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Abstract We present a unified framework based on potential and flux recon-
struction for guaranteed and efficient a posteriori error estimation. We consider
as model problems the Laplace equation, the singularly perturbed convection-
diffusion-reaction equation, and the heat equation. The analysis is performed for
a wide class of space discretization schemes. Three simple conditions need to be
verified, which we do for cell- and vertex-centered finite volumes for all model
problems.
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1 Introduction

A posteriori error estimation is an important tool in practical computations for error
control and computational efficiency by adapting the discretization parameters. In
the context of finite element methods, residual-based a posteriori error estimation
has been initiated by Babuška and Rheinboldt [2] over threedecades ago. The ap-
plication to finite volume (FV) schemes is more recent; we refer, among others, to
Achdou, Bernardi, and Coquel [1], Nicaise [19], and Ohlberger [21, 20].

The purpose of this work is to present some recent results (and extensions
thereof) by the authors [9, 11, 29, 28, 30] in a general framework. The salient
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Université Paris-Est, CERMICS, Ecole des Ponts, 77455 Marne la Vallée, France, e-mail:
ern@cermics.enpc.fr

Martin Vohralı́k
UPMC Univ. Paris 06, UMR 7598, Laboratoire J.-L. Lions, 75005, Paris, France & CNRS, UMR
7598, Laboratoire J.-L. Lions, 75005, Paris, France, e-mail: vohralik@ann.jussieu.fr

1



2 Alexandre Ern and Martin Vohralı́k

features of this framework can be summarized as follows. Firstly, the error up-
per bound is formulated in terms of apotential and aflux reconstructionwhich
must comply with some basic physical properties related to the model problem at
hand. This approach allows one to achieveguaranteederror upper bounds, that is,
upper boundswithout undetermined constants, which is a key feature in the con-
text of error control. Flux-based a posteriori error estimation for elliptic problems
hinges on the Prager–Synge equality [22] and was first developed, among others, by
Ladevèze [18] and Haslinger and Hlaváček [14].

Next, the present approach does not rely on a specific discretization scheme (in
space), that is, we bound the difference between the exact solution and an arbitrary
approximate solution which is only required to be piecewisesmooth. Owing to this
generality, the approach encompasses a wide class of schemes including FVs and
many other schemes (discontinuous Galerkin, mixed finite elements, etc.) in auni-
fied setting. At this stage, quitegeneral meshes(e.g., with polygonal elements and
so-called hanging nodes) can be considered as well. Turningnext tolocal efficiency,
that is, to local lower bounds on the error, we still proceed generally without re-
sorting to any specific discretization scheme under two additional assumptions. On
the one hand, we suppose that the approximate solution, the potential and flux re-
constructions, and the problem data are piecewise polynomials and that the meshes
possess some regularity which we formulate by introducing amatching simplicial,
shape-regular submesh. On the other hand, we assume that thepotential and flux
reconstructions satisfy some local approximation properties which are expressed in
terms of suitable local residuals of the approximate solution (plus its jumps). Local
lower bounds on the error then result from the combination ofthese two assumptions
and the fact that the local residuals provide local lower bounds on the approximation
error, as previously shown, e.g., in Verfürth [24].

This paper is organized as follows. In§2, we collect some useful notation and
basic ingredients for the analysis. Then, we present our results on three model
problems. In§3, we consider the Laplace equation. The aim is to present in de-
tail the key ideas in the context of a simple model problem. In§4, we turn to the
convection-diffusion-reaction equation. We focus on singularly perturbed regimes
resulting from dominant convection or reaction and show howthe present approach
can achieverobustnesswith respect to physical parameters. In§5, we consider the
heat equation and the backward Euler scheme to discretize intime. The purpose is to
show how the present approach handles evolution problems including time-varying
meshes. In all cases, we first derive upper and lower bounds onthe approximation
error in an abstract framework applicable to a wide class of discretization schemes in
space. Then, we show how the framework can be applied to cell-and vertex-centered
FV schemes. For the sake of simplicity, we only consider model problems with ho-
mogeneous Dirichlet boundary conditions. Inhomogeneous Dirichlet and Neumann
boundary conditions can be taken into account following [29]. Finally, we observe
that some interesting applications of a posteriori error estimates are not covered
herein; we mention, in particular, the use of such estimatesas adaptive stopping
criteria for linear [15] and nonlinear [7] iterative solvers.
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2 Basic ingredients

