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Abstract

Let an open bounded Lipschitz polygon or polyhedron Ω, a function v in the Sobolev space H(div,Ω),
and a simplicial mesh of Ω be given. We prove the equivalence of two piecewise (Raviart–Thomas)
polynomial best approximations of v in the L2-norm: 1) globally on the whole computational domain
Ω, with the normal trace continuity requirement and a divergence constraint; 2) locally on each mesh
element, without any interelement continuity requirement and without any constraint on the diver-
gence. The former (global-best continuous constrained piecewise polynomial approximation) arises
in numerical methods for partial differential equations related to the H(div,Ω) space, whereas the
latter (local-best discontinuous unconstrained piecewise polynomial approximation) is a key quantity
in approximation theory. Crucially, we establish p-robustness in that the equivalence constant only
depends on the mesh shape regularity and the spatial dimension. This improves the recent result
of [IMA J. Numer. Anal. 42 (2022), 1023–1049], where the equivalence constant was possibly de-
pendent on the underlying polynomial degree. Consequently, we obtain fully h- and p- (mesh-size-
and polynomial-degree-) optimal approximation estimates under the minimal Sobolev regularity only
requested separately on each mesh element. These two results immediately follow by our construc-
tion of an operator from the infinite-dimensional Sobolev space H(div,Ω) to its finite-dimensional
Raviart–Thomas subspace that has the following properties: 1) it is defined over the entire H(div,Ω)
and preserves boundary conditions imposed on a part of the boundary of Ω; 2) it is defined locally
in a neighborhood of each mesh element; 3) it is based on elementwise L2-orthogonal polynomial
projections; 4) it is a projector, i.e., it leaves intact objects that are already in the Raviart–Thomas
piecewise polynomial space; 5) it is locally and p-robustly stable in the L2-norm, up to hp data oscil-
lation; 6) its approximation property is locally and p-robustly equivalent to that of the discontinuous
unconstrained (elementwise L2-orthogonal) projection; 7) it satisfies the commuting property with
the L2-orthogonal projection onto piecewise polynomials.

Key words: Sobolev space H(div), best approximation, continuous approximation, discontinuous ap-
proximation, Raviart–Thomas space, local–global equivalence, constrained–unconstrained equivalence,
minimal regularity, elementwise regularity, commuting projector, hp finite elements, error bound, poly-
nomial-degree robustness

1 Introduction

For the space dimension d = 2, 3, let Ω ⊂ Rd be an open, bounded, Lipschitz, polygonal or polyhedral
domain. Let H(div,Ω) be the Sobolev space of functions square-integrable together with their weak
divergences, cf. Girault and Raviart [38], Ern and Guermond [31], or Demkowicz [23]. Let a shape-
regular simplicial mesh Th of Ω and a polynomial degree p ≥ 0 be fixed (details on the setting and
notation are given in Section 2 below).
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1.1 Commuting projectors under minimal regularity

In analysis of numerical methods related to the H(div,Ω) space, a crucial role is played by the design of
operators P div

hp and Πhp such that

H0,N(div,Ω)
∇·−−→ L2(Ω)yP div

hp

yΠhp
RTp(Th) ∩H0,N(div,Ω)

∇·−−→ Pp(Th) ∩ L2
∗(Ω).

(1.1)

(commuting projector under minimal regularity)

Here, particularly, P div
hp needs to be defined over the entire infinite-dimensional space H(div,Ω), which

excludes the so-called canonical Raviart–Thomas projector, cf. [8, 24, 46]. Moreover, P div
hp needs to

be a projector, i.e., leave intact objects that are already in the Raviart–Thomas piecewise polynomial
space RTp(Th) ∩H0,N(div,Ω), and commute in the form expressed in (1.1), which excludes Clément-
type [19] (quasi-)interpolation. Moreover, P div

hp should be defined locally, in a neighborhood of each mesh

element, and Πhp should be the L2-orthogonal projection onto piecewise p-degree polynomials. A seminal
contribution in this direction is that Falk and Winther [34], following Christiansen and Winther [18]
(locality is not devised), and followed by Ern and Guermond [29, 30] (locality or commuting is not
devised), Licht [41] (locality is not devised), Arnold and Guzmán [3] (Πhp is not the L2-orthogonal
projection onto piecewise p-degree polynomials), and Gawlik et al. [37] (commuting is not devised). As
stated, (1.1) is achieved in Ern et al. [28, Theorem 3.2].

1.2 hp approximation estimates in H(div,Ω)

In addition the properties discussed above, P div
hp from (1.1) should also have correct approximation

properties, both with respect to the mesh size h and the polynomial degree p. Here, h-approximation is
customary but p-approximation is much more seldom, and more difficult. Up to logarithmic factors in p,
the latter was achieved in particular in Demkowicz and Buffa [25] and Demkowicz [22]. These logarithmic
factors were removed in Bespalov and Heuer [6] and then in Melenk and Rojik [43] when working with
weaker norms/higher regularity. In these references, in any case, P div

hp is not defined over the entire
H(div,Ω). This is rectified in [28, Theorem 3.6].

1.3 Local-best–global-best and constrained–unconstrained equivalences

Following the seminal contribution by Veeser [48], with some predecessor results in Carstensen et al. [12,
Theorem 2.1 and inequalities (3.2), (3.5), and (3.6)] and Aurada et al. [4, Proposition 3.1], there holds an
equivalence between the best approximation of an H1(Ω) function globally on the whole computational
domain Ω, with the trace continuity requirement, and locally on each mesh element, without any interele-
ment continuity requirement. This result has been recently extended to the H(div,Ω)-case in Ern et al.
[28, Theorem 3.3] (see also Gawlik et al. [37] in the general context and [14, Theorems 1 and 2] and [17,
Theorem 3.8] in the H(curl,Ω) context). Let v ∈ H0,N(div,Ω), with, for simplicity for the moment, a
piecewise polynomial divergence, ∇·v ∈ Pp(Th). Then, the equivalence writes

min
vhp∈RTp(Th)∩H0,N(div,Ω)

∇·vhp=∇·v

∥v − vhp∥2 ≈
∑

K∈Th
min

vp∈RTp(K)
∥v − vp∥2K , (1.2)

(global continuous constrained – local discontinuous unconstrained equivalence)

It is to be noted that H0,N(div,Ω)-conformity (normal trace is continuous over mesh faces and vanishes
on ΓN ⊂ ∂Ω) and divergence constraints are requested on the left-hand side of (1.2), which is a global-best
approximation over the entire Ω. In contrast, crucially, the local-best approximation on the right-hand
side of (1.2) is discontinuous and unconstrained. The generic equivalence constant in (1.2) from [28,
Theorem 3.3] depends on the mesh shape-regularity and the space dimension d, but, unfortunately also
(unfavorably) on the polynomial degree p. In the H1(Ω) context, similar (algebraic) p-dependence is
obtained in [48] and has been improved to logarithmic in two space dimensions in Canuto et al. [11,
Theorem 4]. The concurrent work [50] establishes the equivalent of (1.2) in the H1(Ω)-case with a
p-independent (robust) equivalence constant.
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1.4 Main results of this manuscript

The main results of this manuscript is a construction of an operator P div
hp as in (1.1) such that: 1) it is

defined over the entire H0,N(div,Ω) and preserves boundary conditions imposed on the Neumann part
ΓN of the boundary of Ω; 2) it is defined locally in a neighborhood of each mesh element K ∈ Th; 3) it
is based on elementwise L2-orthogonal polynomial projections; 4) it is a projector, i.e., it leaves intact
objects that are already in the Raviart–Thomas piecewise polynomial subspace of H0,N(div,Ω),

P div
hp (v) = v ∀v ∈ RTp(Th) ∩H0,N(div,Ω); (1.3)

(projection)

5) it is locally and p-robustly stable in the L2-norm, up to hp data oscillation,

∥∥P div
hp (v)

∥∥2
K

≲
∑

L∈T̃K

{
∥v∥2L +

(
hL
p+ 1

∥∇·v −Πhp(∇·v)∥L
)2}

, (1.4)

(L2-stability up to data oscillation)

where T̃K is an extended element patch consisting of two layers of vertex neighbors of K ∈ Th; note
that the second term on the above right-hand side (called hp data oscillation) vanishes if ∇·v ∈ Pp(Th),
yielding full L2-stability in this case; 6) its approximation property is locally and p-robustly equivalent
to that of the discontinuous unconstrained (elementwise L2-orthogonal) projection:

∥∥v − P div
hp (v)

∥∥2
K

+

(
hK
p+ 1

∥∥∇·
(
v − P div

hp (v)
)∥∥
K

)2

≲
∑

L∈T̃K

{
min

vp∈RTp(L)
∥v − vp∥2L

+

(
hL
p+ 1

∥∇·v −Πhp(∇·v)∥L
)2
}
; (1.5)

(approximation equivalent to elementwise L2-orthogonal projector)

7) it satisfies the commuting property (1.1) with the L2-orthogonal projection onto piecewise polynomials
Πhp. Crucially, the constant hidden in ≲ in inequalities (1.4) and (1.5) above only depends on the local
mesh shape-regularity given by maxL∈T̃K κL with κL given by (2.1) below and on the space dimension
d, in contrast to all references discussed in Section 1.1. All details are presented in Definition 3.3 and
Theorem 3.4 below. In three space dimensions, we need Assumption 3.2 on the existence of a p-stable
decomposition.

The properties of P div
hp immediately lead to two important consequences. Let v ∈ H0,N(div,Ω).

First, (1.5) immediately implies (1.2) with the hidden constant independent of the polynomial degree p,
crucially improving [28, Theorem 3.3]. The full version of this result, considering v ∈H0,N(div,Ω) with
general non-polynomial divergence, is stated in Theorem 3.5.

Second, we establish

∥v − P div
hp (v)∥2K +

(
hK
p+ 1

∥∇·(v − P div
hp (v))∥K

)2

≲
∑

L∈T̃K

{(
h
min(sL,p+1)
L

(p+ 1)sL
∥v∥HsL (L)

)2

+

(
hL
p+ 1

h
min(tL,p+1)
L

(p+ 1)tL
∥∇·v∥HtL (L)

)2
} (1.6)

(optimal elementwise hp approximation estimate)

whenever the function v and its divergence v additionally have, separately on each mesh element K ∈ Th,
the Sobolev regularity

v|K ∈HsK (K) and (∇·v)|K ∈ HtK (K) (1.7)

with Sobolev regularity exponents sK , tK ≥ 0 (down to the minimal regularity sK = tK = 0). The
bound (1.6) holds up to a constant that only depends on the mesh shape-regularity, the space dimension
d, and the regularity exponents sK , tK ; details form the content of Theorem 3.6. This improves the results
discussed in Section 1.2 in several directions: no logarithmic factors in p appear; no minimal regularity
such as v ∈Hs(Ω) with s > 0 is imposed; no global regularity over the entire Ω or over patches appears:
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(1.7) only requests additional Sobolev regularity separately on each mesh element K ∈ Th; in particular,
(1.6) improves [28, Theorem 3.6] where the regularity exponents sK had to be constant over the entire
computational domain Ω (and where a somewhat less sharper treatment of the divergence has been
applied).

1.5 Crucial tools: polynomial extension operators and p-stable decomposi-
tions

There are two crucial tools used to obtain the above results. First, these are polynomial extension
operators in the H(div,Ω) context, namely that of Ainsworth and Demkowicz [2] for a normal trace
lifting on a triangle, that of Demkowicz et al. [26] for a normal trace lifting on a tetrahedron (cf. also the
recent work of Falk and Winther [35] for a d-simplex), and finally that of Costabel and McIntosh [21]
for a divergence lifting on a d-simplex. We more precisely employ their broken extensions on patches
of elements, obtained in Ern and Vohraĺık [33, Theorems 2.3 and 2.5, Corollaries 3.3 and 3.8], following
Braess et al. [9]. We then generalize these results further to larger (extended) patches and no trace
boundary conditions. Second, these are p-robustly stable decompositions, where we will namely use that
of Schöberl et al. [47] in two space dimensions.

1.6 Organization of this manuscript

We set up the notation in Section 2. We then present our main results in full details in Section 3,
also including a quick numerical illustration. The more involved proofs are subsequently collected in
Sections 4 and 5. We finally present four independent results in the appendices. We first formulate the
p-stable decomposition result from [47] in a form suitable for us in Appendix A. Next, we introduce the
notion of suitable patch enumeration and show its equivalence with shellability of simplicial complexes in
Appendix B. We then generalize the results from [33] to larger (extended) patches and no trace boundary
conditions in Appendix C. Finally, in Appendix D, we similarly extend the results of [15, Appendix A]
concerning seemingly overconstrained minimizations on patch subdomains.

This contribution only concerns the H(div,Ω) case. The H1 case is studied in Vohraĺık [50], whereas
the H(curl,Ω) case will be addressed in Vohraĺık [51]. Both these references study locally varying
polynomial degrees. For the sake of readability, we only present here the uniform polynomial degree case;
all the present results extend to the varying polynomial degree case as in [50, 51].

2 Setting and notation

We set here the context and notation.

2.1 Domain Ω, simplicial mesh Th, and patch subdomains ω

Let the computational domain Ω ⊂ Rd, d = 2, 3, be an open, bounded, and connected Lipschitz polygon or
polyhedron. Let Th be a simplicial mesh of Ω, i.e., a collection of nontrivial closed triangles or tetrahedra
K covering Ω, where the intersection of two different simplices is either empty or their common vertex,
edge, or face. The shape-regularity parameters of the element and of the entire mesh Th are respectively
given by

κK :=
hK
ρK

, κh := max
K∈Th

κK , (2.1)

where hK is the diameter of the simplex K and ρK that of the largest ball contained in K. Uniformly
bounded κh allows for families of strongly graded meshes with local refinements but not for anisotropic
elements. Let the piecewise constant mesh-size function h be given by hK on each K ∈ Th. Below, we
reserve the notation ω ⊂ Rd, possibly with subscripts, for open, bounded, Lipschitz, and polygonal or
polyhedral subdomains of Ω corresponding to a set of mesh elements from Th such that ω is contractible
(homotopic to a ball); we stress this in Assumption 3.1 below. The diameter of ω is denoted by hω.

