsigma h \cdot \bfitn on \gamma ,

which is the error between the Neumann datum g on \gamma and the normal trace of the
equilibrated flux reconstruction. Following [5], denoting by dh\gamma 

\gamma 
the average of dh\gamma over

\gamma , let us define

\scrE \gamma :=
\biggl( 
| \gamma | 

1
d - 1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| dh\gamma  - dh\gamma 
\gamma 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 2
\gamma 
+ c2\gamma | \gamma | 

d
d - 1

\bigm| \bigm| \bigm| dh\gamma \gamma \bigm| \bigm| \bigm| 2\biggr) 1
2

,(3.2)

\scrE 0 :=
\bigm\| \bigm\| \bfitsigma h +\nabla uh0

\bigm\| \bigm\| 
\Omega 0
,(3.3)

where c\gamma is defined as in (2.1). Let us remark that, unlike [5], the quantity dh\gamma de-
pends not on the normal trace of the numerical flux but on the normal trace of the
equilibrated flux reconstruction, which is continuous across the elements of the mesh
\scrT h. The following proposition establishes our a posteriori bound.

Proposition 3.1. Let u be the solution of (2.3) and uh0 the solution of (2.7).
Then \bigm\| \bigm\| \nabla \bigl( 

u - uh0
\bigr) \bigm\| \bigm\| 

\Omega 
\leq CD\scrE \gamma + \scrE 0,(3.4)

with CD > 0 being a constant independent of the size of feature F .

Proof. Let v \in H1
0,\Gamma \mathrm{D}

(\Omega ). Adding and subtracting (\bfitsigma h,\nabla v)\Omega , exploiting (2.3),
applying Green's theorem, and using the characterization of \bfitsigma h provided in (3.1), we
have\bigl( 

\nabla 
\bigl( 
u - uh0

\bigr) 
,\nabla v

\bigr) 
\Omega 
= (\nabla u+\bfitsigma h,\nabla v)\Omega  - 

\bigl( 
\bfitsigma h +\nabla uh0 ,\nabla v

\bigr) 
\Omega 

= (f  - \nabla \cdot \bfitsigma h, v)\Omega + \langle g+\bfitsigma h \cdot \bfitn , v\rangle \Gamma \mathrm{N}
 - 
\bigl( 
\bfitsigma h +\nabla uh0 ,\nabla v

\bigr) 
\Omega 

= \langle g+\bfitsigma h \cdot \bfitn , v\rangle \gamma  - 
\bigl( 
\bfitsigma h +\nabla uh0 ,\nabla v

\bigr) 
\Omega 

= \langle dh\gamma , v\rangle \gamma  - 
\bigl( 
\bfitsigma h +\nabla uh0 ,\nabla v

\bigr) 
\Omega 
.(3.5)

Referring the reader to the steps reported in [5], with the difference that the numerical
flux is here substituted by the equilibrated flux reconstruction, it is possible to prove
that

\langle dh\gamma , v\rangle \gamma \leq CD\scrE \gamma | | \nabla v| | \Omega (3.6)

with CD > 0 being a constant independent of the size of feature F , but which depends
on the Lipschitz, Poincar\'e, and trace constants of \Omega , \Omega 0, and F (see Theorem 4.3 in
[5]). If we choose v = u - uh0 \in H1

0,\Gamma \mathrm{D}
(\Omega ) in (3.5) and apply (3.6) and the Cauchy--

Schwarz inequality, we have\bigm\| \bigm\| \nabla \bigl( 
u - uh0

\bigr) \bigm\| \bigm\| 2
\Omega 
\leq CD\scrE \gamma 

\bigm\| \bigm\| \nabla \bigl( 
u - uh0

\bigr) \bigm\| \bigm\| 
\Omega 
+
\bigm\| \bigm\| \bfitsigma h +\nabla uh0

\bigm\| \bigm\| 
\Omega 

\bigm\| \bigm\| \nabla \bigl( 
u - uh0

\bigr) \bigm\| \bigm\| 
\Omega 

\leq CD\scrE \gamma 
\bigm\| \bigm\| \nabla \bigl( 

u - uh0
\bigr) \bigm\| \bigm\| 

\Omega 
+
\bigm\| \bigm\| \bfitsigma h +\nabla uh0

\bigm\| \bigm\| 
\Omega 0

\bigm\| \bigm\| \nabla \bigl( 
u - uh0

\bigr) \bigm\| \bigm\| 
\Omega 

(3.7)

= (CD\scrE \gamma + \scrE 0)
\bigm\| \bigm\| \nabla \bigl( 

u - uh0
\bigr) \bigm\| \bigm\| 

\Omega 
,

where we have also exploited the fact that, in the negative feature case, \Omega \subset \Omega 0.
Simplifying on both sides yields (3.4).
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2446 BUFFA, CHANON, GRAPPEIN, V\'AZQUEZ, AND VOHRAL\'IK

Remark 3.2. It is well known from literature (see, among others, [1, 7, 3, 18]) that
the quantity \scrE 0 provides a sharp upper bound for the numerical error | | \nabla (u0 - uh0 )| | \Omega 0 .
Let us remark that, if no feature is present, the same result is provided also by (3.4).
Indeed, if \gamma = \emptyset , then u= u0, \Omega =\Omega 0, and (3.4) reduces to\bigm\| \bigm\| \nabla \bigl( 

u0  - uh0
\bigr) \bigm\| \bigm\| 

\Omega 0
\leq 
\bigm\| \bigm\| \bfitsigma h +\nabla uh0

\bigm\| \bigm\| 
\Omega 0
.

For this reason we will refer to \scrE 0 as the numerical component of the estimator and
to \scrE \gamma as the defeaturing component.

Remark 3.3. Proposition 3.1 states the reliability of the proposed error estimator.
Proving its efficiency raises a further challenge, since we are interested in the energy
norm of the error between u and uh0 in the exact domain \Omega , while the numerical
approximation error is made in the defeatured domain \Omega 0. This can be observed also
in the overestimation in (3.7), which is necessary to obtain an error estimator on \Omega 0

that is computable without having to mesh the exact domain \Omega .

