p-robust equivalence of global continuous constrained and local discontinuous unconstrained approximation, a p-stable local commuting projector, and optimal elementwise $h p$ approximation estimates in H (div)

Leszek F. Demkowicz, Martin Vohralík

To cite this version:

Leszek F. Demkowicz, Martin Vohralík. p-robust equivalence of global continuous constrained and local discontinuous unconstrained approximation, a p-stable local commuting projector, and optimal elementwise $h p$ approximation estimates in H (div). 2024. hal-04503603

HAL Id: hal-04503603
https://inria.hal.science/hal-04503603
Preprint submitted on 13 Mar 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

p-robust equivalence of global continuous constrained and local discontinuous unconstrained approximation, a p-stable local commuting projector, and optimal elementwise $h p$ approximation estimates in \boldsymbol{H} (div)*

Leszek Demkowicz ${ }^{\dagger} \quad$ Martin Vohralík ${ }^{\ddagger \S}$

March 13, 2024

Abstract

Let a Lipschitz polygon or polyhedron Ω, a function \boldsymbol{v} in the Sobolev space $\boldsymbol{H}(\operatorname{div}, \Omega)$, and a simplicial mesh of Ω be given. We prove the equivalence of two piecewise (Raviart-Thomas) polynomial best approximations of $\boldsymbol{v}: 1$) globally on the whole computational domain Ω, with the normal trace continuity requirement and a divergence constraint; 2) locally on each mesh element, without any interelement continuity requirement and without any constraint on the divergence. The former (global-best continuous constrained piecewise polynomial approximation) arises in numerical methods for partial differential equations related to the $\boldsymbol{H}(\operatorname{div}, \Omega)$ space, whereas the latter (local-best discontinuous unconstrained piecewise polynomial approximation) is a key quantity in approximation theory. Crucially, we establish p-robustness in that the equivalence constant only depends on the mesh shape regularity and the spatial dimension. This improves the recent result of [IMA J. Numer. Anal. 42 (2022), 1023-1049], where the equivalence constant was possibly dependent on the underlying polynomial degree. Consequently, we obtain fully h - and p - (mesh-size- and polynomial-degree-) optimal approximation estimates under the minimal Sobolev regularity only requested separately on each mesh element. These two results immediately follow by our construction of an operator from the infinite-dimensional Sobolev space $\boldsymbol{H}(\operatorname{div}, \Omega)$ to its finite-dimensional Raviart-Thomas subspace that has the following properties: 1) it is defined over the entire $\boldsymbol{H}(\operatorname{div}, \Omega)$ and preserves boundary conditions imposed on a part of the boundary of $\Omega ; 2$) it is defined locally in a neighborhood of each mesh element; 3) it is based on elementwise \boldsymbol{L}^{2}-orthogonal polynomial projections; 4) it is a projector, i.e., it leaves intact objects that are already in the Raviart-Thomas piecewise polynomial space; 5) it is locally and p-robustly stable in the \boldsymbol{L}^{2}-norm, up to $h p$ data oscillation; 6) its approximation property is locally and p-robustly equivalent to that of the discontinuous unconstrained (elementwise \boldsymbol{L}^{2}-orthogonal) projection; 7) it satisfies the commuting property with the L^{2}-orthogonal projection onto piecewise polynomials.

Key words: Sobolev space \boldsymbol{H} (div), best approximation, continuous approximation, discontinuous approximation, Raviart-Thomas space, local-global equivalence, constrained-unconstrained equivalence, minimal regularity, elementwise regularity, commuting projector, $h p$ finite elements, error bound, poly-nomial-degree robustness

1 Introduction

For the space dimension $d=2,3$, let $\Omega \subset \mathbb{R}^{d}$ be an open Lipschitz polygonal or polyhedral domain. Let $\boldsymbol{H}(\operatorname{div}, \Omega)$ be the Sobolev space of functions square-integrable together with their weak divergences, cf. Girault and Raviart [31], Ern and Guermond [25], or Demkowicz [18]. Let a shape-regular simplicial mesh \mathcal{T}_{h} of Ω and a polynomial degree $p \geq 0$ be fixed (details on the setting and notation are given in Section 2 below).

[^0]
1.1 Commuting projectors under minimal regularity

In analysis of numerical methods related to the $\boldsymbol{H}(\operatorname{div}, \Omega)$ space, a crucial role is played by the design of operators $\boldsymbol{P}_{h p}^{\text {div }}$ and $\Pi_{h p}$ such that

$$
\begin{array}{lll}
\boldsymbol{H}_{0, \mathrm{~N}}(\mathrm{div}, \Omega) & \xrightarrow{\nabla \cdot} & L^{2}(\Omega) \\
\mid \boldsymbol{P}_{h p}^{\mathrm{div}} & & \mid \Pi_{h p} \\
\rho\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}(\mathrm{div}, \Omega) & \xrightarrow{\nabla \cdot} & \mathcal{P}_{p}\left(\mathcal{T}_{h}\right) \cap L_{*}^{2}(\Omega) .
\end{array}
$$

(commuting projector under minimal regularity)
Here, particularly, $\boldsymbol{P}_{h p}^{\text {div }}$ needs to be defined over the entire infinite-dimensional space $\boldsymbol{H}(\operatorname{div}, \Omega)$, which excludes the so-called canonical Raviart-Thomas projector, cf. [6, 19, 34]. Moreover, $\boldsymbol{P}_{h p}^{\text {div }}$ needs to be a projector, i.e., leave intact objects that are already in the Raviart-Thomas piecewise polynomial space $\boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$ and commute in the form expressed in (1.1), which excludes Clémenttype [15] (quasi-)interpolation. Moreover, $\boldsymbol{P}_{h p}^{\text {div }}$ should be defined locally, in a neighborhood of each mesh element, and $\Pi_{h p}$ should be the L^{2}-orthogonal projection onto piecewise p-degree polynomials. A seminal contribution in this direction is that Falk and Winther [27], following Christiansen and Winther [14] (locality is not devised) and followed by Ern and Guermond [23, 24] (locality or commuting is not devised), Licht [32] (locality is not devised), Arnold and Guzmán [2] ($\Pi_{h p}$ is not the L^{2}-orthogonal projection onto piecewise p-degree polynomials), and Gawlik et al. [30] (commuting is not devised), with some most recent developments presented in Falk and Winther [29]. As stated, (1.1) is achieved in Ern et al. [22, Theorem 3.2].

$1.2 h p$ approximation estimates in $\boldsymbol{H}(\operatorname{div}, \Omega)$

In addition the properties discussed above, $\boldsymbol{P}_{h p}^{\text {div }}$ from (1.1) should also have correct approximation properties, and this both with respect to the mesh size h and the polynomial degree p. Here, h-approximation is customary but p-approximation is much more seldom, as more difficult. Up to logarithmic factors in p, the latter was achieved in particular in Demkowicz and Buffa [20] and Demkowicz [17]. These logarithmic factors were removed in Bespalov and Heuer [5] and then in Melenk and Rojik [33] when working with weaker norms/higher regularity. In these references, in any case, $\boldsymbol{P}_{h p}^{\text {div }}$ is not defined over the entire $\boldsymbol{H}(\operatorname{div}, \Omega)$. This is rectified in [22, Theorem 3.6].

1.3 Local-best-global-best and constrained-unconstrained equivalences

Following the seminal contribution by Veeser [36], with some predecessor results in Carstensen et al. [9, Theorem 2.1 and inequalities (3.2), (3.5), and (3.6)] and Aurada et al. [3, Proposition 3.1], there holds an equivalence between the best approximation of an $H^{1}(\Omega)$ function globally on the whole computational domain Ω, with the trace continuity requirement, and locally on each mesh element, without any interelement continuity requirement. This result has been recently extended to the $\boldsymbol{H}(\operatorname{div}, \Omega)$-case in Ern et al. [22, Theorem 3.3] (see also Gawlik et al. [30] in the general context and [10, Theorems 1 and 2] and [13, Theorem 3.8] in the $\boldsymbol{H}(\operatorname{curl}, \Omega)$ context). Let $\boldsymbol{v} \in \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$, with, for simplicity for the moment, a piecewise polynomial divergence, $\nabla \cdot \boldsymbol{v} \in \mathcal{P}_{p}\left(\mathcal{T}_{h}\right)$. Then, the equivalence writes

$$
\begin{equation*}
\min _{\substack{\boldsymbol{v}_{h p} \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}(\mathrm{div}, \Omega) \\ \nabla \cdot \boldsymbol{v}_{h p}=\nabla \cdot \boldsymbol{v}}}\left\|\boldsymbol{v}-\boldsymbol{v}_{h p}\right\|^{2} \approx \sum_{K \in \mathcal{T}_{h}} \min _{\boldsymbol{v}_{p} \in \mathcal{R} \mathcal{T}_{p}(K)}\left\|\boldsymbol{v}-\boldsymbol{v}_{p}\right\|_{K}^{2}, \tag{1.2}
\end{equation*}
$$

(global continuous constrained - local discontinuous unconstrained equivalence)
It is to be noted that $\boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$-conformity (normal trace is continuous over mesh faces and vanishes on $\Gamma_{\mathrm{N}} \subset \partial \Omega$) and divergence constraints are requested on the left-hand side of (1.2), which is a global-best approximation over the entire Ω. In contrast, crucially, the local-best approximation on the right-hand side of (1.2) is discontinuous and unconstrained. The generic equivalence constant in (1.2) from [22, Theorem 3.3] depends on the mesh shape-regularity and the space dimension d, but, unfortunately also (unfavorably) on the polynomial degree p. In the $H^{1}(\Omega)$ context, similar (algebraic) p-dependence is obtained in [36] and has been improved to logarithmic in two space dimensions in Canuto et al. [8, Theorem 4]. The concurrent work [38] establishes the equivalent of (1.2) in the $H^{1}(\Omega)$-case with a p-independent (robust) equivalence constant.

1.4 Main results of this manuscript

The main results of this manuscript is a construction of an operator $\boldsymbol{P}_{h p}^{\text {div }}$ as in (1.1) such that: 1) it is defined over the entire $\boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$ and preserves boundary conditions imposed on the Neumann part Γ_{N} of the boundary of $\Omega ; 2$) it is defined locally in a neighborhood of each mesh element $K \in \mathcal{T}_{h} ; 3$) it is based on elementwise \boldsymbol{L}^{2}-orthogonal polynomial projections; 4) it is a projector, i.e., it leaves intact objects that are already in the Raviart-Thomas piecewise polynomial subspace of $\boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$,

$$
\begin{equation*}
\boldsymbol{P}_{h p}^{\mathrm{div}}(\boldsymbol{v})=\boldsymbol{v} \quad \forall \boldsymbol{v} \in \boldsymbol{\mathcal { R }}_{p}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega) \tag{1.3}
\end{equation*}
$$

(projection)
5) it is locally and p-robustly stable in the \boldsymbol{L}^{2}-norm, up to $h p$ data oscillation

$$
\begin{equation*}
\left\|\boldsymbol{P}_{h p}^{\mathrm{div}}(\boldsymbol{v})\right\|_{K}^{2} \lesssim \sum_{L \in \widetilde{\mathcal{T}}_{K}}\left\{\|\boldsymbol{v}\|_{L}^{2}+\left(\frac{h_{L}}{p+1}\left\|\nabla \cdot \boldsymbol{v}-\Pi_{h p}(\nabla \cdot \boldsymbol{v})\right\|_{L}\right)^{2}\right\} \tag{1.4}
\end{equation*}
$$

(\boldsymbol{L}^{2}-stability up to data oscillation)
where $\widetilde{\mathcal{T}}_{K}$ is an extended element patch consisting of two layers of vertex neighbors of $K \in \mathcal{T}_{h}$; note that the second term on the above right-hand side (called $h p$ data oscillation) vanishes if $\nabla \cdot \boldsymbol{v} \in \mathcal{P}_{p}\left(\mathcal{T}_{h}\right)$, yielding full \boldsymbol{L}^{2}-stability in this case; 6) its approximation property is locally and p-robustly equivalent to that of the discontinuous unconstrained (elementwise \boldsymbol{L}^{2}-orthogonal) projection:

$$
\begin{align*}
&\left\|\boldsymbol{v}-\boldsymbol{P}_{h p}^{\mathrm{div}}(\boldsymbol{v})\right\|_{K}^{2} \\
&+\left(\frac{h_{K}}{p+1}\left\|\nabla \cdot\left(\boldsymbol{v}-\boldsymbol{P}_{h p}^{\mathrm{div}}(\boldsymbol{v})\right)\right\|_{K}\right)^{2} \lesssim \sum_{L \in \widetilde{\mathcal{T}}_{K}}\left\{\min _{\boldsymbol{v}_{p} \in \mathcal{R} \mathcal{T}_{p}(L)}\left\|\boldsymbol{v}-\boldsymbol{v}_{p}\right\|_{L}^{2}\right. \\
&\left.+\left(\frac{h_{L}}{p+1}\left\|\nabla \cdot \boldsymbol{v}-\Pi_{h p}(\nabla \cdot \boldsymbol{v})\right\|_{L}\right)^{2}\right\} \tag{1.5}
\end{align*}
$$

(approximation equivalent to elementwise \boldsymbol{L}^{2}-orthogonal projector)
7) it satisfies the commuting property (1.1) with the L^{2}-orthogonal projection onto piecewise polynomials $\Pi_{h p}$. Crucially, the constant hidden in \lesssim in inequalities (1.4) and (1.5) above only depends on the local mesh shape-regularity given by $\max _{L \in \widetilde{\mathcal{T}}_{K}} \kappa_{L}$ with κ_{L} given by (2.1) below and on the space dimension d, in contrast to all references discussed in Section 1.1. All details are presented in Lemma 3.5 and Lemma 3.7 below. All proofs are complete in two space dimensions if Γ_{N} is empty. In three space dimensions or when Γ_{N} is non-empty, we need the technical Lemma 3.1 on enumeration of extended element patches. More severely, in three space dimensions, we also need Lemma 3.2 on the existence of a p-stable decomposition.

The properties of $\boldsymbol{P}_{h p}^{\text {div }}$ immediately lead to two important consequences. Let $\boldsymbol{v} \in \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$. First, (1.5) immediately implies (1.2) with the hidden constant independent of the polynomial degree p, crucially improving [22, Theorem 3.3]. The full version of this result, considering $\boldsymbol{v} \in \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$ with general non-polynomial divergence, is stated in Lemma 3.3.

Second, we establish

$$
\begin{align*}
& \min _{\substack{\boldsymbol{v}_{h p} \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega) \\
\nabla \cdot \boldsymbol{v}_{h p}=\Pi_{h p}(\nabla \cdot \boldsymbol{v})}}\left\|\boldsymbol{v}-\boldsymbol{v}_{h p}\right\|^{2}+\sum_{K \in \mathcal{T}_{h}}\left(\frac{h_{K}}{p+1}\left\|\nabla \cdot \boldsymbol{v}-\Pi_{h p}(\nabla \cdot \boldsymbol{v})\right\|_{K}\right)^{2} \tag{1.6}\\
\lesssim & \sum_{K \in \mathcal{T}_{h}}\left\{\left(\frac{h_{K}^{\min \left(s_{K}, p+1\right)}}{(p+1)^{s_{K}}}\|\boldsymbol{v}\|_{\boldsymbol{H}^{s_{K}(K)}}\right)^{2}+\left(\frac{h_{K}}{p+1} \frac{h_{K}^{\min \left(t_{K}, p+1\right)}}{(p+1)^{t_{K}}}\|\nabla \cdot \boldsymbol{v}\|_{H^{t_{K}(K)}}\right)^{2}\right\}
\end{align*}
$$

(optimal elementwise $h p$ approximation estimate)
whenever the function \boldsymbol{v} and its divergence \boldsymbol{v} additionally have, separately on each mesh element $K \in \mathcal{T}_{h}$, the Sobolev regularity

$$
\begin{equation*}
\left.\boldsymbol{v}\right|_{K} \in \boldsymbol{H}^{s_{K}}(K) \quad \text { and }\left.\quad(\nabla \cdot \boldsymbol{v})\right|_{K} \in H^{t_{K}}(K) \tag{1.7}
\end{equation*}
$$

with Sobolev regularity exponents $s_{K}, t_{K} \geq 0$ (down to the minimal regularity $s_{K}=t_{K}=0$). The bound (1.6) holds up to a constant that only depends on the mesh shape-regularity, the space dimension d, and the regularity exponents s_{K}, t_{K}; details form the content of Lemma 3.4. This improves the results
discussed in Section 1.2 in several directions: no logarithmic factors in p appear; no minimal regularity such as $\boldsymbol{v} \in \boldsymbol{H}^{s}(\Omega)$ with $s>0$ is imposed; no global regularity over the entire Ω or over patches appears: (1.7) only requests additional Sobolev regularity separately on each mesh element $K \in \mathcal{T}_{h}$; in particular, (1.6) improves [22, Theorem 3.6] where the regularity exponents s_{K} had to be constant over the entire computational domain Ω (and where a somewhat less sharper treatment of the divergence has been applied).

1.5 Crucial tools: polynomial extension operators and p-stable decompositions

There are two crucial tools used to obtain the above results. First, these are polynomial extension operators in the $\boldsymbol{H}(\operatorname{div}, \Omega)$ context, namely that of Ainsworth and Demkowicz [1] for a normal trace lifting on a triangle, that of Demkowicz et al. [21] for a normal trace lifting on a tetrahedron (cf. also the recent work of Falk and Winther [28] for a d-simplex), and finally that of Costabel and McIntosh [16] for a divergence lifting on a d-simplex. We more precisely employ their broken extensions on patches of elements, obtained in Ern and Vohralík [26, Theorems 2.3 and 2.5, Corollaries 3.3 and 3.8], following Braess et al. [7]. We then generalize these results further to larger (extended) patches and no trace boundary conditions. Second, these are p-robustly stable decompositions, where we will namely use that of Schöberl et al. [35] in two space dimensions.

1.6 Organization of this manuscript

We set up the notation in Section 2. We then present our main results in full details in Section 3, with the more involved proofs collected in Sections 4 and 5. We then present three independent results in the appendices. We first formulate the p-stable decomposition result from [35] in a form suitable for us in Appendix A. We then generalize the results from [26] to larger (extended) patches and no trace boundary conditions in Appendix B. We finally, in Appendix C, similarly extend the results of [12, Appendix A] concerning seemingly overconstrained minimizations on patch subdomains.

This contribution only concerns the $\boldsymbol{H}(\operatorname{div}, \Omega)$ case. The H^{1} case is studied in Vohralík [38], whereas $\boldsymbol{H}(\operatorname{curl}, \Omega)$ case will be addressed in Vohralík [39]. Both these references study locally varying polynomial degrees. For the sake of readability, we only present here the uniform polynomial degree case; all the present results extend to the varying polynomial degree case namely as in [39].

2 Setting and notation

We set here the context and notation.

2.1 Domain Ω, simplicial mesh \mathcal{T}_{h}, and patch subdomains ω

Let the computational domain $\Omega \subset \mathbb{R}^{d}, d=2,3$, be an open, bounded, and connected Lipschitz polygon or polyhedron. Let \mathcal{T}_{h} be a simplicial mesh of Ω, i.e., a collection of nontrivial closed triangles or tetrahedra K covering $\bar{\Omega}$, where the intersection of two different simplices is either empty or their common vertex, edge, or face. The shape-regularity parameters of the element and of the entire mesh \mathcal{T}_{h} are respectively given by

$$
\begin{equation*}
\kappa_{K}:=\frac{h_{K}}{\rho_{K}}, \quad \kappa_{h}:=\max _{K \in \mathcal{T}_{h}} \kappa_{K} \tag{2.1}
\end{equation*}
$$

where h_{K} is the diameter of the simplex K and ρ_{K} that of the largest ball contained in K. Uniformly bounded κ_{h} allows for families of strongly graded meshes with local refinements but not for anisotropic elements. Let the piecewise constant mesh-size function h be given by h_{K} on each $K \in \mathcal{T}_{h}$. Below, we reserve the notation $\omega \subset \mathbb{R}^{d}$, possibly with subscripts, for open, bounded, Lipschitz, and polygonal or polyhedral subdomains of Ω corresponding to a set of mesh elements from \mathcal{T}_{h} such that $\bar{\omega}$ is contractible (homotopic to a ball). The diameter of ω is denoted by h_{ω}.

2.2 Vertices, edges, faces, and patches of mesh elements

For a simplex $K \in \mathcal{T}_{h}$, denote by \mathcal{V}_{K} the set of its vertices, and let \mathcal{V}_{h} collect all mesh vertices. Generic vertices will be denoted by \boldsymbol{a} and \boldsymbol{b}. We will also work with mesh faces F, where, henceforth, "face" means " $(d-1)$-dimensional face", i.e., a face in three space dimensions and an edge in two space dimensions.

Figure 1: Vertex patch $\mathcal{T}_{\boldsymbol{a}}$ for a vertex $\boldsymbol{a} \in \mathcal{V}_{h}$ in the interior of Ω (left) and on the boundary of Ω (right), $d=2$

For a vertex $\boldsymbol{a} \in \mathcal{V}_{h}$, denote by $\mathcal{T}_{\boldsymbol{a}}$ the patch of the elements of \mathcal{T}_{h} that share \boldsymbol{a} and $\omega_{\boldsymbol{a}}$ the corresponding open subdomain. Illustration in two space dimensions is provided in Figure 1. We will also need the extended vertex patch $\widetilde{\mathcal{T}}_{a}$ and the corresponding subdomain $\widetilde{\omega}_{a}$; this includes \mathcal{T}_{a} and elements of all vertex patches $\mathcal{T}_{\boldsymbol{b}}$ of vertices \boldsymbol{b} from $\mathcal{T}_{\boldsymbol{a}}$, see Figure 2 (left). Equivalently, $\widetilde{\mathcal{T}}_{\boldsymbol{a}}$ is formed by those elements L from the mesh \mathcal{T}_{h} that share at least a vertex with an element $K \in \mathcal{T}_{\boldsymbol{a}}$. Similarly, for a simplex $K \in \mathcal{T}_{h}$, let $\widetilde{\mathcal{T}}_{K}$ be the extended element patch given by the union of $\widetilde{\mathcal{T}}_{a}$ over all vertices \boldsymbol{a} of the simplex K; this comprises K and all elements L sharing a vertex with K or with its vertex neighbor. The corresponding subdomain is denoted by $\widetilde{\omega}_{K}$; an illustration is provided in Figure 2 (right). There is a variety of scenarios that might occur; for instance, for a vertex/element in the interior of Ω, the (extended) vertex/element patch may touch the boundary $\partial \Omega /$ be "cropped" by the boundary $\partial \Omega$. All these cases are covered in our construction, though some with some additional assumptions, see Lemma 3.1. In the sequel, we will need to collect the vertices from respectively $\widetilde{\mathcal{T}}_{\boldsymbol{a}}$ and $\widetilde{\mathcal{T}}_{K}$ in the sets $\widetilde{\mathcal{V}}_{\boldsymbol{a}}$ and $\widetilde{\mathcal{V}}_{K}$. Diameters of respectively $\omega_{\boldsymbol{a}}$, $\widetilde{\omega}_{\boldsymbol{a}}$, and $\widetilde{\omega}_{K}$ are denoted by $h_{\omega_{a}}, h_{\widetilde{\omega}_{a}}$, and $h_{\widetilde{\omega}_{K}}$.