Let Ω ⊂ R
d, d ≥ 2, be a polygonal (polyhedral) domain (open, bounded, and con-

nected set). LetTh be a partition ofΩ into polygonal elements. The elementsK
can benonconvexor non star-shaped. We denote byhK the diameter ofK ∈ Th and
by nK its outward normal. The partitionTh can benonmatching, that is, so-called
hanging nodes are allowed. We only suppose later on (cf. Assumption 2 below) the
existence of a simplicial matching and shape-regular submeshSh. We say thatσ is
a mesh side ifσ has positive(d−1)-dimensional measure and if there are distinct
K,L ∈ Th such thatσ = ∂K ∩ ∂L or if there isK ∈ Th such thatσ = ∂K ∩ ∂Ω .
Mesh sides are collected in the setEh. We denote byhσ the diameter ofσ ∈ Eh, we
fix a unit normal toσ denoted bynσ , and define the jump acrossσ as the difference
following the direction ofnσ . Besides the usual Sobolev spacesH1(Ω) andH1

0(Ω),
we consider the so-called broken Sobolev spaceH1(Th) spanned by those functions
whose restriction to each elementK ∈ Th belongs toH1(K) and the so-called bro-
ken gradient operator∇h acting elementwise on functions inH1(Th). Additionally,
we need the spaceH(div,Ω) spanned by those functions in[L2(Ω)]d with square-
integrable weak divergence. The notationPk(Th) stands for the space of piecewise
polynomials of total degree≤ k on Th, whereas, forTh simplicial and matching,
RTN(Th) ⊂ H(div,Ω) stands for the (lowest-order) Raviart–Thomas–Nédélec fi-
nite element space [3]. For allvh ∈ RTN(Th), vh·nσ is constant on all sidesσ ∈ Eh,
the univalued side fluxes〈vh·nσ ,1〉σ representing the degrees of freedom.

Let D ⊂ Ω be a polygon or polyhedron. The Poincaré inequality statesthat

‖ϕ −ϕD‖
2
D ≤CP,Dh2

D‖∇ϕ‖2
D ∀ϕ ∈ H1(D), (1)

whereϕD is the mean ofϕ overD given byϕD := (ϕ ,1)D/|D|. WhenD is convex,
the constantCP,D can be evaluated as 1/π2. The constantCP,D can also be evaluated
for nonconvexD, cf. [12, Lemma 10.2] or [5,§2]. Let nowK ⊂ Ω be a simplex and
let σ be one of its sides. The trace inequality states that

‖ϕ‖2
σ ≤Ct,K,σ (h−1

K ‖ϕ‖2
K +‖ϕ‖K‖∇ϕ‖K) ∀ϕ ∈ H1(K). (2)

It follows from [23, Lemma 3.12] that the constantCt,K,σ can be evaluated as
|σ |hK/|K|, see also [5, Theorem 4.1] ford = 2.

3 Laplace equation

We consider the second-order elliptic problem

−∆ p = f in Ω , (3a)

p = 0 on ∂Ω , (3b)
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with f ∈ L2(Ω). The weak formulation consists in findingp∈ H1
0(Ω) such that

(∇p,∇ϕ) = ( f ,ϕ) ∀ϕ ∈ H1
0(Ω). (4)

The scalar-valued functionp∈ H1
0(Ω) is called thepotentialand the vector-valued

functiont := −∇p∈ H(div,Ω) the (diffusive)flux.

3.1 Abstract framework

The purpose of this section is to present a unified abstract framework for a poste-
riori error estimation in problem (3a)–(3b). In order to proceed generally, without
the specification of the numerical scheme at hand, we merely suppose that we are
given a functionph ∈ H1(Th) (which will represent the discrete solution later on).
We define the energy (semi-)norm as|||v||| := ‖∇hv‖ for all v∈ H1(Th). The a pos-
teriori estimate for the energy error|||p− ph||| is formulated in terms of apotential
reconstruction sh and aflux reconstructionth. These reconstructions must comply
with the following assumption.