4. Positive feature a posteriori error estimator. In this section we propose
a reliable estimator for the overall error | | \nabla (u - uhd)| | \Omega in the case of a single positive
feature F . For the sake of generality, we consider the case in which F is embedded in
a smooth extension \~F , as detailed in section 2.

Let us introduce an equilibrated flux reconstruction on \~F , i.e., a discrete flux
\~\bfitsigma h \in \bfitH (div, \~F ) built somehow from \~uh0 such that\left\{     

\nabla \cdot \~\bfitsigma h = f in \~F ,

\~\bfitsigma h \cdot \~\bfitn = - \~g on \~\gamma ,

\~\bfitsigma h \cdot \~\bfitn = - g on \gamma s.

(4.1)

Again the details on the construction of this flux will be provided in section 5, and,
for the time being, we assume we have \~\bfitsigma h. In this case we define on \gamma 0 the quantity

dh\gamma 0 := \~\bfitsigma h \cdot \bfitn F  - g0 on \gamma 0,

which approximates the jump in the normal derivative of ud on \gamma 0, while on \gamma r we
define

dh\gamma \mathrm{r} := \~\bfitsigma h \cdot \bfitn \bfitF + g on \gamma r,

which is the error between the Neumann datum g on \gamma r and the normal trace of the
equilibrated flux reconstruction computed on \~F . Again we observe how, unlike [5], the
normal trace of the numerical flux is not involved in the definition of these quantities.
Denoting by dh\gamma 0

\gamma 0
the average of dh\gamma 0 on \gamma 0 and by dh\gamma \mathrm{r}

\gamma \mathrm{r}
the average of dh\gamma \mathrm{r} on \gamma r and

following [5], let us introduce

\~\scrE \gamma 0 :=
\biggl( 
| \gamma 0| 

1
d - 1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| dh\gamma 0  - dh\gamma 0
\gamma 0
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 2
\gamma 0

+ c2\gamma 0 | \gamma 0| 
d

d - 1

\bigm| \bigm| \bigm| dh\gamma 0\gamma 0\bigm| \bigm| \bigm| 2\biggr) 1
2

,(4.2)

\~\scrE \gamma \mathrm{r} :=
\biggl( 
| \gamma r| 

1
d - 1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| dh\gamma \mathrm{r}  - dh\gamma \mathrm{r}
\gamma \mathrm{r}
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 2
\gamma \mathrm{r}
+ c2\gamma | \gamma r| 

d
d - 1

\bigm| \bigm| \bigm| dh\gamma \mathrm{r}\gamma \mathrm{r} \bigm| \bigm| \bigm| 2\biggr) 1
2

,(4.3)
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EQUILIBRATED FLUX ESTIMATOR FOR DEFEATURING 2447

where c\gamma 0 and c\gamma \mathrm{r} are defined as in (2.1). Let us also define

\~\scrE 0 := | | \~\bfitsigma h +\nabla \~uh0 | | \~F ,(4.4)

and let us recall that \scrE 0 = | | \bfitsigma h +\nabla uh0 | | \Omega 0
, where \bfitsigma h is an equilibrated flux recon-

struction defined in \Omega 0 as in (3.1).

Proposition 4.1. Let u be the solution of (2.3) and uhd be defined as in (2.12).
Then \bigm\| \bigm\| \nabla \bigl( 

u - uhd
\bigr) \bigm\| \bigm\| 

\Omega 
\leq \~CD

\Bigl( 
\~\scrE 2
\gamma 0 +

\~\scrE 2
\gamma \mathrm{r}

\Bigr) 1
2

+
\Bigl( 
\~\scrE 2
0 + \scrE 2

0

\Bigr) 1
2

(4.5)

with \~CD being a constant independent of the size of feature F .

Proof. Let us consider the restriction to \Omega 0 of the solution u of problem (2.2),
which satisfies \left\{         

 - \Delta u| \Omega 0
= f in \Omega 0,

u| \Omega 0
= gD on \Gamma D,

\nabla u| \Omega 0
\cdot \bfitn = g on \Gamma N \setminus \gamma ,

\nabla u| \Omega 0
\cdot \bfitn 0 =\nabla u \cdot \bfitn 0 on \gamma 0.

(4.6)

Omitting the explicit restriction on u to \Omega 0 the variational formulation of problem
(4.6) reads as follows: find u\in H1

g\mathrm{D},\Gamma \mathrm{D}
(\Omega ) which satisfies, \forall v \in H1

0,\Gamma \mathrm{D}
(\Omega ),

(\nabla u,\nabla v)\Omega 0
= (f, v)\Omega 0

+ \langle g, v\rangle \Gamma \mathrm{N}\setminus \gamma + \langle \nabla u \cdot \bfitn 0, v\rangle \gamma 0 .(4.7)

Let v \in H1
0,\Gamma \mathrm{D}

(\Omega 0). Adding and subtracting (\bfitsigma h,\nabla v)\Omega 0
, exploiting (4.7), applying

Green's theorem, and using the characterization of \bfitsigma h provided in (3.1), we have\bigl( 
\nabla 
\bigl( 
u - uh0

\bigr) 
,\nabla v

\bigr) 
\Omega 0

= (\nabla u+\bfitsigma h,\nabla v)\Omega 0
 - 
\bigl( 
\bfitsigma h +\nabla uh0 ,\nabla v

\bigr) 
\Omega 0

= (f  - \nabla \cdot \bfitsigma h, v)\Omega 0
+ \langle g+\bfitsigma h \cdot \bfitn , v\rangle \Gamma \mathrm{N}\setminus \gamma 

+ \langle \nabla u \cdot \bfitn 0 +\bfitsigma h \cdot \bfitn 0, v\rangle \gamma 0  - 
\bigl( 
\bfitsigma h +\nabla uh0 ,\nabla v

\bigr) 
\Omega 0

= \langle \nabla u \cdot \bfitn 0  - g0, v\rangle \gamma 0  - 
\bigl( 
\bfitsigma h +\nabla uh0 ,\nabla v

\bigr) 
\Omega 0
.(4.8)