2.3 Hat functions and the partition of unity

Let $\boldsymbol{a} \in \mathcal{V}_{h}$ be an arbitrary mesh vertex. Then the continuous, piecewise first-order polynomial (affine) "hat" function $\psi^{\boldsymbol{a}}$ takes value 1 at the vertex \boldsymbol{a} and zero at all the other vertices. We note that $\omega_{\boldsymbol{a}}$ corresponds to the support of ψ^{a}, and that these functions form the partition of unity in that

$$
\begin{equation*}
\sum_{\boldsymbol{a} \in \mathcal{V}_{h}} \psi^{\boldsymbol{a}}=1 \tag{2.2}
\end{equation*}
$$

2.4 Boundary subsets Γ_{D} and Γ_{N}

Let Γ_{D} and Γ_{N} be two disjoint, relatively open, and possibly empty subsets of the computational domain boundary $\partial \Omega$ such that $\partial \Omega=\overline{\Gamma_{\mathrm{D}}} \cup \overline{\Gamma_{\mathrm{N}}}$. We also require that Γ_{D} and Γ_{N} have polygonal Lipschitz boundaries and we assume that each boundary face of the mesh \mathcal{T}_{h} lies entirely either in $\overline{\Gamma_{\mathrm{D}}}$ or in $\overline{\Gamma_{\mathrm{N}}}$.

2.5 The spaces \boldsymbol{H} (div) on the entire computational domain and on its subdomains

Let $\omega \subseteq \Omega$ be as in Section 2.1. We let $L^{2}(\omega)$ be the space of scalar-valued square-integrable functions defined on ω. We denote by $(v, w)_{\omega}:=\int_{\omega} v(\boldsymbol{x}) w(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}$ the $L^{2}(\omega)$ scalar product and by $\|\cdot\|_{\omega}$ the corresponding norm; we drop the index when $\omega=\Omega$. We also use the notation $L^{2}(\omega):=\left[L^{2}(\omega)\right]^{d}$ for vector-valued functions with each component in $L^{2}(\omega)$. This is equipped with the scalar product $(\boldsymbol{v}, \boldsymbol{v})_{\omega}:=\int_{\omega} \boldsymbol{v}(\boldsymbol{x}) \cdot \boldsymbol{w}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}$ and the corresponding norm. We again drop the index when $\omega=\Omega$. The central space for this study is $\boldsymbol{H}(\operatorname{div}, \omega)$, the space of vector-valued $\boldsymbol{L}^{2}(\omega)$ functions with weak divergences in $L^{2}(\omega), \boldsymbol{H}(\operatorname{div}, \omega):=\left\{\boldsymbol{v} \in \boldsymbol{L}^{2}(\omega) ; \nabla \cdot \boldsymbol{v} \in L^{2}(\omega)\right\}$, see Girault and Raviart [31], Ern and Guermond [25],

interior extended patch $\widetilde{\mathcal{T}}_{\boldsymbol{a}}$ and subdomain $\widetilde{\omega}_{\boldsymbol{a}}$

boundary extended patch $\widetilde{\mathcal{T}}_{K}$ and subdomain $\widetilde{\omega}_{K}$
に no-flow boundary Γ_{N}

Figure 2: Extended vertex patch $\widetilde{\mathcal{T}}_{\boldsymbol{a}}$ for a vertex $\boldsymbol{a} \in \mathcal{V}_{h}$ sufficiently in the interior of Ω (generated by the vertex patches $\mathcal{T}_{\boldsymbol{b}}$ of all vertices \boldsymbol{b} from $\mathcal{T}_{\boldsymbol{a}}$, marked by a square or a circle) (left) and extended element patch $\widetilde{\mathcal{T}}_{K}$ for an element $K \in \mathcal{T}_{h}$ on the boundary of Ω (generated by the vertex patches $\mathcal{T}_{\boldsymbol{b}}$ of all vertices \boldsymbol{b} marked by a square or a circle) (right), $d=2$
or Demkowicz [18]. We will employ the notation $\langle\cdot, \cdot\rangle_{S}$ for the integral product on boundary (sub)sets $S \subset \partial \omega$ or on mesh faces F, as well as for duality pairing when $S=\partial \omega$.

Let \boldsymbol{n}_{ω} be the unit normal vector on $\partial \omega$, outward to ω. If $\partial \omega$ does not contain any face from $\overline{\Gamma_{\mathrm{N}}}$, cf. Figure $2($ left $)$, let $\underline{\boldsymbol{H}_{0}, \mathrm{~N}}(\operatorname{div}, \omega):=\boldsymbol{H}(\operatorname{div}, \omega)$. In general, cf. Figure 2 (right) for an example of $\partial \omega$ containing faces from $\overline{\Gamma_{\mathrm{N}}}$, we let $\boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \omega)$ be the subspace of $\boldsymbol{H}(\operatorname{div}, \omega)$ formed by functions with vanishing normal trace on the faces in $\partial \omega \cap \overline{\Gamma_{\mathrm{N}}}$,

$$
\begin{equation*}
\boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \omega):=\left\{\boldsymbol{v} \in \boldsymbol{H}(\operatorname{div}, \omega) ; \boldsymbol{v} \cdot \boldsymbol{n}_{\omega}=0 \text { on }\left(\partial \omega \cap \Gamma_{\mathrm{N}}\right)^{\circ}\right\} \tag{2.3}
\end{equation*}
$$

which is understood by duality,

$$
\begin{equation*}
\boldsymbol{v} \cdot \boldsymbol{n}_{\omega}=0 \text { on }\left(\partial \omega \cap \Gamma_{\mathrm{N}}\right)^{\circ} \Longleftrightarrow(\boldsymbol{v}, \nabla \varphi)_{\omega}+(\nabla \cdot \boldsymbol{v}, \varphi)_{\omega}=0 \quad \forall \varphi \in H_{0, \partial \omega \backslash \Gamma_{\mathrm{N}}}^{1}(\omega) \tag{2.4}
\end{equation*}
$$

Here $H_{0, \partial \omega \backslash \Gamma_{\mathrm{N}}}^{1}(\omega)$ stands for all functions φ from the first-order Sobolev space $H^{1}(\omega)$ which vanish on the interior of $\partial \omega \backslash \Gamma_{\mathrm{N}}$ in the sense of traces.

Finally, for a vertex patch subdomain ω_{a}, cf. Figure 1, we will employ the specific notation $\boldsymbol{H}_{0, \mathrm{~N}, \psi^{a}}\left(\omega_{a}\right)$ for the subspace of $\boldsymbol{H}\left(\operatorname{div}, \omega_{\boldsymbol{a}}\right)$ with zero normal trace on those faces in $\partial \omega_{\boldsymbol{a}}$ where the hat function $\psi^{\boldsymbol{a}}$ vanishes (all $\partial \omega_{\boldsymbol{a}}$ for interior vertices) and which lie in the Neumann boundary $\overline{\Gamma_{\mathrm{N}}}$,

$$
\begin{equation*}
\boldsymbol{H}_{0, \mathrm{~N}, \psi^{a}}\left(\omega_{\boldsymbol{a}}\right):=\left\{\boldsymbol{v} \in \boldsymbol{H}\left(\operatorname{div}, \omega_{\boldsymbol{a}}\right) ; \boldsymbol{v} \cdot \boldsymbol{n}_{\omega_{\boldsymbol{a}}}=0 \text { on } \partial \omega_{\boldsymbol{a}} \cap\left\{\psi^{\boldsymbol{a}}=0\right\} \text { and }\left(\partial \omega_{\boldsymbol{a}} \cap \Gamma_{\mathrm{N}}\right)^{\circ}\right\} . \tag{2.5}
\end{equation*}
$$

In Figure 1, this respectively corresponds to the double line (for interior patches $\mathcal{T}_{\boldsymbol{a}}$, left) or to the double and zigzag lines (for boundary patches $\mathcal{T}_{\boldsymbol{a}}$, right). Similarly, for an arbitrary patch subdomain ω and a vertex $\boldsymbol{a} \in \bar{\omega}, \boldsymbol{H}_{0, \mathrm{~N}, \psi^{a}}\left(\omega_{\boldsymbol{a}} \cap \omega\right)$ stands for the subspace of $\boldsymbol{H}\left(\operatorname{div}, \omega_{\boldsymbol{a}} \cap \omega\right)$ with zero normal trace on those faces in $\partial\left(\omega_{\boldsymbol{a}} \cap \omega\right)$ where the hat function $\psi^{\boldsymbol{a}}$ vanishes or which lie in the Neumann boundary $\overline{\Gamma_{\mathrm{N}}}$,

$$
\begin{align*}
\boldsymbol{H}_{0, \mathrm{~N}, \psi^{\boldsymbol{a}}}\left(\omega_{\boldsymbol{a}} \cap \omega\right):= & \left\{\boldsymbol{v} \in \boldsymbol{H}\left(\operatorname{div}, \omega_{\boldsymbol{a}} \cap \omega\right) ; \boldsymbol{v} \cdot \boldsymbol{n}_{\omega_{\boldsymbol{a}} \cap \omega}=0\right. \tag{2.6}\\
& \text { on } \left.\partial\left(\omega_{\boldsymbol{a}} \cap \omega\right) \cap\left\{\psi^{\boldsymbol{a}}=0\right\} \text { and }\left(\partial\left(\omega_{\boldsymbol{a}} \cap \omega\right) \cap \Gamma_{\mathrm{N}}\right)^{\circ}\right\} .
\end{align*}
$$

This is as above in (2.5) with the exception of vertices \boldsymbol{a} on the boundary of ω : the normal trace of the functions from $\boldsymbol{H}_{0, \mathrm{~N}, \psi^{a}}\left(\omega_{\boldsymbol{a}} \cap \omega\right)$ does not have to vanish on $\partial\left(\omega_{\boldsymbol{a}} \cap \omega\right)$ unless this is a part of $\overline{\Gamma_{\mathrm{N}}}$, see $\omega_{\boldsymbol{b}_{\boldsymbol{a}}}$ highlighted by green north-western lines in Figure 3.

2.6 Piecewise polynomial spaces

Let $p \geq 0$ be a fixed polynomial degree. For a single simplex $K \in \mathcal{T}_{h}$, we denote by $\mathcal{P}_{p}(K)$ the space of scalar-valued polynomials on K of total degree at most p. The notation $\left[\mathcal{P}_{p}(K)\right]^{d}$ then stands for the space of vector-valued polynomials on K with each component in $\mathcal{P}_{p}(K)$. The Raviart-Thomas [6, 19, 34] space of degree p on K is given by

$$
\begin{equation*}
\boldsymbol{\mathcal { R }} \mathcal{T}_{p}(K):=\left[\mathcal{P}_{p}(K)\right]^{d}+\mathcal{P}_{p}(K) \boldsymbol{x}=\left[\mathcal{P}_{p}(K)\right]^{d} \oplus \widetilde{\mathcal{P}}_{p}(K) \boldsymbol{x} \tag{2.7}
\end{equation*}
$$

where $\widetilde{\mathcal{P}}_{p}(K)$ stands for homogeneous polynomials of degree p on K.
We will below extensively use the broken, piecewise polynomial spaces formed from the above element spaces

$$
\begin{aligned}
\mathcal{P}_{p}\left(\mathcal{T}_{h}\right) & :=\left\{v_{h p} \in L^{2}(\Omega) ;\left.v_{h p}\right|_{K} \in \mathcal{P}_{p}(K) \quad \forall K \in \mathcal{T}_{h}\right\} \\
\boldsymbol{\mathcal { R }}_{p}\left(\mathcal{T}_{h}\right) & :=\left\{\boldsymbol{v}_{h p} \in \boldsymbol{L}^{2}(\Omega) ;\left.\boldsymbol{v}_{h p}\right|_{K} \in \boldsymbol{\mathcal { R }}_{p}(K) \quad \forall K \in \mathcal{T}_{h}\right\} .
\end{aligned}
$$

To form the usual finite element conforming or normal-trace-continuous spaces, we will write $\mathcal{R} \mathcal{T}_{p}\left(\mathcal{T}_{h}\right) \cap$ $\boldsymbol{H}(\operatorname{div}, \Omega)$ and similarly for the subspaces reflecting the different boundary conditions. The same notation will also be used on the patches $\mathcal{T}_{\boldsymbol{a}}, \widetilde{\mathcal{T}}_{\boldsymbol{a}}$, and $\widetilde{\mathcal{T}}_{K}$.

2.7 $\quad L^{2}$-orthogonal projector onto piecewise polynomials and the elementwise canonical Raviart-Thomas projector

Let $\Pi_{h p}$ denote the elementwise $L^{2}(\Omega)$-orthogonal projector onto $\mathcal{P}_{p}\left(\mathcal{T}_{h}\right)$: for $v \in L^{2}(\Omega), \Pi_{h p}(v) \in \mathcal{P}_{p}\left(\mathcal{T}_{h}\right)$ is, locally on each element $K \in \mathcal{T}_{h}$, given by

$$
\begin{equation*}
\left(\Pi_{h p}(v), v_{p}\right)_{K}=\left(v, v_{p}\right)_{K} \quad \forall v_{p} \in \mathcal{P}_{p}(K) \tag{2.8}
\end{equation*}
$$

Next, we will use the elementwise canonical p-degree Raviart-Thomas projector $\boldsymbol{I}_{h, p}^{\mathcal{R T}}$: for $\boldsymbol{v} \in$ $\Pi_{K \in \mathcal{T}_{h}}\left[C^{1}(K)\right]^{d}$, a function of the C^{1} regularity in each component, separately on each mesh element $K \in \mathcal{T}_{h}, \boldsymbol{I}_{h, p}^{\mathcal{R T}}(\boldsymbol{v}) \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{h}\right)$ is following [6, 19, 34] , locally on each element $K \in \mathcal{T}_{h}$, given by

$$
\begin{align*}
\left\langle\boldsymbol{I}_{h, p}^{\mathcal{R} \mathcal{T}}(\boldsymbol{v}) \cdot \boldsymbol{n}_{K}, r_{p}\right\rangle_{F} & =\left\langle\boldsymbol{v} \cdot \boldsymbol{n}_{K}, r_{p}\right\rangle_{F} & & \forall r_{p} \in \mathcal{P}_{p}(F), \quad \text { for all faces } F \text { of } K, \tag{2.9a}\\
\left(\boldsymbol{I}_{h, p}^{\mathcal{R} \mathcal{T}}(\boldsymbol{v}), \boldsymbol{r}_{p}\right)_{K} & =\left(\boldsymbol{v}, \boldsymbol{r}_{p}\right)_{K} & & \forall \boldsymbol{r}_{p} \in\left[\mathcal{P}_{p-1}(K)\right]^{d}, \tag{2.9b}
\end{align*}
$$

where \boldsymbol{n}_{K} is the unit outer normal vector of the element K. This projector, crucially, satisfies the commuting property, locally on each $K \in \mathcal{T}_{h}$,

$$
\begin{equation*}
\nabla \cdot \boldsymbol{I}_{h, p}^{\mathcal{R} \mathcal{T}}(\boldsymbol{v})=\Pi_{h p}(\nabla \cdot \boldsymbol{v}) \quad \forall \boldsymbol{v} \in\left[C^{1}(K)\right]^{d} \tag{2.10}
\end{equation*}
$$

We will only apply $\boldsymbol{I}_{h, p}^{\mathcal{R} \mathcal{T}}$ to piecewise (discontinuous) polynomials which have the requested elementwise $\left[C^{1}(K)\right]^{d}$ regularity; recall from $[6,19]$ that one cannot use $\boldsymbol{I}_{h, p}^{\mathcal{R} \mathcal{T}}$ directly on $\boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$.

2.8 Notation \lesssim

We will use the notation $a \lesssim b$ when there holds $a \leq C b$ for a positive constant C and $a \approx b$ when $a \lesssim b$ and $b \lesssim a$ hold simultaneously. All dependencies of the hidden constant C will systematically be given. In any case, all constants in this manuscript are independent of the mesh size h and of the polynomial degree p.

3 Main results

We present here our main results.
We will need the following technical assumption on enumeration of extended element patches if $d=3$ or if $d=2$ and Γ_{N} is non-empty:

Assumption 3.1 (Enumeration of extended vertex and element patches). Let $\boldsymbol{a} \in \mathcal{V}_{h}$ or $K \in \mathcal{T}_{h}$. Consider the extended vertex patch $\widetilde{\mathcal{T}}_{a}$ or the extended element patch $\widetilde{\mathcal{T}}_{K}$ as per Section 2.2, denoted by \mathcal{T}_{ω}, with the associated open subdomain ω. If $d=3$ and $\partial \omega$ does not contain any face from $\partial \Omega$, suppose that \mathcal{T}_{ω} can be enumerated as per Lemma B.1. If $d=3$ and if $\partial \omega$ contains at least one face from $\partial \Omega$, or if $d=2$ with Γ_{N} non-empty and if $\partial \omega$ contains at least one face from $\overline{\Gamma_{\mathrm{N}}}$, suppose that \mathcal{T}_{ω} can be mapped by d symmetries as in [11] for boundary patches into a patch that can be enumerated as per Lemma B.1.

In our construction, we crucially rely on a p-robustly stable \boldsymbol{H} (div) patch decomposition of Lemma A. 1 below, which we show for $d=2$ is a simple consequence of [35]. We do not know whether this result still holds for $d=3$, which leads us to the following assumption; stable \boldsymbol{H} (div) decomposition for $d=3$ with the constant in (A.5) below depending on the polynomial degree p is shown in [12, Appendix B].

Assumption 3.2 (A p-stable $\boldsymbol{\mathcal { R }} \boldsymbol{T}_{p} \cap \boldsymbol{H}$ (div) decomposition on three-dimensional patches). Suppose that Lemma A. 1 also holds for $d=3$.

$3.1 \quad$-robust equivalence of global continuous constrained and local discontinuous unconstrained approximation in $\boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$

The following result improves importantly [22, Theorem 3.3], removing the possible dependence of the equivalence constant on the polynomial degree p.

Theorem 3.3 (p-robust equivalence of local-best and global-best approximations in $\boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$). Let $\boldsymbol{v} \in \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$, a simplicial mesh \mathcal{T}_{h} of Ω, and a polynomial degree $p \geq 0$ be given. Let Assumptions 3.1 and 3.2 hold. Then

$$
\begin{align*}
& \min _{\substack{\boldsymbol{v}_{h p} \in \mathcal{R} \mathcal{T}_{p}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}(\mathrm{div}, \Omega) \\
\nabla \nabla \boldsymbol{v}_{h p}=\Pi_{h p}(\nabla \cdot \boldsymbol{v})}}\left\|\boldsymbol{v}-\boldsymbol{v}_{h p}\right\|^{2}+\sum_{K \in \mathcal{T}_{h}}\left(\frac{h_{K}}{p+1}\left\|\nabla \cdot \boldsymbol{v}-\Pi_{h p}(\nabla \cdot \boldsymbol{v})\right\|_{K}\right)^{2} \tag{3.1}\\
\approx & \sum_{K \in \mathcal{T}_{h}}\left\{\min _{\boldsymbol{v}_{p} \in \mathcal{R}_{p}(K)}\left\|\boldsymbol{v}-\boldsymbol{v}_{p}\right\|_{K}^{2}+\left(\frac{h_{K}}{p+1}\left\|\nabla \cdot \boldsymbol{v}-\Pi_{h p}(\nabla \cdot \boldsymbol{v})\right\|_{K}\right)^{2}\right\}
\end{align*}
$$

(p-robust global continuous constrained - local discontinuous unconstrained equivalence)
where the hidden constant only depends on the mesh shape-regularity parameter κ_{h} given by (2.1) and the space dimension d.