2.2 Vertices, edges, faces, and patches of mesh elements

For a simplex K ∈ Th, denote by VK the set of its vertices, and let Vh collect all mesh vertices. Generic
vertices will be denoted by a and b. We will also work with mesh faces F , where, henceforth, “face” means
“(d − 1)-dimensional face”, i.e., a face in three space dimensions and an edge in two space dimensions.
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•
•

•

•

•
■a ∈ Vh

interior patch Ta and subdomain ωa

ψa = 0 corresponds to ∂ωa

•

•

•

•
■a ∈ Vh

∂Ω

ΓN

boundary patch Ta and subdomain ωa

no-flow boundary ΓN

part of ∂ωa where ψa = 0

Figure 1: Vertex patch Ta for a vertex a ∈ Vh in the interior of Ω (left) and on the boundary of Ω (right),
d = 2

For a vertex a ∈ Vh, denote by Ta the patch of the elements of Th that share a and ωa the corresponding
open subdomain. Illustration in two space dimensions is provided in Figure 1. We will also need the
extended vertex patch T̃a and the corresponding subdomain ω̃a; this includes Ta and elements of all
vertex patches Tb of vertices b from Ta, see Figure 2 (left). Equivalently, T̃a is formed by those elements
L from the mesh Th that share at least a vertex with an element K ∈ Ta. Similarly, for a simplex K ∈ Th,
let T̃K be the extended element patch given by the union of T̃a over all vertices a of the simplex K; this
comprises K and all elements L sharing a vertex with K or with its vertex neighbor. The corresponding
subdomain is denoted by ω̃K ; an illustration is provided in Figure 2 (right). There is a variety of scenarios
that might occur; for instance, for a vertex/element in the interior of Ω, the (extended) vertex/element
patch may touch the boundary ∂Ω/be “cropped” by the boundary ∂Ω. All these cases are covered in our

construction. In the sequel, we will need to collect the vertices from respectively T̃a and T̃K in the sets
Ṽa and ṼK . Diameters of respectively ωa, ω̃a, and ω̃K are denoted by hωa , hω̃a

, and hω̃K .

2.3 Hat functions and the partition of unity

Let a ∈ Vh be an arbitrary mesh vertex. Then the continuous, piecewise first-order polynomial (affine)
“hat” function ψa takes value 1 at the vertex a and zero at all the other vertices. We note that ωa

corresponds to the support of ψa, and that these functions form the partition of unity in that

∑

a∈Vh
ψa = 1. (2.2)

2.4 Boundary subsets ΓD and ΓN

Let ΓD and ΓN be two disjoint, relatively open, and possibly empty subsets of the computational domain
boundary ∂Ω such that ∂Ω = ΓD ∪ ΓN. We also require that ΓD and ΓN have polygonal Lipschitz
boundaries and we assume that each boundary face of the mesh Th lies entirely either in ΓD or in ΓN.

2.5 The spaces H(div) on the entire computational domain and on its sub-
domains

Let ω ⊆ Ω be as in Section 2.1. We let L2(ω) be the space of scalar-valued square-integrable functions
defined on ω. We denote by (v, w)ω :=

∫
ω
v(x)w(x) dx the L2(ω) scalar product and by ∥·∥ω the

corresponding norm; we drop the index when ω = Ω. We also use the notation L2(ω) := [L2(ω)]d

for vector-valued functions with each component in L2(ω). This is equipped with the scalar product
(v,v)ω :=

∫
ω
v(x)·w(x) dx and the corresponding norm. We again drop the index when ω = Ω. The

central space for this study isH(div, ω), the space of vector-valued L2(ω) functions with weak divergences
in L2(ω), H(div, ω) := {v ∈ L2(ω); ∇·v ∈ L2(ω)}, see Girault and Raviart [38], Ern and Guermond [31],
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•

•

■

•

••

•

•

•

•

•

••

•

•

a ∈ Vh

interior extended patch T̃a and subdomain ω̃a

•

•

•

•

•

••

•

•

•

•

•

•

•

■

■
■
K ∈ Th

boundary extended patch T̃K and subdomain ω̃K
no-flow boundary ΓN

Figure 2: Extended vertex patch T̃a for a vertex a ∈ Vh sufficiently in the interior of Ω (generated by the
vertex patches Tb of all vertices b from Ta, marked by a square or a circle) (left) and extended element

patch T̃K for an element K ∈ Th on the boundary of Ω (generated by the vertex patches Tb of all vertices
b marked by a square or a circle) (right), d = 2

or Demkowicz [23]. We will employ the notation ⟨·, ·⟩S for the integral product on boundary (sub)sets
S ⊂ ∂ω or on mesh faces F , as well as for duality pairing when S = ∂ω.

Let nω be the unit normal vector on ∂ω, outward to ω. If ∂ω does not contain any face from ΓN,
cf. Figure 2 (left), let H0,N(div, ω) := H(div, ω). In general, cf. Figure 2 (right) for an example of ∂ω
containing faces from ΓN, we let H0,N(div, ω) be the subspace of H(div, ω) formed by functions with
vanishing normal trace on the faces in ∂ω ∩ ΓN,

H0,N(div, ω) := {v ∈H(div, ω); v·nω = 0 on (∂ω ∩ ΓN)
◦}, (2.3)

which is understood by duality,

v·nω = 0 on (∂ω ∩ ΓN)
◦ ⇐⇒ (v,∇φ)ω + (∇·v, φ)ω = 0 ∀φ ∈ H1

0,∂ω\ΓN
(ω). (2.4)

Here H1
0,∂ω\ΓN

(ω) stands for all functions φ from the first-order Sobolev space H1(ω) which vanish on

the interior of ∂ω \ ΓN in the sense of traces.
Finally, for a vertex patch subdomain ωa, cf. Figure 1, we will employ the notation H0,N,ψa(div, ωa)

for the subspace of H(div, ωa) with zero normal trace on those faces in ∂ωa where the hat function ψa

vanishes (all ∂ωa for interior vertices) and which lie in the Neumann boundary ΓN,

H0,N,ψa(div, ωa) := {v ∈H(div, ωa); v·nωa = 0 on ∂ωa ∩ {ψa = 0}
and (∂ωa ∩ ΓN)

◦}. (2.5)

In Figure 1, this respectively corresponds to the double line (for interior patches Ta, left) or to the double
and zigzag lines (for boundary patches Ta, right). Similarly, for an arbitrary patch subdomain ω and a
vertex a ∈ ω, H0,N,ψa(div, ωa ∩ ω) stands for the subspace of H(div, ωa ∩ ω) with zero normal trace on
those faces in ∂(ωa ∩ ω) where the hat function ψa vanishes or which lie in the Neumann boundary ΓN,

H0,N,ψa(div, ωa ∩ ω) := {v ∈H(div, ωa ∩ ω); v·nωa∩ω = 0

on ∂(ωa ∩ ω) ∩ {ψa = 0} and (∂(ωa ∩ ω) ∩ ΓN)
◦}. (2.6)

This is as above in (2.5) with the exception of vertices a on the boundary of ω: the normal trace of the
functions from H0,N,ψa(div, ωa ∩ω) does not have to vanish on ∂(ωa ∩ω) unless this is a part of ΓN, see
ωb2

highlighted by green north-western lines in Figure 3.

2.6 Piecewise polynomial spaces

Let p ≥ 0 be a fixed polynomial degree. For a single simplex K ∈ Th, we denote by Pp(K) the space
of scalar-valued polynomials on K of total degree at most p. The notation [Pp(K)]d then stands for the
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space of vector-valued polynomials on K with each component in Pp(K). The Raviart–Thomas [8, 24, 46]
space of degree p on K is given by

RTp(K) := [Pp(K)]d + Pp(K)x = [Pp(K)]d ⊕ P̃p(K)x, (2.7)

where P̃p(K) stands for homogeneous polynomials of degree p on K.
We will below extensively use the broken, piecewise polynomial spaces formed from the above element

spaces

Pp(Th) := {vhp ∈ L2(Ω); vhp|K ∈ Pp(K) ∀K ∈ Th},
RTp(Th) := {vhp ∈ L2(Ω); vhp|K ∈ RTp(K) ∀K ∈ Th}.

To form the usual finite element H(div,Ω)-conforming, normal-trace-continuous spaces, we will write
RTp(Th) ∩H(div,Ω) and similarly for the subspaces reflecting the different boundary conditions. The

same notation will also be used on the patches Ta, T̃a, and T̃K .

2.7 L2-orthogonal projector onto piecewise polynomials and the elementwise
canonical Raviart–Thomas projector

Let Πhp denote the elementwise L2(Ω)-orthogonal projector onto Pp(Th): for v ∈ L2(Ω), Πhp(v) ∈ Pp(Th)
is prescribed locally on each element K ∈ Th, Πhp(v)|K ∈ Pp(K), by

(Πhp(v), vp)K = (v, vp)K ∀vp ∈ Pp(K). (2.8)

Next, we will use the elementwise canonical p-degree Raviart–Thomas projector IRT
h,p : for v ∈

ΠK∈Th [C
1(K)]d, a function of the C1 regularity in each component, separately on each mesh ele-

ment K ∈ Th, IRT
h,p (v) ∈ RTp(Th) is following [8, 24, 46] prescribed locally on each element K ∈ Th,

IRT
h,p (v)|K ∈ RTp(K), by

〈
IRT
h,p (v)·nK , rp

〉
F
= ⟨v·nK , rp⟩F ∀rp ∈ Pp(F ), for all faces F of K, (2.9a)

(
IRT
h,p (v), rp

)
K

= (v, rp)K ∀rp ∈ [Pp−1(K)]d, (2.9b)

where nK is the unit outer normal vector of the element K. This projector, crucially, satisfies the
commuting property, locally on each K ∈ Th,

∇·IRT
h,p (v) = Πhp(∇·v) ∀v ∈ ΠK∈Th [C

1(K)]d. (2.10)

We will only apply IRT
h,p to piecewise (discontinuous) polynomials which have the requested elementwise

[C1(K)]d regularity; recall from [8, 24] that one cannot use IRT
h,p directly on H0,N(div,Ω).

2.8 Notation ≲
We will use the notation a ≲ b when there holds a ≤ Cb for a positive constant C and a ≈ b when a ≲ b
and b ≲ a hold simultaneously. All dependencies of the hidden constant C will systematically be given.
In any case, all constants in this manuscript are independent of the mesh size h and of the polynomial
degree p.

3 Main results

We present here our main results. We rely on two assumptions:

Assumption 3.1 (Patch subdomains). For any vertex a ∈ Vh and element K ∈ Th, consider the extended
vertex patch T̃a or the extended element patch T̃K as per Section 2.2, denoted by Tω, with the associated
open subdomain ω. We suppose that ω is Lipschitz, the closure ω of ω is contractible, and the boundary
of ω does not coincide with the whole Neumann boundary, ∂ω ̸= ∂ω ∩ ΓN.

Assumption 3.2 (A p-stable RTp∩H(div) decomposition on three-dimensional patches). Suppose that
Theorem A.1 also holds for d = 3.
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Assumption 3.1 is similar to those in [34, 3]. Please remark that it does not request the whole
computational domain Ω to be contractible but merely the patch subdomains. For example for Ω with a
hole, Assumption 3.1 may not be satisfied for a coarse triangulation, but typically will be satisfied for a
finer mesh. The same holds true for the assumption that ∂ω̂K does not coincide with the whole Neumann
boundary. We refer for further details to the recent discussion in [32, Remark 2.1].

We only make Assumption 3.2 in three space dimensions. In two space dimensions, the p-robustly
stable H(div) patch decomposition of Theorem A.1 is a simple consequence of [47]. In three space
dimensions, Assumption 3.2 holds with the constant in (A.5) below possibly depending on the polynomial
degree p, which is shown in [15, Appendix B]. Recently, [36] has established the extension of the result
of [47] to any space dimension and any differential form, including the result in H(div). Unfortunately,
we crucially need a stable decomposition with vanishing global low-order component, which does not
seem to be easily available from [36], so that we at present need to rely on Assumption 3.2.

3.1 A p-stable local commuting projector in H0,N(div,Ω)

We first define our p-stable local commuting projector in H0,N(div,Ω) and state its properties.

3.1.1 Definition of the projector

Our construction extends and builds on [28, Definition 3.1] for equilibration and on [15, Appendix A]
for imposing of an additional orthogonality constraint that enables to employ the p-stable decomposition
of [47] in a correction stage. Prior to stating it, let us recall the basic steps from [28] and highlight the
differences.

The construction in [28, Definition 3.1] proceeds in three steps: 1) elementwise L2-orthogonal projec-
tion (local-best approximation)(with a divergence constraint); 2) patchwise equilibration; this crucially
employs the hat functions ψa from (2.2) and the canonical projector IRT

h,p from (2.9) (which in turn pre-
vents proving a p-robust local-best and global-best equivalence as in Theorem 3.5); and 3) gluing of the
patchwise contributions. The present construction is slightly more involved but leads to better approxi-
mation properties, namely yielding the p-robust local-best and global-best equivalence of Theorem 3.5 and
p-robust approximation property (3.14) below. It proceeds in four stages: 1) elementwise L2-orthogonal
projection (local-best approximation)(without the divergence constraint); 2) patchwise equilibration and
gluing of the patchwise contributions, like above in steps 2) and 3), but with an additional orthogonality
constraint; this stage still employs the hat functions ψa from (2.2) as well as the canonical projector IRT

h,p

from (2.9); its main purpose is to cut off the divergence and to impose an elementwise L2-orthogonality
with respect to constant vectors; 3) patchwise equilibration of the remainder (with an additional or-
thogonality constraint) followed by a p-stable decomposition of Appendix A and gluing of the patchwise
contributions into a correction; here, crucially, no hat functions ψa from (2.2) and no projector such as
IRT
h,p from (2.9) are used; and 4) combination of the previous steps.
Recall the notation from Section 2. The definition reads:

Definition 3.3 (A p-stable local commuting projector in H0,N(div,Ω)). Let a simplicial mesh Th of Ω
and a polynomial degree p ≥ 0 be given. We define

P div
hp :H0,N(div,Ω) → RTp(Th) ∩H0,N(div,Ω) (3.1)

(defined over the entire H0,N(div,Ω))

as follows. Let a function v ∈H0,N(div,Ω) be given.