Assumption 1 (Potential and flux reconstruction for(3a)–(3b)) There holds sh ∈
H1

0(Ω), th ∈ H(div,Ω), and

(∇·th,1)K = ( f ,1)K ∀K ∈ Th. (5)

Remark 1 (Assumption 1).Assumption 1 is concerned with basic physicalcon-
straintsandlocal conservation. For the exact solution,p∈H1

0(Ω) andt ∈H(div,Ω)
(physical constraints); moreover,∇·t = f (conservation). The potential and flux re-
constructions mimic these continuous properties.

We can now state and prove our main result concerning the error upper bound,
see [27, Theorem 4.2] and [30, Theorem 4.5].

Theorem 1 (A posteriori estimate for(3a)–(3b)). Let p be the solution of(4) and
let ph ∈ H1(Th) be arbitrary. Let Assumption 1 be satisfied. Then,

|||p− ph||| ≤

{

∑
K∈Th

η2
NC,K +(ηR,K + ηDF,K)2

}1/2

,

where, for all K∈Th, thediffusive flux estimator, thenonconformity estimator, and
theresidual estimatorare respectively given by

ηDF,K := ‖∇ph + th‖K , (6a)

ηNC,K := ‖∇(ph−sh)‖K , (6b)

ηR,K := C1/2
P,KhK‖ f −∇·th‖K . (6c)
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Proof. Following [17, Lemma 4.4], we obtain usingsh ∈ H1
0(Ω),

|||p− ph|||
2 ≤ |||ph−sh|||

2 +

{
sup

ϕ∈H1
0 (Ω),|||ϕ|||=1

(∇h(p− ph),∇ϕ)

}2

.

The first term equals the Hilbertian sum of the nonconformityestimators, and we are
thus left with bounding the second term. Using (4) andth ∈ H(div,Ω), we obtain

(∇h(p− ph),∇ϕ) = ( f ,ϕ)− (∇hph,∇ϕ) = ( f ,ϕ)− (∇hph + th,∇ϕ)+ (th,∇ϕ)

= ( f −∇·th,ϕ)− (∇hph + th,∇ϕ).

We now bound the two above terms separately. For allK ∈ Th, let ϕK be the mean
value ofϕ over K. Then, using (5), the Poincaré inequality (1), and the Cauchy–
Schwarz inequality, we infer

|( f −∇·th,ϕ)K | = |( f −∇·th,ϕ −ϕK)K | ≤ ηR,K |||ϕ |||K .

Moreover, bounding|(∇ph + th,∇ϕ)K | ≤ ηDF,K |||ϕ |||K is immediate using the Cau-
chy–Schwarz inequality. The conclusion is straightforward. ⊓⊔

We now address local efficiency and we still proceed generally, without any no-
tion of a particular numerical scheme. We make two more assumptions.

Assumption 2 (Local efficiency) We suppose that

• there exists a shape-regular matching simplicial submeshSh of Th such that, for
each K∈ Th, the number of subelements L⊂ K, L ∈ Sh, is uniformly bounded;

• for a fixed integer k≥ 1, the approximate solution ph and the datum f are in
Pk(Th), and the flux reconstructionth is in [Pk(Sh)]

d;

Henceforth, we useA . B when there exists a positive constantC, that can only
depend on the space dimensiond, the shape-regularity parameter of the meshSh,
and the polynomial degreek, such thatA ≤ CB. For all K ∈ Th, let TK denote all
the elements inTh having a nonempty intersection withK, EK all the sides inEh

having a nonempty intersection withK, andE
int
K the subset ofEK collecting those

sides lying in the interior ofΩ . We introduce theclassical residual estimatorsfor
problem (3a)–(3b) (cf. [24] for conforming methods and [6, 1] for nonconforming
methods) given by

ηres,K := hK‖ f + ∆ ph‖TK +h1/2
K ‖[[∇hph·n]]‖

Eint
K

, (7a)

|ph|J,K := h−1/2
K ‖[[ph]]‖EK . (7b)

Assumption 3 (Approximation property for (3a)–(3b)) We assume that, for all
K ∈ Th,

‖∇(ph−sh)‖K +‖∇ph+ th‖K . ηres,K + |ph|J,K . (8)

We can now state and prove our main result concerning efficiency.
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Theorem 2 (Efficiency of the estimate of Theorem 1).Let p be the solution of(4)
and let Assumptions 2 and 3 be satisfied. Then, for all K∈ Th,

ηNC,K + ηR,K + ηDF,K . |||p− ph|||TK + |ph|J,K .