Proof. Please first note that the second terms are identical on both sides of (3.1); also recall from [22, Remark 3.4] that they have to be included for the equivalence to hold. Then, since the minimization set on the right-hand side of (3.1) is (seemingly much) bigger than that on the left-hand side, the inequality \gtrsim (actually \geq) follows. For the \lesssim inequality, we bound the minimum by employing the projector $\boldsymbol{P}_{h p}^{\text {div }}(\boldsymbol{v})$ from Lemma 3.5 below. The commuting property (3.17) and elementwise use of (3.20) from Lemma 3.7 below together with a finite overlap argument following from the mesh shape regularity yield the claim:

$$
\begin{aligned}
& \min _{\substack{\boldsymbol{v}_{h p} \in \mathcal{R} \mathcal{T}_{p}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega) \\
\nabla \cdot \boldsymbol{v}_{h p}=\Pi_{h p}(\nabla \cdot \boldsymbol{v})}}\left\|\boldsymbol{v}-\boldsymbol{v}_{h p}\right\|^{2}+\sum_{K \in \mathcal{T}_{h}}\left(\frac{h_{K}}{p+1}\left\|\nabla \cdot \boldsymbol{v}-\Pi_{h p}(\nabla \cdot \boldsymbol{v})\right\|_{K}\right)^{2} \\
& \stackrel{(3.16)}{(3.17)} \leq \sum_{K \in \mathcal{T}_{h}}\left\{\left\|\boldsymbol{v}-\boldsymbol{P}_{h p}^{\text {div }}(\boldsymbol{v})\right\|_{K}^{2}+\left(\frac{h_{K}}{p+1}\left\|\nabla \cdot\left(\boldsymbol{v}-\boldsymbol{P}_{h p}^{\text {div }}(\boldsymbol{v})\right)\right\|_{K}\right)^{2}\right\} \\
& \stackrel{(3.20)}{\lesssim} \sum_{K \in \mathcal{T}_{h}}\left\{\sum_{L \in \widetilde{\mathcal{T}}_{K}}\left\{\min _{\boldsymbol{v}_{p} \in \mathcal{R} \mathcal{T}_{p}(L)}\left\|\boldsymbol{v}-\boldsymbol{v}_{p}\right\|_{L}^{2}+\left(\frac{h_{L}}{p+1}\left\|\nabla \cdot \boldsymbol{v}-\Pi_{h p}(\nabla \cdot \boldsymbol{v})\right\|_{L}\right)^{2}\right\}\right\} \\
& \lesssim \sum_{K \in \mathcal{T}_{h}}\left\{\min _{\boldsymbol{v}_{p} \in \mathcal{R} \mathcal{T}_{p}(K)}\left\|\boldsymbol{v}-\boldsymbol{v}_{p}\right\|_{K}^{2}+\left(\frac{h_{K}}{p+1}\left\|\nabla \cdot \boldsymbol{v}-\Pi_{h p}(\nabla \cdot \boldsymbol{v})\right\|_{K}\right)^{2}\right\} .
\end{aligned}
$$

3.2 Optimal local $h p$ approximation estimates under minimal elementwise Sobolev regularity in $\boldsymbol{H}_{0, \mathrm{~N}}(\mathrm{div}, \Omega)$

For any element $K \in \mathcal{T}_{h}$, let $\boldsymbol{H}^{s_{K}}(K), s_{K} \geq 0$, denote the space of vector-valued fields in $\boldsymbol{L}^{2}(K)$ with each component in $H^{s_{K}}(K)$. We now focus on functions with additional regularity $\boldsymbol{H}^{s_{K}}(K)$ requested locally on each mesh element. Moreover, we consider the divergence separately: piecewise polynomial (for simplicity of exposition) first, and then of $H^{t_{K}}(K)$ regularity, $t_{K} \geq 0$. Here, the Sobolev regularity exponents s_{K} and t_{K} can be different for different mesh elements $K \in \mathcal{T}_{h}$ and also arbitrarily close, and possibly equal to, 0 . The following theorem is a fully h - and p - (mesh-size- and polynomial-degree-) optimal approximation estimate. It improves [22, Theorem 3.6] where the Sobolev regularity exponent s_{K} can also be arbitrarily close (and possibly equal to) 0 but where it is constant, $s=s_{K}$ for all mesh elements $K \in \mathcal{T}_{h}$ and where less attention has been paid to the divergence. Lemma 3.4 can be directly used in a priori error analysis of numerical methods for partial differential equations related to the $\boldsymbol{H}(\operatorname{div}, \Omega)$ space; some examples for (least-squares) mixed finite element methods are given in [22, Section 6]. Locally varying polynomial degree can be addressed as in [38, Theorem 3.4] and [39].

Theorem 3.4 ($h p$-optimal approximation estimate in $\boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$ under minimal elementwise Sobolev regularity). Let $\boldsymbol{v} \in \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$, a simplicial mesh \mathcal{T}_{h} of Ω, and a polynomial degree $p \geq 0$ be given. Let Assumptions 3.1 and 3.2 hold. For each mesh element $K \in \mathcal{T}_{h}$, let

$$
\begin{equation*}
\left.\boldsymbol{v}\right|_{K} \in \boldsymbol{H}^{s_{K}}(K) \tag{3.2}
\end{equation*}
$$

for a Sobolev regularity exponent $s_{K} \geq 0$. We consider two cases. Case (i) (piecewise polynomial divergence). Let $\nabla \cdot \boldsymbol{v} \in\left[\mathcal{P}_{p}\left(\mathcal{T}_{h}\right)\right]^{3}$. Then

$$
\begin{equation*}
\min _{\boldsymbol{v}_{h p} \in \boldsymbol{R} \mathcal{T}_{p}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}(\mathrm{div}, \Omega)}\left\|\boldsymbol{\boldsymbol { v } _ { h p } = \nabla \cdot \boldsymbol { v }} \mid \boldsymbol{v}-\boldsymbol{v}_{h p}\right\|^{2} \lesssim \sum_{K \in \mathcal{T}_{h}}\left(\frac{h_{K}^{\min \left(s_{K}, p+1\right)}}{(p+1)^{s_{K}}}\|\boldsymbol{v}\|_{\boldsymbol{H}^{s_{K}(K)}}\right)^{2} . \tag{3.3}
\end{equation*}
$$

(simplified optimal elementwise hp approximation estimate)
Case (ii) (general case). Let, for each mesh element $K \in \mathcal{T}_{h}$,

$$
\begin{equation*}
\left.(\nabla \cdot \boldsymbol{v})\right|_{K} \in H^{t_{K}}(K) \tag{3.4}
\end{equation*}
$$

for a Sobolev regularity exponent $t_{K} \geq 0$. Then

$$
\begin{align*}
& \min ^{\boldsymbol{v}_{h p} \in \mathcal{R} \mathcal{T}_{\boldsymbol{p}}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)} \\
& \nabla \cdot \boldsymbol{v}_{h p}=\Pi_{h p}(\nabla \cdot \boldsymbol{v}) \tag{3.5}\\
&\left\|\boldsymbol{v}-\boldsymbol{v}_{h p}\right\|^{2}+\sum_{K \in \mathcal{T}_{h}}\left(\frac{h_{K}}{p+1}\left\|\nabla \cdot \boldsymbol{v}-\Pi_{h p}(\nabla \cdot \boldsymbol{v})\right\|_{K}\right)^{2} \\
& \lesssim \sum_{K \in \mathcal{T}_{h}}\left\{\left(\frac{h_{K}^{\min \left(s_{K}, p+1\right)}}{(p+1)^{s_{K}}}\|\boldsymbol{v}\|_{\boldsymbol{H}^{s_{K}(K)}}\right)^{2}+\left(\frac{h_{K}}{p+1} \frac{h_{K}^{\min \left(t_{K}, p+1\right)}}{(p+1)^{t_{K}}}\|\nabla \cdot \boldsymbol{v}\|_{H^{t_{K}(K)}}\right)^{2}\right\} .
\end{align*}
$$

The constants hidden in \lesssim only depend on the mesh shape-regularity parameter κ_{h} given by (2.1), the space dimension d, the regularity exponents s_{K}, and, for (3.5), the regularity exponents t_{K}.

Proof. The key is to use the localization bound (3.1), where in particular the global $\boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$ conforming (normal-trace continuous) and divergence-constrained approximation is bounded by a local, normal-trace discontinuous, and unconstrained approximation. Then, we just observe from (2.7) that $\left[\mathcal{P}_{p}(K)\right]^{d} \subset \boldsymbol{\mathcal { R }}_{p}(K)$. Thus, for each mesh element $K \in \mathcal{T}_{h}$, well-known $h p$-approximation bounds, see e.g. [4, Lemma 4.1], imply that

$$
\begin{align*}
\min _{\boldsymbol{v}_{p} \in \mathcal{R} \mathcal{T}_{p}(K)}\left\|\boldsymbol{v}-\boldsymbol{v}_{p}\right\|_{K} & \lesssim \frac{h_{K}^{\min \left(s_{K}, p+1\right)}}{(p+1)^{s_{K}}}\|\boldsymbol{v}\|_{\boldsymbol{H}^{s_{K}(K)}}, \tag{3.6a}\\
\frac{h_{K}}{p+1}\left\|\nabla \cdot \boldsymbol{v}-\Pi_{h p}(\nabla \cdot \boldsymbol{v})\right\|_{K} & \lesssim \frac{h_{K}}{p+1} \frac{h_{K}^{\min \left(t_{K}, p+1\right)}}{(p+1)^{t_{K}}}\|\nabla \cdot \boldsymbol{v}\|_{H^{t_{K}(K)}}, \tag{3.6~b}
\end{align*}
$$

with the hidden constants only depending on κ_{K}, d, s_{K}, and t_{K}. Thus (3.5) follows. As for (3.3), it is a simplification of (3.5) where the divergence terms vanish as $\nabla \cdot \boldsymbol{v}-\Pi_{h p}(\nabla \cdot \boldsymbol{v})=0$ when $\nabla \cdot \boldsymbol{v} \in\left[\mathcal{P}_{p}\left(\mathcal{T}_{h}\right)\right]^{3}$.

3.3 A p-stable local commuting projector in $\boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$

We finally define our p-stable local commuting projector in $\boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$ and state its properties.

3.3.1 Definition of the projector

Our construction extends and builds on [22, Definition 3.1] for equilibration and on [12, Appendix A] for imposing of an additional orthogonality constraint that enables to employ the p-stable decomposition of [35] in a correction stage. Prior to stating it, let us recall the basic steps from [22] and highlight the differences.

The construction in [22, Definition 3.1] proceeds in three steps: 1) elementwise \boldsymbol{L}^{2}-orthogonal projection (local-best approximation)(with a divergence constraint); 2) patchwise equilibration; this crucially employs the hat functions $\psi^{\boldsymbol{a}}$ from (2.2) and the canonical projector $\boldsymbol{I}_{h, p}^{\mathcal{R T}}$ from (2.9) (which in turn prevents proving a p-robust local-best and global-best equivalence as in Lemma 3.3); and 3) gluing of the patchwise contributions. The present construction is slightly more involved but leads to better approximation properties, namely yielding the p-robust local-best and global-best equivalence of Lemma 3.3 and
p-robust approximation property (3.20) below. It proceeds in four stages: 1) elementwise \boldsymbol{L}^{2}-orthogonal projection (local-best approximation)(without the divergence constraint); 2) patchwise equilibration and gluing of the patchwise contributions, like above in steps 2) and 3), but with an additional orthogonality constraint; this stage still employs the hat functions $\psi^{\boldsymbol{a}}$ from (2.2) as well as the canonical projector $\boldsymbol{I}_{h, p}^{\mathcal{R} \mathcal{T}}$ from (2.9); its main purpose is to cut off the divergence and to impose an elementwise \boldsymbol{L}^{2}-orthogonality with respect to constant vectors; 3) patchwise equilibration of the remainder (with an additional orthogonality constraint) followed by a p-stable decomposition of Appendix A and gluing of the patchwise contributions into a correction; here, crucially, no hat functions $\psi^{\boldsymbol{a}}$ from (2.2) and no projector such as $\boldsymbol{I}_{h, p}^{\mathcal{R T}}$ from (2.9) are used; and 4) combination of the previous steps.

Recall the notation from Section 2. The definition reads:
Definition 3.5 (A p-stable local commuting projector in $\boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$). Let a function $\boldsymbol{v} \in \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$, a simplicial mesh \mathcal{T}_{h} of Ω, and a polynomial degree $p \geq 0$ be given.

1. On each mesh element $K \in \mathcal{T}_{h}$, consider the $\boldsymbol{L}^{2}(K)$-orthogonal projection of \boldsymbol{v} onto $\boldsymbol{\mathcal { R }} \mathcal{T}_{p}(K)$ (without any normal trace prescription nor any constraint on the divergence)

$$
\begin{equation*}
\left.\boldsymbol{\tau}_{h p}\right|_{K}:=\arg \min _{\boldsymbol{v}_{p} \in \mathcal{R} \mathcal{T}_{p}(K)}\left\|\boldsymbol{v}-\boldsymbol{v}_{p}\right\|_{K} \tag{3.7}
\end{equation*}
$$

(elementwise projection $\boldsymbol{\tau}_{h p}$)
This gives the broken Raviart-Thomas piecewise polynomial

$$
\begin{equation*}
\boldsymbol{\tau}_{h p} \in \boldsymbol{\mathcal { R }} \boldsymbol{\mathcal { T }}_{p}\left(\mathcal{T}_{h}\right) \tag{3.8}
\end{equation*}
$$

2. Starting from $\boldsymbol{\tau}_{h p}$:
(a) On each vertex patch $\mathcal{T}_{\boldsymbol{a}}, \boldsymbol{a} \in \mathcal{V}_{h}$, see Figure 1, define the Raviart-Thomas piecewise polynomial $\boldsymbol{\sigma}_{p}^{a} \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{a}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}, \psi^{a}}\left(\omega_{\boldsymbol{a}}\right)$ via

$$
\begin{aligned}
& \begin{array}{l}
\boldsymbol{v}_{p} \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{a}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}, \psi}{ }^{a}\left(\omega_{a}\right) \\
\nabla \cdot \boldsymbol{v}_{p}=\Pi_{h p}\left(\psi^{a} \nabla \cdot \boldsymbol{v}+\nabla \psi^{a} \cdot \boldsymbol{v}\right)
\end{array} \\
& \left(\boldsymbol{v}_{p}, \boldsymbol{r}_{h}\right)_{K}=\left(\boldsymbol{I}_{h, p}^{\boldsymbol{R} \mathcal{T}}\left(\psi^{a} \boldsymbol{\tau}_{h p}\right), \boldsymbol{r}_{h}\right)_{K} \quad \forall \boldsymbol{r}_{h} \in\left[\mathcal{P}_{0}(K)\right]^{d}, \forall K \in \mathcal{T}_{a} \quad \text { if } p \geq 1
\end{aligned}
$$

(patchwise "no flux" equilibration, with an additionalorthogonality constraint if $p \geq 1$)
recall from (2.5) that $\boldsymbol{H}_{0, \mathrm{~N}, \psi^{a}}\left(\omega_{\boldsymbol{a}}\right)$ is the subspace of $\boldsymbol{H}\left(\operatorname{div}, \omega_{\boldsymbol{a}}\right)$ with zero normal trace on those faces in $\partial \omega_{\boldsymbol{a}}$ where the hat function $\psi^{\boldsymbol{a}}$ vanishes or which lie in the Neumann boundary $\overline{\Gamma_{\mathrm{N}}}$. See Figure 3 (left) for illustration.
(b) Extending $\boldsymbol{\sigma}_{p}^{\boldsymbol{a}}$ by zero outside of the patch subdomain $\omega_{\boldsymbol{a}}$, define

$$
\begin{equation*}
\boldsymbol{\sigma}_{h p}:=\sum_{\boldsymbol{a} \in \mathcal{V}_{h}} \boldsymbol{\sigma}_{p}^{a} \tag{3.9b}
\end{equation*}
$$

(gluing patchwise contributions)

This gives the intermediate Raviart-Thomas piecewise polynomial

$$
\begin{equation*}
\boldsymbol{\sigma}_{h p} \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega) \text { with } \nabla \cdot \boldsymbol{\sigma}_{h p}=\Pi_{h p}(\nabla \cdot \boldsymbol{v}) \tag{3.10}
\end{equation*}
$$

(standard ("overconstrained" if $p \geq 1$) equilibration $\boldsymbol{\sigma}_{h p}$ (with divergence and projection properties)) and the broken Raviart-Thomas piecewise polynomial

$$
\begin{align*}
\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p} & \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{h}\right) \tag{3.11a}\\
\left(\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}, \boldsymbol{r}_{h}\right)_{K} & =0 \quad \forall \boldsymbol{r}_{h} \in\left[\mathcal{P}_{0}(K)\right]^{d}, \forall K \in \mathcal{T}_{h} \quad \text { if } p \geq 1 \tag{3.11b}
\end{align*}
$$

(remainder $\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}$, with vanishing lowest-order moments if $p \geq 1$)
3. If $p=0$, set $\boldsymbol{\zeta}_{h p}:=\mathbf{0}$. Otherwise, if $p \geq 1$, starting from $\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}$:
(a) On each extended vertex patch $\widetilde{\mathcal{T}}_{\boldsymbol{a}}, \boldsymbol{a} \in \mathcal{V}_{h}$, see Figure 2 (left), define the Raviart-Thomas piecewise polynomial $\boldsymbol{\zeta}_{p}^{\boldsymbol{a}} \in \boldsymbol{\mathcal { R }} \boldsymbol{\mathcal { T }}_{p}\left(\widetilde{\mathcal{T}}_{\boldsymbol{a}}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}\left(\operatorname{div}, \widetilde{\omega}_{\boldsymbol{a}}\right)$ via

$$
\begin{equation*}
\boldsymbol{\zeta}_{p}^{\boldsymbol{a}}:=\arg \underset{\substack{\boldsymbol{v}_{p} \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\widetilde{\mathcal{T}}_{a}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}\left(\mathrm{div}, \widetilde{\omega}_{\boldsymbol{a}}\right) \\ \nabla \cdot \boldsymbol{v}_{p}=0}}{\min ^{\left(\boldsymbol{v}_{p}, \boldsymbol{r}_{h}\right)_{K}=\left(\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}, \boldsymbol{r}_{h}\right)_{K}=0} \quad \forall \boldsymbol{r}_{h} \in\left[\mathcal{P}_{0}(K)\right]^{d}, \forall K \in \widetilde{\mathcal{T}}_{\boldsymbol{a}}} \mid \tag{3.12a}
\end{equation*}
$$

$\boldsymbol{\zeta}_{p}^{a}$ supported on $\widetilde{\omega}_{a}$ but $\boldsymbol{\zeta}_{p}^{a} \cdot \boldsymbol{n}_{\tilde{\omega}_{a}} \neq 0$ on $\partial \widetilde{\omega}_{a}$
stable decomposition $\zeta_{p}^{a}=\sum \zeta_{p}^{a, b}$
stable decomposition $\zeta_{p}^{a}=\sum_{b \in \tilde{\mathcal{V}}_{a}} \zeta_{p}^{a, b}$
component $\boldsymbol{\zeta}_{p}^{a, a}$ supported on $\omega_{\boldsymbol{a}}$ (red horizontal lines)
$\boldsymbol{\zeta}_{p}^{\boldsymbol{a}, \boldsymbol{a}} \cdot \boldsymbol{n}_{\omega_{\boldsymbol{a}}}=0$ on $\partial \omega_{\boldsymbol{a}}$
component $\boldsymbol{\zeta}_{p}^{a, \boldsymbol{b}_{1}}$ supported on $\omega_{\boldsymbol{b}_{1}}$ (blue north east lines)
component $\boldsymbol{\zeta}_{p}^{\boldsymbol{a}, \boldsymbol{b}_{\mathbf{2}}}$ supported on $\omega_{\boldsymbol{b}_{\mathbf{2}}} \cap \widetilde{\omega}_{\boldsymbol{a}}$ (green north west lines)

Figure 3: The standard non-p-robust equilibration component $\boldsymbol{\sigma}_{p}^{\boldsymbol{a}}$ from (3.9a) (left) and the p-robust correction $\boldsymbol{\zeta}_{p}^{a}$ from (3.12a) together with its p-stable decomposition (3.12b); only the "interior" component $\boldsymbol{\zeta}_{p}^{\boldsymbol{a}, \boldsymbol{a}}$ is used (right); $d=2$, interior of the domain
(patchwise "overconstrained" divergence-free remainder equilibration)
recall from (2.3) that $\boldsymbol{H}_{0, \mathrm{~N}}\left(\operatorname{div}, \widetilde{\omega}_{\boldsymbol{a}}\right)$ is the subspace of $\boldsymbol{H}\left(\operatorname{div}, \widetilde{\omega}_{\boldsymbol{a}}\right)$ with zero normal trace on those boundary faces in $\partial \widetilde{\omega}_{a}$ which lie in $\overline{\Gamma_{\mathrm{N}}}$. See Figure 3 (right) for illustration.
(b) On each extended vertex patch $\widetilde{\mathcal{T}}_{\boldsymbol{a}}, \boldsymbol{a} \in \mathcal{V}_{h}$, employ to $\boldsymbol{\zeta}_{p}^{\boldsymbol{a}}$ the p-stable decomposition of Lemma A. 1 or Lemma 3.2 (with $\mathcal{T}_{\omega}=\widetilde{\mathcal{T}}_{a}$ and $\mathcal{V}_{\omega}=\widetilde{\mathcal{V}}_{a}$),

$$
\begin{equation*}
\boldsymbol{\zeta}_{p}^{a}=\sum_{b \in \tilde{\mathcal{V}}_{a}} \boldsymbol{\zeta}_{p}^{a, \boldsymbol{b}} \text { with in particular } \boldsymbol{\zeta}_{p}^{a, a} \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{\boldsymbol{a}}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}, \psi^{a}}\left(\omega_{a}\right), \nabla \cdot \boldsymbol{\zeta}_{p}^{\boldsymbol{a}, \boldsymbol{a}}=0 \tag{3.12b}
\end{equation*}
$$

(patchwise p-stable equilibrated remainder decomposition)
See Figure 3 (right) for illustration.
(c) Extending the "interior" component $\boldsymbol{\zeta}_{p}^{a, a}$ by zero outside of the patch subdomain $\omega_{\boldsymbol{a}}$, define

$$
\begin{equation*}
\zeta_{h p}:=\sum_{\boldsymbol{a} \in \mathcal{V}_{h}} \zeta_{p}^{\boldsymbol{a}, \boldsymbol{a}} . \tag{3.12c}
\end{equation*}
$$

(gluing patchwise correction contributions)

This gives the intermediate Raviart-Thomas piecewise polynomial

$$
\begin{equation*}
\boldsymbol{\zeta}_{h p} \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega) \text { with } \nabla \cdot \boldsymbol{\zeta}_{h p}=0 \tag{3.13}
\end{equation*}
$$

(p-robust correction $\boldsymbol{\zeta}_{h p}$ by treatment of the remainder $\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}$ without $\psi^{\boldsymbol{a}}$ and $\boldsymbol{I}_{h, p}^{\boldsymbol{\mathcal { R }}}$)

4. Define

$$
\begin{equation*}
\boldsymbol{P}_{h p}^{\mathrm{div}}(\boldsymbol{v}):=\boldsymbol{\sigma}_{h p}+\boldsymbol{\zeta}_{h p} \tag{3.14}
\end{equation*}
$$

(combining the previous steps)
This gives the final Raviart-Thomas piecewise polynomial

$$
\begin{equation*}
\boldsymbol{P}_{h p}^{\text {div }}(\boldsymbol{v}) \in \boldsymbol{\mathcal { R }}_{p}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega) \text { with } \nabla \cdot \boldsymbol{P}_{h p}^{\mathrm{div}}(\boldsymbol{v})=\Pi_{h p}(\nabla \cdot \boldsymbol{v}) \tag{3.15}
\end{equation*}
$$

Crucially, this definition is correct:
Lemma 3.6 (Well-posedness of $\boldsymbol{P}_{h p}^{\text {div }}$). The operator

$$
\begin{equation*}
\boldsymbol{P}_{h p}^{\text {div }}: \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega) \rightarrow \boldsymbol{\mathcal { R }} \boldsymbol{\mathcal { T }}_{p}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega) \tag{3.16}
\end{equation*}
$$

(defined over the entire $\boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$)
from Definition 3.5 is linear and well defined.
We will prove Lemma 3.6 in Section 4 below, along with stating the properties of the various objects from Lemma 3.5.

3.3.2 Design principles

Let us discuss in detail the design principles of Lemma 3.5.