I. On each mesh element K ∈ Th, consider the L2(K)-orthogonal projection of v onto RTp(K) (with-
out any normal trace prescription nor any constraint on the divergence)

τhp|K := arg min
vp∈RTp(K)

∥v − vp∥K . (3.2)

(elementwise projection τhp)

This gives the broken Raviart–Thomas piecewise polynomial

τhp ∈ RTp(Th). (3.3)

II. Starting from τhp:
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(a) On each vertex patch Ta, a ∈ Vh, see Figure 1, define the Raviart–Thomas piecewise polynomial
σa
p ∈ RTp(Ta) ∩H0,N,ψa(div, ωa) via

σa
p := arg min

vp∈RTp(Ta)∩H0,N,ψa (div,ωa)
∇·vp=Πhp(ψ

a∇·v+∇ψa·v)
(vp,rh)K=(IRT

h,p (ψaτhp),rh)K ∀rh∈[P0(K)]d, ∀K∈Ta if p≥1

∥∥IRT
h,p (ψaτhp)− vp

∥∥
ωa

; (3.4a)

(patchwise “no flux” equilibration, with an additionalorthogonality constraint if p ≥ 1)

recall from (2.5) that H0,N,ψa(div, ωa) is the subspace of H(div, ωa) with zero normal trace on
those faces in ∂ωa where the hat function ψa vanishes or which lie in the Neumann boundary
ΓN. See Figure 3 (left) for illustration.

(b) Extending σa
p by zero outside of the patch subdomain ωa, define

σhp :=
∑

a∈Vh
σa
p . (3.4b)

(gluing patchwise contributions)

This gives the intermediate Raviart–Thomas piecewise polynomial

σhp ∈ RTp(Th) ∩H0,N(div,Ω) with ∇·σhp = Πhp(∇·v) (3.5)

((seemingly overconstrained if p ≥ 1) equilibration σhp with divergence and projection properties)

and the broken Raviart–Thomas piecewise polynomial

τhp − σhp ∈ RTp(Th) (3.6a)

(τhp − σhp, rh)K = 0 ∀rh ∈ [P0(K)]d, ∀K ∈ Th if p ≥ 1. (3.6b)

(remainder τhp − σhp, with vanishing lowest-order moments if p ≥ 1)

III. If p = 0, set ζhp := 0. Otherwise, if p ≥ 1, starting from τhp − σhp:
(a) On each extended vertex patch T̃a, a ∈ Vh, see Figure 2 (left), define the Raviart–Thomas

piecewise polynomial ζap ∈ RTp(T̃a) ∩H0,N(div, ω̃a) via

ζap := arg min
vp∈RTp(T̃a)∩H0,N(div,ω̃a)

∇·vp=0

(vp,rh)K=(τhp−σhp,rh)K=0 ∀rh∈[P0(K)]d, ∀K∈T̃a

∥τhp − σhp − vp∥ω̃a
; (3.7a)

(seemingly overconstrained divergence-free remainder equilibration)

recall from (2.3) that H0,N(div, ω̃a) is the subspace of H(div, ω̃a) with zero normal trace on those
boundary faces in ∂ω̃a which lie in ΓN. See Figure 3 (right) for illustration.

(b) On each extended vertex patch T̃a, a ∈ Vh, employ to ζap the p-stable decomposition of Theo-

rem A.1 or Assumption 3.2 (with Tω = T̃a and Vω = Ṽa),

ζap =
∑

b∈Ṽa

ζa,bp with in particular ζa,ap ∈ RTp(Ta) ∩H0,N,ψa(div, ωa), ∇·ζa,ap = 0. (3.7b)

(patchwise p-stable equilibrated remainder decomposition)

See Figure 3 (right) for illustration.
(c) Extending the “interior” component ζa,ap by zero outside of the patch subdomain ωa, define

ζhp :=
∑

a∈Vh
ζa,ap . (3.7c)

(gluing patchwise correction contributions)

This gives the intermediate Raviart–Thomas piecewise polynomial

ζhp ∈ RTp(Th) ∩H0,N(div,Ω) with ∇·ζhp = 0. (3.8)

(p-robust correction ζhp by treatment of the remainder τhp − σhp without ψa and IRT
h,p )
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a ∈ Vh

b1 ∈ Ṽa

b2 ∈ Ṽa

ω̃a

ζap supported on ω̃a but ζap ·nω̃a
̸= 0 on ∂ω̃a

stable decomposition ζap =
∑

b∈Ṽa

ζa,bp

component ζa,ap supported on ωa (red horizontal lines)

ζa,ap ·nωa = 0 on ∂ωa

component ζa,b1
p supported on ωb1 (blue north east lines)

component ζa,b2
p supported on ωb2

∩ ω̃a (green north west lines)

Figure 3: The standard non-p-robust equilibration component σa
p from (3.4a) (left) and the p-robust

correction ζap from (3.7a) together with its p-stable decomposition (3.7b); only the “interior” component
ζa,ap is used (right); d = 2, interior of the domain

IV. Define

P div
hp (v) := σhp + ζhp. (3.9)

(combining the previous steps)

This gives the final Raviart–Thomas piecewise polynomial

P div
hp (v) ∈ RTp(Th) ∩H0,N(div,Ω) with ∇·P div

hp (v) = Πhp(∇·v). (3.10)

We will verify the correctness of Definition 3.3 in Section 4 below.

3.1.2 Design principles

Let us discuss in detail the design principles of Definition 3.3.

1. The construction of τhp in Step I. sets our local-best discontinuous unconstrained projection “tar-
get”. There holds τhp ∈ RTp(Th) but in general τhp ̸∈ H0,N(div,Ω). In the rest of Definition 3.3,
we search to stay in RTp(Th), as close as possible to τhp, keeping its approximation power, but
recovering H0,N(div,Ω)-conformity.

2. The construction of σhp in Step II. is similar to [28, Definition 3.1, steps 2–3], with the incorporation
of the additional orthogonality constraint from [15, Appendix A] if p ≥ 1. The proof of its p-
robustness is obstructed by the presence of the cut-off by the hat functions ψa from (2.2) and by
the use of the canonical elementwise projector IRT

h,p from (2.9), which brings the polynomial degree
increased by ψa to p+ 1 back down to p. The purpose here is to design a projector capturing the
correct divergence as per (3.5) and to obtain the “remainder” τhp−σhp with vanishing lowest-order
moments as per (3.6b), if p ≥ 1. The projection property is actually already established here, as
σhp is such that if v ∈ RTp(Th) ∩H0,N(div,Ω), then τhp = σhp = v and the remainder τhp − σhp
vanishes.

3. The construction of ζhp in Step III., only nontrivial if p ≥ 1, is the salient feature for the theoretical
proof of p-robustness. Neither the hat functions ψa nor the elementwise projector IRT

h,p are present.
At the first stage in (3.7a), we employ an equilibration similar to (3.4a) which however 1) does not
employ the hat functions ψa from (2.2) or the canonical elementwise projector IRT

h,p from (2.9);
2) is divergence-free; and 3) does not impose zero normal trace on ∂ω̃a (except for (∂ω̃a ∩ ΓN)

◦).
At the second stage (3.7b), a p-stable decomposition is applied (note that this cannot be applied

directly to the remainder τhp−σhp which “broken”, i.e., lies in RTp(T̃a) but not in H0,N(div, ω̃a)).
At this stage, the additional orthogonality constraint in (3.7a) (note that (τhp − σhp, rh)K = 0
follows from (3.6b)) plays a crucial role since it enables to employ the p-stable decomposition of [47]
with vanishing lowest-order moments. Note that we merely access the integral volumetric (lowest-
order) moments (vp, rh)K which are available under the the H(div,K) regularity, in contrast to
the (lowest-order) normal trace face moments such as ⟨vp·n, 1⟩F (any use of trace face moments
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is only possible at the discrete level and also typically spoils p-robustness). Note that in (3.7c),
we merely employ the “interior” or “middle” components which do have zero normal trace on ∂ωa

(for interior vertices) or on ∂ωa ∩ {ψa = 0} and (∂ωa ∩ ΓN)
◦ (for boundary vertices) as per the

definition of H0,N,ψa(div, ωa) in (2.5), see Figure 3 for illustration.

4. In Step IV., P div
hp (v) is defined as σhp corrected by ζhp.

5. The construction relies on local energy minimization problems (3.2), (3.4a), (3.7a) and the p-stable
decomposition (3.7b).

6. In comparison to [50, Definition 3.5], the orthogonality constraints with respect to vector-valued
piecewise constants are imposed directly in the local minimization problems (3.4a) and (3.7a) and
not in a correction stage after local minimization. This seems compulsory to satisfy the (divergence)
constraint, not present in [50].

3.1.3 Properties of the projector

The following theorem summarizes the properties of the projector from Definition 3.3, improving the
results in [25, 22, 18, 6, 34, 29, 30, 41, 43, 3, 37, 28].

Theorem 3.4 (Commutativity, projection, approximation, and stability of P div
hp ). Let a simplicial mesh

Th of Ω and a polynomial degree p ≥ 0 be given. Let Assumptions 3.1 and 3.2 hold. The operator P div
hp :

H0,N(div,Ω) → RTp(Th) ∩H0,N(div,Ω) from Definition 3.3 satisfies

∇·P div
hp (v) = Πhp(∇·v) ∀v ∈H0,N(div,Ω), (3.11)

(commutativity)

P div
hp (v) = v ∀v ∈ RTp(Th) ∩H0,N(div,Ω). (3.12)

(projection)

Moreover, for any function v ∈H0,N(div,Ω) and any mesh element K ∈ Th, there holds

∥∥v − P div
hp (v)

∥∥2
K

+

(
hK
p+ 1

∥∥∇·
(
v − P div

hp (v)
)∥∥
K

)2

≲
∑

L∈T̃K

{
min

vp∈RTp(L)
∥v − vp∥2L (3.13)

+

(
hL
p+ 1

∥∇·v −Πhp(∇·v)∥L
)2
}
, (3.14)

(approximation equivalent to elementwise L2-orthogonal projector)

∥∥P div
hp (v)

∥∥2
K

≲
∑

L∈T̃K

{
∥v∥2L +

(
hL
p+ 1

∥∇·v −Πhp(∇·v)∥L
)2}

, (3.15)

(L2-stability up to data oscillation)

∥∥P div
hp (v)

∥∥2
K
+ h2Ω

∥∥∇·P div
hp (v)

∥∥2
K

≲
∑

L∈T̃K

{
∥v∥2L + h2Ω∥∇·v∥2L

}
, (3.16)

(H(div)-stability)

where, recall from Section 2.2, T̃K collects the elements L of Th sharing a vertex with K or with its
vertex neighbor. In (3.16), we employ the dimensionally correct scaling by hΩ, the diameter of Ω (element
diameters hL can also be used). The constant hidden in ≲ only depends on the local mesh shape-regularity
given by maxL∈T̃K κL with κL given by (2.1) and the space dimension d.

3.2 p-robust equivalence of global continuous constrained and local discon-
tinuous unconstrained approximation in H0,N(div,Ω)

The following result improves importantly [28, Theorem 3.3], removing the possible dependence of the
equivalence constant on the polynomial degree p. It is an immediate consequence of Definition 3.3 and
Theorem 3.4.
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Theorem 3.5 (p-robust equivalence of local-best and global-best approximations in H0,N(div,Ω)). Let
v ∈H0,N(div,Ω), a simplicial mesh Th of Ω, and a polynomial degree p ≥ 0 be given. Let Assumptions 3.1
and 3.2 hold. Then

min
vhp∈RTp(Th)∩H0,N(div,Ω)

∇·vhp=Πhp(∇·v)

∥v − vhp∥2 +
∑

K∈Th

(
hK
p+ 1

∥∇·v −Πhp(∇·v)∥K
)2

≈
∑

K∈Th

{
min

vp∈RTp(K)
∥v − vp∥2K +

(
hK
p+ 1

∥∇·v −Πhp(∇·v)∥K
)2
}
,

(3.17)

(p-robust global continuous constrained – local discontinuous unconstrained equivalence)

where the hidden constant only depends on the mesh shape-regularity parameter κh given by (2.1) and the
space dimension d.

Proof. Please first note that the second terms are identical on both sides of (3.17); also recall from [28,
Remark 3.4] that they have to be included for the equivalence to hold. Then, since the minimization set
on the right-hand side of (3.17) is (seemingly much) bigger than that on the left-hand side, the inequality
≳ (actually ≥) follows. For the ≲ inequality, we bound the minimum by employing the projector P div

hp (v)
from Definition 3.3. The commuting property (3.11) and elementwise use of (3.14) from Theorem 3.4
below together with a finite overlap argument following from the mesh shape regularity yield the claim:

min
vhp∈RTp(Th)∩H0,N(div,Ω)

∇·vhp=Πhp(∇·v)

∥v − vhp∥2 +
∑

K∈Th

(
hK
p+ 1

∥∇·v −Πhp(∇·v)∥K
)2

(3.1)
(3.11)

≤
∑

K∈Th

{
∥∥v − P div

hp (v)
∥∥2
K
+

(
hK
p+ 1

∥∥∇·
(
v − P div

hp (v)
)∥∥
K

)2
}

(3.14)

≲
∑

K∈Th

{ ∑

L∈T̃K

{
min

vp∈RTp(L)
∥v − vp∥2L +

(
hL
p+ 1

∥∇·v −Πhp(∇·v)∥L
)2
}}

≲
∑

K∈Th

{
min

vp∈RTp(K)
∥v − vp∥2K +

(
hK
p+ 1

∥∇·v −Πhp(∇·v)∥K
)2
}
.