Proof. Our first step is to observe thatηNC,K +ηR,K +ηDF,K . ηres,K + |ph|J,K . This
bound is immediate forηNC,K andηDF,K owing to Assumption 3, while forηR,K ,
the triangle and inverse inequalities yieldηR,K . hK‖ f + ∆ ph‖K + ‖∇ph + th‖K .

ηres,K + |ph|J,K , owing to Assumptions 2 and 3. Our second step is to observe that
ηres,K . |||p− ph|||TK , as can be derived using suitable bubble functions [24].⊓⊔

Remark 2 (Equivalence result).If ph is in H1
0(Ω), the jump seminorm|ph|J,K van-

ishes. If the jumps ofph have zero mean on each side, proceeding as in [1, Theo-
rem 10] yields|ph|J,K . |||p− ph|||TK . Finally, in the general case, an equivalence
result is achieved by adding the jump seminorm|p− ph|J,K = |ph|J,K to both the
error measure and the nonconformity estimator.

3.2 Application to finite volumes

We apply here the framework of§3.1 to cell- and vertex-centered finite volume
schemes, i.e., we specifysh andth, and we verify Assumptions 1, 2, and 3.

3.2.1 Cell-centered finite volumes

Definition 1 (Cell-centered FVs for(3a)–(3b)). A cell-centered FV scheme for dis-
cretizing (3a)–(3b), cf. [12], reads: find ¯ph ∈ P0(Th) such that

∑
σ∈EK

FK,σ = ( f ,1)K ∀K ∈ Th. (9)

Here,EK collects the sides ofK andFK,σ is the diffusive flux through the sideσ ,
which depends on ¯ph. A simple example is the so-called “two-point” scheme. In
what follows, we do not need the specific form ofFK,σ , but only the conservation
propertyFK,σ = −FL,σ for all interior sidesσ shared by the elementsK andL.

Let us first suppose thatTh is simplicial and matching. Following [13], letth ∈
RTN(Th) be prescribed on allK ∈ Th by the fluxesFK,σ as

(th|K ·nK)|σ := FK,σ /|σ |. (10)

Sincep̄h is piecewise constant, the energy error|||p− p̄h||| = ‖∇p‖ is not relevant.
Instead, following [28,§3.2], we first postprocess ¯ph locally into ph ∈ P2(Th) such
that, for allK ∈ Th,

−∇ph|K = th|K , (ph,1)K/|K| = p̄h|K . (11)
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The potentialsh is constructed by applying an averaging operatorIav : Pk(Th) →
Pk(Th)∩H1

0 (Ω) to ph. This operator sets the Lagrangian degrees of freedom inside
Ω to the average of the values and sets 0 on∂Ω . Theorem 1 can now used to bound
the error|||p− ph||| observing that (5) in Assumption 1 results from(∇·th,1)K =
〈th·nK ,1〉∂K = ∑σ∈EK

FK,σ = ( f ,1)K . Note thatηDF,K = 0 from (11), which is typi-
cal for cell-centered finite volumes. To apply Theorem 2, we verify Assumptions 2
and 3. Assumption 2 is straightforward withSh =Th, whereas Assumption 3 is triv-
ial for th since‖∇ph + th‖K = 0, while the bound on‖∇(ph−Iav(ph))‖K results
from [1, 16, 4].

WhenTh is not simplicial or is nonmatching, the submeshSh needs to be in-
troduced. We can then proceed as in [28,§5] and [10]. The averaging operator for
potential reconstruction maps intoPk(Sh)∩H1

0 (Ω), while the flux is reconstructed
in RTN(Sh) either by direct prescription of its degrees of freedom or bysolving
local Neumann problems.

3.2.2 Vertex-centered finite volumes

We suppose here thatTh is simplicial and matching. LetDh be a dual mesh with
dual volumesD associated with the vertices ofTh. We refer to Figure 1, left, for an
illustration. We decomposeDh into D int

h andDext
h , with D int

h associated with interior
vertices andDext

h with boundary ones.