In order to obtain an actual error indicator we need to estimate the quantity
\langle \nabla u \cdot \bfitn 0  - g0, v\rangle \gamma 0 on the right-hand side, and for this reason we must consider the
error committed on the feature as well. Hence, let us consider the restriction to the
positive feature F of the solution u of (2.2), satisfying\left\{     

 - \Delta u| F = f in F,

\nabla u| F \cdot \bfitn F = g on \gamma ,

\nabla u| F \cdot \bfitn F =\nabla u \cdot \bfitn F on \gamma 0,

(4.9)

so that, omitting the explicit restriction of u to F , u \in H1(F ) is one of the infinitely
many solutions, defined up to a constant, of

(\nabla u,\nabla v)F = (f, v)F + \langle g, v\rangle \gamma + \langle \nabla u \cdot \bfitn F , v\rangle \gamma 0 \forall v \in H1(F ).(4.10)

Let v \in H1(F ). Adding and subtracting (\~\bfitsigma h,\nabla v)F , exploiting (4.10), applying
Green's theorem, and using the characterization of \~\bfitsigma h provided in (4.1), we have\bigl( 
\nabla 
\bigl( 
u - \~uh0

\bigr) 
,\nabla v

\bigr) 
F
= (\nabla u+ \~\bfitsigma h,\nabla v)F  - 

\bigl( 
\~\bfitsigma h +\nabla \~uh0 ,\nabla v

\bigr) 
F

= (f  - \nabla \cdot \~\bfitsigma h, v)F + \langle g+ \~\bfitsigma h \cdot \bfitn \bfitF , v\rangle \gamma \mathrm{r}\cup \gamma \mathrm{s}
+ \langle \nabla u \cdot \bfitn \bfitF + \~\bfitsigma h \cdot \bfitn \bfitF , v\rangle \gamma 0  - 

\bigl( 
\~\bfitsigma h +\nabla \~uh0 ,\nabla v

\bigr) 
F

= \langle g+ \~\bfitsigma h \cdot \bfitn \bfitF , v\rangle \gamma \mathrm{r} + \langle \nabla u \cdot \bfitn \bfitF + \~\bfitsigma h \cdot \bfitn \bfitF , v\rangle \gamma 0  - 
\bigl( 
\~\bfitsigma h +\nabla \~uh0 ,\nabla v

\bigr) 
F
.(4.11)
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2448 BUFFA, CHANON, GRAPPEIN, V\'AZQUEZ, AND VOHRAL\'IK

Choosing v \in H0,\Gamma \mathrm{D}(\Omega ), observing that v| \Omega 0 \in H1
0,\Gamma \mathrm{D}

(\Omega 0) and v| F \in H1(F ), and
summing (4.8) and (4.11), we obtain\bigl( 
\nabla 
\bigl( 
u - uhd

\bigr) 
,\nabla v

\bigr) 
\Omega 
=
\bigl( 
\nabla 
\bigl( 
u - uh0

\bigr) 
,\nabla v

\bigr) 
\Omega 0

+
\bigl( 
\nabla (u - \~uh0 ),\nabla v

\bigr) 
F

= \langle g+ \~\bfitsigma h \cdot \bfitn \bfitF , v\rangle \gamma \mathrm{r} + \langle \~\bfitsigma h \cdot \bfitn \bfitF  - g0, v\rangle \gamma 0
 - 
\bigl( 
\bfitsigma h +\nabla uh0 ,\nabla v

\bigr) 
\Omega 0

 - 
\bigl( 
\~\bfitsigma h +\nabla \~uh0 ,\nabla v

\bigr) 
F

=
\bigl\langle 
dh\gamma \mathrm{r} , v

\bigr\rangle 
\gamma \mathrm{r}
+
\bigl\langle 
dh\gamma 0 , v

\bigr\rangle 
\gamma 0

 - 
\bigl( 
\bfitsigma h +\nabla uh0 ,\nabla v

\bigr) 
\Omega 0

 - 
\bigl( 
\~\bfitsigma h +\nabla \~uh0 ,\nabla v

\bigr) 
F
,(4.12)

where we have used that \bfitn \bfitF = - \bfitn 0 on \gamma 0.
For the terms involving dh\gamma \mathrm{r} and dh\gamma 0 we proceed similarly to the negative feature

case: referring the reader to Theorem 5.5 in [5], it is possible to prove that there exists
a constant \~CD > 0 such that

\langle dh\gamma 0 , v\rangle \gamma 0 + \langle dh\gamma \mathrm{r} ,v\rangle \gamma \mathrm{r} \leq \~CD

\Bigl( 
\~\scrE 2
\gamma \mathrm{r} +

\~\scrE 2
\gamma 0

\Bigr) 1
2 | | \nabla v| | \Omega .(4.13)

The constant \~CD is independent of the size of the features, but it depends on the
Lipschitz, Poincar\'e, and trace constants of \Omega , \Omega 0, F , and \~F . If we choose v= u - uhd \in 
H0,\Gamma \mathrm{D}

(\Omega ) in (4.12) and use (4.13) and the Cauchy--Schwarz inequality, we obtain

| | \nabla (u - uhd)| | 2\Omega \leq \~CD

\Bigl( 
\~\scrE 2
\gamma \mathrm{r} +

\~\scrE 2
\gamma 0

\Bigr) 1
2 | | \nabla (u - uhd)| | \Omega + | | \bfitsigma h +\nabla uh0 | | \Omega 0

| | \nabla (u - uhd)| | \Omega 0

+ | | \~\bfitsigma h +\nabla \~uh0 | | F | | \nabla (u - uhd)| | F

\leq \~CD

\Bigl( 
\~\scrE 2
\gamma \mathrm{r} +

\~\scrE 2
\gamma 0

\Bigr) 1
2 | | \nabla (u - uhd)| | \Omega 

+
\bigl( 
| | \bfitsigma h +\nabla uh0 | | 2\Omega 0

+ | | \~\bfitsigma h +\nabla \~uh0 | | 2F
\bigr) 1

2 (| | \nabla (u - uhd)| | 2\Omega 0

+ | | \nabla (u - uhd)| | 2F )
1
2

\leq 
\biggl( 
\~CD

\Bigl( 
\~\scrE 2
\gamma \mathrm{r} +

\~\scrE 2
\gamma 0

\Bigr) 1
2

+ (\scrE 2
0 + \~\scrE 2

0 )
1
2

\biggr) 
| | \nabla (u - uhd)| | \Omega ,

where, in the last step, we have exploited the fact that F \subseteq \~F . The thesis follows by
simplifying on both sides.