3.3 Optimal local hp approximation estimates under minimal elementwise
Sobolev regularity in H0,N(div,Ω)

Finally, we show how Definition 3.3 and Theorem 3.4 yield optimal local hp approximation estimates
under minimal elementwise Sobolev regularity in H0,N(div,Ω).

For any element K ∈ Th, let HsK (K), sK ≥ 0, denote the space of vector-valued fields in L2(K) with
each component in HsK (K). We now focus on functions with additional regularity HsK (K) requested
locally on each mesh element. Moreover, we consider the divergence separately: piecewise polynomial
(for simplicity of exposition) first, and then of HtK (K) regularity, tK ≥ 0. Here, the Sobolev regularity
exponents sK and tK can be different for different mesh elements K ∈ Th and also arbitrarily close,
and possibly equal to, 0. The following theorem is a fully h- and p- (mesh-size- and polynomial-degree-)
optimal approximation estimate. It improves [28, Theorem 3.6] where the Sobolev regularity exponent
sK can also be arbitrarily close (and possibly equal to) 0 but where it is constant, s = sK for all
mesh elements K ∈ Th and where less attention has been paid to the divergence. Theorem 3.6 can be
directly used in a priori error analysis of numerical methods for partial differential equations related to
the H(div,Ω) space; some examples for (least-squares) mixed finite element methods are given in [28,
Section 6]. Locally varying polynomial degree can be addressed as in [50, Theorem 3.4] and [51].

Theorem 3.6 (hp-optimal approximation estimate in H0,N(div,Ω) under minimal elementwise Sobolev
regularity). Let v ∈H0,N(div,Ω), a simplicial mesh Th of Ω, and a polynomial degree p ≥ 0 be given. Let
Assumptions 3.1 and 3.2 hold and consider the projector P div

hp of Definition 3.3. For each mesh element
L ∈ Th, let

v|L ∈HsL(L) (3.18)
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for a Sobolev regularity exponent sL ≥ 0. We consider two cases.
Case (i) (piecewise polynomial divergence). Let ∇·v ∈ Pp(Th). Then, for each mesh element K ∈ Th,

∥v − P div
hp (v)∥2K ≲

∑

L∈T̃K

(
h
min(sL,p+1)
L

(p+ 1)sL
∥v∥HsL (L)

)2

. (3.19)

(simplified optimal elementwise hp approximation estimate)

Case (ii) (general case). Let, for each mesh element L ∈ Th,

(∇·v)|L ∈ HtL(L) (3.20)

for a Sobolev regularity exponent tL ≥ 0. Then, for each mesh element K ∈ Th,

∥v − P div
hp (v)∥2K +

(
hK
p+ 1

∥∇·(v − P div
hp (v))∥K

)2

≲
∑

L∈T̃K

{(
h
min(sL,p+1)
L

(p+ 1)sL
∥v∥HsL (L)

)2

+

(
hL
p+ 1

h
min(tL,p+1)
L

(p+ 1)tL
∥∇·v∥HtL (L)

)2
}
.

(3.21)

(optimal elementwise hp approximation estimate)

The constants hidden in ≲ only depend on the local mesh shape-regularity parameters maxL∈T̃K κL with
κL given by (2.1), the space dimension d, the regularity exponents sL, and, for (3.21), the regularity
exponents tL.

Proof. We use (3.14), observing from (2.7) that for each mesh element L ∈ Th, [Pp(L)]d ⊂ RTp(L).
Thus, well-known hp-approximation bounds, see e.g. [5, Lemma 4.1], imply that

min
vp∈RTp(L)

∥v − vp∥L ≲ h
min(sL,p+1)
L

(p+ 1)sL
∥v∥HsL (L), (3.22a)

hL
p+ 1

∥∇·v −Πhp(∇·v)∥L ≲ hL
p+ 1

h
min(tL,p+1)
L

(p+ 1)tL
∥∇·v∥HtL (L), (3.22b)

with the hidden constants only depending on κL, d, sL, and tL. Thus (3.21) follows. As for (3.19), it is a
simplification of (3.21) where the divergence terms vanish as ∇·v−Πhp(∇·v) = 0 when ∇·v ∈ Pp(Th).

3.4 Numerical illustration

We provide a quick numerical illustration of the projector P div
hp from Definition 3.3. We start by the

following remark:

Remark 3.7 (Approximation of ζa,ap by additive Schwarz with line search). In order to make the con-
struction of Step III. easily realizable on a computer, we can replace ζa,ap from (3.7b) by an iterative
approximation by additive Schwarz with line search. Let ζap be given by (3.7a) and suppose it is nonzero.
Let i be an iteration index.

1. Set i = 0 and ζa,ip := 0.

2. For all vertices b from the extended vertex patch ω̃a, b ∈ Ṽa, consider the (small) vertex patches ωb

and solve
δa,b,ip := arg min

vp∈RTp(Tb∩T̃a)∩H
0,N,ψb (div,ωb∩ω̃a)

∇·vp=0

(vp,rh)K=0 ∀rh∈[P0(K)]d, ∀K∈Tb

∥ζap − ζa,ip − vp∥ωb
.

This seemingly overconstrained problem is well posed since it satisfies [15, Assumption A.1].

3. Optimize the descent direction δa,ip :=
∑

b∈Ṽa

δa,b,ip by line search: find

λi := argmin
λ∈R

∥ζap − ζa,ip − λδa,ip ∥ω̃a
.
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This gives

λi =
(ζap − ζa,ip , δa,ip )ω̃a

∥δa,ip ∥2ω̃a

and the descent λiδa,ip = λi
∑

b∈Ṽa
δa,b,ip .

4. If the approximate decomposition is sufficiently precise,

∥ζap −∑b∈Ṽa

∑i
j=0 λ

jδa,b,jp ∥ω̃a

∥ζap ∥ω̃a

≤ ε,

where ε is the desired relative tolerance, stop. Otherwise update ζa,i+1
p := ζa,ip + λiδa,ip , increase

i := i+ 1, and go back to step (2).

Use
∑i
j=0 λ

jδa,a,jp for ζa,ap .

We consider two space dimensions d = 2, Ω a square (0, 0.5)× (0, 0.5), ΓN = ∅, and a fixed triangular
mesh composed of 18 right-angled triangles (Ω is divided into 3 × 3 identical sub-squares and each of
those into 2 triangles). We consider three divergence-free functions v = (∂yw,−∂xw), where respectively

w(x, y) = (x + y)8, w(x, y) = sin(x − 0.5) cos(y − 0.5), and w(x, y) = ln(ln(
√
x2 + y2)), and let the

polynomial degree p vary. For computer implementation of Step III. of Definition 3.3, we proceed
following Remark 3.7.

The first two functions v are analytical and enable arbitrary regularity exponents sL in Theo-
rem 3.6, but the last function, constructed following [8, Section 2.5.1], belongs merely to H(div,Ω),
with the normal trace v·n only in H−1/2(∂Ω). We collect the results in Figure 4. In the left col-
umn, we report the approximation errors of the elementwise L2(Ω)-orthogonal projection, ∥v − τhp∥ ={∑

K∈Th minvp∈RTp(K)∥v−vp∥2K}1/2, the approximation error ∥v−σhp∥ after Step II. of Definition 3.3,

and the approximation error ∥v−P div
hp (v)∥ after the final Step IV. of Definition 3.3. We observe very close

results. This is confirmed in the right column of Figure 4, where we plot the ratio ∥v − σhp∥/∥v − τhp∥
and, namely, the ratio ∥v − P div

hp (v)∥/∥v − τhp∥. By the approximation property (3.14), the later is
theoretically proven to be independent of the polynomial degree p, which is confirmed in all three cases.
Numerically, already the intermediate commuting projector σhp obtained in Step II. of Definition 3.3
seems to be p-robust.

4 Correctness of Definition 3.3 of the projector P div
hp

We justify here all steps of Definition 3.3 and summarize the properties of the intermediate objects.

4.1 Step I. (construction and properties of the discontinuous projection τhp)

We start with:

Lemma 4.1 (Definition (3.2) and property (3.3)). For each mesh element K ∈ Th, problem (3.2) for
τhp|K is well posed. Moreover, (3.3) holds.

Proof. Existence and uniqueness of (3.2) are standard. Note that (3.2) is equivalently stated by the
Euler–Lagrange conditions: find τhp|K ∈ RTp(K) such that

(τhp − v,vp)K = 0 ∀vp ∈ RTp(K). (4.1)

As for (3.3), it follows by definition.

4.2 Step II. (construction and properties of the standard (seemingly over-
constrained if p ≥ 1) equilibration σhp)

Let us next address:

Lemma 4.2 (Definition (3.4) and properties (3.5) and (3.6)). For each mesh vertex a ∈ Vh, prob-
lem (3.4a) for σa

p is well posed. Moreover, defining σhp by (3.4b), (3.5) and (3.6) hold.
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(a) w(x, y) = (x+ y)8
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(b) w(x, y) = sin(x− 0.5) cos(y − 0.5)
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(c) w(x, y) = ln(ln(
√

x2 + y2))

Figure 4: Approximation errors ∥v − τhp∥, ∥v − σhp∥, and ∥v − P div
hp (v)∥ (left) and equivalence ratios

∥v − σhp∥/∥v − τhp∥ and ∥v − P div
hp (v)∥/∥v − τhp∥ (right), d = 2, v = (∂yw,−∂xw)t, ∇·v = 0

Proof. Problem (3.4a) is in a conventional form from, e.g., [8, 24] for p = 0; then, existence and uniqueness
of σa

p follow when the Neumann compatibility condition holds if the normal flux is prescribed all along

∂ωa, i.e., for interior vertices a and for boundary vertices a such that all faces sharing a lie in ΓN (a ̸∈ ΓD).
Taking into account definition (2.5) ofH0,N,ψa(div, ωa), this is satisfied as (Πhp(ψ

a∇·v+∇ψa·v), 1)ωa =
(∇·(ψav), 1)ωa = ⟨(ψav)·n, 1⟩∂ωa = 0 when a ̸∈ ΓD.

When p ≥ 1, however, (3.4a) features an additional orthogonality constraint. For d = 3 (the d = 2 case
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is easier) it, though, exactly fits the framework of [15, Appendix A] with q′ = q = p, ga = ψa∇·v+∇ψa·v,
and τa

h = IRT
h,p (ψaτhp); actually, in [15, Appendix A], there should be q′ = max{q, 1} in place of

q′ = min{q, 1}. Let us check [15, Assumption A.1]. Observe that ga ∈ L2(ωa), τ
a
h ∈ RTp(Ta), and

(ga, 1)ωa = (∇·(ψav), 1)ωa = ⟨(ψav)·n, 1⟩∂ωa = 0 as above when a ̸∈ ΓD. Moreover, let H1
∗ (ωa) be the

subspace of H1(ωa) with mean value zero (when a ̸∈ ΓD) or the subspace of H1(ωa) with trace zero on
(∂ωa ∩ ΓD)

◦ (when a ∈ ΓD). Let qh ∈ P1(Ta) ∩H1
∗ (ωa). Then

(τa
h ,∇qh)ωa + (ga, qh)ωa = (IRT

h,p (ψaτhp), ∇qh︸︷︷︸
|K∈[P0(K)]d ∀K∈Ta

)ωa + (∇·(ψav), qh)ωa

(2.9b)
Green= (ψaτhp,∇qh)ωa − (ψav,∇qh)ωa

=
∑

K∈Ta

(τhp − v, ψa∇qh︸ ︷︷ ︸
|K∈[P1(K)]d

)K

(4.1)
= 0.

We have in particular used the assumption p ≥ 1, (2.7), (2.9b) with rh = (∇qh)|K ∈ [P0(K)]d, and (4.1)
with vp = (ψa∇qh)|K ∈ [P1(K)]d ⊂ RTp(K). Existence and uniqueness of σa

p thus follow from [15,
Theorem A.2].

For (3.5), σhp ∈ RTp(Th)∩H0,N(div,Ω) follows by (3.4b) and the definitions in Section 2.5. As for the
divergence constraint, as in [9, 28], definition (3.4b), the linearity of the weak divergence, the divergence
constraints in (3.4a), the linearity of the elementwise L2(Ω)-orthogonal projector (2.8), and the partition
of unity (2.2) give

∇·σhp
(3.4b)
=

∑

a∈Vh
∇·σa

p

(3.4a)
=

∑

a∈Vh
Πhp(ψ

a∇·v +∇ψa·v)

(2.8)
= Πhp

( ∑

a∈Vh
(ψa∇·v +∇ψa·v)

)
(2.2)
= Πhp(∇·v).

Finally, property (3.6a) is immediate from (3.3) and (3.5). As for (3.6b), letK ∈ Th and rh ∈ [P0(K)]d

be fixed. From the orthogonality constraint in (3.4a) imposed if p ≥ 1, we have, for any vertex a ∈ VK
of the simplex K,

(σa
p − IRT

h,p (ψaτhp), rh)K = 0.

Thus, summing over all a ∈ VK and using the linearity of the canonical projector IRT
h,p from (2.9), the

partition of unity (2.2), the fact that IRT
h,p (τhp) = τhp, and definition (3.4b), we have

0 =
∑

a∈VK
(σa

p − IRT
h,p (ψaτhp), rh)K = (σhp − τhp, rh)K

which is the claim (3.6b).

4.3 Step III. (construction and properties of the p-robust correction ζhp)

We continue with:

Lemma 4.3 (Definition (3.7a)). For each mesh vertex a ∈ Vh, problem (3.7a) for ζap is well posed.