Th

Dh

Th

Sh

Fig. 1 Simplicial meshTh and the dual meshDh (left); simplicial submeshSh (right)

Definition 2 (Vertex-centered FVs for (3a)–(3b)). A vertex-centered FV scheme
for discretizing (3a)–(3b), cf. [12], reads: findph ∈ P1(Th)∩H1

0(Ω) such that

−〈∇ph·nD,1〉∂D = ( f ,1)D ∀D ∈ D int
h . (12)

To apply the framework of§3.1, we first note that, sinceph ∈ H1
0(Ω), we can

setsh = ph. Consequently,ηNC,K = 0 in Theorem 1, which is typical for vertex-
centered finite volumes. To construct the fluxth, we introduce a matching simplicial
submeshSh, cf. Figure 1, right. SuchSh is a refinement of bothTh andDh. The
flux th is reconstructed inRTN(Sh) such that, at all interior sidesσ of Sh which lie
on the boundary of someD ∈ Dh, th·nσ := −∇ph·nσ . Owing to the Green theorem,
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(∇·th,1)D = ( f ,1)D for all D ∈ D int
h . There are various ways of prescribing the

remaining degrees of freedom ofth. We can merely prescribe them directly, but
better computational results are obtained if a local Neumann or Neumann/Dirichlet
problem is solved using mixed finite elements in eachD ∈ Dh [30, §4.3]. Verifying
Assumptions 1 and 2 is immediate, while Assumption 3 is proven as in [30,§5].

4 Convection-diffusion-reaction equation

We consider the convection-diffusion-reaction equation

−∇·(ε∇p−wp)+ rp = f in Ω , (13a)

p = 0 on ∂Ω , (13b)

with ε > 0, r ∈ L∞(Ω), w ∈ [W1,∞(Ω)]d, and f ∈ L2(Ω). We assume thatw is
divergence-free with piecewise polynomial components andthatr is piecewise con-
stant taking nonnegative values. We introduce the bilinearform B := BS+BA on
H1

0(Ω)×H1
0(Ω) such that

BS(p,ϕ) := ε(∇p,∇ϕ)+ (rp,ϕ), (14a)

BA(p,ϕ) := −(wp,∇ϕ). (14b)

The weak formulation consists in findingp∈ H1
0(Ω) such that

B(p,ϕ) = ( f ,ϕ) ∀ϕ ∈ H1
0(Ω). (15)

The vector-valued functionst := −ε∇p andq := wp are inH(div,Ω) and are, re-
spectively, called thediffusiveandconvective flux.

4.1 Abstract framework

We present here a unified abstract framework for a posteriorierror estimation in
problem (13a)–(13b). Extending the above bilinear forms toH1(Th)×H1(Th) us-
ing broken gradients, we now define the energy (semi-)norm as

|||v||| := BS(v,v)1/2 =
(
‖ε1/2∇hv‖2+‖r1/2v‖2

)1/2
∀v∈ H1(Th). (16)

To achieve robustness of the a posteriori error estimates inthe singularly perturbed
regime resulting from dominant convection, we introduce, following Verfürth [26],
the augmented (semi-)norm defined as
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|||v|||⊕ := |||v|||+ sup
ϕ∈H1

0 (Ω),|||ϕ|||=1

BA(v,ϕ) ∀v∈ H1(Th). (17)

The a posteriori error estimate for|||p− ph|||⊕ is formulated in terms of apotential
reconstruction sh, adiffusive flux reconstructionth, and aconvective flux reconstruc-
tion qh. These reconstructions must comply with the following assumption.

Assumption 4 (Potential and flux reconstruction for(13a)–(13b)) There holds sh
∈ H1

0(Ω), th,qh ∈ H(div,Ω), and

(∇·th + ∇·qh + rph,1)K = ( f ,1)K ∀K ∈ Th. (18)

We can now state and prove our main result concerning the error upper bound.
For simplicity, we assume that the meshTh is matching and simplicial so as to use
the trace inequality (2). The general case can be treated by resorting to a matching
simplicial submesh.