Remark 4.2. If the feature F is relatively simple, there is no need to use an
extension, and problem (2.9) is solved directly in F . In this case, maintaining the
tilde notation (since F = \~F ), expression (4.5) simplifies into

| | \nabla (u - uhd)| | \Omega \leq \~CD \~\scrE \gamma 0 + ( \~\scrE 2
0 + \scrE 2

0 )
1
2 .(4.14)

5. Equilibrated fluxes reconstruction. In this section we describe how to
build, in practice, an equilibrated flux starting from the discrete solution of the defea-
tured problem uh0 or from uhd in the positive feature case. The proposed procedure is
directly adapted from [3, 8] and resorts to a local reconstruction of the fluxes. Given
the triangular/tetrahedral mesh \scrT h built on the defeatured geometry \Omega 0, let us de-
note by \scrN h the set of its vertices, and let us divide it into interior vertices \scrN int

h and
boundary vertices \scrN ext

h . We aim at reconstructing the flux in the Raviart--Thomas
space of order p\geq 1, namely in

\bfitM h :=
\bigl\{ 
\bfitv h \in \bfitH (div,\Omega 0) : \bfitv h| K \in [\scrP p(K)]d +\bfitx \scrP p(K), \forall K \in \scrT h

\bigr\} 
.
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EQUILIBRATED FLUX ESTIMATOR FOR DEFEATURING 2449

The best choice for the equilibrated flux reconstruction would then be

\bfitsigma h = arg min
\bfitv h\in \bfitM h

| | \bfitv h +\nabla uh0 | | \Omega 0
subject to

\left\{     
\nabla \cdot \bfitv h = f in \Omega 0,

\bfitv h \cdot \bfitn = - g on \Gamma N \setminus \gamma ,
\bfitv h \cdot \bfitn 0 = - g0 on \gamma 0.

(5.1)

However, finding \bfitsigma h through (5.1) implies solving a global optimization problem in
the domain \Omega 0.

Following [3, 8] we adopt instead a different strategy, in which local flux recon-
structions are built on patches \omega \bfita of elements sharing a vertex \bfita \in \scrN h. Let us denote
by \psi \bfita the hat function in \scrP 1(\scrT h)\cap H1(\Omega 0) taking value 1 in vertex \bfita and 0 on all the
other vertices. Let us denote by \partial \omega \bfita the boundary of the patch \omega \bfita and let \partial \omega 0

\bfita \subseteq \partial \omega \bfita 

be defined as

\partial \omega 0
\bfita = \{ \bfitx \in \partial \omega \bfita :\psi \bfita (\bfitx ) = 0\} ,

and \partial \omega \psi \bfita = \partial \omega \bfita \setminus \partial \omega 0
\bfita . Let us remark that, if \bfita \in \scrN int

h , then \partial \omega 0
\bfita = \partial \omega \bfita . Let

\Gamma 0
N = (\Gamma N \setminus \gamma )\cup \gamma 0, and let us introduce

\bfitM \bfita ,0
h =

\bigl\{ 
\bfitv h \in \bfitM h(\omega \bfita ) : \bfitv h \cdot \bfitn \omega \bfita = 0 on \partial \omega 0

\bfita \cup 
\bigl( 
\partial \omega \psi \bfita \cap \Gamma 0

N

\bigr) \bigr\} 
and

\bfitM \bfita 
h :=

\left\{                 

\bfitM \bfita ,0
h if \bfita \in \scrN int

h ,\biggl\{ 
\bfitv h \in \bfitM h(\omega \bfita ) : \bfitv h \cdot \bfitn \omega \bfita = 0 on \partial \omega 0

\bfita ,

\bfitv h \cdot \bfitn \omega \bfita = - \psi \bfita g on \partial \omega \psi \bfita \cap (\Gamma N \setminus \gamma ),

\bfitv h \cdot \bfitn \omega \bfita = - \psi \bfita g0 on \partial \omega \psi \bfita \cap \gamma 0
\biggr\} 

if \bfita \in \scrN ext
h ,

Q\bfita 
h :=

\left\{   
\bigl\{ 
qh \in Qh(\omega \bfita ) : (qh,1)\omega \bfita = 0

\bigr\} 
if \bfita \in \scrN int

h or \bfita \in int
\bigl( 
\Gamma 0
N),

Qh(\omega \bfita ) if \bfita \in \scrN ext
h and \bfita /\in int

\Bigl( 
\Gamma 0
N

\Bigr) 
,

where \bfitM h(\omega \bfita ) and Qh(\omega \bfita ) are respectively the restrictions of \bfitM h and Qh to the
patch \omega \bfita and Qh is defined as in (2.6). We then look for local equilibrated flux
reconstructions as

\bfitsigma \bfita 
h = arg min

\bfitv h\in \bfitM \bfita 
h

| | \bfitv h +\psi \bfita \nabla uh0 | | 0,\omega \bfita subject to \nabla \cdot \bfitv h =\Pi Q\bfita 
h
(\psi \bfita f) - \nabla \psi \bfita \cdot \nabla uh0 ,

(5.2)

where \Pi Q\bfita 
h
is the L2-orthogonal projection onto Q\bfita 

h , and then we set \bfitsigma h =
\sum 

\bfita \in \scrN h
\bfitsigma \bfita 
h .