Proof. Problem (3.7a) is again not in a conventional form from, e.g., [8, 24], because of the additional
orthogonality constraint. The situation is, though, much easier than for (3.4a) in the proof of Lemma 4.2.
Indeed, the minimization (3.7a) is convex and the minimization set not empty, since the zero vector is
trivially contained; this comes from the data already satisfying (τhp−σhp, rh)K = 0 for all rh ∈ [P0(K)]d

and for all K ∈ T̃a.

Lemma 4.4 (Decomposition (3.7b)). For each mesh vertex a ∈ Vh, the decomposition (3.7b) is well
defined.
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Proof. By definition from (3.7a), ζap lies in RTp(T̃a) ∩ H0,N(div, ω̃a), is divergence-free, and satisfies

(ζap , rh)K = 0 for all rh ∈ [P0(K)]d and for all K ∈ T̃a. Thus assumption (A.1) below is satisfied

with Tω = T̃a and ω = ω̃a. Then (3.7b) follows immediately from (A.2) (with Vω = Ṽa) and (A.4)
in Theorem A.1 or Assumption 3.2. Note that we only employ the “interior” component ζa,ap ; this is
from (A.3) supported on the vertex patch subdomain ωa ∩ ω̃a which is simply ωa (no patch truncation
happens for the “interior” component, see Figure 3 (right)).

Lemma 4.5 (Property (3.8)). Property (3.8) holds true.

Proof. The inclusion ζhp ∈ RTp(Th) ∩H0,N(div,Ω) follows immediately by (3.7c) and the definitions
in Section 2.5. Note that it is crucial that the components ζa,ap have from (3.7b) zero normal trace on

those faces in ∂ωa where the hat function ψa vanishes or which lie in the Neumann boundary ΓN. The
divergence-free property is evident since all the contributions are divergence-free.

4.4 Step IV. (combining the previous steps)

We finish by:

Lemma 4.6 (Property (3.10)). Property (3.10) holds true.

Proof. This is an immediate consequence of the definition (3.9) and the property (3.5) together with (3.8)
if p ≥ 1.

5 Proof of Theorem 3.4 on properties of the projector P div
hp

Let the assumptions of Theorem 3.4 be satisfied. We prove the claims separately.

5.1 Commuting and projection

Lemma 5.1 (Commuting property (3.11)). The commuting property (3.11) holds true.

Proof. This has been already established in Lemma 4.6.

Lemma 5.2 (Projection property (3.12)). The projection property (3.12) holds true.

Proof. Let v ∈ RTp(Th)∩H0,N(div,Ω). Then clearly τhp from (3.2) satisfies τhp = v. Next, from (3.4a),
we see that σa

p = IRT
h,p (ψaτhp). Indeed, I

RT
h,p (ψaτhp) ∈ RTp(Ta)∩H0,N,ψa(div, ωa) by (2.9a); it is crucial

that τhp = v is normal-trace continuous here. Moreover,

∇·IRT
h,p (ψaτhp)

(2.10)
= Πhp(∇·(ψaτhp)) = Πhp(ψ

a∇·v +∇ψa·v)

by the commuting property (2.10). Consequently, (3.4b) and the linearity of IRT
h,p as well as its projection

property give

σhp =
∑

a∈Vh
σa
p =

∑

a∈Vh
IRT
h,p (ψaτhp) = I

RT
h,p

( ∑

a∈Vh
ψaτhp

)
= IRT

h,p (τhp) = τhp.

Thus, also σhp = v. Finally, as Step III. of Definition 3.3 only builds on τhp−σhp if p ≥ 1, all ζap , ζ
a,a
p , and

ζhp are zero, whereas ζhp = 0 by definition if p = 0. Then, from (3.9), P div
hp (v) = σhp+ζhp = σhp = v.

5.2 Approximation

Lemma 5.3 (Approximation property (3.14)). The approximation property (3.14) holds true.

Proof. The case p = 0 is treated as in [28, proof of the approximation property (3.6)]; a p-dependent
constant is harmless in this lowest-order case. We thus henceforth only consider the case p ≥ 1. In view
of (3.11), the second terms in (3.14) are identical. We thus only have to estimate

∥∥v − P div
hp (v)

∥∥
K
. Let

K ∈ Th be fixed and recall the notation from Sections 2.2 and 2.5. We proceed in several steps.
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(i) Like in (3.7a), but on the extended element patch T̃K in place of the extended vertex patch T̃a,
see Section 2.2 and Figure 2, define

ζKp := arg min
vp∈RTp(T̃K)∩H0,N(div,ω̃K)

∇·vp=0

(vp,rh)K=(τhp−σhp,rh)K=0 ∀rh∈[P0(K)]d, ∀K∈T̃K

∥τhp − σhp − vp∥ω̃K . (5.1)

This problem is trivially well posed as in Lemma 4.3. Now, as in (3.7b), decompose using Theorem A.1
or Assumption 3.2

ζKp =
∑

b∈ṼK

ζK,bp with ζK,bp ∈ RTp(Tb ∩ T̃K) ∩H0,N,ψb(div, ωb ∩ ω̃K), ∇·ζK,bp = 0. (5.2)

Note that the assumptions (A.1) are satisfied for the choice Tω = T̃K and Vω = ṼK . Now, crucially,
as in (3.7b), the contributions for the vertices a of the element K, a ∈ VK , actually lie in RTp(Ta) ∩
H0,N,ψa(div, ωa) (as Ta are included in T̃K , Ta ∩ T̃K = Ta and no patch truncation happens).

(ii) For each vertex a ∈ VK , let us also consider ζKp from (5.1) restricted to the extended vertex

patch ω̃a (ω̃a are included in ω̃K by definition). We again decompose ζKp |ω̃a
using Theorem A.1 or

Assumption 3.2

ζKp |ω̃a
=
∑

b∈Ṽa

ζK,a,bp with ζK,a,bp ∈ RTp(Tb ∩ T̃a) ∩H0,N,ψb(div, ωb ∩ ω̃a),

∇·ζK,a,bp = 0.

(5.3)

Assumptions (A.1) are here satisfied for the choice Tω = T̃a and Vω = Ṽa. Crucially, from (A.3), as ζKp
and ζKp |ω̃a

are identical on the extended vertex patches ω̃a, the d + 1 contributions ζK,ap from (5.2) for

the vertices a of the element K respectively coincide with the d+ 1 contributions ζK,a,ap from (5.3),

ζK,ap = ζK,a,ap ∀a ∈ VK . (5.4)

Indeed, by (A.3), these contributions have the vertex patches Ta as support and the extended vertex

patches T̃a as dependency regions and, once again, ζKp and ζKp |ω̃a
coincide on ω̃a. The dependency regions

being the extended vertex patches T̃a are actually the reason for the remainder equilibration (3.7a) and

the decomposition (3.7b) to be performed on the extended vertex patches T̃a; merely the vertex patches
Ta would not be sufficient. From (5.2)–(5.4), we conclude

ζKp |K
(5.2)
=

∑

a∈VK
ζK,ap

(5.4)
=

∑

a∈VK
ζK,a,ap . (5.5)

(iii) Recall the definition of τhp from (3.2). We estimate by the triangle inequality and employing the
definitions (3.9) and (3.7c) together with the equality (5.5),

∥∥v − P div
hp (v)

∥∥
K

≤ ∥v − τhp∥K + ∥τhp − σhp − ζhp∥K
(3.7c)
(5.5)
= ∥v − τhp∥K +

∥∥∥∥τhp − σhp − ζKp +
∑

a∈VK

(
ζK,a,ap − ζa,ap

)∥∥∥∥
K

≤ ∥v − τhp∥K + ∥τhp − σhp − ζKp ∥K +
∑

a∈VK
∥ζK,a,ap − ζa,ap ∥ωa .

(5.6)

From (3.2), the first term above already has the target form. For the last term, we crucially use the
linearity of the decomposition (A.3) and its p-robust stability (A.5). This gives, for a vertex a ∈ VK ,
recalling (5.3) and (3.7b),

∥ζK,a,ap − ζa,ap ∥ωa

(A.5)

≲ ∥ζKp − ζap ∥ω̃a

≤ ∥τhp − σhp − ζKp ∥ω̃a
+ ∥τhp − σhp − ζap ∥ω̃a

≤ ∥τhp − σhp − ζKp ∥ω̃K + ∥τhp − σhp − ζap ∥ω̃a
,

(5.7)
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where we have followed by adding and subtracting τhp−σhp, using the triangle inequality, and extending
the integration region. We are thus left estimating ∥τhp−σhp−ζKp ∥ω̃K for ζKp from (5.1) and ∥τhp−σhp−
ζap ∥ω̃a

for ζap from (3.7a). These take the same form, so that we only show the details for the former.
(iv) Let us thus consider (5.1). Such problems (recall that τhp from (3.2) merely belongs to RTp(Th)

but not to H0,N(div,Ω)) have recently been analyzed and p-robust stability has been shown in Braess et
al. [9] (for d = 2) and in [33] (for d = 3) on: 1) vertex patch subdomains ωa; 2) with no-flux conditions on
∂ωa; and 3) without the additional orthogonality constraint. The additional orthogonality constraint has
recently been analyzed in [15, Appendix A]. We extend these results to the present setting in Appendices C
and D and employ them now here.

(v) Let us first treat the additional orthogonality constraint. Taking Tω = T̃K , rhp = 0, and τhp =
τhp − σhp, we see that (D.6) is trivially satisfied, using in particular (3.6b). Thus, Lemma D.3 yields

∥τhp − σhp − ζKp ∥ω̃K
(5.1)
= min

vp∈RTp(T̃K)∩H0,N(div,ω̃K)
∇·vp=0

(vp,rh)K=(τhp−σhp,rh)K=0 ∀rh∈[P0(K)]d, ∀K∈T̃K

∥τhp − σhp − vp∥ω̃K

(D.7)

≲ min
vp∈RTp(T̃K)∩H0,N(div,ω̃K)

∇·vp=0

∥τhp − σhp − vp∥ω̃K .

(5.8)

(vi) Next, note that

min
vp∈RTp(T̃K)∩H0,N(div,ω̃K)

∇·vp=0

∥τhp − σhp − vp∥ω̃K = min
vp∈RTp(T̃K)∩H0,N(div,ω̃K)

∇·vp=Πhp(∇·v)

∥τhp − vp∥ω̃K . (5.9)

Indeed, this follows by the shift by σhp|ω̃K since, by (3.5), it lies in RTp(T̃K)∩H0,N(div, ω̃K); the normal-
trace continuity of σhp together with σhp·nω̃K = 0 on ΓN are crucial here. In this important conceptual
step, the non p-robust usual equilibration σhp is played out.

(vii) We now finally apply Lemma C.2 with Tω = T̃K , rhp = Πhp(∇·v), and τhp = τhp to deduce that

min
vp∈RTp(T̃K)∩H0,N(div,ω̃K)

∇·vp=Πhp(∇·vp)

∥τhp − vp∥ω̃K ≲ min
w∈H0,N(div,ω̃K)
∇·w=Πhp(∇·v)

∥τhp −w∥ω̃K . (5.10)

This is the crucial p-robust stability bound which makes the power of the infinite-dimensional level of
H0,N(div, ω̃K) appear.

(viii) Let temporarily v ∈ H0,N(div,Ω) from the announcement of Theorem 3.4 have a piecewise
polynomial divergence, ∇·v ∈ Pp(Th). Then v lies in the minimization set on the right-hand side
of (5.10), v|ω̃K ∈H0,N(div, ω̃K) with ∇·v = Πhp(∇·v), so that

min
w∈H0,N(div,ω̃K)
∇·w=Πhp(∇·v)

∥τhp −w∥ω̃K ≤ ∥τhp − v∥ω̃K . (5.11)

In the general case, we need to treat the divergence misfit ∇·v − Πhp(∇·v). We proceed as in, e.g., [15,
Lemma A.3]. First, we employ the primal-dual equivalence, yielding

min
w∈H0,N(div,ω̃K)
∇·w=Πhp(∇·v)

∥τhp −w∥ω̃K = max
v∈H1

0,D(ω̃K)

∥∇v∥ω̃K=1

{
(τhp,∇v)ω̃K + (Πhp(∇·v), v)ω̃K

}
,

min
w∈H0,N(div,ω̃K)

∇·w=∇·v

∥τhp −w∥ω̃K = max
v∈H1

0,D(ω̃K)

∥∇v∥ω̃K=1

{
(τhp,∇v)ω̃K + (∇·v, v)ω̃K

}
.

Here, H1
0,D(ω̃K) is the subspace of H1(ω̃K) with vanishing trace on (∂ω̃K ∩ ΓD)

◦; recall (2.3) and that
in Assumption 3.1, we suppose ∂ω̃K ̸= ∂ω̃K ∩ ΓN. Thus, to estimate the right-hand side of (5.10) as
in (5.11), we need to bound

max
v∈H1

0,D(ω̃K)

∥∇v∥ω̃K=1

(∇·v −Πhp(∇·v), v)ω̃K = max
v∈H1

0,D(ω̃K)

∥∇v∥ω̃K=1

(∇·v −Πhp(∇·v), v −Πhp(v))ω̃K .
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This is achieved using the hp Poincaré inequality

∥v −Πhp(v)∥L ≲ hL
p+ 1

∥∇v∥L

for all L ∈ T̃K . Altogether, we obtain

min
w∈H0,N(div,ω̃K)
∇·w=Πhp(∇·v)

∥τhp −w∥ω̃K ≲ ∥τhp − v∥ω̃K +

{ ∑

L∈T̃K

(
hL
p+ 1

∥∇·v −Πhp(∇·v)∥L
)2}1/2

. (5.12)

Combining the above bounds (5.6)–(5.12) gives the assertion (3.14).

5.3 Stability

Lemma 5.4 (Stability property (3.15)). The stability property (3.15) holds true.

Proof. This follows by the triangle inequality from (3.14). Indeed, let K ∈ Th be fixed. Then
∥∥P div

hp (v)
∥∥
K

≤ ∥v∥K +
∥∥v − P div

hp (v)
∥∥
K

(3.14)

≲
{ ∑

L∈T̃K

{
∥v∥2L +

(
hL
p+ 1

∥∇·v −Πhp(∇·v)∥L
)2}}1/2

,

where we have also used the trivial L2(K)-orthogonal projection stability

min
vp∈RTp(L)

∥v − vp∥L ≤ ∥v∥L.