Theorem 3 (A posteriori estimate for (13a)–(13b)). Let p be the solution of(15)
and let ph ∈ H1(Th) be arbitrary. Let Assumption 4 be satisfied. Assume thatTh is
matching and simplicial. Then,

|||p− ph|||⊕ ≤ η := 2

{

∑
K∈Th

η2
NC,K

}1/2

+

{

∑
K∈Th

η̃2
NC,K

}1/2

+3

{

∑
K∈Th

(ηR,K + ηCDF,K)2

}1/2

.

For all K ∈ Th, theconvective-diffusive flux estimatoris given by

ηCDF,K := min(ηCDF,1,K ,ηCDF,2,K), (19a)

ηCDF,1,K := ε−1/2‖ah‖K , (19b)

ηCDF,2,K := mK‖(I −Π0)∇·ah‖K + m̃1/2
K ∑

σ∈EK

C1/2
t,K,σ‖ah·nσ‖σ , (19c)

with ah := th+qh+ε∇hph−wsh andΠ0 the L2-orthogonal projector ontoP0(Th),
thenonconformity estimatorsby

ηNC,K := |||ph−sh|||K , η̃NC,K := min(η̃NC,1,K , η̃NC,2,K), (20a)

η̃NC,1,K := ε−1/2‖bh‖K , (20b)

η̃NC,2,K := mK‖(I −Π0)∇·bh‖K + m̃1/2
K ∑

σ∈EK

C1/2
t,K,σ‖bh·nσ‖σ , (20c)

with bh := w(ph−sh), and theresidual estimatorby

ηR,K := mK‖ f −∇·th−∇·qh− rph‖K . (21)
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Here mK := min(C1/2
P,Kε−1/2hK , r−1/2

K ) andm̃K := 2(1+C1/2
P,K)ε−1/2mK .

Proof. Following [27, Lemma 7.1] and [8, Lemma 3.1], we infer

|||p− ph||| ≤ |||ph−sh|||+ sup
ϕ∈H1

0 (Ω),|||ϕ|||=1

{B(p− ph,ϕ)+BA(ph−sh,ϕ)} ,

and proceeding as in [9, Lemma 4.2] yields

|||p− ph|||⊕ ≤ 2|||ph−sh|||+ sup
ϕ∈H1

0 (Ω),|||ϕ|||=1

BA(ph−sh,ϕ)

+3 sup
ϕ∈H1

0 (Ω),|||ϕ|||=1

{B(p− ph,ϕ)+BA(ph−sh,ϕ)} .

For the second term on the right-hand side, we obtain

BA(ph−sh,ϕ) = −(bh,∇ϕ) ≤ ∑
K∈Th

η̃NC,K |||ϕ |||K .

Indeed, for allK ∈ Th, the Cauchy–Schwarz inequality on the one hand yields
−(bh,∇ϕ)K ≤ ε−1/2‖bh‖K |||ϕ |||K = η̃NC,1,K |||ϕ |||K , while integrating by parts on
K leads to

−(bh,∇ϕ)K = ((I −Π0)∇·bh,ϕ −ϕK)K − ∑
σ∈EK

(bh·nσ ,ϕ −ϕK)σ ≤ η̃NC,2,K |||ϕ |||K ,

owing to the Poincaré inequality (1) and the trace inequality (2). For the third term
on the right-hand side, we observe that

B(p− ph,ϕ)+BA(ph−sh,ϕ) = ( f −∇·th−∇·qh− rph,ϕ)− (ah,∇ϕ)

≤ ∑
K∈Th

(ηR,K + ηCDF,K)|||ϕ |||K ,

using Assumption 4 for the residual term and proceeding forah as forbh. ⊓⊔

We now address the efficiency of the estimate of Theorem 3. In what follows,
. can include factors depending on the maximal ratiomK/mL for K,L having
a nonempty intersection. We introduce theclassical residual estimatorsfor prob-
lem (13a)–(13b) given by

ηres,K := mK‖ f + ∇·(ε∇ph−wph)− rph‖TK +m1/2
K ε−1/4‖[[ε∇hph]]·n‖Eint

K
, (22a)

|ph|J,K := (ε1/2h−1/2
K +m1/2

K ε−1/4‖w‖[L∞(K)]d + r1/2
K h1/2

K )‖[[ph]]‖EK . (22b)

We also set|v|J :=
{

∑K∈Th
|v|2J,K

}1/2
for all v∈ H1(Th).