The optimization problem (5.2) is equivalent to looking for \bfitsigma \bfita 
h \in \bfitM \bfita 

h and \lambda \bfita h \in Q\bfita 
h

such that

(\bfitsigma \bfita 
h ,\bfitv h)\omega \bfita  - (\lambda \bfita h ,\nabla \cdot \bfitv h)\omega \bfita = - (\psi \bfita \nabla uh0 ,\bfitv h)\omega \bfita \forall \bfitv h \in \bfitM \bfita ,0

h ,(5.3)

(\nabla \cdot \bfitsigma \bfita 
h , qh)\omega \bfita = (\psi \bfita f, qh)\omega \bfita  - (\nabla \psi \bfita \cdot \nabla uh0 , qh)\omega \bfita \forall qh \in Q\bfita 

h ,(5.4)

which is the strategy that we are actually adopting in practice.
The equilibrated flux on the extension \~F of a positive feature F is reconstructed

in exactly the same manner. Denoting by \~\scrN int
h and \~\scrN ext

h , respectively, the internal

and the boundary vertices of the mesh \widetilde \scrT h of \~F , introducing\widetilde \bfitM h(\widetilde \scrT h) :=\Bigl\{ 
\bfitv h \in \bfitH (div, \~F ) : \bfitv h| K \in [\scrP p(K)]d +\bfitx \scrP p(K), \forall K \in \widetilde \scrT h\Bigr\} ,
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2450 BUFFA, CHANON, GRAPPEIN, V\'AZQUEZ, AND VOHRAL\'IK

and recalling the definition of \widetilde Qh given in (2.10), we look for the couple (\~\bfitsigma \bfita 
h ,

\~\lambda \bfita h) in
the sets and spaces

\widetilde \bfitM \bfita 

h :=

\left\{           

\Bigl\{ 
\bfitv h \in \widetilde \bfitM h(\omega \bfita ) : \bfitv h \cdot \bfitn \omega \bfita = 0 on \partial \omega 0

\bfita \cup 
\bigl( 
\partial \omega \psi \bfita \cap (\~\gamma \cup \gamma s)

\bigr) \Bigr\} 
if \bfita \in \~\scrN int

h ,\bigl\{ 
\bfitv h \in \widetilde \bfitM h(\omega \bfita ) : \bfitv h \cdot \bfitn \omega \bfita = 0 on \partial \omega 0

\bfita ,

\bfitv h \cdot \bfitn \omega \bfita = - \psi \bfita \~g on \partial \omega \psi \bfita \cap \~\gamma ,

\bfitv h \cdot \bfitn \omega \bfita = - \psi \bfita g on \partial \omega \psi \bfita \cap \gamma s
\bigr\} 

if \bfita \in \~\scrN ext
h ,

\widetilde Q\bfita 
h :=

\left\{   
\bigl\{ 
qh \in \widetilde Qh(\omega \bfita ) : (qh,1)\omega \bfita = 0

\bigr\} 
if \bfita \in \~\scrN int

h or \bfita \in int
\bigl( 
\~\gamma \cup \gamma s

\bigr) 
,\widetilde Qh(\omega \bfita ) if \bfita \in \~\scrN ext

h and \bfita /\in int
\bigl( 
\~\gamma \cup \gamma s

\bigr) 
,

solving a problem analogous to (5.3)--(5.4).

6. Numerical experiments. In this section we propose some numerical exper-
iments to validate the proposed estimator. We here focus on the case d= 2 and p= 1.
All the simulations were performed in MATLAB and meshes were built using the
Triangle mesh generator [19]. For each element K of a mesh \scrT h we denote by hK the
diameter of the element, and we choose as a mesh parameter h=maxK\in \scrT h

hK .
In the following we define the effectivity index as the ratio between the total

estimator and the overall error, i.e.,

\eta =
\scrE tot

| | \nabla (u - uh0 )| | \Omega 
.(6.1)

In case of a domain \Omega characterized by a single negative feature, following Proposi-
tion 3.1, the total estimator is defined as

\scrE tot =CD\scrE \gamma + \scrE 0,(6.2)

while in the case of a single positive feature it is

\scrE tot = \~CD \~\scrE \gamma 0 + ( \~\scrE 2
0 + \scrE 2

0 )
1
2 ,(6.3)

assuming \~F = F (see Remark 4.2). For all the proposed experiments, a reference
solution is built by solving the problem on the original geometry \Omega by linear finite
elements on a very fine mesh. With an abuse of notation this reference solution is
still denoted by u.

Three numerical examples are proposed. In Test 1 we consider the case of a single
negative internal feature, analyzing the convergence of the total estimator and of the
overall error under mesh refinement and feature size reduction. Test 2 deals instead
with the case of positive and negative boundary features, and the convergence of the
estimator and of the error are again analyzed. Finally, in Test 3 we consider the
presence of multiple internal negative features, showing how the proposed estimator
allows us to point out which features have the greatest impact on the error.

6.1. Test 1: Negative internal feature. For this first numerical example
we consider a square domain characterized by a single negative (see Figure 3(a)).
We denote by \epsilon the characteristic size of the feature, i.e., the radius of the circle
circumscribing the feature itself.
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EQUILIBRATED FLUX ESTIMATOR FOR DEFEATURING 2451

(a) Reference solution for = 0.14. (b) Example of computational mesh
defined on the defeatured geometry.

Fig. 3. Test 1: Reference solution u\epsilon (\epsilon = 0.14), and defeatured geometry with an example of
computational mesh used to compute the defeatured solution and the equilibrated flux reconstruction.

(a) = 7.00e− 2. (b) = 1.75e− 2. (c) = 4.38e− 3.

Fig. 4. Test 1: Energy norm of the error (full red line), total estimator (full blue line), and its
components (dashed lines) under mesh refinement and for three fixed feature sizes. (Color available
online.)

Setting \Omega 0 = (0,1)2 and \Omega \epsilon = \Omega 0 \setminus F\epsilon we consider on the exact geometry \Omega \epsilon the
problem \left\{     

 - \Delta u\epsilon = f in \Omega \epsilon ,

u\epsilon = 0 on \partial \Omega \epsilon \setminus \gamma \epsilon ,
\nabla u\epsilon \cdot \bfitn = 0 on \gamma \epsilon ,

(6.4)

with f(x, y) = x. For what concerns the defeatured problem, \gamma 0 = \emptyset , since the feature
is internal.