Lemma 5.5 (Stability property (3.16)). The stability property (3.16) holds true.

Proof. This is trivial from (3.15), the bound hL/p+ 1 ≤ hΩ (or hL/p+ 1 ≤ hL), and

∥∥∇·P div
hp (v)

∥∥
K

(3.11)
=
∥∥Πhp(∇·v)

∥∥
K

(2.8)

≤ ∥∇·v∥K ,

∥∇·v −Πhp(∇·v)∥L
(2.8)

≤ ∥∇·v∥L.

A A p-stable RTp ∩H(div) decomposition on patch subdomains
in two space dimensions

We now state a p-stable decomposition result which follows from Schöberl et al. [47, Section 3]. We
consider two-dimensional subdomains ω ⊂ Ω and the corresponding meshes Tω; in our applications of
Theorem A.1, Tω will be either the extended vertex patch T̃a with the corresponding subdomain ω̃a, or
the extended element patch T̃K with ω̃K , see Section 2.2. Recall the notation from Section 2.5. There
holds:

Theorem A.1 (A p-stable RTp ∩H(div) decomposition on two-dimensional patches). Let d = 2, a
simplicial mesh Th of Ω, a polynomial degree p ≥ 1, and ω ⊂ Rd an open and bounded Lipschitz polygonal
or polyhedral subdomain of Ω, such that ω is contractible, corresponding to a submesh (patch) of Th
denoted by Tω, with vertex set Vω, be given. Let

δp ∈ RTp(Tω) ∩H0,N(div, ω) with ∇·δp = 0, (A.1a)

(δp, rh)K = 0 ∀rh ∈ [P0(K)]d, ∀K ∈ Tω (A.1b)

be a p-degree divergence-free Raviart–Thomas piecewise polynomial on ω respecting the zero normal trace
condition on ΓN if ∂ω contains faces from ΓN and with elementwise vanishing lowest-order moments.
Then there exists a decomposition of δp as

δp =
∑

b∈Vω
δbp (A.2)
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where the contributions

δbp are supported on the vertex patch subdomains ωb ∩ ω, linearly

depend on δp on the extended vertex patch subdomains ω̃b ∩ ω,
(A.3)

and satisfy
δbp ∈ RTp(Tb ∩ Tω) ∩H0,N,ψb(div, ωb ∩ ω) with ∇·δbp = 0, (A.4)

i.e., recalling (2.6), are divergence-free and such that δbp ·nωb∩ω = 0 on those faces in ∂(ωb ∩ ω) where

the hat function ψb vanishes or which lie in the Neumann boundary ΓN. Moreover, the decomposition is
p-stable in that

∥δbp∥ωb∩ω ≲ ∥δp∥ω̃b∩ω ∀b ∈ Vω, (A.5)

where the constant hidden in ≲ only depends on the local mesh shape-regularity parameter κTω given by
κTω := maxK∈Tω κK .

Proof. (i) Let δp satisfy (A.1a). In two space dimensions, it follows, since ω is contractible, see, e.g. [8,
Corollary 2.3.2], that

δp = Rπ
2
(∇sp), (A.6)

where sp ∈ Pp+1(Tω) ∩ H1
0,(∂ω∩ΓN)◦(ω) is a (p + 1)-degree (Lagrange) piecewise polynomial, respecting

the zero trace condition on ΓN if ∂ω contains faces from ΓN. Here,

Rπ
2
=

(
0 −1
1 0

)

is the matrix of rotation by π
2 . Moreover, using (A.1b), we see, for any triangle K ∈ Tω and any of its

vertices, a ∈ VK , that

0 = (Rπ
2
(∇sp),∇ψa)K = (∇sp,Rt

π
2
(∇ψa))K

Green
= ⟨sp,Rt

π
2
(∇ψa)·nK⟩∂K

= ⟨sp,∇ψa·(Rπ
2
nK)⟩F1∪F2 =

⟨sp, 1⟩F2

|F2|
− ⟨sp, 1⟩F1

|F1|

for the two faces (edges) F1, F2 that share the vertex a (numbered in the counterclockwise orientation in
the triangle K, starting from the vertex a). This means that all mean values of sp on all faces contained
in Tω coincide. Thus, to fix sp from (A.6) completely when ∂ω contains no face from ΓN (not just its
(rotated) gradient), we can set its mean value on any face in Tω to zero, and sp is independent of which
face we have chosen, since then all its mean values on all faces are zero,

⟨sp, 1⟩F
|F | = 0 for all faces F of Tω. (A.7)

(ii) For the above continuous piecewise polynomial sp, consider the decomposition of Schöberl et al.
[47, Section 3]. First, let’s choose the “coarse grid contribution” (u0 in [47, equation (2)]) as zero. This
is eligible in terms of [47, Lemma 3.1], since

∥∇0∥ω ≤ ∥∇sp∥ω, (A.8a)

∥∇sp∥ω = ∥∇sp∥ω, (A.8b)

∥h−1sp∥2ω =
∑

K∈Tω

(
h−2
K ∥sp∥2K

)
≤ 6

∑

K∈Tω
∥∇sp∥2K , (A.8c)

where we have used the face-mean value Poincaré–Friedrichs inequality, see [49, Lemma 4.1] for the
value 6 of the constant. Consequently, there is no global low order component. The construction of [47,
Section 3.2–3.4] then gives the decomposition, see equation (11) in this reference (after associating the
face and element contributions with the vertex contributions),

sp =
∑

b∈Vω
sbp, (A.9a)
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K1 K2

K3

K4

■
a

■ aK1 K2

K3 ■ aK1 K2

K3

K4

Figure 5: Examples where Definition B.1, property (ii), point 1 is not satisfied (left), Definition B.1,
property (i), point 1 is not satisfied (middle), and Definition B.1, property (ii), point 1 is not satisfied
(right). For the marked vertex a and the hatched simplex, the already enumerated simplices sharing a
are dotted.

where

sbp ∈ Pp+1(Tb ∩ Tω), sp = 0 on faces in ∂(ωb ∩ ω) where the hat

function ψb vanishes or which lie in the Neumann boundary ΓN.
(A.9b)

Moreover, this decomposition is p-robustly stable in that, see [47, Section 3.4],

∑

b∈Vω
∥∇sbp∥2ωb∩ω ≲ ∥∇sp∥2ω.

The inspection of the developments of [47, Section 3.2–3.4] shows that sbp are solely constructed from and
linearly depend on the values of sp on the extended patches ω̃b ∩ ω and satisfy more precisely the local
stability bounds

∥∇sbp∥ωb∩ω ≲ ∥∇sp∥ω̃b∩ω ∀b ∈ Vω. (A.10)

Crucially, the constant hidden in ≲ above only depends on the shape-regularity parameter κTω of the
mesh Tω.

(iii) Now take
δbp := Rπ

2
(∇sbp). (A.11)

It follows that δbp satisfies the first line in (A.3) and (A.4). Crucially, also the second line in (A.3) is
satisfied. The dependence region is indeed ω̃b∩ω, since from the face-wise zero mean value property (A.7)
(a consequence of assumption (A.1b)), sp|K only depends on δp|K for all K ∈ Tω. Moreover, (A.2) follows
immediately from (A.9a) to which we apply the rotated gradient, (A.6), and (A.11). Finally, (A.5) is a
direct consequence of (A.10) since

∥∇sbp∥ωb∩ω = ∥Rπ
2
(∇sbp)∥ωb∩ω and ∥∇sp∥ω̃b∩ω = ∥Rπ

2
(∇sp)∥ω̃b∩ω

together with (A.11) and (A.6).

B Suitable enumeration/shellability of patches of mesh elements

Recall the notation from Section 2 and also recall that by “face”, we mean “(d − 1)-dimensional face”.
Let |S| denote the cardinality (number of elements) of the set S. The following definition will be central:

Definition B.1 (Suitable patch enumeration). Let Tω be a simplicial mesh with the corresponding open
and bounded polygonal or polyhedral domain ω ⊂ Rd, d = 2, 3, such that ω is contractible. An enumeration
{K1, . . . ,K|Tω|} of the simplices in Tω is suitable if:
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(i) (Only for d = 3) For all 1 < i ≤ |Tω|, if there are at least 2 faces of Ki shared with previously
enumerated simplices, intersecting in an edge e, then 1) all the simplices sharing the edge e different
from Ki come sooner in the enumeration; 2) the edge e lies in the interior of ω.

(ii) For all 1 < i ≤ |Tω|, if there are d faces of Ki shared with previously enumerated simplices,
intersecting in a vertex a, then 1) all the simplices sharing the vertex a different from Ki come
sooner in the enumeration; 2) the vertex a lies in the interior of ω.

(iii) For all 1 < i ≤ |Tω|, there are between 1 and d face neighbors of Ki which have been already
enumerated and correspondingly, there is at least 1 face neighbor which has not been enumerated
yet, or Ki has a face on the boundary ∂ω. In particular, there is no enumerated face neighbor only
for K1 and all face neighbors are already enumerated for K|Tω|, which moreover has a face on the
boundary ∂ω.

Illustrations are provided in Figure 5.
In algebraic topology/discrete geometry, there exists a concept of shellability of simplicial complexes.

Let ω be an open and bounded polygon or polyhedron with ω contractible. Following Ziegler [53, Defini-
tion 5.1 and Examples 5.2.(iii)], we define a d-dimensional simplicial complex Tω as a nonempty finite set
composed of closed d′-dimensional simplices 0 ≤ d′ ≤ d set in Rd and covering ω such that (i) for K ∈ Tω,
a d′-dimensional simplex, all its d′′-dimensional faces, 0 ≤ d′′ ≤ d′ − 1, are in Tω; (ii) the intersection
K ∩L of K,L ∈ Tω is either empty or a d′′-dimensional face, 0 ≤ d′′ ≤ d′ − 1, of both K and L. We only
consider the so-called pure complexes where every simplex of dimension d′ < d is a d′-dimensional face of
some simplex K ∈ Tω of dimension exactly d. Thus, the present simplicial meshes are the d-simplices of
a pure d-dimensional simplicial complex set in a subdomain ω of Rd. Following Ziegler [53, Definition 8.1
and Remarks 8.3.(ii)] or Kozlov [40, Definition 12.1], we define:

Definition B.2 (Shelling of a simplicial complex). Let ω be an open and bounded polygon or polyhedron
with ω contractible. A shelling of a simplicial complex Tω with domain ω is an enumeration K1 . . .K|Tω| of
the d-dimensional simplices of Tω such that for all 1 < i ≤ |Tω|, the intersection of Ki with the previously
enumerated d-dimensional simplices is a nonempty collection of (d− 1)-dimensional faces of Ki.

Definition B.2 means that the intersection of Ki with the previously enumerated d-dimensional sim-
plices cannot be and cannot include mere points (if d = 2) and cannot be and cannot include mere points
or edges (if d = 3). The illustrations of not suitable enumerations of Figure 5 apply here as well: these are
not shellings. Indeed, the triangle K3 only shares a point with the previously enumerated triangles K1

and K2 (left), the tetrahedron K2 only shares an edge with the tetrahedron K1 (middle), and similarly
in the right figure, where in addition the tetrahedron K3 only shares mere edges with the tetrahedra
K1 and K2. Denote by Tω,i the simplicial complex formed by the d-dimensional simplices enumerated
before Ki, K1, . . .Ki−1, 1 ≤ i ≤ |Tω|. As a distinctive feature, shellability gives that the closure of the
underlying open domain of Tω,i is a triangulated manifold with boundary, more precisely a topological
d-ball (and in particular contractible), for any 1 ≤ i ≤ |Tω|, see Ziegler [52, proof of Proposition 2.4.(iv)]
or Chaumont-Frelet et al. [13, Lemma 7.5].

It turns our that the following crucial result holds true:

Lemma B.3 (Equivalence of suitable patch enumeration with shellability). Suitable enumeration of
Definition B.1 is equivalent with shelling of Definition B.2.

Proof. (i) Shellability =⇒ suitable patch enumeration. By definition, a mere point (d = 2, 3) or edge (d =
3) connection of Ki to the previously enumerated d-simplices is forbidden. This implies Definition B.1,
properties (i) and (ii), see Figure 5 for illustration. Next, the requirement that the intersection of Ki

with Tω,i is a nonempty collection of (d − 1)-dimensional faces of Ki implies that there are between 1
and d face neighbors of Ki which have been already enumerated. Finally, the fact that K|Tω| has a face
on the boundary ∂ω is a consequence of the fact that the last d-dimensional simplex in any shelling has
to be free, see, e.g. [52, proof of Proposition 2.4.(iv)].

(ii) Suitable patch enumeration =⇒ shellability. Since there are between 1 and d face neighbors of Ki

which have been already enumerated for 1 < i ≤ |Tω|, the intersection of Ki with Tω,i contains between 1
and d (d−1)-dimensional faces of Ki. Definition B.1, properties (i) and (ii) then imply that the previously
enumerated d-simplices did not have a mere point (d = 2, 3) or edge (d = 3) connection to the d-simplices
enumerated before.
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In two space dimensions, following Bing [7] or Ziegler [53, Examples 8.4.(i)], cf. also or Chaumont-
Frelet et al. [13, Lemma 7.11], the situation is simple:

Theorem B.4 (Shellability of simplicial complexes for d = 2). Let ω be an open and bounded polygon in
R2 with ω contractible. All simplicial complexes over ω are shellable.

In three space dimensions, a typical patch Tω from finite element mesh will also be shellable. However,
rigorously, the situation is much more complex:

Remark B.5 (Shellable simplicial complexes for d = 3). There holds:

� Any simplicial complex with at most 8 vertices is shellable, see Lutz [42, Corollary 6]. (It is conjec-
tured that any simplicial complex with at most 17 tetrahedra is shellable).