1. The construction of $\boldsymbol{\tau}_{h p}$ in Step 1 sets our local-best discontinuous unconstrained projection "target". There holds $\boldsymbol{\tau}_{h p} \in \boldsymbol{\mathcal { R }} \boldsymbol{\mathcal { T }}_{p}\left(\mathcal{T}_{h}\right)$ but in general $\boldsymbol{\tau}_{h p} \notin \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$. In the rest of Lemma 3.5, we search to stay in $\boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{h}\right)$, as close as possible to $\boldsymbol{\tau}_{h p}$, and keeping its approximation power, but recovering $\boldsymbol{H}_{0, \mathrm{~N}}($ div,$\Omega)$-conformity.
2. The construction of $\boldsymbol{\sigma}_{h p}$ in Step 2 is similar to [22, Definition 3.1, steps 2-3], with the incorporation of the additional orthogonality constraint from [12, Appendix A$]$ if $p \geq 1$. It is not p-robust since the cut-off by the hat functions $\psi^{\boldsymbol{a}}$ from (2.2) increases the polynomial degree by one and is brought back down to p by the canonical elementwise projector $\boldsymbol{I}_{h, p}^{\mathcal{R T}}$ from (2.9). The purpose here is to capture the correct divergence as per (3.10) and to obtain the "remainder" $\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}$ with vanishing lowest-order moments as per (3.11b) if $p \geq 1$. This actually already constructs $\boldsymbol{\sigma}_{h p}$ such that if $\boldsymbol{v} \in \boldsymbol{\mathcal { R }} \boldsymbol{T}_{p}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$, then $\boldsymbol{\tau}_{h p}=\boldsymbol{\sigma}_{h p}=\boldsymbol{v}$ and the remainder vanishes (projection property).
3. The construction of $\zeta_{h p}$ in Step 3, only nontrivial if $p \geq 1$, is the salient feature for p-robustness. Neither the hat functions $\psi^{\boldsymbol{a}}$ nor the elementwise projector $\boldsymbol{I}_{h, p}^{\mathcal{R} \mathcal{T}}$ are present. At the first stage in (3.12a), we employ an equilibration similar to (3.9a) which however 1) does not employ the hat functions $\psi^{\boldsymbol{a}}$ from (2.2) or the canonical elementwise projector $\boldsymbol{I}_{h, p}^{\mathcal{R T}}$ from (2.9); 2) is divergencefree; and 3) does not impose zero normal trace on $\partial \widetilde{\omega}_{\boldsymbol{a}}$ (except for $\left.\left(\partial \widetilde{\omega}_{\boldsymbol{a}} \cap \Gamma_{\mathrm{N}}\right)^{\circ}\right)$. At the second stage (3.12b), a p-stable decomposition is applied (note that this cannot be applied directly to the remainder $\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}$ which "broken", i.e., lies in $\boldsymbol{\mathcal { R }} \boldsymbol{\mathcal { T }}_{p}\left(\widetilde{\mathcal{T}}_{\boldsymbol{a}}\right)$ but not in $\left.\boldsymbol{H}_{0, \mathrm{~N}}\left(\operatorname{div}, \widetilde{\omega}_{\boldsymbol{a}}\right)\right)$. At this stage, the additional orthogonality constraint in (3.12a) (note that $\left(\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}, \boldsymbol{r}_{h}\right)_{K}=0$ follows from (3.11b)) plays a crucial role since it enables to employ the p-stable decomposition of [35]. Note that we merely access the integral volumetric (lowest-order) moments $\left(\boldsymbol{v}_{p}, \boldsymbol{r}_{h}\right)_{K}$ which are available under the the \boldsymbol{H} (div, K) regularity, in contrast to the (lowest-order) normal trace face moments such as $\left\langle\boldsymbol{v}_{p} \cdot \boldsymbol{n}, 1\right\rangle_{F}$ (any use of trace face moments also typically spoils p-robustness). Note that in (3.12c), we merely employ the "interior" or "middle" components which do have zero normal trace on $\partial \omega_{\boldsymbol{a}}$ (for interior vertices) or on $\partial \omega_{\boldsymbol{a}} \cap\left\{\psi^{\boldsymbol{a}}=0\right\}$ and $\left(\partial \omega_{\boldsymbol{a}} \cap \Gamma_{\mathrm{N}}\right)^{\circ}$ (for boundary vertices) as per the definition of $\boldsymbol{H}_{0, \mathrm{~N}, \psi^{a}}\left(\omega_{\boldsymbol{a}}\right)$ in (2.5), see Figure 3 for illustration.
4. In Step $4, \boldsymbol{P}_{h p}^{\text {div }}(\boldsymbol{v})$ is defined as $\boldsymbol{\sigma}_{h p}$ corrected by $\boldsymbol{\zeta}_{h p}$.
5. The construction relies on local energy minimization problems (3.7), (3.9a), (3.12a) and the p-stable decomposition (3.12b).
6. In comparison to [38, Definition 3.5], the orthogonality constraints with respect to vector-valued piecewise constants are imposed directly in the local minimization problems (3.9a) and (3.12a) and not in a correction stage after local minimization. This seems compulsory to satisfy the (divergence) constraint, not present in [38].

3.3.3 Properties of the projector

The following theorem summarizes the properties of the projector from Lemma 3.5, improving the results in $[20,17,14,5,27,23,24,32,33,2,30,22,29]$.

Theorem 3.7 (Commutativity, projection, approximation, and stability of $\boldsymbol{P}_{h p}^{\text {div }}$). Let a simplicial mesh \mathcal{T}_{h} of Ω and a polynomial degree $p \geq 0$ be given. Let Assumptions 3.1 and 3.2 hold. The operator $\boldsymbol{P}_{h p}^{\mathrm{div}}$: $\boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega) \rightarrow \boldsymbol{\mathcal { R }} \boldsymbol{T}_{p}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$ from Definition 3.5 satisfies

$$
\begin{array}{cl}
\nabla \cdot \boldsymbol{P}_{h p}^{\mathrm{div}}(\boldsymbol{v})=\Pi_{h p}(\nabla \cdot \boldsymbol{v}) & \forall \boldsymbol{v} \in \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega), \\
\boldsymbol{P}_{h p}^{\mathrm{div}}(\boldsymbol{v})=\boldsymbol{v} & \forall \boldsymbol{v} \in \boldsymbol{\mathcal { R }}_{p}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega) . \tag{3.18}
\end{array}
$$

(commutativity)

Moreover, for any function $\boldsymbol{v} \in \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$ and any mesh element $K \in \mathcal{T}_{h}$, there holds

$$
\begin{align*}
&\left\|\boldsymbol{v}-\boldsymbol{P}_{h p}^{\mathrm{div}}(\boldsymbol{v})\right\|_{K}^{2} \\
&+\left(\frac{h_{K}}{p+1}\left\|\nabla \cdot\left(\boldsymbol{v}-\boldsymbol{P}_{h p}^{\mathrm{div}}(\boldsymbol{v})\right)\right\|_{K}\right)^{2} \lesssim \sum_{L \in \tilde{\mathcal{T}}_{K}}\left\{\min _{\boldsymbol{v}_{p} \in \mathcal{R}_{p}(L)}\left\|\boldsymbol{v}-\boldsymbol{v}_{p}\right\|_{L}^{2}\right. \tag{3.19}\\
&\left.+\left(\frac{h_{L}}{p+1}\left\|\nabla \cdot \boldsymbol{v}-\Pi_{h p}(\nabla \cdot \boldsymbol{v})\right\|_{L}\right)^{2}\right\} \tag{3.20}
\end{align*}
$$

(approximation equivalent to elementwise \boldsymbol{L}^{2}-orthogonal projector)

$$
\begin{equation*}
\left\|\boldsymbol{P}_{h p}^{\mathrm{div}}(\boldsymbol{v})\right\|_{K}^{2} \lesssim \sum_{L \in \widetilde{\mathcal{T}}_{K}}\left\{\|\boldsymbol{v}\|_{L}^{2}+\left(\frac{h_{L}}{p+1}\left\|\nabla \cdot \boldsymbol{v}-\Pi_{h p}(\nabla \cdot \boldsymbol{v})\right\|_{L}\right)^{2}\right\} \tag{3.21}
\end{equation*}
$$

(\boldsymbol{L}^{2}-stability up to data oscillation)

$$
\begin{equation*}
\left\|\boldsymbol{P}_{h p}^{\mathrm{div}}(\boldsymbol{v})\right\|_{K}^{2}+h_{\Omega}^{2}\left\|\nabla \cdot \boldsymbol{P}_{h p}^{\mathrm{div}}(\boldsymbol{v})\right\|_{K}^{2} \lesssim \sum_{L \in \widetilde{\mathcal{T}}_{K}}\left\{\|\boldsymbol{v}\|_{L}^{2}+h_{\Omega}^{2}\|\nabla \cdot \boldsymbol{v}\|_{L}^{2}\right\} \tag{3.22}
\end{equation*}
$$

$$
\text { (} \boldsymbol{H} \text { (div)-stability) }
$$

where, recall from Section 2.2, $\widetilde{\mathcal{T}}_{K}$ collects the elements L of \mathcal{T}_{h} sharing a vertex with K or with its vertex neighbor and h_{Ω} denotes the diameter of Ω. The constant hidden in \lesssim only depends on the local mesh shape-regularity given by $\max _{L \in \widetilde{\mathcal{T}}_{K}} \kappa_{L}$ with κ_{L} given by (2.1) and the space dimension d.

4 Properties of the intermediate objects from Lemma 3.5 and proof of Lemma 3.6

We justify here all steps of Lemma 3.5 and summarize the properties of the intermediate objects $\boldsymbol{\tau}_{h p}$, $\boldsymbol{\sigma}_{h p}$, and $\boldsymbol{\zeta}_{h p}$ therefrom. Collecting the results from this section in particular proves Lemma 3.6.

4.1 Step 1 (construction and properties of the discontinuous projection $\tau_{h p}$)

We start with:
Lemma 4.1 (Definition (3.7) and property (3.8)). For each mesh element $K \in \mathcal{T}_{h}$, problem (3.7) for $\left.\tau_{h p}\right|_{K}$ is well posed. Moreover, (3.8) holds.

Proof. Existence and uniqueness of (3.7) are standard. Note that (3.7) is equivalently stated by the Euler-Lagrange conditions: find $\left.\boldsymbol{\tau}_{h p}\right|_{K} \in \boldsymbol{\mathcal { R }}_{p}(K)$ such that

$$
\begin{equation*}
\left(\boldsymbol{\tau}_{h p}-\boldsymbol{v}, \boldsymbol{v}_{p}\right)_{K}=0 \quad \forall \boldsymbol{v}_{p} \in \boldsymbol{\mathcal { R }}_{p}(K) \tag{4.1}
\end{equation*}
$$

As for (3.8), it follows by definition.

4.2 Step 2 (construction and properties of the standard ("overconstrained" if $p \geq 1$) equilibration $\boldsymbol{\sigma}_{h p}$)

Let us next address:
Lemma 4.2 (Definition (3.9) and properties (3.10) and (3.11)). For each mesh vertex $\boldsymbol{a} \in \mathcal{V}_{h}$, problem (3.9a) for $\boldsymbol{\sigma}_{p}^{\boldsymbol{a}}$ is well posed. Moreover, defining $\boldsymbol{\sigma}_{h p}$ by (3.9b), (3.10) and (3.11) hold.
Proof. Problem (3.9a) is in a conventional form from, e.g., $[6,19]$ for $p=0$; then, existence and uniqueness of $\boldsymbol{\sigma}_{p}^{\boldsymbol{a}}$ follow when the Neumann compatibility condition holds. Taking into account definition (2.5) of $\boldsymbol{H}_{0, \mathrm{~N}, \psi^{a}}\left(\omega_{\boldsymbol{a}}\right)$, this is satisfied as $\left(\Pi_{h p}\left(\psi^{\boldsymbol{a}} \nabla \cdot \boldsymbol{v}+\nabla \psi^{\boldsymbol{a}} \cdot \boldsymbol{v}\right), 1\right)_{\omega_{\boldsymbol{a}}}=\left(\nabla \cdot\left(\psi^{\boldsymbol{a}} \boldsymbol{v}\right), 1\right)_{\omega_{\boldsymbol{a}}}=\left\langle\left(\psi^{\boldsymbol{a}} \boldsymbol{v}\right) \cdot \boldsymbol{n}, 1\right\rangle_{\partial \omega_{\boldsymbol{a}}}=0$ when $\boldsymbol{a} \notin \overline{\Gamma_{\mathrm{D}}}$, i.e., for interior vertices \boldsymbol{a} and for boundary vertices \boldsymbol{a} such that all faces sharing \boldsymbol{a} lie in $\overline{\Gamma_{\mathrm{N}}}$.

When $p \geq 1$, however, (3.9a) features an additional orthogonality constraint. For $d=3$ (the $d=2$ case is easier) it, though, exactly fits the framework of [12, Appendix A] with $q^{\prime}=q=p, g^{\boldsymbol{a}}=\psi^{\boldsymbol{a}} \nabla \cdot \boldsymbol{v}+\nabla \psi^{\boldsymbol{a}} \cdot \boldsymbol{v}$,
and $\boldsymbol{\tau}_{h}^{\boldsymbol{a}}=\boldsymbol{I}_{h, p}^{\boldsymbol{\mathcal { R }} \boldsymbol{\mathcal { T }}}\left(\psi^{\boldsymbol{a}} \boldsymbol{\tau}_{h p}\right)$. Let us check [12, Assumption A.1]. Observe that $g^{\boldsymbol{a}} \in L^{2}\left(\omega_{\boldsymbol{a}}\right), \boldsymbol{\tau}_{h}^{\boldsymbol{a}} \in \boldsymbol{\mathcal { R }} \boldsymbol{\mathcal { T }}_{p}\left(\mathcal{T}_{\boldsymbol{a}}\right)$, and $\left(g^{\boldsymbol{a}}, 1\right)_{\omega_{a}}=\left(\nabla \cdot\left(\psi^{\boldsymbol{a}} \boldsymbol{v}\right), 1\right)_{\omega_{\boldsymbol{a}}}=\left\langle\left(\psi^{\boldsymbol{a}} \boldsymbol{v}\right) \cdot \boldsymbol{n}, 1\right\rangle_{\partial \omega_{a}}=0$ as above when $\boldsymbol{a} \notin \overline{\Gamma_{\mathrm{D}}}$. Moreover, let $H_{*}^{1}\left(\omega_{\boldsymbol{a}}\right)$ be the subspace of $H^{1}\left(\omega_{\boldsymbol{a}}\right)$ with mean value zero (when $\boldsymbol{a} \notin \overline{\Gamma_{\mathrm{D}}}$) or the subspace of $H^{1}\left(\omega_{\boldsymbol{a}}\right)$ with trace zero on $\partial \omega_{\boldsymbol{a}} \cap \Gamma_{\mathrm{D}}$ (when $\boldsymbol{a} \in \overline{\Gamma_{\mathrm{D}}}$). Let $q_{h} \in \mathcal{P}_{1}\left(\mathcal{T}_{\boldsymbol{a}}\right) \cap H_{*}^{1}\left(\omega_{\boldsymbol{a}}\right)$. Then

$$
\begin{aligned}
\left(\boldsymbol{\tau}_{h}^{a}, \nabla q_{h}\right)_{\omega_{a}}+\left(g^{a}, q_{h}\right)_{\omega_{a}} & =(\boldsymbol{I}_{h, p}^{\mathcal{R} \mathcal{T}}\left(\psi^{\boldsymbol{a}} \boldsymbol{\tau}_{h p}\right), \underbrace{\nabla q_{h}}_{\left.\right|_{K} \in\left[\mathcal{P}_{0}(K)\right]^{d} \forall K \in \mathcal{T}_{a}})_{\omega_{a}}+\left(\nabla \cdot\left(\psi^{\boldsymbol{a}} \boldsymbol{v}\right), q_{h}\right)_{\omega_{a}} \\
& \stackrel{(2.9 \mathrm{~b})}{\stackrel{\text { Green }}{=}}\left(\psi^{\boldsymbol{a}} \boldsymbol{\tau}_{h p}, \nabla q_{h}\right)_{\omega_{a}}-\left(\psi^{\boldsymbol{a}} \boldsymbol{v}, \nabla q_{h}\right)_{\omega_{a}} \\
& =\sum_{K \in \mathcal{T}_{a}}(\boldsymbol{\tau}_{h p}-\boldsymbol{v}, \underbrace{\psi^{a} \nabla q_{h}}_{\mid K \in\left[\mathcal{P}_{1}(K)\right]^{d}})_{K} \\
& \stackrel{(4.1)}{=} 0 .
\end{aligned}
$$

We have in particular used the assumption $p \geq 1$, (2.7), (2.9b) with $\boldsymbol{r}_{h}=\left.\left(\nabla q_{h}\right)\right|_{K} \in\left[\mathcal{P}_{0}(K)\right]^{d}$, and (4.1) with $\boldsymbol{v}_{p}=\left.\left(\psi^{\boldsymbol{a}} \nabla q_{h}\right)\right|_{K} \in\left[\mathcal{P}_{1}(K)\right]^{d} \subset \boldsymbol{\mathcal { R }}_{p}(K)$. Existence and uniqueness of $\boldsymbol{\sigma}_{p}^{\boldsymbol{a}}$ thus follow from [12, Theorem A.2].

For (3.10), $\boldsymbol{\sigma}_{h p} \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$ follows by (3.9b) and the definitions in Section 2.5. As for the divergence constraint, as in [7, 22], definition (3.9b), the linearity of the weak divergence, the divergence constraints in (3.9a), the linearity of the elementwise $L^{2}(\Omega)$-orthogonal projector (2.8), and the partition of unity (2.2) give

$$
\begin{aligned}
& \nabla \cdot \boldsymbol{\sigma}_{h p} \stackrel{(3.9 \mathrm{~b})}{=} \sum_{\boldsymbol{a} \in \mathcal{V}_{h}} \nabla \cdot \boldsymbol{\sigma}_{p}^{\boldsymbol{a}} \stackrel{(3.9 \mathrm{a})}{=} \sum_{\boldsymbol{a} \in \mathcal{V}_{h}} \Pi_{h p}\left(\psi^{\boldsymbol{a}} \nabla \cdot \boldsymbol{v}+\nabla \psi^{\boldsymbol{a}} \cdot \boldsymbol{v}\right) \\
& \stackrel{(2.8)}{=} \Pi_{h p}\left(\sum_{\boldsymbol{a} \in \mathcal{V}_{h}}\left(\psi^{\boldsymbol{a}} \nabla \cdot \boldsymbol{v}+\nabla \psi^{\boldsymbol{a}} \cdot \boldsymbol{v}\right)\right) \stackrel{(2.2)}{=} \Pi_{h p}(\nabla \cdot \boldsymbol{v}) .
\end{aligned}
$$

Finally, property (3.11a) is immediate from (3.8) and (3.10). As for (3.11b), let $K \in \mathcal{T}_{h}$ and $\boldsymbol{r}_{h} \in$ $\left[\mathcal{P}_{0}(K)\right]^{d}$ be fixed. From the orthogonality constraint in (3.9a) imposed if $p \geq 1$, we have, for any vertex $\boldsymbol{a} \in \mathcal{V}_{K}$ of the simplex K,

$$
\left(\boldsymbol{\sigma}_{p}^{a}-\boldsymbol{I}_{h, p}^{\mathcal{R} \mathcal{T}}\left(\psi^{a} \boldsymbol{\tau}_{h p}\right), \boldsymbol{r}_{h}\right)_{K}=0
$$

Thus, summing over all $\boldsymbol{a} \in \mathcal{V}_{K}$ and using the linearity of the canonical projector $\boldsymbol{I}_{h, p}^{\mathcal{R} \mathcal{T}}$ from (2.9), the partition of unity (2.2), the fact that $\boldsymbol{I}_{h, p}^{\boldsymbol{\mathcal { R }}}\left(\boldsymbol{\tau}_{h p}\right)=\boldsymbol{\tau}_{h p}$, and definition (3.9b), we have

$$
0=\sum_{\boldsymbol{a} \in \mathcal{V}_{K}}\left(\boldsymbol{\sigma}_{p}^{\boldsymbol{a}}-\boldsymbol{I}_{h, p}^{\mathcal{R} \mathcal{T}}\left(\psi^{\boldsymbol{a}} \boldsymbol{\tau}_{h p}\right), \boldsymbol{r}_{h}\right)_{K}=\left(\boldsymbol{\sigma}_{h p}-\boldsymbol{\tau}_{h p}, \boldsymbol{r}_{h}\right)_{K}
$$

which is the claim (3.11b).

4.3 Step 3 (construction and properties of the p-robust correction $\zeta_{h p}$)

We continue with:
Lemma 4.3 (Definition (3.12a)). For each mesh vertex $\boldsymbol{a} \in \mathcal{V}_{h}$, problem (3.12a) for $\boldsymbol{\zeta}_{p}^{\boldsymbol{a}}$ is well posed.
Proof. Problem (3.12a) is again not in a conventional form from, e.g., [6, 19], because of the additional orthogonality constraint. The situation is, though, much easier than for (3.9a) in the proof of Lemma 4.2. Indeed, the minimization (3.12a) is convex and the minimization set not empty, since the zero vector is trivially contained; this comes from the data already satisfying $\left(\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}, \boldsymbol{r}_{h}\right)_{K}=0$ for all $\boldsymbol{r}_{h} \in\left[\mathcal{P}_{0}(K)\right]^{d}$ and for all $K \in \widetilde{\mathcal{T}}_{\boldsymbol{a}}$.
Lemma 4.4 (Decomposition (3.12b)). For each mesh vertex $\boldsymbol{a} \in \mathcal{V}_{h}$, the decomposition (3.12b) is well defined.
Proof. By definition from (3.12a), $\boldsymbol{\zeta}_{p}^{\boldsymbol{a}}$ lies in $\boldsymbol{\mathcal { R }} \boldsymbol{\mathcal { T }}_{p}\left(\widetilde{\mathcal{T}}_{\boldsymbol{a}}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}\left(\operatorname{div}, \widetilde{\omega}_{\boldsymbol{a}}\right)$, is divergence-free, and satisfies $\left(\boldsymbol{\zeta}_{p}^{\boldsymbol{a}}, \boldsymbol{r}_{h}\right)_{K}=0$ for all $\boldsymbol{r}_{h} \in\left[\mathcal{P}_{0}(K)\right]^{d}$ and for all $K \in \widetilde{\mathcal{T}}_{\boldsymbol{a}}$. Thus assumption (A.1) below is satisfied with $\mathcal{T}_{\omega}=\widetilde{\mathcal{T}}_{\boldsymbol{a}}$ and $\omega=\widetilde{\omega}_{\boldsymbol{a}}$. Then (3.12b) follows immediately from (A.2) (with $\mathcal{V}_{\omega}=\widetilde{\mathcal{V}}_{\boldsymbol{a}}$) and (A.4) in Lemma A. 1 or Lemma 3.2. Note that we only employ the "interior" component $\boldsymbol{\zeta}_{p}^{a, a}$; this is from (A.3) supported on the vertex patch subdomain $\omega_{\boldsymbol{a}} \cap \widetilde{\omega}_{\boldsymbol{a}}$ which is simply $\omega_{\boldsymbol{a}}$ (no patch truncation happens for the "interior" component, see Figure 3 (right)).