Figure 3(b) reports an example of the computational mesh \scrT h used to solve the
defeatured problem on \Omega 0. We remark how the mesh has no need to conform to the
feature boundary since the equilibrated flux \bfitsigma h is reconstructed on the defeatured
geometry, which is blind to the feature, and \scrE \gamma is computed by simply defining a
proper quadrature rule on the feature boundary itself and evaluating the normal
trace of \bfitsigma h in the chosen quadrature nodes.

For simplicity, in the numerical experiments that follow, we choose CD = 1 in
(6.2). Note, however, that the optimal value for CD is problem dependent, as is also
discussed in [5, Remark 6.1]. Figure 4 shows the convergence of the estimator \scrE tot and
of the energy norm of the overall error | | \nabla (u\epsilon  - uh0 )| | \Omega , under mesh refinement. The
values of \scrE \gamma and \scrE 0 are also reported. Three fixed values of \epsilon are considered, namely

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/0

4/
24

 to
 1

28
.9

3.
16

2.
24

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



2452 BUFFA, CHANON, GRAPPEIN, V\'AZQUEZ, AND VOHRAL\'IK

(a) h = 1.25e− 1. (b) h = 3.13e− 2. (c) h = 7.81e− 3.

Fig. 5. Test 1: Energy norm of the error, total estimator, and its components under the re-
duction of the feature size and for three different fixed mesh sizes.

(a) Effectivity index under mesh re-
finement, for three fixed feature sizes.

(b) Effectivity index under reduction
of feature size, for three fixed mesh
sizes.

Fig. 6. Test 1: Effectivity index under mesh refinement and under feature size reduction.

\epsilon = 7.00 \cdot 10 - 2, 1.75 \cdot 10 - 2, 4.83 \cdot 10 - 3. As expected, going from a coarse to a fine
mesh, the error reaches a plateau when the defeaturing error becomes more relevant
than the numerical one. The bigger the feature is, the earlier the plateau is reached.
The same behavior is captured also by the estimator. For a fixed feature size, the
value of \scrE \gamma remains constant, while \scrE 0 converges as \scrO (h), as expected.

The trend of the effectivity index \eta under mesh refinement and for the three
considered feature sizes is reported in Figure 6(a). As expected, since the numerical
source of the error is sharply bounded by \scrE 0, when \scrE 0 \gg \scrE \gamma we have \eta \sim 1. The
effectivity index appears instead to be around 2.5 when the defeaturing component is
dominating. The highest values of \eta , namely \eta \sim 3, are registered when \scrE \gamma > \scrE 0 but
the two components have still a comparable magnitude.

Figure 5 focuses instead on the convergence of the estimator and of the error
under the reduction of the feature size, for three fixed mesh sizes, namely h = 1.25 \cdot 
10 - 1, 3.13 \cdot 10 - 2, 7.81 \cdot 10 - 3. As expected, both the error and the estimator reach a
plateau when the numerical error dominates over the defeaturing one. The value of
the effectivity index \eta is reported in Figure 6(b), with the same considerations done
for the Figure 6(a) still holding.

6.2. Test 2: Positive and negative boundary features. In this second
numerical example we consider the cases of a positive boundary feature and a negative
boundary feature. As in the previous test case, we choose \Omega 0 = (0,1)2, while we define
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EQUILIBRATED FLUX ESTIMATOR FOR DEFEATURING 2453

(a) Geometry with negative feature. (b) Geometry with positive feature.

Fig. 7. Test 2: Exact geometry with a negative and a positive feature.

(a) = 0.2. (b) = 0.05.

Fig. 8. Test 2: Energy norm of the error and total estimator under mesh refinement for the
negative and the positive feature cases and for two different feature sizes.

Fn =

\biggl( 
1 - \epsilon 

2
,
1 + \epsilon 

2

\biggr) 
\times (1 - \epsilon , 1) , Fp =

\biggl( 
1 - \epsilon 

2
,
1 + \epsilon 

2

\biggr) 
\times ( - \epsilon , 0).

For the negative feature case we choose as exact geometry \Omega n =\Omega 0 \setminus Fn, while for the
positive feature case we choose \Omega p = int(\Omega 0 \cup Fp), as reported in Figure 7.
In both cases we consider the problem\left\{     

 - \Delta u= f in \Omega  \star ,

u= 0 on \Gamma D,

\nabla u \cdot \bfitn = 0 on \Gamma N

(6.5)

with  \star = \{ n,p\} , f = 1, \Gamma D = \{ (x, y) : x = 0 \vee x = 1\} , and \Gamma N = \partial \Omega \epsilon \setminus \Gamma D. We recall
that, according to its definition, \Gamma N includes also the feature boundary.

Figure 8 compares the convergence under mesh refinement of the total estimator
and error in the negative feature and the positive feature cases and for two different
values of \epsilon . Let us recall how, in the presence of a negative feature the total estimator
is defined as in (6.2), with \scrE \gamma = \scrE \gamma \mathrm{n} computed on \gamma n (see Figure 7(a)) from the
equilibrated flux reconstructed on \Omega 0; in the case of a positive feature, instead, the
definition is provided by (6.3) with \~\scrE \gamma 0 = \~\scrE \gamma 0,\mathrm{p} computed on \gamma 0,p (see Figure 7(b))
from the equilibrated flux reconstructed on the feature itself. In the following we
choose CD = \~CD = 1, and, for the sake of clarity, we denote respectively by \scrE n

tot and
\scrE p
tot the total estimator in the negative and in the positive feature cases. As in the

previous test case, fixing the feature size and refining the mesh, we can observe how
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2454 BUFFA, CHANON, GRAPPEIN, V\'AZQUEZ, AND VOHRAL\'IK

(a) = 0.2. (b) = 0.05.

Fig. 9. Test 2: Effectivity index for the negative and the positive feature cases for two different
feature sizes.

(a) Energy norm of the error and
total estimator with its components
under mesh refinement. = 0.2

(b) Effectivity index under mesh re-
finement. = 0.2

Fig. 10. Test 2, simultaneous presence of positive and negative features: Energy norm of the
error, total estimator with its components, and effectivity index. For both features, \epsilon = 0.2.

the overall error reaches a plateau, and how this behavior is captured also by the
total estimator, both in the negative and in the positive feature cases. As expected,
a bigger feature (Figure 8(a)) produces a stagnation of the error and of the estimator
already for coarse meshes, while if the feature is smaller (Figure 8(b)), the defeaturing
source of error becomes relevant only for finer meshes.