� There exists a nonshellable simplicial complex with 9 vertices and 18 tetrahedra, see Lutz [42]. A
nonshellable simplicial complex with 10 vertices and 21 tetrahedra with a graphical visualization is
given in Ziegler [52].

� Any Delaunay simplicial mesh (and more generally any regular simplicial mesh) is shellable, see
Ziegler [53, Definition 5.3 and Corollary 8.14].

� Simplicial complexes with many tetrahedra with respect to vertices are shellable (more precisely vertex-
decomposable), see [27, Theorem 1.1].

� Algorithms are available to decide whether a simplicial complex is shellable, see Moriyama [44],
Cook [20], and the web page https: // macaulay2. com/ doc/ Macaulay2/ share/ doc/ Macaulay2/

SimplicialDecomposability/ html/ index. html .
� In general, it is NP-complete to decide whether a given simplicial complex is shellable, see Goaoc et
al. [39] and Paták and Tancer [45].

� For every simplicial mesh, there exists a subdivision that is shellable, see Bruggesser and Mani [10,
Proposition 1]. Actually, Adiprasito and Benedetti [1, Theorem A] show that the barycentric refine-
ment (inserting a barycenter to each edge, face, and tetrahedron) is sufficient.

C p-stable broken H(div) polynomial extensions on patch sub-
domains

We summarize here our results on p-stable broken H(div) polynomial extensions on patch subdomains.

C.1 Available results

First p-stable H(div) polynomial extensions on a single triangle or tetrahedron have been achieved in
Ainsworth and Demkowicz [2], Demkowicz et al. [26], and Costabel and McIntosh [21], see also the
references therein. Let K be a triangle or a tetrahedron and let p ≥ 0. Let τK ∈ RTp(K) be a volume
datum, rK ∈ Pp(K) a target divergence, and rF ∈ Pp(F ) a target normal trace; the latter is prescribed
on FN

K , a subset of all (d − 1)-dimensional faces of K, possibly empty or containing some or all faces
of K. The combination of the above-cited normal trace and divergence liftings allows to prove, see [33,
Lemma A.3], that

min
vp∈RTp(K)
∇·vp=rK

vp·nK=rF on all F∈FN
K

∥τK − vp∥K ≲ min
v∈H(div,K)

∇·v=rK
v·nK=rF on all F∈FN

K

∥τK − v∥K , (C.1)

where the hidden constant only depends on the shape-regularity parameter κK of the element K and the
space dimension d (the form (C.1) follows from [33, Lemma A.3] by a shift by τK). On H(div,K), the
normal trace condition is understood by duality as in (2.4). When FN

K is composed of all faces of K, the
Neumann compatibility condition ∑

F∈FN
K

⟨rF , 1⟩F = (rK , 1)K

needs to be satisfied.
Later, p-stable broken polynomial extension achieved similar results as (C.1) but on patches of ele-

ments, where, crucially, the datum τhp is a piecewise (broken Raviart–Thomas) polynomial. For vertex
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patches ωa and prescribed normal trace boundary conditions on ∂ωa, they have been established in
Braess et al. [9] in two space dimensions and in [33, Corollaries 3.3 and 3.8] (see also [16, Proposition 3.1
and Corollary 4.1]) in three space dimensions.

C.2 Larger patches and no boundary conditions

We now extend the above results in two directions: for larger patches ω and without prescription of
normal trace boundary conditions on ∂ω. In our application on step (vii) of the proof of Lemma 5.3, we
employ this result for to ω = ω̃K and ω = ω̃a when away from the Neumann boundary ΓN; treatment of
the boundary case is postponed to Section C.3.

Theorem C.1 (p-stable broken H(div) polynomial extension on larger patches and without boundary
conditions). Let Tω be a simplicial mesh with the corresponding open, bounded, and Lipschitz polygon or
polyhedron ω ⊂ Rd, d = 2, 3, with ω contractible. Let τhp ∈ RTp(Tω) and rhp ∈ Pp(Tω) be respectively a
volume datum, a broken Raviart–Thomas vector-valued piecewise polynomial, and a target divergence, a
scalar-valued piecewise polynomial, of degree p ≥ 0. Then

min
vp∈RTp(Tω)∩H(div,ω)

∇·vp=rhp

∥τhp − vp∥ω ≲ min
v∈H(div,ω)
∇·v=rhp

∥τhp − v∥ω, (C.2)

where the constant hidden in ≲ only depends on the mesh shape-regularity parameter κTω := maxK∈Tω κK ,
the ratio hω/minK∈Tω hK , and the space dimension d.

Proof for d = 2. The case d = 2 can be handled as the first case for d = 3 below, since in two space
dimensions, thanks to Theorem B.4 and Lemma B.3, a suitable enumeration of Tω as per Definition B.1
always exists.

Proof for d = 3 when a suitable enumeration as per Definition B.1 exists. We will follow [33, Section 6],
see also [16, Section 6.4]. Let

v⋆ := arg min
v∈H(div,ω)
∇·v=rhp

∥τhp − v∥ω (C.3)

denote the infinite-dimensional H(div, ω) minimizer of the right-hand side of (C.2). We present a con-
structive proof of (C.2) which proceeds along the enumeration of Definition B.1. On each element Ki,
1 ≤ i ≤ |Tω|, we in particular construct a suitable minimizer ξi ∈ RTp(Ki) and we gradually set

ξhp|Ki := ξi. (C.4)

We then verify that
ξhp ∈ RTp(Tω) ∩H(div, ω) with ∇·ξhp = rhp (C.5)

and that
∥τhp − ξhp∥ω ≲ ∥τhp − v⋆∥ω, (C.6)

which establishes (C.2). More precisely, on each step 1 ≤ i ≤ |Tω|, we will verify that

∥τhp − ξi∥Ki ≲ ∥τhp − v⋆∥ω. (C.7)

This yields (C.6) up to a constant depending on the shape-regularity parameter κTω of the mesh Tω, the
ratio hω/minK∈Tω hK , and the space dimension d. Moreover, as ∇·ξi = rhp|Ki and since ξi will have its
normal trace prescribed by ξj on the previously enumerated Kj , ξhp will have no normal trace jumps
and (C.5) follows. We proceed along the enumeration 1 ≤ i ≤ |Tω| of Definition B.1 and consider different
cases.

(i) On the first element K1, let

ξ1 := arg min
vp∈RTp(K1)
∇·vp=rhp|K1

∥τhp − vp∥K1 . (C.8)

This is a well-posed problem. Crucially, since the data τhp|K1
and rhp|K1

in (C.8) are polynomial, we
know from (C.1) that we can pass to the infinite-dimensional level,

∥τhp − ξ1∥K1
≲ min

v∈H(div,K1)
∇·v=rhp|K1

∥τhp − v∥K1
. (C.9)
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Finally, since the infinite-dimensional minimizer v⋆ from (C.3) restricted to the element K1, v
⋆|K1

,
belongs to the minimization set on the right-hand side of (C.9) (please note that there are no normal
trace conditions in (C.9)), we obtain

∥τhp − ξ1∥K1
≲ ∥τhp − v⋆∥K1

, (C.10)

which immediately gives (C.7) for i = 1.
(ii) On each element Ki with exactly one face shared with some previously enumerated simplex, say

Fi,j shared with Kj , j < i, we consider

ξi := arg min
vp∈RTp(Ki)
∇·vp=rhp|Ki

vp·nKi=ξhp|Kj ·nKi on Fi,j

∥τhp − vp∥Ki . (C.11)

Please note that since j < i and by (C.4), ξhp|Kj is known. Then (C.11) is well-posed; there is in
particular no compatibility condition to verify, since the normal trace is only imposed on one face. We
now again employ (C.1). This yields

∥τhp − ξi∥Ki ≲ min
v∈H(div,Ki)
∇·v=rhp|Ki

v·nKi=ξhp|Kj ·nKi on Fi,j

∥τhp − v∥Ki . (C.12)

Unfortunately, now v⋆|Ki does not belong to the minimization set on the right-hand side of (C.12)
since there is a normal trace condition on the face Fi,j imposed. The fix is, for the moment, easy. Consider
the face neighbor Kj , the function v⋆ − ξhp on Kj (note that it is divergence-free), and map it to Ki by
the contravariant Piola transformation (see, e.g., [31, Section 9]) preserving the face Fi,j , say ψ, forming

v := v⋆|Ki −ψ−1((v⋆ − ξhp)|Kj ), (C.13)

see [33, equation (6.10)] for the details. This removes the normal trace of v⋆ and brings instead the
requested ξhp|Kj ·nKi (in appropriate weak sense), so that v from (C.13) now crucially belongs to the
minimization set on the right-hand side of (C.12). Consequently, we obtain

∥τhp − ξi∥Ki ≲ ∥τhp − v⋆|Ki +ψ−1((v⋆ − ξhp)|Kj )∥Ki . (C.14)

Finally, by the triangle inequality and the properties of the Piola transform (recall that we suppose shape
regularity of Tω)

∥τhp − v⋆|Ki +ψ−1((v⋆ − ξhp)|Kj )∥Ki
≤ ∥τhp − v⋆∥Ki + ∥ψ−1((v⋆ − ξhp)|Kj )∥Ki
≲ ∥τhp − v⋆∥Ki + ∥v⋆ − ξhp∥Kj
≤ ∥τhp − v⋆∥Ki + ∥τhp − v⋆∥Kj + ∥τhp − ξhp∥Kj
≲ ∥τhp − v⋆∥ω,

(C.15)

where, in the last estimate, we have employed (C.7) in Kj , which has been established previously since
j < i. Thus (C.7) is established.

(iii) On each element Ki with exactly two faces shared with some previously enumerated simplices,
say Fi,j shared with Kj , j < i, and Fi,k shared with Kk, k < i, we consider

ξi := arg min
vp∈RTp(Ki)
∇·vp=rhp|Ki

vp·nKi=ξhp|Kj ·nKi on Fi,j

vp·nKi=ξhp|Kk ·nKi on Fi,k

∥τhp − vp∥Ki . (C.16)

Again, since j < i and k < i and by (C.4), ξhp|Kj and ξhp|Kk are known. Then (C.16) is well-posed;
there is again no compatibility condition to verify, since the normal trace is only imposed on two faces.
We then again employ (C.1), which now yields

∥τhp − ξi∥Ki ≲ min
v∈H(div,Ki)
∇·v=rhp|Ki

v·nKi=ξhp|Kj ·nKi on Fi,j

v·nKi=ξhp|Kk ·nKi on Fi,k

∥τhp − v∥Ki . (C.17)

26



As above in step (ii), the continuous-level minimizer v⋆ from (C.3) restricted to Ki does not belong to
the minimization set on the right-hand side of (C.17) since there are two normal trace conditions on the
two faces Fi,j and Fi,k imposed. Crucially, by property (i) of Definition B.1 on the enumeration, all the
simplices sharing the edge e common to the two faces Fi,j and Fi,k come sooner in the enumeration and
the edge e lies in the interior of ω. This enables to construct a suitable v in this sprit of (C.13) but which
now involves Piola mappings from all the simplices sharing the edge e except for Ki. This is done in a “2-
folding” way which replaces v⋆·nKi on Fi,j and Fi,k (in a proper weak sense) by respectively ξhp|Kj ·nKi
and ξhp|Kk ·nKi ; the precise formula is [33, equation (6.12)]. Existence of a two-color refinement around
edges of [33, Lemma B.2] is crucial at this step. Then (C.7) is established similarly to (C.15).

(iv) Finally, on each element Ki with exactly three faces shared with some previously enumerated
simplices, say Fi,j shared with Kj , j < i, Fi,k shared with Kk, k < i, and Fi,l shared with Kl, l < i, we
consider

ξi := arg min
vp∈RTp(Ki)
∇·vp=rhp|Ki

vp·nKi=ξhp|Kj ·nKi on Fi,j

vp·nKi=ξhp|Kk ·nKi on Fi,k
vp·nKi=ξhp|Kl ·nKi on Fi,l

∥τhp − vp∥Ki . (C.18)

Again, all ξhp|Kj , ξhp|Kk , and ξhp|Kl are known at this stage. Then (C.18) is well-posed; there is still no
compatibility condition to verify, since the normal trace is only imposed on three of the four faces of Ki.
Employing once more (C.1), we have

∥τhp − ξi∥Ki ≲ min
v∈H(div,Ki)
∇·v=rhp|Ki

v·nKi=ξhp|Kj ·nKi on Fi,j

v·nKi=ξhp|Kk ·nKi on Fi,k
v·nKi=ξhp|Kl ·nKi on Fi,l

∥τhp − v∥Ki . (C.19)

As above in steps (ii) and (iii), the infinite-dimensional minimizer v⋆|Ki does not belong to the
minimization set on the right-hand side of (C.19) since there are three normal trace conditions on the
three faces Fi,j , Fi,k, and Fi,l imposed. Crucially, by property (ii) of Definition B.1 on the enumeration,
all the simplices sharing the vertex a common to the three faces Fi,j , Fi,k, and Fi,l come sooner in the
enumeration and the vertex a lies in the interior of ω. This enables to construct a suitable v in this sprit
of (C.13) but which now involves Piola mappings from all the simplices sharing the vertex a except for
Ki. This is done in a “3-folding” way; the precise formula is the equivalent of [33, equation (5.14)] in the
H(div) case. Existence of a three-color refinement around vertices of [33, Lemma B.3] is crucial at this
step. Then (C.7) is established similarly to (C.15).

Proof for d = 3 when a suitable enumeration as per Definition B.1 does not exist. First recall from Re-
mark B.5 and Lemma B.3 that situations where a suitable enumeration as per Definition B.1 does not
exist can arise. For the proof in this case, we will use Adiprasito and Benedetti [1, Theorem A] and the
results from [33, 16] on vertex patches (only given by elements sharing a given vertex) to transfer the
situation to the above proof with mesh enumerated as per Definition B.1.