Lemma 4.5 (Property (3.13)). Property (3.13) holds true.
Proof. The inclusion $\boldsymbol{\zeta}_{h p} \in \boldsymbol{\mathcal { R }} \boldsymbol{\mathcal { T }}_{p}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$ follows immediately by (3.12c) and the definitions in Section 2.5. Note that it is crucial that the components $\boldsymbol{\zeta}_{p}^{\boldsymbol{a}, \boldsymbol{a}}$ have from (3.12b) zero normal trace on those faces in $\partial \omega_{a}$ where the hat function ψ^{a} vanishes or which lie in the Neumann boundary $\overline{\Gamma_{\mathrm{N}}}$. The divergence-free property is evident since all the contributions are divergence-free.

4.4 Step 4 (combining the previous steps)

We finish by:
Lemma 4.6 (Property (3.15)). Property (3.15) holds true.
Proof. This is an immediate consequence of the definition (3.14) and the property (3.10) together with (3.13) if $p \geq 1$.

5 Proof of Lemma 3.7

Let the assumptions of Lemma 3.7 be satisfied. We prove the claims separately.

5.1 Commuting and projection

Lemma 5.1 (Commuting property (3.17)). The commuting property (3.17) holds true.
Proof. This has been already established in Lemma 4.6.
Lemma 5.2 (Projection property (3.18)). The projection property (3.18) holds true.
Proof. Let $\boldsymbol{v} \in \boldsymbol{\mathcal { R }} \boldsymbol{\mathcal { T }}_{p}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}(\mathrm{div}, \Omega)$. Then clearly $\boldsymbol{\tau}_{h p}$ from (3.7) satisfies $\boldsymbol{\tau}_{h p}=\boldsymbol{v}$. Next, from (3.9a), we see that $\boldsymbol{\sigma}_{p}^{\boldsymbol{a}}=\boldsymbol{I}_{h, p}^{\mathcal{R} \mathcal{T}}\left(\psi^{\boldsymbol{a}} \boldsymbol{\tau}_{h p}\right)$. Indeed, $\boldsymbol{I}_{h, p}^{\mathcal{R} \mathcal{T}}\left(\psi^{\boldsymbol{a}} \boldsymbol{\tau}_{h p}\right) \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{\boldsymbol{a}}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}, \psi^{a}}\left(\omega_{\boldsymbol{a}}\right)$ by (2.9a); it is crucial that $\boldsymbol{\tau}_{h p}=\boldsymbol{v}$ is normal-trace continuous here. Moreover,

$$
\nabla \cdot \boldsymbol{I}_{h, p}^{\boldsymbol{\mathcal { R }}}\left(\psi^{\boldsymbol{a}} \boldsymbol{\tau}_{h p}\right) \stackrel{(2.10)}{=} \Pi_{h p}\left(\nabla \cdot\left(\psi^{\boldsymbol{a}} \boldsymbol{\tau}_{h p}\right)\right)=\Pi_{h p}\left(\psi^{\boldsymbol{a}} \nabla \cdot \boldsymbol{v}+\nabla \psi^{\boldsymbol{a}} \cdot \boldsymbol{v}\right)
$$

by the commuting property (2.10). Consequently, (3.9b) and the linearity of $\boldsymbol{I}_{h, p}^{\boldsymbol{\mathcal { R }}}$ as well as its projection property give

$$
\boldsymbol{\sigma}_{h p}=\sum_{a \in \mathcal{V}_{h}} \boldsymbol{\sigma}_{p}^{a}=\sum_{a \in \mathcal{V}_{h}} \boldsymbol{I}_{h, p}^{\mathcal{R} \mathcal{T}}\left(\psi^{a} \boldsymbol{\tau}_{h p}\right)=\boldsymbol{I}_{h, p}^{\mathcal{R} \mathcal{T}}\left(\sum_{\boldsymbol{a} \in \mathcal{V}_{h}} \psi^{a} \boldsymbol{\tau}_{h p}\right)=\boldsymbol{I}_{h, p}^{\mathcal{R} \mathcal{T}}\left(\boldsymbol{\tau}_{h p}\right)=\boldsymbol{\tau}_{h p}
$$

Thus, also $\boldsymbol{\sigma}_{h p}=\boldsymbol{v}$. Finally, as Step 3 of Lemma 3.5 only builds on $\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}$ if $p \geq 1$, all $\boldsymbol{\zeta}_{p}^{\boldsymbol{a}}, \boldsymbol{\zeta}_{p}^{\boldsymbol{a}, \boldsymbol{a}}$, and $\boldsymbol{\zeta}_{h p}$ are zero, whereas $\boldsymbol{\zeta}_{h p}=\mathbf{0}$ by definition if $p=0$. Then, from (3.14), $\boldsymbol{P}_{h p}^{\text {div }}(\boldsymbol{v})=\boldsymbol{\sigma}_{h p}+\boldsymbol{\zeta}_{h p}=\boldsymbol{\sigma}_{h p}=\boldsymbol{v}$.

5.2 Approximation

Lemma 5.3 (Approximation property (3.20)). The approximation property (3.20) holds true.
Proof. The case $p=0$ is treated as in [22, proof of the approximation property (3.6)]; a p-dependent constant is harmful in this lowest-order case. We thus henceforth only consider the case $p \geq 1$. In view of (3.17), the second terms in (3.20) are identical. We thus only have to estimate $\left\|\boldsymbol{v}-\boldsymbol{P}_{h p}^{\text {div }}(\boldsymbol{v})\right\|_{K}$. Let $K \in \mathcal{T}_{h}$ be fixed and recall the notation from Sections 2.2 and 2.5. We proceed in several steps.
(i) Like in (3.12a), but on the extended element patch $\widetilde{\mathcal{T}}_{K}$ in place of the extended vertex patch $\widetilde{\mathcal{T}}_{\boldsymbol{a}}$, see Section 2.2 and Figure 2, define

$$
\begin{align*}
& \left(\boldsymbol{v}_{p}, \boldsymbol{r}_{h}\right)_{K}=\left(\tau_{\boldsymbol{\tau}_{p}}-\boldsymbol{\sigma}_{h p}, \boldsymbol{r}_{h}\right){ }_{K}=0 \quad \forall \boldsymbol{v}_{h} \in\left[\mathcal{P}_{0}(K)\right]^{d}, \forall K \in \tilde{\mathcal{T}}_{K} \tag{5.1}
\end{align*}
$$

This problem is trivially well posed as in Lemma 4.3. Now, as in (3.12b), decompose using Lemma A. 1 or Lemma 3.2

$$
\begin{equation*}
\boldsymbol{\zeta}_{p}^{K}=\sum_{\boldsymbol{b} \in \widetilde{\mathcal{V}}_{K}} \boldsymbol{\zeta}_{p}^{K, \boldsymbol{b}} \text { with } \boldsymbol{\zeta}_{p}^{K, \boldsymbol{b}} \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{\boldsymbol{b}} \cap \widetilde{\mathcal{T}}_{K}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}, \psi^{\boldsymbol{b}}}\left(\omega_{\boldsymbol{b}} \cap \widetilde{\omega}_{K}\right), \nabla \cdot \boldsymbol{\zeta}_{p}^{K, \boldsymbol{b}}=0 \tag{5.2}
\end{equation*}
$$

Note that the assumptions (A.1) are satisfied for the choice $\mathcal{T}_{\omega}=\widetilde{\mathcal{T}}_{K}$ and $\mathcal{V}_{\omega}=\widetilde{\mathcal{V}}_{K}$. Now, crucially, as in (3.12b), the contributions for the vertices \boldsymbol{a} of the element $K, \boldsymbol{a} \in \mathcal{V}_{K}$, actually lie in $\boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{\boldsymbol{a}}\right) \cap$ $\boldsymbol{H}_{0, \mathrm{~N}, \psi^{a}}\left(\omega_{\boldsymbol{a}}\right)$ (as $\mathcal{T}_{\boldsymbol{a}}$ are included in $\widetilde{\mathcal{T}}_{K}, \mathcal{T}_{\boldsymbol{a}} \cap \widetilde{\mathcal{T}}_{K}=\mathcal{T}_{\boldsymbol{a}}$ and no patch truncation happens).
(ii) For each vertex $\boldsymbol{a} \in \mathcal{V}_{K}$, let us also consider $\boldsymbol{\zeta}_{p}^{K}$ from (5.1) restricted to the extended vertex patch $\widetilde{\omega}_{\boldsymbol{a}}\left(\widetilde{\omega}_{\boldsymbol{a}}\right.$ are included in $\widetilde{\omega}_{K}$ by definition). We again decompose $\left.\boldsymbol{\zeta}_{p}^{K}\right|_{\widetilde{\omega}_{a}}$ using Lemma A. 1 or Lemma 3.2

$$
\begin{equation*}
\boldsymbol{\zeta}_{p}^{K} \mid \widetilde{\omega}_{\boldsymbol{a}}=\sum_{\boldsymbol{b} \in \widetilde{\mathcal{V}}_{\boldsymbol{a}}} \boldsymbol{\zeta}_{p}^{K, \boldsymbol{a}, \boldsymbol{b}} \text { with } \boldsymbol{\zeta}_{p}^{K, \boldsymbol{a}, \boldsymbol{b}} \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{\boldsymbol{b}} \cap \widetilde{\mathcal{T}}_{\boldsymbol{a}}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}, \psi^{\boldsymbol{b}}}\left(\omega_{\boldsymbol{b}} \cap \widetilde{\omega}_{\boldsymbol{a}}\right), \nabla \cdot \boldsymbol{\zeta}_{p}^{K, \boldsymbol{a}, \boldsymbol{b}}=0 \tag{5.3}
\end{equation*}
$$

Assumptions (A.1) are here satisfied for the choice $\mathcal{T}_{\omega}=\widetilde{\mathcal{T}}_{a}$ and $\mathcal{V}_{\omega}=\widetilde{\mathcal{V}}_{\boldsymbol{a}}$. Crucially, from (A.3), as $\boldsymbol{\zeta}_{p}^{K}$ and $\left.\boldsymbol{\zeta}_{p}^{K}\right|_{\widetilde{\omega}_{\boldsymbol{a}}}$ are identical on the extended vertex patches $\widetilde{\omega}_{\boldsymbol{a}}$, the $d+1$ contributions $\boldsymbol{\zeta}_{p}^{K, \boldsymbol{a}}$ from (5.2) for the vertices \boldsymbol{a} of the element K respectively coincide with the $d+1$ contributions $\boldsymbol{\zeta}_{p}^{K, \boldsymbol{a}, \boldsymbol{a}}$ from (5.3),

$$
\begin{equation*}
\boldsymbol{\zeta}_{p}^{K, \boldsymbol{a}}=\boldsymbol{\zeta}_{p}^{K, a, a} \quad \forall \boldsymbol{a} \in \mathcal{V}_{K} \tag{5.4}
\end{equation*}
$$

Indeed, by (A.3), these contributions have the vertex patches $\mathcal{T}_{\boldsymbol{a}}$ as support and the extended vertex patches $\widetilde{\mathcal{T}}_{\boldsymbol{a}}$ as dependency regions and, once again, $\boldsymbol{\zeta}_{p}^{K}$ and $\left.\boldsymbol{\zeta}_{p}^{K}\right|_{\tilde{\omega}_{\boldsymbol{a}}}$ coincide on $\widetilde{\omega}_{\boldsymbol{a}}$. The dependency regions being the extended vertex patches $\widetilde{\mathcal{T}}_{\boldsymbol{a}}$ are actually the reason for the remainder equilibration (3.12a) and the decomposition (3.12b) to be performed on the extended vertex patches $\widetilde{\mathcal{T}}_{a}$; merely the vertex patches $\mathcal{T}_{\boldsymbol{a}}$ would not be sufficient. From (5.2)-(5.4), we conclude

$$
\begin{equation*}
\left.\boldsymbol{\zeta}_{p}^{K}\right|_{K} \stackrel{(5.2)}{=} \sum_{\boldsymbol{a} \in \mathcal{V}_{K}} \boldsymbol{\zeta}_{p}^{K, \boldsymbol{a}} \stackrel{(5.4)}{=} \sum_{\boldsymbol{a} \in \mathcal{V}_{K}} \boldsymbol{\zeta}_{p}^{K, \boldsymbol{a}, \boldsymbol{a}} . \tag{5.5}
\end{equation*}
$$

(iii) Recall the definition of $\boldsymbol{\tau}_{h p}$ from (3.7). We estimate by the triangle inequality and employing the definitions (3.14) and (3.12c) together with the equality (5.5),

$$
\begin{align*}
&\left\|\boldsymbol{v}-\boldsymbol{P}_{h p}^{\mathrm{div}}(\boldsymbol{v})\right\|_{K} \leq\left\|\boldsymbol{v}-\boldsymbol{\tau}_{h p}\right\|_{K}+\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}-\boldsymbol{\zeta}_{h p}\right\|_{K} \\
& \stackrel{(3.12 \mathrm{c})}{(5.5)}\left\|\boldsymbol{v}-\boldsymbol{\tau}_{h p}\right\|_{K}+\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}-\boldsymbol{\zeta}_{p}^{K}+\sum_{\boldsymbol{a} \in \mathcal{V}_{K}}\left(\boldsymbol{\zeta}_{p}^{K, \boldsymbol{a}, \boldsymbol{a}}-\boldsymbol{\zeta}_{p}^{\boldsymbol{a}, \boldsymbol{a}}\right)\right\|_{K} \tag{5.6}\\
& \leq\left\|\boldsymbol{v}-\boldsymbol{\tau}_{h p}\right\|_{K}+\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}-\boldsymbol{\zeta}_{p}^{K}\right\|_{K}+\sum_{\boldsymbol{a} \in \mathcal{V}_{K}}\left\|\boldsymbol{\zeta}_{p}^{K, \boldsymbol{a}, \boldsymbol{a}}-\boldsymbol{\zeta}_{p}^{\boldsymbol{a}, \boldsymbol{a}}\right\|_{\omega_{\boldsymbol{a}}} .
\end{align*}
$$

From (3.7), the first term above already has the target form. For the last term, we crucially use the linearity of the decomposition (A.3) and its p-robust stability (A.5). This gives, for a vertex $\boldsymbol{a} \in \mathcal{V}_{K}$, recalling (5.3) and (3.12b),

$$
\begin{align*}
\left\|\boldsymbol{\zeta}_{p}^{K, \boldsymbol{a}, \boldsymbol{a}}-\boldsymbol{\zeta}_{p}^{\boldsymbol{a}, \boldsymbol{a}}\right\|_{\omega_{\boldsymbol{a}}} & \stackrel{(\mathrm{A} .5)}{\lesssim}\left\|\boldsymbol{\zeta}_{p}^{K}-\boldsymbol{\zeta}_{p}^{\boldsymbol{a}}\right\|_{\widetilde{\omega}_{\boldsymbol{a}}} \\
& \leq\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}-\boldsymbol{\zeta}_{p}^{K}\right\|_{\widetilde{\omega}_{\boldsymbol{a}}}+\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}-\boldsymbol{\zeta}_{p}^{\boldsymbol{a}}\right\|_{\widetilde{\omega}_{\boldsymbol{a}}} \tag{5.7}\\
& \leq\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}-\boldsymbol{\zeta}_{p}^{K}\right\|_{\widetilde{\omega}_{K}}+\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}-\boldsymbol{\zeta}_{p}^{\boldsymbol{a}}\right\|_{\widetilde{\omega}_{\boldsymbol{a}}}
\end{align*}
$$

where we have followed by adding and subtracting $\tau_{h p}-\sigma_{h p}$, using the triangle inequality, and extending the integration region. We are thus left estimating $\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}-\boldsymbol{\zeta}_{p}^{K}\right\|_{\tilde{\omega}_{K}}$ for $\boldsymbol{\zeta}_{p}^{K}$ from (5.1) and $\| \boldsymbol{\tau}_{h p}-$ $\boldsymbol{\sigma}_{h p}-\boldsymbol{\zeta}_{p}^{a} \|_{\widetilde{\omega}_{a}}$ for $\boldsymbol{\zeta}_{p}^{a}$ from (3.12a). These take the same form, so that we only show the details for the former.
(iv) Let us thus consider (5.1). Such problems (recall that $\boldsymbol{\tau}_{h p}$ from (3.7) merely belongs to $\boldsymbol{\mathcal { R }} \boldsymbol{\mathcal { T }}_{p}\left(\mathcal{T}_{h}\right)$ but not to $\boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$) have recently been analyzed and p-robust stability has been shown in Braess et al. [7] (for $d=2$) and in [26] (for $d=3$) on: 1) vertex patch subdomains $\omega_{\boldsymbol{a}} ; 2$) with no-flux conditions on $\partial \omega_{\boldsymbol{a}}$; and 3) without the additional orthogonality constraint. The additional orthogonality constraint has recently been analyzed in [12, Appendix A]. We extend these results to the present setting in Appendices B and C and employ them now here.
(v) Let us first treat the additional orthogonality constraint. Taking $\mathcal{T}_{\omega}=\widetilde{\mathcal{T}}_{K}, r_{h p}=0$, and $\boldsymbol{\tau}_{h p}=$
$\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}$, we see that (C.6) is trivially satisfied, using in particular (3.11b). Thus, Lemma C. 3 yields

$$
\begin{align*}
& \left\|\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}-\boldsymbol{\zeta}_{p}^{K}\right\|_{\widetilde{\omega}_{K}} \\
& \stackrel{(5.1)}{=} \min _{\substack{\boldsymbol{v}_{p} \in \boldsymbol{\mathcal { R }} \boldsymbol{T}_{p}\left(\widetilde{\mathcal{T}}_{\begin{subarray}{c}{K} }}^{\boldsymbol{\nabla} \cdot \boldsymbol{v}_{p}=0} \boldsymbol{H}_{0, \mathrm{~N}}\left(\mathrm{div}, \widetilde{\omega}_{K}\right)\right.}\end{subarray}}\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}-\boldsymbol{v}_{p}\right\|_{\widetilde{\omega}_{K}} \tag{5.8}\\
& \left(\boldsymbol{v}_{p}, \boldsymbol{r}_{h}\right)_{K}=\left(\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}, \boldsymbol{r}_{h}\right)_{K}=0 \quad \forall \boldsymbol{r}_{h} \in\left[\mathcal{P}_{0}(K)\right]^{d}, \forall K \in \widetilde{\mathcal{T}}_{K} \\
& \stackrel{(\mathrm{C} .7)}{\lesssim} \min _{\substack{\boldsymbol{v}_{p} \in \mathcal{R} \mathcal{T}_{p}\left(\widetilde{\mathcal{T}}_{K}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}\left(\operatorname{div}, \widetilde{\omega}_{K}\right) \\
\nabla \cdot \boldsymbol{v}_{p}=0}}\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}-\boldsymbol{v}_{p}\right\|_{\widetilde{\omega}_{K}} .
\end{align*}
$$

(vi) Next, note that

$$
\begin{equation*}
\min _{\substack{\boldsymbol{v}_{p} \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\widetilde{\mathcal{T}}_{K}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}\left(\operatorname{div}, \widetilde{\omega}_{K}\right) \\ \nabla \cdot \boldsymbol{v}_{p}=0}}\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{\sigma}_{h p}-\boldsymbol{v}_{p}\right\|_{\widetilde{\omega}_{K}}=\min _{\substack{\boldsymbol{v}_{p} \in \boldsymbol{\mathcal { R }} \boldsymbol{\mathcal { T }}_{(}\left(\widetilde{\mathcal{T}}_{K}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}\left(\mathrm{div}, \widetilde{\omega}_{K}\right) \\ \nabla \cdot \boldsymbol{v}_{p}=\Pi_{h p}(\nabla \cdot \boldsymbol{v})}}\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}_{p}\right\|_{\widetilde{\omega}_{K}} . \tag{5.9}
\end{equation*}
$$

Indeed, this follows by the shift by $\left.\boldsymbol{\sigma}_{h p}\right|_{\widetilde{\omega}_{K}}$ since, by (3.10), it lies in $\boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\widetilde{\mathcal{T}}_{K}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}\left(\operatorname{div}, \widetilde{\omega}_{K}\right)$; the normal-trace continuity of $\boldsymbol{\sigma}_{h p}$ together with $\boldsymbol{\sigma}_{h p} \cdot \boldsymbol{n}_{\widetilde{\omega}_{K}}=0$ on Γ_{N} are crucial here. In this important conceptual step, the non p-robust usual equilibration $\boldsymbol{\sigma}_{h p}$ is played out.
(vii) We now finally apply Lemma B. 3 with $\mathcal{T}_{\omega}=\widetilde{\mathcal{T}}_{K}, r_{h p}=\Pi_{h p}(\nabla \cdot \boldsymbol{v})$, and $\boldsymbol{\tau}_{h p}=\boldsymbol{\tau}_{h p}$ to deduce that

$$
\begin{equation*}
\min _{\substack{\boldsymbol{v}_{p} \in \mathcal{R} \mathcal{R}_{p}\left(\widetilde{\mathcal{T}}_{K}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}\left(\mathrm{div}, \widetilde{\omega}_{K}\right) \\ \nabla \cdot \boldsymbol{v}_{p}=\Pi_{h p}\left(\nabla \cdot \boldsymbol{v}_{p}\right)}}\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}_{p}\right\|_{\widetilde{\omega}_{K}} \lesssim \min _{\substack{\boldsymbol{w} \in \boldsymbol{H}_{0, \mathrm{~N}}\left(\operatorname{div}, \widetilde{\omega}_{K}\right) \\ \nabla \cdot \boldsymbol{w}=\Pi_{h p}(\nabla \cdot \boldsymbol{v})}}\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{w}\right\|_{\widetilde{\omega}_{K}} . \tag{5.10}
\end{equation*}
$$

This is the crucial p-robust stability bound which makes the power of the infinite-dimensional level of $\boldsymbol{H}_{0, \mathrm{~N}}\left(\operatorname{div}, \widetilde{\omega}_{K}\right)$ appear.
(viii) Finally, proceeding as in, e.g., [12, Lemma A.3] to treat the divergence misfit $\nabla \cdot \boldsymbol{v}-\Pi_{h p}(\nabla \cdot \boldsymbol{v})$ (one needs to employ the $h p$ Poincaré inequality

$$
\left\|v-\Pi_{h p}(v)\right\|_{K} \lesssim \frac{h_{K}}{p+1}\|\nabla v\|_{K}
$$

instead of the simpler one not yielding the factor $p+1$), we can play in the target function $\boldsymbol{v} \in \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \Omega)$ from the announcement of Lemma 3.7, which satisfies $\left.\boldsymbol{v}\right|_{\widetilde{\omega}_{K}} \in \boldsymbol{H}_{0, \mathrm{~N}}\left(\operatorname{div}, \widetilde{\omega}_{K}\right)$ with $\nabla \cdot \boldsymbol{v}=\nabla \cdot \boldsymbol{v}$, and obtain

$$
\begin{equation*}
\min _{\substack{\boldsymbol{w} \in \boldsymbol{H}_{0, \mathrm{~N}}\left(\operatorname{div}, \widetilde{\omega}_{K}\right) \\ \nabla \cdot \boldsymbol{w}=\Pi_{h p}(\nabla \cdot \boldsymbol{v})}}\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{w}\right\|_{\widetilde{\omega}_{K}} \lesssim\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}\right\|_{\widetilde{\omega}_{K}}+\left\{\sum_{L \in \widetilde{\mathcal{T}}_{K}}\left(\frac{h_{L}}{p+1}\left\|\nabla \cdot \boldsymbol{v}-\Pi_{h p}(\nabla \cdot \boldsymbol{v})\right\|_{L}\right)^{2}\right\}^{1 / 2} \tag{5.11}
\end{equation*}
$$

Combining the above bounds (5.6)-(5.11) gives the assertion (3.20).