Figure 9 shows the trend of the effectivity index related to the curves reported
in Figure 8. Both for the negative and the positive feature cases we observe that,
as expected, \eta \sim 1 when the numerical component is dominating (coarse meshes in
Figure 8(b)). We can instead observe how \eta \sim 1.5 when the defeaturing component
dominates (fine meshes in Figure 8(a)), and how the effectivity index is in general
lower with respect to the internal negative feature case (Test 1), with \eta < 2 even
when both the defeaturing and the numerical components have a significant impact.

Finally, Figure 10 refers to the case in which the negative and the positive features
are simultaneously present, i.e., \Omega = int(\Omega 0 \cup Fp) \setminus F n. For both features we choose
\epsilon = 0.2. Figure 10(a) reports the convergence of the error and of the estimator under
mesh refinement. The total estimator is, in this case, defined as

\scrE tot =C
\Bigl( 
\~\scrE 2
\gamma 0,\mathrm{p} + \scrE 2

\gamma \mathrm{n}

\Bigr) 1
2

+
\Bigl( 
\scrE 2
0 + \~\scrE 2

0

\Bigr) 1
2

,

with C > 0 being a constant independent of the size of both features. In particu-
lar, we choose here C = 1. As in the previous test cases, the estimator appears to
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EQUILIBRATED FLUX ESTIMATOR FOR DEFEATURING 2455

(a) Reference solution. (b) Example of computational mesh
defined on the totally defeatured ge-
ometry Ω0.

Fig. 11. Test 3: Reference solution u and totally defeatured geometry \Omega 0 with an example of
computational mesh.

correctly capture the behavior of the overall error. The corresponding effectivity index
is reported in Figure 10(b).

6.3. Test 3: Multiple internal features. For this last numerical example we
consider a case with multiple internal features, similar to the one proposed in [2, 4].
Our aim is to show the capability of the proposed estimator to identify the most
relevant features and to provide a criterion to decide whether a feature should be
added or not, according also to the magnitude of the numerical source of the error.

Let us define the defeatured geometry again as \Omega 0 = (0,1)2 and let us consider a
set of I features \scrF = \{ Fi\} i\in \scrI , \scrI = \{ 1, . . . , I\} , each of which is a polygon of 16 faces,
inscribed in a circle of radius \epsilon i and centered in \bfitx iC . In particular we choose I = 5
and

\bfitx 1
C = (0.12,0.12), \epsilon 1 = 0.02; \bfitx 2

C = (0.35,0.35), \epsilon 2 = 0.05;

\bfitx 3
C = (0.65,0.65), \epsilon 3 = 0.10; \bfitx 4

C = (0.20,0.68), \epsilon 4 = 0.05;

\bfitx 5
C = (0.65,0.16), \epsilon 5 = 0.05.

The boundary of the ith feature is denoted by \gamma i. On the exact geometry \Omega =
\Omega 0 \setminus 

\bigcup 
i\in \scrI Fi, which is reported in Figure 11(a), we consider the problem\left\{     

\Delta u= 0 in \Omega ,

u= gD on \Gamma D,

\nabla u \cdot \bfitn = 0 on \Gamma N

(6.6)

with \Gamma D = \{ (x, y) : x= 0\vee y= 0\} , gD(x, y) = e - 8(x+y), and \Gamma N = \partial \Omega \setminus \Gamma D, including
also the feature boundaries. The reference solution u is also reported in Figure 11(a).

Besides the totally defeatured geometry \Omega 0, we consider a partially defeatured
geometry \Omega \scrM 

0 , obtained by including a subset \scrM \subseteq \scrF of features in \Omega 0. Let us
remark that the inclusion of a negative feature into a geometry actually corresponds
to the Boolean operation of subtracting the feature from the defeatured geometry \Omega 0.
In the following, we index the features in\scrM by j \in \scrI  \star \subseteq \scrI , so that \Omega \scrM 

0 =\Omega 0\setminus 
\bigcup 
j\in \scrI  \star Fj ,

whereas the indices of the remaining neglected features are in \scrI \setminus \scrI  \star .
An example of a computational mesh defined on \Omega 0 is reported in Figure 11(b).

We will use uh0 to refer both to the numeric solution computed on \Omega 0 and to the one
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Table 1
Test 3: Components of the total estimator for differently refined mesh and for different choices

of the (partially) defeatured geometry.

\bfith \bfscrM \bfitN \bfitd \bfito \bfitf \scrE 0 \scrE \gamma 1 \scrE \gamma 2 \scrE \gamma 3 \scrE \gamma 4 \scrE \gamma 5 \scrE \gamma 
\emptyset 1240 0.101 0.147 0.050 0.008 0.026 0.036 0.162

6.25e - 2 \bfitF \bfone 1380 0.096  - 0.048 0.008 0.025 0.035 0.065

\emptyset 4960 0.052 0.146 0.050 0.008 0.025 0.036 0.162
3.13e - 2 \bfitF \bfone 5501 0.050  - 0.048 0.008 0.025 0.035 0.065

\bfitF \bfone , \bfitF \bftwo 5684 0.053  -  - 0.007 0.024 0.035 0.043

\emptyset 19840 0.027 0.146 0.050 0.008 0.025 0.036 0.161

\bfitF \bfone 21963 0.026 0 0.048 0.008 0.025 0.035 0.065
1.56e - 2 \bfitF \bfone , \bfitF \bftwo 22618 0.027  -  - 0.007 0.024 0.034 0.042

\bfitF \bfone , \bfitF \bftwo , \bfitF \bffive 23953 0.027  -  - 0.007 0.024  - 0.025

\bfitF \bfone , \bfitF \bftwo , \bfitF \bffour , \bfitF \bffive 24372 0.027  -  - 0.007  -  - 0.007

computed on \Omega \scrM 
0 , the meaning being clear from the context. In presence of multiple

negative features the total estimator is defined as \scrE tot = \alpha D\scrE \gamma + \scrE 0, where

\scrE \gamma =

\left(  \sum 
j\in \scrI \setminus \scrI  \star 

\scrE 2
\gamma j

\right)  1
2

is computed by summing the contributions from the neglected features, which are
the ones still contributing to the defeaturing error. If \scrM = \emptyset , then \Omega \scrM 

0 = \Omega 0 and
\scrE \gamma = (

\sum 
j\in \scrI \scrE 2

\gamma j )
1
2 .