Assumption 5 (Approximation property for (13a)–(13b)) We assume that, for all
K ∈ Th, with ch = ah or bh,
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mK‖(I −Π0)∇·ch‖K +m1/2
K ε−1/4 ∑

σ∈EK

‖ch·nσ‖σ . ηres,K + |ph|J,K .

Proceeding as in [9, Theorems 3.2 and 3.4] leads to the following lower bound,
which is global in space owing to the use of a dual norm.

Theorem 4 (Efficiency of the estimate of Theorem 3).Let p be the solution of(15)
and let Assumption 5, and the second item of Assumption 2, be satisfied. Then,

η . |||p− ph|||⊕ + |p− ph|J. (23)

Remark 3 (Fully robust equivalence result).Adding the jump seminorm|·|J to the
error measure, a fully robust equivalence result is finally achieved in the form

|||p− ph|||⊕ + |p− ph|J ≤ η + |ph|J . |||p− ph|||⊕ + |p− ph|J. (24)

4.2 Application to finite volumes

We apply here the framework of§4.1 to cell- and vertex-centered finite volume
schemes, i.e., we specifysh, th, andqh, and we verify Assumption 4, and, at least in
some cases, Assumption 5.

4.2.1 Cell-centered finite volumes

Definition 3 (Cell-centered FVs for (13a)–(13b)). A cell-centered FV scheme for
discretizing (13a)–(13b), cf. [12], reads: find ¯ph ∈ P0(Th) such that

∑
σ∈EK

FK,σ + ∑
σ∈EK

WK,σ + rK p̄h|K = ( f ,1)K ∀K ∈ Th. (25)

In addition to the diffusive fluxesFK,σ , WK,σ are the convective fluxes, also depend-
ing on p̄h. We do not need the precise form of the fluxes, but onlyFK,σ =−FL,σ and
WK,σ = −WL,σ for all interior sidesσ shared by the elementsK andL.

Following the ideas exposed in§3.2.1, we first defineth,qh ∈ RTN(Th) by

(th|K ·nK)|σ := FK,σ/|σ |, (qh|K ·nK)|σ := WK,σ /|σ |. (26)

Defineph similarly to (11). It is immediate to see using the Green theorem that (26)
and (25) yield (18). A reasonable condition onWK,σ in the context of upwind or
centered convective fluxes is that

‖WK,σ /|σ |−w·nK ph|K‖σ . ‖w‖[L∞(K)]d‖[[p̄h]]‖σ . (27)
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Then, Assumption 5 holds, up to the oscillation termsmK‖(I − Π0)∇·(wph)‖K ,
when additionally including|p̄h|J,K on the right-hand side, and the efficiency re-
sult (23) holds when additionally including|p− p̄h|J on the right-hand side.

4.2.2 Vertex-centered finite volumes

Definition 4 (Vertex-centered FVs for(13a)–(13b)). A vertex-centered FV scheme
for discretizing (13a)–(13b), cf. [12], reads: findph ∈ P1(Th)∩H1

0(Ω) such that

−〈ε∇ph·nD,1〉∂D + 〈w·nD ph,1〉∂D +(rph,1)D = ( f ,1)D ∀D ∈ D int
h . (28)

Note that we only consider a centered convective flux.

As in §3.2.2, we setsh = ph in Assumption 4. Consequently,ηNC,K = η̃NC,K = 0
in Theorem 3. For the convective flux reconstruction, we simply setqh := wph. For
the diffusive flux reconstruction, we introduce the meshSh (cf. Figure 1, right) and
we defineth ∈ RTN(Sh) such thatth·nσ := −ε∇ph·nσ at all interior sidesσ of
Sh which lie on the boundary of someD ∈ Dh. As in §3.2.2, local problems can
be solved to fulfill Assumption 4. Assumption 5 can be verifiedas in§3.2.2 for the
diffusive part, while the convective part is trivial owing to the choice ofqh.