5.3 Stability

Lemma 5.4 (Stability property (3.21)). The stability property (3.21) holds true.
Proof. This follows by the triangle inequality from (3.20). Indeed, let $K \in \mathcal{T}_{h}$ be fixed. Then

$$
\begin{aligned}
\left\|\boldsymbol{P}_{h p}^{\mathrm{div}}(\boldsymbol{v})\right\|_{K} & \leq\|\boldsymbol{v}\|_{K}+\left\|\boldsymbol{v}-\boldsymbol{P}_{h p}^{\mathrm{div}}(\boldsymbol{v})\right\|_{K} \\
& \stackrel{(3.20)}{\lesssim}\left\{\sum_{L \in \widetilde{\mathcal{T}}_{K}}\left\{\|\boldsymbol{v}\|_{L}^{2}+\left(\frac{h_{L}}{p+1}\left\|\nabla \cdot \boldsymbol{v}-\Pi_{h p}(\nabla \cdot \boldsymbol{v})\right\|_{L}\right)^{2}\right\}\right\}^{1 / 2}
\end{aligned}
$$

where we have also used the trivial $\boldsymbol{L}^{2}(K)$-orthogonal projection stability

$$
\min _{\boldsymbol{v}_{p} \in \mathcal{R} \mathcal{T}_{p}(L)}\left\|\boldsymbol{v}-\boldsymbol{v}_{p}\right\|_{L} \leq\|\boldsymbol{v}\|_{L}
$$

Lemma 5.5 (Stability property (3.22)). The stability property (3.22) holds true.
Proof. This is trivial from (3.21), the bound $h_{L} / p+1 \leq h_{\Omega}$, and

$$
\begin{aligned}
\left\|\nabla \cdot \boldsymbol{P}_{h p}^{\mathrm{div}}(\boldsymbol{v})\right\|_{K} \stackrel{(3.17)}{=}\left\|\Pi_{h p}(\nabla \cdot \boldsymbol{v})\right\|_{K} \stackrel{(2.8)}{\leq}\|\nabla \cdot \boldsymbol{v}\|_{K}, \\
\left\|\nabla \cdot \boldsymbol{v}-\Pi_{h p}(\nabla \cdot \boldsymbol{v})\right\|_{L} \stackrel{(2.8)}{\leq}\|\nabla \cdot \boldsymbol{v}\|_{L} .
\end{aligned}
$$

A A p-stable $\boldsymbol{\mathcal { R }} \mathcal{T}_{p} \cap \boldsymbol{H}$ (div) decomposition on patch subdomains in two space dimensions

We now state a p-stable decomposition result which in two space dimensions follows from Schöberl et al. [35, Section 3]. We consider subdomains $\omega \subset \Omega$ and the corresponding meshes \mathcal{T}_{ω} as in Sections 2.1 and 2.2 which are intended to be "small": either the extended vertex patch $\widetilde{\mathcal{T}}_{\boldsymbol{a}}$ with the corresponding subdomain $\widetilde{\omega}_{\boldsymbol{a}}$, or the extended element patch $\widetilde{\mathcal{T}}_{K}$ with $\widetilde{\omega}_{K}$. Recall the notation from Section 2.5 . There holds:

Theorem A. 1 (A p-stable $\boldsymbol{\mathcal { R }}_{p} \cap \boldsymbol{H}$ (div) decomposition on two-dimensional patches). Let $d=2$, a simplicial mesh \mathcal{T}_{h} of Ω, a polynomial degree $p \geq 1$, and $\omega \subset \mathbb{R}^{d}$ an open and bounded Lipschitz polygonal or polyhedral subdomain of Ω, such that $\bar{\omega}$ is contractible, corresponding to a face-connected submesh (patch) of \mathcal{T}_{h} denoted by \mathcal{T}_{ω}, with vertex set \mathcal{V}_{ω}, be given. Let

$$
\begin{align*}
\boldsymbol{\delta}_{p} & \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{\omega}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \omega) \quad \text { with } \quad \nabla \cdot \boldsymbol{\delta}_{p}=0, \tag{A.1a}\\
\left(\boldsymbol{\delta}_{p}, \boldsymbol{r}_{h}\right)_{K}=0 \quad \forall \boldsymbol{r}_{h} \in\left[\mathcal{P}_{0}(K)\right]^{d}, \forall K \in \mathcal{T}_{\omega} & \tag{A.1b}
\end{align*}
$$

be a p-degree divergence-free Raviart-Thomas piecewise polynomial on ω respecting the zero normal trace condition on Γ_{N} if $\partial \omega$ contains faces from $\overline{\Gamma_{\mathrm{N}}}$ and with elementwise vanishing lowest-order moments. Then there exists a decomposition of $\boldsymbol{\delta}_{p}$ as

$$
\begin{equation*}
\boldsymbol{\delta}_{p}=\sum_{\boldsymbol{b} \in \mathcal{V}_{\omega}} \boldsymbol{\delta}_{p}^{\boldsymbol{b}} \tag{A.2}
\end{equation*}
$$

where the contributions

$$
\begin{align*}
& \boldsymbol{\delta}_{p}^{\boldsymbol{b}} \text { are supported on the (truncated) vertex patch subdomains } \omega_{\boldsymbol{b}} \cap \omega \text {, linearly } \\
& \quad \text { depend on } \boldsymbol{\delta}_{p} \text { on the (truncated) extended vertex patch subdomains } \widetilde{\omega}_{\boldsymbol{b}} \cap \omega \text {, } \tag{A.3}
\end{align*}
$$

and satisfy

$$
\begin{equation*}
\boldsymbol{\delta}_{p}^{\boldsymbol{b}} \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{\boldsymbol{b}} \cap \mathcal{T}_{\omega}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}, \psi^{\boldsymbol{b}}}\left(\omega_{\boldsymbol{b}} \cap \omega\right) \quad \text { with } \quad \nabla \cdot \boldsymbol{\delta}_{p}^{\boldsymbol{b}}=0 \tag{A.4}
\end{equation*}
$$

i.e., recalling (2.6), are divergence-free and such that $\boldsymbol{\delta}_{p}^{\boldsymbol{b}} \cdot \boldsymbol{n}_{\omega_{b} \cap \omega}=0$ on those faces in $\partial\left(\omega_{\boldsymbol{b}} \cap \omega\right)$ where the hat function $\psi^{\boldsymbol{b}}$ vanishes or which lie in the Neumann boundary $\overline{\Gamma_{\mathrm{N}}}$. Moreover, the decomposition is p-stable in that

$$
\begin{equation*}
\left\|\boldsymbol{\delta}_{p}^{\boldsymbol{b}}\right\|_{\omega_{b} \cap \omega} \lesssim\left\|\boldsymbol{\delta}_{p}\right\|_{\widetilde{\omega}_{b} \cap \omega} \quad \forall \boldsymbol{b} \in \mathcal{V}_{\omega} \tag{A.5}
\end{equation*}
$$

where the constant hidden in \lesssim only depends on the local mesh shape-regularity parameter $\kappa \mathcal{T}_{\omega}$ given by $\kappa \mathcal{T}_{\omega}:=\max _{K \in \mathcal{T}_{\omega}} \kappa_{K}$.
Proof. (i) Let $\boldsymbol{\delta}_{p}$ satisfy (A.1a). In two space dimensions, it follows, since $\bar{\omega}$ is contractible, see, e.g. [6, Corollary 2.3.2], that

$$
\begin{equation*}
\boldsymbol{\delta}_{p}=\mathrm{R}_{\frac{\pi}{2}}\left(\nabla s_{p}\right), \tag{A.6}
\end{equation*}
$$

where $s_{p} \in \mathcal{P}_{p+1}\left(\mathcal{T}_{\omega}\right) \cap H_{0,\left(\partial \omega \cap \Gamma_{\mathrm{N}}\right)^{\circ}}^{1}(\omega)$ is a $(p+1)$-degree (Lagrange) piecewise polynomial, respecting the zero trace condition on Γ_{N} if $\partial \omega$ contains faces from $\overline{\Gamma_{\mathrm{N}}}$. Here,

$$
\mathrm{R}_{\frac{\pi}{2}}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

is the matrix of rotation by $\frac{\pi}{2}$. Moreover, using (A.1b), we see, for any triangle $K \in \mathcal{T}_{\omega}$ and any of its vertices, $\boldsymbol{a} \in \mathcal{V}_{K}$, that

$$
\begin{aligned}
0 & =\left(\mathrm{R}_{\frac{\pi}{2}}\left(\nabla s_{p}\right), \nabla \psi^{\boldsymbol{a}}\right)_{K}=\left(\nabla s_{p}, \mathrm{R}_{\frac{\pi}{2}}^{\mathrm{t}}\left(\nabla \psi^{\boldsymbol{a}}\right)\right)_{K} \stackrel{\mathrm{Green}}{=}\left\langle s_{p}, \mathrm{R}_{\frac{\pi}{2}}^{\mathrm{t}}\left(\nabla \psi^{\boldsymbol{a}}\right) \cdot \boldsymbol{n}_{K}\right\rangle_{\partial K} \\
& =\left\langle s_{p}, \nabla \psi^{\boldsymbol{a}} \cdot\left(\mathrm{R}_{\frac{\pi}{2}} \boldsymbol{n}_{K}\right)\right\rangle_{F_{1} \cup F_{2}}=\frac{\left\langle s_{p}, 1\right\rangle_{F_{2}}}{\left|F_{2}\right|}-\frac{\left\langle s_{p}, 1\right\rangle_{F_{1}}}{\left|F_{1}\right|}
\end{aligned}
$$

for the two faces (edges) F_{1}, F_{2} that share the vertex \boldsymbol{a} (numbered in the counterclockwise orientation in the triangle K, starting from the vertex \boldsymbol{a}). This means that all mean values of s_{p} on all faces contained in \mathcal{T}_{ω} coincide. Thus, to fix s_{p} from (A.6) completely when $\partial \omega$ contains no face from $\overline{\Gamma_{\mathrm{N}}}$ (not just its
(rotated) gradient), we can set its mean value on any face in \mathcal{T}_{ω} to zero, and s_{p} is independent of which face we have chosen, since then all its mean values on all faces are zero,

$$
\begin{equation*}
\frac{\left\langle s_{p}, 1\right\rangle_{F}}{|F|}=0 \quad \text { for all faces } F \text { of } \mathcal{T}_{\omega} \tag{A.7}
\end{equation*}
$$

(ii) For the above continuous piecewise polynomial s_{p}, consider the decomposition of Schöberl et al. [35, Section 3]. First, let's choose the "coarse grid contribution" (u_{0} in [35, equation (2)]) as zero. This is eligible in terms of [35, Lemma 3.1], since

$$
\begin{align*}
\|\nabla 0\|_{\omega} & \leq\left\|\nabla s_{p}\right\|_{\omega} \tag{A.8a}\\
\left\|\nabla s_{p}\right\|_{\omega} & =\left\|\nabla s_{p}\right\|_{\omega}, \tag{A.8b}\\
\left\|h^{-1} s_{p}\right\|_{\omega}^{2} & =\sum_{K \in \mathcal{T}_{\omega}}\left(h_{K}^{-2}\left\|s_{p}\right\|_{K}^{2}\right) \leq 6 \sum_{K \in \mathcal{T}_{\omega}}\left\|\nabla s_{p}\right\|_{K}^{2}, \tag{A.8c}
\end{align*}
$$

where we have used the face-mean value Poincaré-Friedrichs inequality, see [37, Lemma 4.1] for the value 6 of the constant. Consequently, there is no global low order component. The construction of [35, Section 3.2-3.4] then gives the decomposition, see equation (11) in this reference (after associating the face and element contributions with the vertex contributions),

$$
\begin{equation*}
s_{p}=\sum_{b \in \mathcal{V}_{\omega}} s_{p}^{\boldsymbol{b}} \tag{A.9a}
\end{equation*}
$$

where

$$
\begin{align*}
& s_{p}^{\boldsymbol{b}} \in \mathcal{P}_{p+1}\left(\mathcal{T}_{\boldsymbol{b}} \cap \mathcal{T}_{\omega}\right), \quad s_{p}=0 \text { on those faces in } \partial\left(\omega_{\boldsymbol{b}} \cap \omega\right) \text { where the hat function } \tag{A.9b}\\
& \quad \psi^{\boldsymbol{b}} \text { vanishes or which lie in the (Neumann) boundary } \overline{\Gamma_{\mathrm{N}}} .
\end{align*}
$$

Moreover, this decomposition is p-robustly stable in that, see [35, Section 3.4],

$$
\sum_{b \in \mathcal{V}_{\omega}}\left\|\nabla s_{p}^{b}\right\|_{\omega_{b} \cap \omega}^{2} \lesssim\left\|\nabla s_{p}\right\|_{\omega}^{2}
$$

The inspection of the developments of [35, Section 3.2-3.4] shows that $s_{p}^{\boldsymbol{b}}$ are solely constructed from and linearly depend on the values of s_{p} on the (truncated) extended patches $\widetilde{\omega}_{\boldsymbol{b}} \cap \omega$ and satisfy more precisely the local stability bounds

$$
\begin{equation*}
\left\|\nabla s_{p}^{\boldsymbol{b}}\right\|_{\omega_{b} \cap \omega} \lesssim\left\|\nabla s_{p}\right\|_{\widetilde{\omega}_{b} \cap \omega} \quad \forall \boldsymbol{b} \in \mathcal{V}_{\omega} \tag{A.10}
\end{equation*}
$$

Crucially, the constant hidden in \lesssim above only depends on the shape-regularity parameter $\kappa \mathcal{T}_{\omega}$ of the mesh \mathcal{T}_{ω}.
(iii) Now take

$$
\begin{equation*}
\delta_{p}^{b}:=\mathrm{R}_{\frac{\pi}{2}}\left(\nabla s_{p}^{b}\right) \tag{A.11}
\end{equation*}
$$

It follows that $\boldsymbol{\delta}_{p}^{\boldsymbol{b}}$ satisfies the first line in (A.3) and (A.4). Crucially, also the second line in (A.3) is satisfied. The dependence region is indeed $\widetilde{\omega}_{b} \cap \omega$, since from the face-wise zero mean value property (A.7) (a consequence of assumption (A.1b)), $\left.s_{p}\right|_{K}$ only depends on $\left.\boldsymbol{\delta}_{p}\right|_{K}$ for all $K \in \mathcal{T}_{\omega}$. Moreover, (A.2) follows immediately from (A.9a) to which we apply the rotated gradient, (A.6), and (A.11). Finally, (A.5) is a direct consequence of (A.10) since

$$
\left\|\nabla s_{p}^{\boldsymbol{b}}\right\|_{\omega_{b} \cap \omega}=\left\|\mathrm{R}_{\frac{\pi}{2}}\left(\nabla s_{p}^{b}\right)\right\|_{\omega_{b} \cap \omega} \text { and }\left\|\nabla s_{p}\right\|_{\widetilde{\omega}_{b} \cap \omega}=\left\|\mathrm{R}_{\frac{\pi}{2}}\left(\nabla s_{p}\right)\right\|_{\widetilde{\omega}_{b} \cap \omega}
$$

together with (A.11) and (A.6).

B p-stable broken \boldsymbol{H} (div) polynomial extensions on patch subdomains

We summarize here our results on p-stable broken \boldsymbol{H} (div) polynomial extensions on patch subdomains.

B. 1 Available results

p-stable \boldsymbol{H} (div) polynomial extensions on a single triangle or tetrahedron have been achieved in Ainsworth and Demkowicz [1], Demkowicz et al. [21], and Costabel and McIntosh [16], see also the references therein. Let K be a triangle or a tetrahedron and let $p \geq 0$. Let $\boldsymbol{\tau}_{K} \in \mathcal{R} \mathcal{T}_{p}(K)$ be a volume datum, $r_{K} \in \mathcal{P}_{p}(K)$ a target divergence, and $r_{F} \in \mathcal{P}_{p}(F)$ a target normal trace; the latter is prescribed on $\mathcal{F}_{K}^{\mathrm{N}}$, a subset of all $(d-1)$-dimensional faces of K, possibly empty or containing some or all faces of K. The combination of the above-cited normal trace and divergence liftings allows to prove, see [26, Lemma A.3], that

$$
\begin{equation*}
\min _{\substack{\boldsymbol{v}_{p} \in \boldsymbol{\mathcal { R }} \boldsymbol{\mathcal { T }}_{p}(K) \\ \nabla \cdot \boldsymbol{v}_{p}=r_{K} \\ \boldsymbol{\tau}_{K}=r_{F} \text { on all } F \in \mathcal{F}_{K}^{\mathrm{N}}}}^{\left\|\boldsymbol{\tau}_{K}-\boldsymbol{v}_{p}\right\|_{K} \lesssim} \min _{\substack{\boldsymbol{v} \in \boldsymbol{H}(\mathrm{div}, K) \\ \nabla \cdot \boldsymbol{v}=r_{K} \\ \boldsymbol{v} \cdot \boldsymbol{n}_{K}=r_{F} \text { on all } F \in \mathcal{F}_{K}^{\mathrm{N}}}}\left\|\boldsymbol{\tau}_{K}-\boldsymbol{v}\right\|_{K}, \tag{B.1}
\end{equation*}
$$

where the hidden constant only depends on the shape-regularity parameter κ_{K} of the element K and the space dimension d (the form (B.1) follows from [26, Lemma A.3] by a shift by $\boldsymbol{\tau}_{K}$). On $\boldsymbol{H}(\operatorname{div}, K)$, the normal trace condition is understood by duality as in (2.4). When $\mathcal{F}_{K}^{\mathrm{N}}$ is composed of all faces of K, the Neumann compatibility condition

$$
\sum_{F \in \mathcal{F}_{K}^{\mathrm{N}}}\left\langle r_{F}, 1\right\rangle_{F}=\left(r_{K}, 1\right)_{K}
$$

needs to be satisfied.
p-stable broken polynomial extension achieve similar results as (B.1) but on patches of elements, where, crucially, the datum $\tau_{h p}$ is a piecewise (broken Raviart-Thomas) polynomial. For vertex patches $\omega_{\boldsymbol{a}}$ and prescribed normal trace boundary conditions on $\partial \omega_{\boldsymbol{a}}$, they have been established in Braess et al. [7] in two space dimensions and in [26, Corollaries 3.3 and 3.8] (see also [11, Proposition 3.1 and Corollary 4.1]) in three space dimensions.

B. 2 Arbitrary patches and no normal trace boundary conditions

We now extend the above results in two directions: for larger patches ω and without prescription of normal trace boundary conditions on $\partial \omega$. In our application on step (vii) of the proof of Lemma 5.3, this corresponds to $\omega=\widetilde{\omega}_{K}$ (or $\omega=\widetilde{\omega}_{\boldsymbol{a}}$), the case $d=2$ and Γ_{N} empty, or $d=3$ and $\partial \omega$ does not contain any face from $\partial \Omega$; details and treatment of the other (boundary) cases is postponed to Appendix B. 3 and based on Lemma 3.1. Recall the notation from Section 2 and also recall that by "face", we mean " $(d-1)$-dimensional face". Let $|S|$ denote the cardinality (number of elements) of the set S. The following definition will be central:

Definition B. 1 (Suitable patch enumeration). Let \mathcal{T}_{ω} be a face-connected simplicial mesh with the corresponding open and bounded polygonal or polyhedral domain $\omega \subset \mathbb{R}^{d}$, $d=2,3$, such that $\bar{\omega}$ is contractible. An enumeration $\left\{K_{1}, \ldots, K_{\left|\mathcal{T}_{\omega}\right|}\right\}$ of the simplices in \mathcal{T}_{ω} is suitable if:
(i) (Only for $d=3$) For all $1<i \leq\left|\mathcal{T}_{\omega}\right|$, if there are at least 2 faces of K_{i} shared with previously enumerated simplices, intersecting in an edge e, then 1) all the simplices sharing the edge e come sooner in the enumeration; 2) the edge e lies in the interior of ω.
(ii) For all $1<i \leq\left|\mathcal{T}_{\omega}\right|$, if there are d faces of K_{i} shared with previously enumerated simplices, intersecting in a vertex \boldsymbol{a}, then 1) all the simplices sharing the vertex \boldsymbol{a} come sooner in the enumeration; 2) the vertex \boldsymbol{a} lies in the interior of ω.
(iii) For all $1<i \leq\left|\mathcal{T}_{\omega}\right|$, there are between 1 and d face neighbors of K_{i} which have been already enumerated and correspondingly, there is at least 1 face neighbor which has not been enumerated $y e t$, or K_{i} has a face on the boundary $\partial \omega$. In particular, there is no enumerated face neighbor only for K_{1} and all face neighbors are already enumerated for $K_{\left|\tau_{\omega}\right|}$, which moreover has a face on the boundary $\partial \omega$.