Table 1 reports the value of the components of the total estimator for differently
refined meshes and for different choices of \scrM , i.e., of the partially defeatured geom-
etry on which uh0 is computed. The rows of the table are divided into three sets,
corresponding to three differently refined meshes. The variation in the number of de-
grees of freedom which can be observed when a feature is included into the geometry
is related to the adaptation of the mesh to the feature boundary and to the deletion
of the degrees of freedom lying inside the feature itself. Looking at the columns from
5 to 9, we can see how feature F1 is clearly the most relevant, since \scrE \gamma 1 > \scrE \gamma i for all
i > 1. This is expected since, although being the smallest feature, it is located in a re-
gion in which the gradient of the solution is very steep. Feature F3 is, instead, almost
irrelevant: despite being the biggest one it is located in a region in which the solution
is rather flat, and hence its impact on the solution accuracy tends to be negligible.
As expected, the values of \scrE \gamma i are independent of the mesh size, meaning that the
relevance of the features can be evaluated even on a coarse mesh. However, the choice
of including the ith feature into the geometry should be taken by comparing \scrE \gamma i with
\scrE 0, which is a sharp indicator of the numerical source of error. In particular, a value of
\scrE \gamma i considerably bigger than \scrE 0 means that we will not be able to significantly reduce
the error by mesh refinement, unless the feature is added. This is true, for example,
for feature F1 with the second considered mesh and for features F1 and F2 for the
finest mesh.

Table 2 focuses exactly on these cases, reporting the values of the energy norm of
the overall error and of the total estimator, along with the corresponding effectivity
index. In particular, \scrE tot is computed with \alpha D = 1. In Table 1, we can observe that, if
\scrM = \emptyset , the reduction of \scrE 0 when going from h= 3.13 \cdot 10 - 2 (\sim 5k degrees of freedom)
to h= 1.56 \cdot 10 - 2 (\sim 20k degrees of freedom) is of about 50\%. This is expected, since
\scrE 0 should converge as \scrO (h). However, looking at rows 1 and 3 in Table 2, we see that
the drop in the total estimator, and hence in the error, is under 20\%. Adding feature
F1 and refining the mesh at the same time the drop is instead of about 60\%, as can
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EQUILIBRATED FLUX ESTIMATOR FOR DEFEATURING 2457

Table 2
Test 3: Energy norm of the error, total estimator, and effectivity index for differently refined

mesh and for different choices of the (partially) defeatured geometry.

\bfith \bfscrM | | \nabla (u - uh
0 )| | \Omega \scrE \mathrm{t}\mathrm{o}\mathrm{t} \eta 

\emptyset 0.079 0.214 2.71
3.13e - 2 \bfitF \bfone 0.052 0.115 2.21

\emptyset 0.066 0.188 2.85
1.56e - 2 \bfitF \bfone 0.033 0.091 2.76

\bfitF \bfone , \bfitF \bftwo 0.028 0.069 2.46

be seen by comparing rows 1 and 4 in Table 2. Let us remark that, for the finest
considered mesh, also feature F2 becomes rather relevant. However, \scrE \gamma 2 is closer to
\scrE 0, and hence adding it to the geometry has a smaller impact on the solution accuracy.

This experiment is to be intended as a preliminary test for the use of the proposed
estimator in an adaptive strategy, involving both geometrical adaptation (i.e., feature
inclusion) and local mesh refinement. We decide to leave this to a forthcoming work:
indeed the procedure adopted for the computation of the equilibrated flux requires
the mesh to conform to the domain boundaries, and hence also to the boundary of the
features which are actually included in the partially defeatured geometry. However,
to build an efficient and flexible adaptive algorithm we do not want to remesh the
geometry each time a feature is added, and for this reason a generalization of the
equilibrated flux reconstruction to trimmed meshes needs to be considered.

Conclusions. In this work we have proposed a new a posteriori error estimator
for defeaturing problems based on an equilibrated flux reconstruction and designed
for finite elements. The Poisson equation with Neumann boundary conditions on the
feature boundary was taken as a model problem. The reliability of the estimator has
been proven both in the negative and in the positive feature cases and tested with
several numerical examples. The choice of using an equilibrated flux reconstruction
leads to an estimator which is able to bound sharply the numerical component of the
error and which never requires evaluating the normal trace of the numerical flux, which
is typically discontinuous on element edges in a standard finite element discretization.

This work is to be intended as a preliminary analysis for the use of the proposed
estimator in an adaptive strategy, allowing not only for mesh refinement, but also for
an automatic inclusion of those features whose absence causes most of the accuracy
loss. The proposed estimator does not require the mesh to conform to the feature
boundary until the feature is included in the computational domain itself. Indeed,
computing the integral of the normal trace of the equilibrated flux reconstruction
on a generic curve is always possible, regardless of the intersections with the mesh
elements. However, the procedure which was adopted to reconstruct the equilibrated
flux is designed for meshes which conform to the computational domain boundary, and
this would require remeshing the domain each time a feature is added by the adaptive
procedure, hence increasing the complexity of the algorithm. For this reason, an
extension of the equilibrated flux reconstruction to the case of trimmed meshes needs
to be considered so that the geometry never needs to be remeshed. This generalization
is left to a forthcoming work, which is currently under preparation. Although the proof
of the reliability of the estimator holds in \BbbR d, d= 2,3, and for any polynomial order
p \geq 1, we decided to propose numerical experiments only in \BbbR 2 and for p = 1. The
application of the estimator on more complex, realistic, and tridimensional geometries,
and the use of a higher order finite element approximation, are left to a forthcoming
work as well, both extensions having an impact only on implementation aspects.
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