Suppose that Tω has no suitable enumeration as per Definition B.1, i.e., invoking Lemma B.3, there
exists no shelling as per Definition B.2. Let Tω be the barycentric refinement of Tω, i.e., the tetrahedral
submesh of Tω obtained by inserting a barycenter to each edge, face, and tetrahedron in Tω, where the
new tetrahedra in each tetrahedron K ∈ Tω have the barycenter of K as vertex, see Figure 6, left.
From Adiprasito and Benedetti [1, Theorem A] we know that Tω has a shelling as per Definition B.2.
Consequently, from the above proof for shellable meshes, we know that

min
vp∈RTp(Tω)∩H(div,ω)

∇·vp=rhp

∥τhp − vp∥ω ≲ min
v∈H(div,ω)
∇·v=rhp

∥τhp − v∥ω. (C.20)

Let us denote by v⋆p the (unique) minimizer on the left-hand side of (C.20). From v⋆p, piecewise polynomial

with respect to the barycentric refined mesh Tω, we now construct ξhp ∈ RTp(Tω) ∩ H(div, ω) with
∇·ξhp = rhp, piecewise polynomial with respect to the original mesh Tω, by passing through all vertices
a ∈ V of the original mesh Tω and considering the vertex patches Ta, cf. Figure 6, middle. We show that
ξhp has a comparable precision to v⋆p in that

∥τhp − ξhp∥ω ≲ ∥τhp − v⋆p∥ω. (C.21)
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Figure 6: Barycentric refinement of a tetrahedron K ∈ Tω with vertices a1,a2,a3,a4 (left), vertex patch
Ta1

with vertices of the barycentric refinement indicated in the tetrahedron K (middle), tetrahedron K
with 6 subtetrahedra sharing a1 (right)

Thus, from (C.20)–(C.21), we conclude

min
vp∈RTp(Tω)∩H(div,ω)

∇·vp=rhp

∥τhp − vp∥ω ≤ ∥τhp − ξhp∥ω ≲ ∥τhp − v⋆p∥ω ≲ min
v∈H(div,ω)
∇·v=rhp

∥τhp − v∥ω, (C.22)

which is the desired result (C.2).

Let us enumerate the vertices from V as a1, . . . ,a|V|. There is no specific order. We define a sequence

of tetrahedral meshes Tω,i of ω, 0 ≤ i ≤ |V|. We set Tω,0 := Tω, the barycentric refinement mesh. For
all 1 ≤ i ≤ |V|, Tω,i coincides with Tω,i−1 on ω \ ωai and coarsens Tω,i−1 inside ωai . On the last step,
Tω,|V| = Tω, the original mesh. More precisely, let i = 1. Then the patch subdomain ωa1

is formed by
tetrahedra from Ta1

sharing the vertex a1, see Figure 6, middle, with barycentric refinement as displayed
in Figure 6, left. The mesh Tω,1 is created by coarsening of Tω,0 inside ωa1

where each K ∈ Ta1
is now

only refined into 6 tetrahedra having a1 as vertex in place of the barycentric refinement, as indicated
in Figure 6, right. Note that Tω,1 is indeed a coarsening of Tω,0 and keeps the triangles on those faces
from ∂ωa1 that do not share the vertex a1 intact. For i > 1, we proceed similarly, always keeping
the subtriangulation of those mesh faces on the boundary of ωai that do not share the vertex ai, but
coarsening Tω,i−1 inside ωai . With respect to the original mesh Tω, the arising Tω,i 1) adds no barycenter
of a tetrahedron from Tω having ai as vertex; 2) adds no barycenter of a face from Tω having ai as vertex;
3) adds no barycenter of an edge from Tω having ai as vertex. Thus, after passing through all vertices
ai from Tω, we indeed recover in Tω,|V| the original mesh Tω.

We now construct a sequence of piecewise polynomials ξi ∈ RTp(Tω,i) ∩H(div, ω) with ∇·ξi = rhp,
0 ≤ i ≤ |V|. We set ξ0 := v⋆p, the minimizer on the barycentric refined mesh from (C.20). On each step

1 ≤ i ≤ |V|, we set ξi = ξi−1 on ω \ ωai (recall that Tω,i coincides with Tω,i−1 on ω \ ωai) and let

ξi|ωai
:= arg min

vp∈RTp(Tω,i|ωai
)∩H(div,ωai

)

∇·vp=rhp
vp·nωai

=ξi−1·nωai
on faces from ∂ωai

not sharing ai

∥τhp − vp∥ωai
. (C.23)

Crucially, (C.23) is an energy minimization on a vertex patch Tω,i|ωai
with the volume data τhp|ωai

and

rhp from respectively the piecewise polynomial spaces RTp(Tω,i|ωai
) and Pp(Tω,i|ωai

) (since piecewise
polynomials on the original mesh Tω) and with the Neumann boundary datum ξi−1·nωai

from the normal

trace of RTp(Tω,i|ωai
) on ∂ωai . The Neumann equilibrium condition is also clearly satisfied whenever no

face from ∂ωai shares the vertex ai, since it is given by ξi−1 whose divergence is rhp. Thus, using [33,
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Corollaries 3.3 and 3.8] or [16, Corollary 4.1], we obtain

∥τhp − ξi∥ωai
≲ min

v∈H(div,ωai
)

∇·v=rhp
v·nωai

=ξi−1·nωai
on faces from ∂ωai

not sharing ai

∥τhp − vp∥ωai

≤ ∥τhp − ξi−1∥ωai
,

(C.24)

where the second estimate follows as ξi−1|ωai
lies inH(div, ωai) and satisfies the divergence and Neumann

boundary constraints. We can now conclude by two observations: 1) ξ|V| lies in RTp(Tω) ∩H(div, ω)
defined over the original mesh Tω and satisfies ∇·ξ|V| = rhp, so that we can take ξhp := ξ|V|; 2) (C.24)
gives ∥τhp − ξi∥ω ≲ ∥τhp − ξi−1∥ω, which yields the requested inequality (C.21) since |V|, the number of
vertices in Tω, is bounded by the shape-regularity parameter κTω and the ratio hω/minK∈Tω hK .

C.3 Extended vertex and element patches and boundary conditions

We now finally formulate the result precisely in the form needed on step (vii) of the proof of Lemma 5.3.

Corollary C.2 (p-stable broken H(div) polynomial extension on extended vertex or element patches).

Let a ∈ Vh or K ∈ Th. Consider the extended vertex patch T̃a or the extended element patch T̃K as
per Section 2.2, denoted by Tω, with the associated open subdomain ω. Let Assumption 3.1 hold. Let
τhp ∈ RTp(Tω) and rhp ∈ Pp(Tω) be respectively a volume datum, a broken Raviart–Thomas vector-valued
piecewise polynomial, and a target divergence, a scalar-valued piecewise polynomial. Then

min
vp∈RTp(Tω)∩H0,N(div,ω)

∇·vp=rhp

∥τhp − vp∥ω ≲ min
v∈H0,N(div,ω)

∇·v=rhp

∥τhp − v∥ω, (C.25)

where the constant hidden in ≲ only depends on the mesh shape-regularity parameter κTω := maxK∈Tω κK
and the space dimension d.

Proof. Let ω have no face on the Neumann boundary ΓN, |∂ω ∩ ΓN| = 0. Then (C.25) follows by
Theorem C.1; note that the ratio hω/minL∈Tω hL for an extended vertex or element patch Tω only
depends on the shape-regularity parameter κTω . In the case |∂ω ∩ ΓN| ̸= 0 but when the boundary of ω
does not coincide with the whole Neumann boundary ΓN, one can proceed following [33, Section 7], [16,
Section 7], and the proof of Theorem C.1, case d = 3 when Tω has no shelling as per Definition B.2. Here,
one designs a sequence of mappings where one can deduce the validity of (C.25) in the case |∂ω∩ΓN| ≠ 0
from the case |∂ω ∩ ΓN| = 0.

D Seemingly overconstrainedRTp∩H(div) minimization on patch
subdomains

We summarize here our results on seemingly overconstrained RTp ∩ H(div) minimization on patch
subdomains.

D.1 Larger patches and no boundary conditions

We extend here the results of [15, Appendix A] in two directions: for larger patches ω and without
prescription of normal trace boundary conditions on ∂ω. In our application on step (v) of the proof of
Lemma 5.3, this corresponds to ω = ω̃K or ω = ω̃a, the case where ∂ω does not contain any face from
ΓN; treatment of the other (boundary) cases is postponed to Section D.2.

Assumption D.1 (Data for seemingly overconstrained minimization). The volume datum τhp and the
target divergence rhp satisfy

rhp ∈ Pp(Tω), τhp ∈ RTp(Tω), (D.1a)

(τhp,∇qh)ω + (rhp, qh)ω = 0 ∀qh ∈ P1(Tω) ∩H1
0 (ω), (D.1b)

i.e., rhp is a broken (piecewise) p-degree polynomial and τhp is a broken Raviart–Thomas piecewise poly-
nomial that are “weakly divergence compatible” for homogeneous continuous piecewise affine polynomials.
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Theorem D.2 (Seemingly overconstrained minimization in the Raviart–Thomas spaces on larger patches
and without boundary conditions). Let Tω be a simplicial mesh with the corresponding open, bounded,
and Lipschitz polygon or polyhedron ω ⊂ Rd, d = 2, 3, with ω contractible. Let p ≥ 1 and let τhp and rhp
satisfy Assumption D.1. Then

min
vp∈RTp(Tω)∩H(div,ω)

∇·vp=rhp
(vp,rh)K=(τhp,rh)K ∀rh∈[P0(K)]d, ∀K∈Tω

∥τhp − vp∥ω ≲ min
vp∈RTp(Tω)∩H(div,ω)

∇·vp=rhp

∥τhp − vp∥ω, (D.2)

where both problems have a unique solution and where the constant hidden in ≲ only depends on the mesh
shape-regularity parameter κTω := maxK∈Tω κK , the ratio hω/minK∈Tω hK , and the space dimension d.

Proof. We present (an outline of) the proof for d = 3; the two-dimensional case is (much) easier. We
follow [15, Appendix A]. Let θp denote the minimizer on the left-hand side of (D.2) and θp the minimizer
on the right-hand side of (D.2). As the existence and uniqueness of θp is standard, cf., e.g., [8, 24], we
need to show the existence and uniqueness of θp together with

∥τhp − θp∥ω ≲ ∥τhp − θp∥ω. (D.3)

(i) Let
εh := arg min

vh∈RT1(Tω)∩H(div,ω)
∇·vh=0

(vh,rh)K=(τhp−θp,rh)K ∀rh∈[P0(K)]d, ∀K∈Tω

∥τhp − θp − vh∥ω. (D.4)

Note that εh is a low-(first-)order Raviart–Thomas piecewise polynomial. We will show its existence and
uniqueness and the stability estimate

∥εh∥ω ≲ ∥τhp − θp∥ω (D.5)

below in step (ii). Then, shifting θp by εh,

θp + εh ∈ RTp(Tω) ∩H(div, ω) with ∇·(θp + εh) = rhp

(θp + εh, rh)K = (τhp, rh)K ∀rh ∈ [P0(K)]d, ∀K ∈ Tω.

Thus, θp + εh belongs to the minimization set on the left-hand side of (D.2). Since this minimization is
convex, this establishes the existence and uniqueness of θp. Moreover,

∥τhp − θp∥ω ≤ ∥τhp − θp − εh∥ω ≤ ∥τhp − θp∥ω + ∥εh∥ω
(D.5)

≲ ∥τhp − θp∥ω,

which is the desired result (D.3).
(ii) To establish the existence and uniqueness of εh from (D.4), we need to show that the minimization

set in (D.4) is not empty. By (D.1b) and by the Green theorem, recalling that θp ∈ RTp(Tω)∩H(div, ω)
with ∇·θp = rhp, we see that the datum τhp − θp satisfies

(τhp − θp,∇qh)ω = −(rhp, qh)ω + (rhp, qh)ω = 0 ∀qh ∈ P1(Tω) ∩H1
0 (ω).

This is a set of the form studied in [15, Lemma A.5] on vertex patches Ta and with zero normal trace
boundary conditions on ∂ωa. This proof generalizes to the current setting just as that of the proof of
Theorem C.1. As for the stability estimate (D.5), please note that τhp − θp is the only datum in prob-
lem (D.4), which implies (D.5) up to a generic constant with unknown dependencies. The fact that these
dependencies only include the shape-regularity parameter κTω of the mesh Tω, the ratio hω/minK∈Tω hK ,
and the space dimension d follows by scaling arguments as in [15, Proof of Lemma A.4]; the fact that εh
is merely a first-order Raviart–Thomas piecewise polynomial is decisive for p-robustness.

D.2 Extended vertex and element patches and boundary conditions

We now finally formulate the result precisely in the form needed on step (v) of the proof of Lemma 5.3.
The proof follows that of Lemma C.2.
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Corollary D.3 (Seemingly overconstrained minimization in the Raviart–Thomas spaces on extended

vertex or element patches). Let a ∈ Vh or K ∈ Th. Consider the extended vertex patch T̃a or the

extended element patch T̃K as per Section 2.2, denoted by Tω, with the associated open subdomain ω. Let
Assumption 3.1 hold. Let, for p ≥ 1,

rhp ∈ Pp(Tω), τhp ∈ RTp(Tω), (D.6a)

(τhp,∇qh)ω + (rhp, qh)ω = 0 ∀qh ∈ P1(Tω) ∩H1
0,∂ω\ΓN

(ω). (D.6b)

Then

min
vp∈RTp(Tω)∩H0,N(div,ω)

∇·vp=rhp
(vp,rh)K=(τhp,rh)K ∀rh∈[P0(K)]d, ∀K∈Tω

∥τhp − vp∥ω ≲ min
vp∈RTp(Tω)∩H0,N(div,ω)

∇·vp=rhp

∥τhp − vp∥ω, (D.7)

where the constant hidden in ≲ only depends on the mesh shape-regularity parameter κTω := maxK∈Tω κK
and the space dimension d.
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