From [38, Lemma B.2] (which gives a constructive enumeration algorithm), we know that suitable enumerations in the sense of Lemma B. 1 exist for extended vertex and element patches $\widetilde{\mathcal{T}}_{\boldsymbol{a}}$ and $\widetilde{\mathcal{T}}_{K}$ in two space dimensions. In three space dimensions, a similar algorithm is designed in [38, Appendix C] but no proof yielding existence of suitable enumerations in all possible cases was achieved, which leads us to the first part of Lemma 3.1. Importantly, relying on Lemma B.1, we have:

Theorem B. 2 (p-stable broken $\boldsymbol{H}($ div) polynomial extension on extended patches and without boundary conditions). Let \mathcal{T}_{ω} be a face-connected simplicial mesh with the corresponding open, bounded, and Lipschitz polygon or polyhedron $\omega \subset \mathbb{R}^{d}$, $d=2,3$, with $\bar{\omega}$ contractible, where \mathcal{T}_{ω} can be enumerated as per Lemma B.1. Let $\boldsymbol{\tau}_{h p} \in \mathcal{R} \mathcal{T}_{p}\left(\mathcal{T}_{\omega}\right)$ and $r_{h p} \in \mathcal{P}_{p}\left(\mathcal{T}_{\omega}\right)$ be respectively a volume datum, a broken RaviartThomas vector-valued piecewise polynomial, and a target divergence, a scalar-valued piecewise polynomial, of degree $p \geq 0$. Then

$$
\begin{equation*}
\min _{\substack{\boldsymbol{v}_{p} \in \boldsymbol{\mathcal { R }} \mathcal{T}_{\boldsymbol{p}}\left(\mathcal{T}_{\omega}\right) \cap \boldsymbol{H}(\operatorname{div}, \omega) \\ \nabla \cdot \boldsymbol{v}_{p}=r_{h p}}}\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}_{p}\right\|_{\omega} \lesssim \min _{\substack{\boldsymbol{v} \in \boldsymbol{H}(\operatorname{div}, \omega) \\ \nabla \cdot \boldsymbol{v}=r_{h p}}}\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}\right\|_{\omega} \tag{B.2}
\end{equation*}
$$

where the constant hidden in \lesssim only depends on the mesh shape-regularity parameter $\kappa_{\mathcal{T}_{\omega}}:=\max _{K \in \mathcal{T}_{\omega}} \kappa_{K}$, the ratio $h_{\omega} / \min _{K \in \mathcal{T}_{\omega}} h_{K}$, and the space dimension d.

Proof. We present the proof for $d=3$; the two-dimensional case is (much) easier. We follow [26, Section 6], see also [11, Section 6.4]. Let

$$
\begin{equation*}
\boldsymbol{v}^{\star}:=\arg \min _{\substack{\boldsymbol{v} \in \boldsymbol{H}(\text { div }, \omega) \\ \nabla \cdot \boldsymbol{v}=r_{h p}}}\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}\right\|_{\omega} \tag{B.3}
\end{equation*}
$$

denote the infinite-dimensional $\boldsymbol{H}(\operatorname{div}, \omega)$ minimizer of the right-hand side of (B.2). We present a constructive proof of (B.2) which proceeds along the enumeration of Lemma B.1. On each element K_{i}, $1 \leq i \leq\left|\mathcal{T}_{\omega}\right|$, we in particular construct a suitable minimizer $\boldsymbol{\xi}_{i} \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(K_{i}\right)$ and we gradually set

$$
\begin{equation*}
\left.\boldsymbol{\xi}_{h p}\right|_{K_{i}}:=\boldsymbol{\xi}_{i} . \tag{B.4}
\end{equation*}
$$

We then verify that

$$
\begin{equation*}
\boldsymbol{\xi}_{h p} \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{\omega}\right) \cap \boldsymbol{H}(\operatorname{div}, \omega) \quad \text { with } \nabla \cdot \boldsymbol{\xi}_{h p}=r_{h p} \tag{B.5}
\end{equation*}
$$

and that

$$
\begin{equation*}
\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{\xi}_{h p}\right\|_{\omega} \lesssim\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}^{\star}\right\|_{\omega} \tag{B.6}
\end{equation*}
$$

which establishes (B.2). More precisely, on each step $1 \leq i \leq\left|\mathcal{T}_{\omega}\right|$, we will verify that

$$
\begin{equation*}
\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{\xi}_{i}\right\|_{K_{i}} \lesssim\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}^{\star}\right\|_{\omega} \tag{B.7}
\end{equation*}
$$

This yields (B.6) up to a constant depending on the shape-regularity parameter $\kappa \mathcal{T}_{\omega}$ of the mesh \mathcal{T}_{ω}, the ratio $h_{\omega} / \min _{K \in \mathcal{T}_{\omega}} h_{K}$, and the space dimension d. Moreover, as $\nabla \cdot \boldsymbol{\xi}_{i}=\left.r_{h p}\right|_{K_{i}}$ and since $\boldsymbol{\xi}_{i}$ will have its normal trace prescribed by $\boldsymbol{\xi}_{j}$ on the previously enumerated K_{j}, $\boldsymbol{\xi}_{h p}$ will have no normal trace jumps and (B.5) follows. We proceed along the enumeration $1 \leq i \leq\left|\mathcal{T}_{\omega}\right|$ of Lemma B. 1 and consider different cases.
(i) On the first element K_{1}, let

$$
\begin{equation*}
\boldsymbol{\xi}_{1}:=\arg \min _{\substack{\boldsymbol{v}_{p} \in \mathcal{R} \mathcal{T}_{p}\left(K_{1}\right) \\ \nabla \cdot \boldsymbol{v}_{p}=r_{h p} \mid K_{1}}}\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}_{p}\right\|_{K_{1}} \tag{B.8}
\end{equation*}
$$

This is a well-posed problem. Crucially, since the data $\left.\tau_{h p}\right|_{K_{1}}$ and $\left.r_{h p}\right|_{K_{1}}$ in (B.8) are polynomial, we know from (B.1) that we can pass to the infinite-dimensional level,

$$
\begin{equation*}
\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{\xi}_{1}\right\|_{K_{1}} \lesssim \min _{\substack{\boldsymbol{v} \in \boldsymbol{H}\left(\text { div, } K_{1}\right) \\ \nabla \cdot \boldsymbol{v}=r_{h p} \mid K_{1}}}\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}\right\|_{K_{1}} \tag{B.9}
\end{equation*}
$$

Finally, since the infinite-dimensional minimizer \boldsymbol{v}^{\star} from (B.3) restricted to the element $K_{1},\left.\boldsymbol{v}^{\star}\right|_{K_{1}}$, belongs to the minimization set on the right-hand side of (B.9) (please note that there are no normal trace conditions in (B.9)), we obtain

$$
\begin{equation*}
\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{\xi}_{1}\right\|_{K_{1}} \lesssim\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}^{\star}\right\|_{K_{1}} \tag{B.10}
\end{equation*}
$$

which immediately gives (B.7) for $i=1$.
(ii) On each element K_{i} with exactly one face shared with some previously enumerated simplex, say $F_{i, j}$ shared with $K_{j}, j<i$, we consider

$$
\begin{equation*}
\boldsymbol{\xi}_{i}:=\arg \underset{\substack{\boldsymbol{v}_{p} \in \mathcal{R}_{p} \mathcal{T}_{p}\left(K_{i}\right) \\ \nabla \cdot \boldsymbol{v}_{p}=r_{h p}\left|K_{i} \\ \boldsymbol{v}_{p} \cdot \boldsymbol{n}_{K_{i}}=\boldsymbol{\xi}_{h p}\right| K_{j} \cdot \boldsymbol{n}_{K_{i}}}}{ }\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}_{p}\right\|_{K_{i}} . \tag{B.11}
\end{equation*}
$$

Please note that since $j<i$ and by (B.4), $\left.\boldsymbol{\xi}_{h p}\right|_{K_{j}}$ is known. Then (B.11) is well-posed; there is in particular no compatibility condition to verify, since the normal trace is only imposed on one face. We now again employ (B.1). This yields

$$
\begin{equation*}
\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{\xi}_{i}\right\|_{K_{i}} \lesssim \min _{\substack{\boldsymbol{v} \in \boldsymbol{H}\left(\operatorname{div}, K_{i}\right) \\ \nabla \nabla \boldsymbol{v}=\left.r_{h p}\right|_{K_{i}} \\ \boldsymbol{v} \cdot \boldsymbol{n}_{K_{i}}=\boldsymbol{\xi} \boldsymbol{\xi}_{h p} \mid K_{j} \cdot \boldsymbol{n}_{K_{i}}}} \quad\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}\right\|_{K_{i}, j} . \tag{B.12}
\end{equation*}
$$

Unfortunately, now $\left.\boldsymbol{v}^{\star}\right|_{K_{i}}$ does not belong to the minimization set on the right-hand side of (B.12) since there is a normal trace condition on the face $F_{i, j}$ imposed. The fix is, for the moment, easy. Consider the face neighbor K_{j}, the function $\boldsymbol{v}^{\star}-\boldsymbol{\xi}_{h p}$ on K_{j} (note that it is divergence-free), and map it to K_{i} by the contravariant Piola transformation (see, e.g., $\left[25\right.$, Section 9]) preserving the face $F_{i, j}$, say $\boldsymbol{\psi}$, forming

$$
\begin{equation*}
\boldsymbol{v}:=\left.\boldsymbol{v}^{\star}\right|_{K_{i}}-\boldsymbol{\psi}^{-1}\left(\left.\left(\boldsymbol{v}^{\star}-\boldsymbol{\xi}_{h p}\right)\right|_{K_{j}}\right), \tag{B.13}
\end{equation*}
$$

see [26, equation (6.10)] for the details. This removes the normal trace of \boldsymbol{v}^{\star} and brings instead the requested $\left.\boldsymbol{\xi}_{h p}\right|_{K_{j}} \cdot \boldsymbol{n}_{K_{i}}$ (in appropriate weak sense), so that \boldsymbol{v} from (B.13) now crucially belongs to the minimization set on the right-hand side of (B.12). Consequently, we obtain

$$
\begin{equation*}
\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{\xi}_{i}\right\|_{K_{i}} \lesssim\left\|\boldsymbol{\tau}_{h p}-\left.\boldsymbol{v}^{\star}\right|_{K_{i}}+\boldsymbol{\psi}^{-1}\left(\left.\left(\boldsymbol{v}^{\star}-\boldsymbol{\xi}_{h p}\right)\right|_{K_{j}}\right)\right\|_{K_{i}} . \tag{B.14}
\end{equation*}
$$

Finally, by the triangle inequality and the properties of the Piola transform (recall that we suppose shape regularity of \mathcal{T}_{ω})

$$
\begin{align*}
& \left\|\boldsymbol{\tau}_{h p}-\left.\boldsymbol{v}^{\star}\right|_{K_{i}}+\boldsymbol{\psi}^{-1}\left(\left.\left(\boldsymbol{v}^{\star}-\boldsymbol{\xi}_{h p}\right)\right|_{K_{j}}\right)\right\|_{K_{i}} \\
\leq & \left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}^{\star}\right\|_{K_{i}}+\left\|\boldsymbol{\psi}^{-1}\left(\left.\left(\boldsymbol{v}^{\star}-\boldsymbol{\xi}_{h p}\right)\right|_{K_{j}}\right)\right\|_{K_{i}} \\
\lesssim & \left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}^{\star}\right\|_{K_{i}}+\left\|\boldsymbol{v}^{\star}-\boldsymbol{\xi}_{h p}\right\|_{K_{j}} \tag{B.15}\\
\leq & \left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}^{\star}\right\|_{K_{i}}+\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}^{\star}\right\|_{K_{j}}+\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{\xi}_{h p}\right\|_{K_{j}} \\
\lesssim & \left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}^{\star}\right\|_{\omega},
\end{align*}
$$

where, in the last estimate, we have employed (B.7) in K_{j}, which has been established previously since $j<i$. Thus (B.7) is established.
(iii) On each element K_{i} with exactly two faces shared with some previously enumerated simplices, say $F_{i, j}$ shared with $K_{j}, j<i$, and $F_{i, k}$ shared with $K_{k}, k<i$, we consider

Again, since $j<i$ and $k<i$ and by (B.4), $\left.\boldsymbol{\xi}_{h p}\right|_{K_{j}}$ and $\left.\boldsymbol{\xi}_{h p}\right|_{K_{k}}$ are known. Then (B.16) is well-posed; there is again no compatibility condition to verify, since the normal trace is only imposed on two faces. We then again employ (B.1), which now yields

$$
\begin{equation*}
\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{\xi}_{i}\right\|_{K_{i}} \lesssim \underset{\substack{\boldsymbol{v} \in \boldsymbol{H}\left(\operatorname{div}, K_{i}\right) \\ \nabla \cdot \boldsymbol{v}=\left.r_{h p}\right|_{K_{i}} \\ \boldsymbol{\operatorname { l n }} \\ \boldsymbol{v} \cdot \boldsymbol{n}_{K_{i}}=\left.\boldsymbol{\xi}_{h p}\right|_{K_{j}} \cdot \boldsymbol{n}_{K_{i}} \text { on } F_{i, j} \\ \boldsymbol{v} \cdot \boldsymbol{n}_{K_{i}}=\left.\boldsymbol{\xi}_{h p}\right|_{K_{k}} \cdot \boldsymbol{n}_{K_{i}} \text { on } F_{i, k}}}{ }\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}\right\|_{K_{i}} . \tag{B.17}
\end{equation*}
$$

As above in step (ii), the continuous-level minimizer \boldsymbol{v}^{\star} from (B.3) restricted to K_{i} does not belong to the minimization set on the right-hand side of (B.17) since there are two normal trace conditions on the two faces $F_{i, j}$ and $F_{i, k}$ imposed. Crucially, by property (i) of Lemma B. 1 on the enumeration, all the simplices sharing the edge e common to the two faces $F_{i, j}$ and $F_{i, k}$ come sooner in the enumeration and the edge e lies in the interior of ω. This enables to construct a suitable \boldsymbol{v} in this sprit of (B.13) but which now involves Piola mappings from all the simplices sharing the edge e except for K_{i}. This is done in a "2folding" way which replaces $\boldsymbol{v}^{\star} \cdot \boldsymbol{n}_{K_{i}}$ on $F_{i, j}$ and $F_{i, k}$ (in a proper weak sense) by respectively $\left.\boldsymbol{\xi}_{h p}\right|_{K_{j}} \cdot \boldsymbol{n}_{K_{i}}$ and $\left.\boldsymbol{\xi}_{h p}\right|_{K_{k}} \cdot \boldsymbol{n}_{K_{i}}$; the precise formula is [26, equation (6.12)]. Existence of a two-color refinement around edges of [26, Lemma B.2] is crucial at this step. Then (B.7) is established similarly to (B.15).
(iv) Finally, on each element K_{i} with exactly three faces shared with some previously enumerated simplices, say $F_{i, j}$ shared with $K_{j}, j<i, F_{i, k}$ shared with $K_{k}, k<i$, and $F_{i, l}$ shared with $K_{l}, l<i$, we
consider

$$
\begin{align*}
& \boldsymbol{\xi}_{i}:=\arg \min _{\substack{\boldsymbol{v}_{p} \in \mathcal{R} \mathcal{R}_{p}\left(K_{i}\right) \\
\nabla \cdot \boldsymbol{v}_{p}=r_{h p} \mid K_{i}}}\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}_{p}\right\|_{K_{i}} . \tag{B.18}\\
& \boldsymbol{v}_{p} \cdot \boldsymbol{n}_{K_{i}}=\boldsymbol{\xi}_{h p} \mid K_{j} \cdot \boldsymbol{n}_{K_{i}} \text { on } F_{i, j} \\
& \boldsymbol{v}_{p} \cdot \boldsymbol{n}_{K_{i}}=\left.\boldsymbol{\xi}_{h p}\right|_{K_{k}} \cdot \boldsymbol{n}_{K_{i}} \text { on } F_{i, k} \\
& \boldsymbol{v}_{p} \cdot \boldsymbol{n}_{K_{i}}=\left.\boldsymbol{\xi}_{h p}\right|_{K_{l}} \cdot \boldsymbol{n}_{K_{i}} \text { on } F_{i, l}
\end{align*}
$$

Again, all $\left.\boldsymbol{\xi}_{h p}\right|_{K_{j}},\left.\boldsymbol{\xi}_{h p}\right|_{K_{k}}$, and $\left.\boldsymbol{\xi}_{h p}\right|_{K_{l}}$ are known at this stage. Then (B.18) is well-posed; there is still no compatibility condition to verify, since the normal trace is only imposed on three of the four faces of K_{i}. Employing once more (B.1), we have

$$
\begin{equation*}
\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{\xi}_{i}\right\|_{K_{i}} \lesssim \min _{\substack{\boldsymbol{v} \in \boldsymbol{H}\left(\operatorname{div}, K_{i}\right) \\ \nabla \cdot \boldsymbol{v}=\left.r_{h p}\right|_{K_{i}}}}\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}\right\|_{K_{i}} . \tag{B.19}
\end{equation*}
$$

As above in steps (ii) and (iii), the infinite-dimensional minimizer $\left.\boldsymbol{v}^{\star}\right|_{K_{i}}$ does not belong to the minimization set on the right-hand side of (B.19) since there are three normal trace conditions on the three faces $F_{i, j}, F_{i, k}$, and $F_{i, l}$ imposed. Crucially, by property (ii) of Lemma B. 1 on the enumeration, all the simplices sharing the vertex \boldsymbol{a} common to the three faces $F_{i, j}, F_{i, k}$, and $F_{i, l}$ come sooner in the enumeration and the vertex \boldsymbol{a} lies in the interior of ω. This enables to construct a suitable \boldsymbol{v} in this sprit of (B.13) but which now involves Piola mappings from all the simplices sharing the vertex \boldsymbol{a} except for K_{i}. This is done in a " 3 -folding" way; the precise formula is the equivalent of [26, equation (5.14)] in the \boldsymbol{H} (div) case. Existence of a three-color refinement around vertices of [26, Lemma B.3] is crucial at this step. Then (B.7) is established similarly to (B.15).

B. 3 Application to extended vertex and element patches and partial imposition of normal trace boundary conditions

We now finally formulate the result precisely in the form needed on step (vii) of the proof of Lemma 5.3. A stand-alone proof is achieved in two space dimensions and when Γ_{N} is empty; in the other cases, we rely on Lemma 3.1.
Corollary B. 3 (p-stable broken \boldsymbol{H} (div) polynomial extension on extended vertex or element patches). Let $\boldsymbol{a} \in \mathcal{V}_{h}$ or $K \in \mathcal{T}_{h}$. Consider the extended vertex patch $\widetilde{\mathcal{T}}_{a}$ or the extended element patch $\widetilde{\mathcal{T}}_{K}$ as per Section 2.2, denoted by \mathcal{T}_{ω}, with the associated open subdomain ω. Let Lemma 3.1 hold. Let $\boldsymbol{\tau}_{h p} \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{\omega}\right)$ and $r_{h p} \in \mathcal{P}_{p}\left(\mathcal{T}_{\omega}\right)$ be respectively a volume datum, a broken Raviart-Thomas vectorvalued piecewise polynomial, and a target divergence, a scalar-valued piecewise polynomial. If $\omega=\Omega$ and $\Gamma_{\mathrm{N}}=\partial \Omega$ (rather pathological case of the patch domain ω coinciding with the whole computational domain Ω and only Neumann boundary condition), let $r_{h p}$ have mean value zero, $\left(r_{h p}, 1\right)_{\omega}=0$. Then

$$
\begin{equation*}
\min _{\boldsymbol{v}_{p} \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{\omega}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \omega)}^{\nabla \cdot \boldsymbol{v}_{p}=r_{h p}} \mid\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}_{p}\right\|_{\omega} \lesssim \min _{\substack{\boldsymbol{v} \in \boldsymbol{H}_{0, \mathrm{~N}}(\operatorname{div}, \omega) \\ \nabla \cdot \boldsymbol{v}=r_{h p}}}\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}\right\|_{\omega}, \tag{B.20}
\end{equation*}
$$

where the constant hidden in \lesssim only depends on the mesh shape-regularity parameter $\kappa \mathcal{T}_{\omega}:=\max _{K \in \mathcal{T}_{\omega}} \kappa_{K}$ and the space dimension d.
Proof. Let $d=2$ and let \mathcal{T}_{ω} has no face on the Neumann boundary $\overline{\Gamma_{\mathrm{N}}}$ (this covers interior and Dirichlet boundary patches and consequently all patches when Γ_{N} is empty). Then (B.20) is a combination of Lemma B. 2 together with [38, Lemma B.2], yielding a suitable enumeration as per Lemma B.1. Similarly, if $d=3$ and if $\partial \omega$ does not contain any face from $\partial \Omega$, (B.20) is a combination of Lemma B. 2 together with the first part of Lemma 3.1. Note that the ratio $h_{\omega} / \min _{L \in \mathcal{T}_{\omega}} h_{L}$ for an extended vertex or element patch \mathcal{T}_{ω} only depends on the shape-regularity parameter $\kappa \tau_{\omega}$. If $d=3$ and if $\partial \omega$ contains at least one face from $\partial \Omega$, or if $d=2$ with Γ_{N} non-empty and if $\partial \omega$ contains at least one face from $\overline{\Gamma_{\mathrm{N}}}$, using the second part of Lemma 3.1, \mathcal{T}_{ω} can be mapped by d symmetries as in [11] for boundary patches into a patch that can be enumerated as per Lemma B.1, where we can again branch with Lemma B.2.

C Overconstrained $\boldsymbol{\mathcal { R }} \mathcal{T}_{p} \cap \boldsymbol{H}$ (div) minimization on patch subdomains

We summarize here our results on overconstrained $\boldsymbol{\mathcal { R }} \boldsymbol{\mathcal { T }}_{p} \cap \boldsymbol{H}$ (div) minimization on patch subdomains.

C. 1 Arbitrary patches and no normal trace boundary conditions

We extend here the results of [12, Appendix A] in two directions: for larger patches ω and without prescription of normal trace boundary conditions on $\partial \omega$. In our application on step (v) of the proof of Lemma 5.3, this corresponds to $\omega=\widetilde{\omega}_{K}$ (or $\omega=\widetilde{\omega}_{\boldsymbol{a}}$), the case $d=2$ and Γ_{N} empty, or $d=3$ and $\partial \omega$ does not contain any face from $\partial \Omega$; details and treatment of the other (boundary) cases is postponed to Appendix C. 2 and based on Lemma 3.1.

Assumption C. 1 (Data for overconstrained minimization). The volume datum $\boldsymbol{\tau}_{h p}$ and the target divergence $r_{h p}$ satisfy

$$
\begin{align*}
r_{h p} & \in \mathcal{P}_{p}\left(\mathcal{T}_{\omega}\right), \quad \boldsymbol{\tau}_{h p} \in \mathcal{R}\left(\mathcal{T}_{\omega}\right) \tag{C.1a}\\
\left(\boldsymbol{\tau}_{h p}, \nabla q_{h}\right)_{\omega}+\left(r_{h p}, q_{h}\right)_{\omega} & =0 \quad \forall q_{h} \in \mathcal{P}_{1}\left(\mathcal{T}_{\omega}\right) \cap H_{0}^{1}(\omega) \tag{C.1b}
\end{align*}
$$

i.e., $r_{h p}$ is a broken (piecewise) p-degree polynomial and $\boldsymbol{\tau}_{h p}$ is a broken Raviart-Thomas piecewise polynomial that are "weakly divergence compatible" for homogeneous continuous piecewise affine polynomials.

Theorem C. 2 (Overconstrained minimization in the Raviart-Thomas spaces on extended patches and without boundary conditions). Let \mathcal{T}_{ω} be a face-connected simplicial mesh with the corresponding open, bounded, and Lipschitz polygon or polyhedron $\omega \subset \mathbb{R}^{d}$, $d=2,3$, with $\bar{\omega}$ contractible, where \mathcal{T}_{ω} can be enumerated as per Lemma B.1. Let $\boldsymbol{\tau}_{h p}$ and $r_{h p}$ satisfy Lemma C. 1 for $p \geq 1$. Then

$$
\begin{equation*}
\min _{\substack{\boldsymbol{v}_{p} \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{\boldsymbol{\omega}}\right) \cap \boldsymbol{H}(\operatorname{div}, \omega) \\ \nabla \cdot \boldsymbol{v}_{p}=r_{h p} \\=\left(\boldsymbol{\tau}_{h p}, \boldsymbol{r}_{h}\right)_{K} \\ \forall \boldsymbol{r}_{h} \in\left[\mathcal{P}_{0}(K)\right]^{d}, \forall K \in \mathcal{T}_{\omega}}}\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}_{p}\right\|_{\omega} \lesssim \min _{\substack{\left.\boldsymbol{v}_{p} \in \mathcal{R} \mathcal{T}_{p}\left(\mathcal{T}_{\omega}\right)\right)_{\boldsymbol{H}}(\mathrm{div}, \omega) \\ \nabla \cdot \boldsymbol{v}_{p}=r_{h p}}}\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}_{p}\right\|_{\omega}, \tag{C.2}
\end{equation*}
$$

where both problems have a unique solution and where the constant hidden in \lesssim only depends on the mesh shape-regularity parameter $\kappa \mathcal{T}_{\omega}:=\max _{K \in \mathcal{T}_{\omega}} \kappa_{K}$, the ratio $h_{\omega} / \min _{K \in \mathcal{T}_{\omega}} h_{K}$, and the space dimension d.

Proof. We present (an outline of) the proof for $d=3$; the two-dimensional case is (much) easier. We follow [12, Appendix A]. Let $\boldsymbol{\theta}_{p}$ denote the minimizer on the left-hand side of (C.2) and $\overline{\boldsymbol{\theta}}_{p}$ the minimizer on the right-hand side of (C.2). As the existence and uniqueness of $\overline{\boldsymbol{\theta}}_{p}$ is standard, cf., e.g., [6, 19], we need to show the existence and uniqueness of $\boldsymbol{\theta}_{p}$ together with

$$
\begin{equation*}
\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{\theta}_{p}\right\|_{\omega} \lesssim\left\|\boldsymbol{\tau}_{h p}-\overline{\boldsymbol{\theta}}_{p}\right\|_{\omega} . \tag{C.3}
\end{equation*}
$$

(i) Let

$$
\begin{equation*}
\boldsymbol{\varepsilon}_{h}:=\arg \underset{\substack{\boldsymbol{v}_{h} \in \boldsymbol{R} \mathcal{T}_{1}\left(\mathcal{T}_{\omega}\right) \cap \boldsymbol{\sim}(\operatorname{div}, \omega)}}{\min _{\substack{ \\\left(\boldsymbol{v}_{h}, \boldsymbol{r}_{h}\right)_{K}=\left(\boldsymbol{\tau}_{h p}-\overline{\boldsymbol{\theta}}_{p}, \boldsymbol{r}_{h}\right)_{K} \\ \forall \boldsymbol{r}_{h} \in\left[\mathcal{P}_{0}(K)\right]^{d}, \forall K \in \mathcal{T}_{\omega}}}\left\|\boldsymbol{\tau}_{h p}-\overline{\boldsymbol{\theta}}_{p}-\boldsymbol{v}_{h}\right\|_{\omega} .} \tag{C.4}
\end{equation*}
$$

Note that ε_{h} is a low-(first-)order Raviart-Thomas piecewise polynomial. We will show its existence and uniqueness and the stability estimate

$$
\begin{equation*}
\left\|\varepsilon_{h}\right\|_{\omega} \lesssim\left\|\boldsymbol{\tau}_{h p}-\overline{\boldsymbol{\theta}}_{p}\right\|_{\omega} \tag{C.5}
\end{equation*}
$$

below in step (ii). Then, shifting $\overline{\boldsymbol{\theta}}_{p}$ by $\boldsymbol{\varepsilon}_{h}$,

$$
\begin{gathered}
\overline{\boldsymbol{\theta}}_{p}+\boldsymbol{\varepsilon}_{h} \in \boldsymbol{\mathcal { R }}_{p}\left(\mathcal{T}_{\omega}\right) \cap \boldsymbol{H}(\operatorname{div}, \omega) \text { with } \nabla \cdot\left(\overline{\boldsymbol{\theta}}_{p}+\boldsymbol{\varepsilon}_{h}\right)=r_{h p} \\
\left(\overline{\boldsymbol{\theta}}_{p}+\boldsymbol{\varepsilon}_{h}, \boldsymbol{r}_{h}\right)_{K}=\left(\boldsymbol{\tau}_{h p}, \boldsymbol{r}_{h}\right)_{K} \quad \forall \boldsymbol{r}_{h} \in\left[\mathcal{P}_{0}(K)\right]^{d}, \forall K \in \mathcal{T}_{\omega}
\end{gathered}
$$

Thus, $\overline{\boldsymbol{\theta}}_{p}+\boldsymbol{\varepsilon}_{h}$ belongs to the minimization set on the left-hand side of (C.2). Since this minimization is convex, this establishes the existence and uniqueness of $\boldsymbol{\theta}_{p}$. Moreover,

$$
\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{\theta}_{p}\right\|_{\omega} \leq\left\|\boldsymbol{\tau}_{h p}-\overline{\boldsymbol{\theta}}_{p}-\boldsymbol{\varepsilon}_{h}\right\|_{\omega} \leq\left\|\boldsymbol{\tau}_{h p}-\overline{\boldsymbol{\theta}}_{p}\right\|_{\omega}+\left\|\boldsymbol{\varepsilon}_{h}\right\|_{\omega} \stackrel{(\mathrm{C} .5)}{\lesssim}\left\|\boldsymbol{\tau}_{h p}-\overline{\boldsymbol{\theta}}_{p}\right\|_{\omega},
$$

which is the desired result (C.3).
(ii) To establish the existence and uniqueness of ε_{h} from (C.4), we need to show that the minimization set in (C.4) is not empty. By (C.1b) and by the Green theorem, recalling that $\overline{\boldsymbol{\theta}}_{p} \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{\omega}\right) \cap \boldsymbol{H}(\operatorname{div}, \omega)$ with $\nabla \cdot \overline{\boldsymbol{\theta}}_{p}=r_{h p}$, we see that the datum $\boldsymbol{\tau}_{h p}-\overline{\boldsymbol{\theta}}_{p}$ satisfies

$$
\left(\boldsymbol{\tau}_{h p}-\overline{\boldsymbol{\theta}}_{p}, \nabla q_{h}\right)_{\omega}=-\left(r_{h p}, q_{h}\right)_{\omega}+\left(r_{h p}, q_{h}\right)_{\omega}=0 \quad \forall q_{h} \in \mathcal{P}_{1}\left(\mathcal{T}_{\omega}\right) \cap H_{0}^{1}(\omega)
$$

This is a set of the form studied in [12, Lemma A.5] on vertex patches $\mathcal{T}_{\boldsymbol{a}}$ and with zero normal trace boundary conditions on $\partial \omega_{a}$. Using the enumeration from Lemma B.1, this proof generalizes to the current setting just as that of the proof of Lemma B.2. As for the stability estimate (C.5), please note that $\boldsymbol{\tau}_{h p}-\overline{\boldsymbol{\theta}}_{p}$ is the only datum in problem (C.4), which implies (C.5) up to a generic constant with unknown dependencies. The fact that these dependencies only include the shape-regularity parameter $\kappa \mathcal{T}_{\omega}$ of the mesh \mathcal{T}_{ω}, the ratio $h_{\omega} / \min _{K \in \mathcal{T}_{\omega}} h_{K}$, and the space dimension d follows by scaling arguments as in [12, Proof of Lemma A.4]; the fact that ε_{h} is merely a first-order Raviart-Thomas piecewise polynomial is decisive for p-robustness.

C. 2 Application to extended vertex and element patches and partial imposition of normal trace boundary conditions

We now finally formulate the result precisely in the form needed on step (v) of the proof of Lemma 5.3. The proof follows that of Lemma B.3, relying Lemma 3.1 except for in two space dimensions and when Γ_{N} is empty.

Corollary C. 3 (Overconstrained minimization in the Raviart-Thomas spaces on extended vertex or element patches). Let $\boldsymbol{a} \in \mathcal{V}_{h}$ or $K \in \mathcal{T}_{h}$. Consider the extended vertex patch $\widetilde{\mathcal{T}}_{a}$ or the extended element patch $\widetilde{\mathcal{T}}_{K}$ as per Section 2.2, denoted by \mathcal{T}_{ω}, with the associated open subdomain ω. Let Lemma 3.1 hold. Let, for $p \geq 1$,

$$
\begin{align*}
r_{h p} & \in \mathcal{P}_{p}\left(\mathcal{T}_{\omega}\right), \quad \boldsymbol{\tau}_{h p} \in \boldsymbol{\mathcal { R }} \mathcal{T}_{p}\left(\mathcal{T}_{\omega}\right), \tag{C.6a}\\
\left(\boldsymbol{\tau}_{h p}, \nabla q_{h}\right)_{\omega}+\left(r_{h p}, q_{h}\right)_{\omega} & =0 \quad \forall q_{h} \in \mathcal{P}_{1}\left(\mathcal{T}_{\omega}\right) \cap H_{0, \partial \omega \backslash \Gamma_{\mathrm{N}}}^{1}(\omega) . \tag{C.6b}
\end{align*}
$$

Note that, if $\omega=\Omega$ and $\Gamma_{\mathrm{N}}=\partial \Omega$ (rather pathological case of the patch domain ω coinciding with the whole computational domain Ω and only Neumann boundary condition), (C.6b) implies $\left(r_{h p}, 1\right)_{\omega}=0$. Then

$$
\begin{equation*}
\min _{\substack{\boldsymbol{v}_{p} \in \mathcal{R} \mathcal{T}_{p}\left(\mathcal{T}_{\omega}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}(\mathrm{div}, \omega) \\ \nabla \boldsymbol{v}_{p}=r_{h p} \\\left(\boldsymbol{v}_{p}, \boldsymbol{r}_{h}\right)_{K}=\left(\boldsymbol{\tau}_{h p}, \boldsymbol{r}_{h}\right) K}}^{\forall \boldsymbol{r}_{h} \in\left[\mathcal{P}_{0}(K)\right]^{d}, \forall K \in \mathcal{T}_{\omega}}\left|\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}_{p}\right\|_{\omega} \lesssim \min _{\boldsymbol{v}_{p} \in \mathcal{R} \mathcal{T}_{p}\left(\mathcal{T}_{\omega}\right) \cap \boldsymbol{H}_{0, \mathrm{~N}}(\mathrm{div}, \omega)}^{\nabla \cdot \boldsymbol{v}_{p}=r_{h p}}\right|\left\|\boldsymbol{\tau}_{h p}-\boldsymbol{v}_{p}\right\|_{\omega}, \tag{C.7}
\end{equation*}
$$

where the constant hidden in \lesssim only depends on the mesh shape-regularity parameter $\kappa_{\mathcal{T}_{\omega}}:=\max _{K \in \mathcal{T}_{\omega}} \kappa_{K}$ and the space dimension d.

References

[1] Ainsworth, M., and Demkowicz, L. Explicit polynomial preserving trace liftings on a triangle. Math. Nachr. 282 (2009), 640-658. https://doi.org/10.1002/mana. 200610762.
[2] Arnold, D., and Guzmán, J. Local L^{2}-bounded commuting projections in FEEC. ESAIM Math. Model. Numer. Anal. 55 (2021), 2169-2184. https://doi.org/10.1051/m2an/2021054.
[3] Aurada, M., Feischl, M., Kemetmüller, J., Page, M., and Praetorius, D. Each $H^{1 / 2}$-stable projection yields convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data in \mathbb{R}^{d}. ESAIM Math. Model. Numer. Anal. 47 (2013), 1207-1235. https://doi.org/10.1051/m2an/ 2013069.
[4] Babuška, I., and Suri, M. The $h-p$ version of the finite element method with quasi-uniform meshes. RAIRO Modél. Math. Anal. Numér. 21 (1987), 199-238. http://dx.doi.org/10.1051/m2an/ 1987210201991.
[5] Bespalov, A., and Heuer, N. A new \mathbf{H} (div)-conforming p-interpolation operator in two dimensions. ESAIM Math. Model. Numer. Anal. 45 (2011), 255-275. https://doi.org/10.1051/m2an/ 2010039.
[6] Boffi, D., Brezzi, F., and Fortin, M. Mixed finite element methods and applications, vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg, 2013. https://doi.org/10. 1007/978-3-642-36519-5.
[7] Braess, D., Pillwein, V., and Schöberl, J. Equilibrated residual error estimates are p-robust. Comput. Methods Appl. Mech. Engrg. 198 (2009), 1189-1197. http://dx.doi.org/10.1016/j.cma. 2008. 12.010.
[8] Canuto, C., Nochetto, R. H., Stevenson, R. P., and Verani, M. Convergence and optimality of hpAFEM. Numer. Math. 135 (2017), 1073-1119. https://doi.org/10.1007/s00211-016-0826-x.
[9] Carstensen, C., Peterseim, D., and Schedensack, M. Comparison results of finite element methods for the Poisson model problem. SIAM J. Numer. Anal. 50 (2012), 2803-2823. https://doi.org/ 10.1137/110845707.
[10] Chaumont-Frelet, T., and Vohralík, M. Equivalence of local-best and global-best approximations in \boldsymbol{H} (curl). Calcolo 58 (2021), 53. https://doi.org/10.1007/s10092-021-00430-9.
[11] Chaumont-Frelet, T., and Vohralík, M. Constrained and unconstrained stable discrete minimizations for p-robust local reconstructions in vertex patches in the de Rham complex. HAL Preprint 03749682, submitted for publication, https://hal.inria.fr/hal-03749682, 2023.
[12] Chaumont-Frelet, T., and Vohralík, M. p-robust equilibrated flux reconstruction in \boldsymbol{H} (curl) based on local minimizations. Application to a posteriori analysis of the curl-curl problem. SIAM J. Numer. Anal. 61 (2023), 1783-1818. https://doi.org/10.1137/21M141909X.
[13] Chaumont-Frelet, T., and Vohralík, M. A stable local commuting projector and optimal $h p$ approximation estimates in \boldsymbol{H} (curl). HAL Preprint 03817302, submitted for publication, https: //hal.inria.fr/hal-03817302, 2023.
[14] Christiansen, S. H., and Winther, R. Smoothed projections in finite element exterior calculus. Math. Comp. 77 (2008), 813-829. http://dx.doi.org/10.1090/S0025-5718-07-02081-9.
[15] Clément, P. Approximation by finite element functions using local regularization. RAIRO Anal. Numer. 9 (1975), 77-84.
[16] Costabel, M., and McIntosh, A. On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265 (2010), 297-320. http://dx.doi.org/10. 1007/s00209-009-0517-8.
[17] Demkowicz, L. Polynomial exact sequences and projection-based interpolation with application to Maxwell equations. In Mixed finite elements, compatibility conditions, and applications, D. Boffi, F. Brezzi, L. F. Demkowicz, R. G. Durán, R. S. Falk, and M. Fortin, Eds., vol. 1939 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2008, pp. 101-158. Lectures given at the C.I.M.E. Summer School held in Cetraro, June 26-July 1, 2006, Edited by D. Boffi and L. Gastaldi, https: //doi.org/10.1007/978-3-540-78319-0_3.
[18] Demkowicz, L. Lecture notes. Lecture Notes on Energy Spaces. The University of Texas at Austin, 2018. https://users.oden.utexas.edu/~leszek/classes/EM394H/book2.pdf.
[19] Demkowicz, L. Lecture notes. Mathematical Theory of Finite Elements. The University of Texas at Austin, 2023. https://users.oden.utexas.edu/~leszek/classes/EM394H/book.pdf.
[20] Demkowicz, L., and Buffa, A. $H^{1}, H($ curl) and $H($ div $)$-conforming projection-based interpolation in three dimensions. Quasi-optimal p-interpolation estimates. Comput. Methods Appl. Mech. Engrg. 194 (2005), 267-296. https://doi.org/10.1016/j.cma.2004.07.007.
[21] Demkowicz, L., Gopalakrishnan, J., and Schöberl, J. Polynomial extension operators. Part III. Math. Comp. 81 (2012), 1289-1326. http://dx.doi.org/10.1090/S0025-5718-2011-02536-6.
[22] Ern, A., Gudi, T., Smears, I., and Vohralík, M. Equivalence of local- and global-best approximations, a simple stable local commuting projector, and optimal $h p$ approximation estimates in \boldsymbol{H} (div). IMA J. Numer. Anal. 42 (2022), 1023-1049. http://dx.doi.org/10.1093/imanum/draa103.
[23] Ern, A., and Guermond, J.-L. Mollification in strongly Lipschitz domains with application to continuous and discrete de Rham complexes. Comput. Methods Appl. Math. 16 (2016), 51-75. https://doi.org/10.1515/cmam-2015-0034.
[24] Ern, A., and Guermond, J.-L. Finite element quasi-interpolation and best approximation. ESAIM Math. Model. Numer. Anal. 51 (2017), 1367-1385. https://doi.org/10.1051/m2an/2016066.
[25] Ern, A., and Guermond, J.-L. Finite Elements I. Approximation and Interpolation, vol. 72 of Texts in Applied Mathematics. Springer International Publishing, Springer Nature Switzerland AG, 2021. https://doi-org.ezproxy.is.cuni.cz/10.1007/978-3-030-56341-7.
[26] Ern, A., and Vohralík, M. Stable broken H^{1} and $\boldsymbol{H}($ div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions. Math. Comp. 89 (2020), 551-594. http://dx.doi.org/10.1090/mcom/3482.
[27] Falk, R. S., and Winther, R. Local bounded cochain projections. Math. Comp. 83 (2014), 2631-2656. http://dx.doi.org/10.1090/S0025-5718-2014-02827-5.
[28] Falk, R. S., and Winther, R. Construction of polynomial preserving cochain extensions by blending. Math. Comp. 92 (2023), 1575-1594. https://doi.org/10.1090/mcom/3819.
[29] Falk, R. S., and Winther, R. The bubble transform and the de Rham complex. Found. Comput. Math. 24 (2024), 99-147. https://doi.org/10.1007/s10208-022-09589-1.
[30] Gawlik, E., Holst, M. J., and Licht, M. W. Local finite element approximation of Sobolev differential forms. ESAIM Math. Model. Numer. Anal. 55 (2021), 2075-2099. https://doi.org/10.1051/ m2an/2021034.
[31] Girault, V., and Raviart, P.-A. Finite element methods for Navier-Stokes equations, vol. 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1986.
[32] Licht, M. W. Smoothed projections and mixed boundary conditions. Math. Comp. 88 (2019), 607-635. https://doi.org/10.1090/mcom/3330.
[33] Melenk, J. M., and Rojik, C. On commuting p-version projection-based interpolation on tetrahedra. Math. Comp. 89 (2020), 45-87. https://doi.org/10.1090/mcom/3454.
[34] Raviart, P.-A., and Thomas, J.-M. A mixed finite element method for 2nd order elliptic problems. In Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975). Springer, Berlin, 1977, pp. 292-315. Lecture Notes in Math., Vol. 606.
[35] Schöberl, J., Melenk, J. M., Pechstein, C., and Zaglmayr, S. Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements. IMA J. Numer. Anal. 28 (2008), 1-24. http://dx.doi.org/10.1093/imanum/drl046.
[36] Veeser, A. Approximating gradients with continuous piecewise polynomial functions. Found. Comput. Math. 16 (2016), 723-750. http://dx.doi.org/10.1007/s10208-015-9262-z.
[37] Vohralík, M. On the discrete Poincaré-Friedrichs inequalities for nonconforming approximations of the Sobolev space H^{1}. Numer. Funct. Anal. Optim. 26 (2005), 925-952. http://dx.doi.org/10. 1080/01630560500444533.
[38] Vohralík, M. p-robust equivalence of global continuous and local discontinuous approximation, a p-stable local projector, and optimal elementwise $h p$ approximation estimates in H^{1}. HAL Preprint 04436063, submitted for publication, https://hal.inria.fr/hal-04436063, 2024.
[39] Vohralík, M. p-robust equivalence of global continuous constrained and local discontinuous unconstrained approximation, a p-stable local commuting projector, and optimal elementwise $h p$ approximation estimates in \boldsymbol{H} (curl). In preparation, 2024.

[^0]: *The second author acknowledges the J. Tinsley Oden Faculty Fellowship Research Program for his research stay in Austin, Texas.
 ${ }^{\dagger}$ Oden Institute for Computational and Engineering Sciences, 1 University Station, C0200, The University of Texas at Austin, Texas 78712, U.S.A. (leszek@oden.utexas.edu).
 \ddagger Inria, 2 rue Simone Iff, 75589 Paris, France (martin.vohralik@inria.fr).
 §CERMICS, Ecole des Ponts, 77455 Marne-la-Vallée, France.