5 Heat equation

We consider the heat equation

∂t p−∆ p = f in Ω × (0,T), (29a)

p = 0 on∂Ω × (0,T), (29b)

p(·,0) = p0 in Ω , (29c)

with f ∈ L2(Ω × (0,T)), initial condition p0 ∈ L2(Ω), and final timeT > 0. The
exact solution is in the spaceY := {y∈ X;∂ty∈ X′}, with X := L2(0,T;H1

0(Ω)) and
X′ = L2(0,T;H−1(Ω)), satisfies (29c) inL2(Ω), and is such that, for a.e.t ∈ (0,T),

〈∂t p,ϕ〉(t)+ (∇p,∇ϕ)(t) = ( f ,ϕ)(t) ∀ϕ ∈ H1
0(Ω). (30)

The space-time energy norm is given by‖y‖X :=
{∫ T

0 ‖∇y‖2(t)dt
}1/2

for all y∈ X.

Following Verfürth [25], we augment the energy norm by a dual norm of the time

derivative as‖y‖Y := ‖y‖X +‖∂ty‖X′ with ‖∂ty‖X′ :=
{∫ T

0 ‖∂ty‖2
H−1(t)dt

}1/2
.
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5.1 Abstract framework

We consider an increasing sequence of discrete times{tn}0≤n≤N such thatt0 = 0
andtN = T and introduce the time intervalsIn := (tn−1,tn] and the time stepsτn :=
tn− tn−1 for all 1≤ n≤ N. The meshes are allowed to vary in time; we denote by
T n

h the mesh used to march in time fromtn−1 to tn, for all 1≤ n≤ N, and byT 0
h

the initial mesh. We suppose that the approximate solution on tn, denoted bypn
hτ ,

is in H1(T n
h ), and we letphτ be the space-time approximate solution, given bypn

hτ
at each discrete timetn and piecewise affine and continuous in time. We denote the
space of such functions byP1

τ (H1(Th)). We also denote byP1
τ (H1

0(Ω)) the space
of functions that are piecewise affine and continuous in timeandH1

0(Ω) in space
and byP0

τ (H(div,Ω)) the space of functions that are piecewise constant in time
andH(div,Ω) in space. For all 1≤ n ≤ N, we set f̃ n := 1

τn

∫
In f (·,t)dt, and, for

ϕhτ ∈ P1
τ (H1(Th)), ∂t pn

hτ := 1
τn (ϕn

hτ −ϕn−1
hτ ).

We aim at measuring the error(p− phτ) in the‖·‖Y-norm using the broken gra-
dient operator in the energy norm. The a posteriori error estimate is formulated in
terms of aspace-time potential reconstruction shτ and aspace-time flux reconstruc-
tion thτ . These reconstructions must comply with the following assumption.

Assumption 6 (Potential and flux reconstruction for(29a)–(29c)) There holds shτ
∈ P1

τ (H1
0(Ω)), thτ ∈ P0

τ (H(div,Ω)), and, for all1≤ n≤ N and for all K∈ T n
h ,

(∂ts
n
hτ ,1)K = (∂t p

n
hτ ,1)K , (31a)

( f̃ n− ∂t p
n
hτ −∇·tn

hτ ,1)K = 0. (31b)

We can now state our main result concerning the error upper bound, see [11,
Theorem 3.6] and also [11, Theorem 3.2] for a slightly sharper bound.

Theorem 5 (A posteriori estimate for (29a)–(29c)). Let p be the solution of(30)
and let phτ ∈ P1

τ (H1(Th)) be arbitrary. Let Assumption 6 be satisfied. Then,

‖p− phτ‖Y ≤

{
N

∑
n=1

(ηn
sp)

2

}1/2

+

{
N

∑
n=1

(ηn
tm)2

}1/2

+ ηIC +3‖ f − f̃‖X′ , (32)

with, for all 1≤ n≤ N, thespaceand time error estimatorsgiven by

(ηn
sp)

2 := ∑
K∈T n

h

3

{
τn(9(ηn

R,K + ηn
DF,K)2 +(ηn

NC,2,K)2)+

∫

In
(ηn

NC,1,K)2(t)dt

}
,

(33a)

(ηn
tm)2 := ∑

K∈T n
h

3τn‖∇(sn
hτ −sn−1

hτ )‖2
K . (33b)

For all K ∈T n
h , theresidual estimator, thediffusive flux estimator, and thenoncon-

formity estimatorsare given by
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ηn
R,K := C1/2

P,KhK‖ f̃ n− ∂ts
n
hτ −∇·tn

hτ‖K , (34a)

ηn
DF,K := ‖∇sn

hτ + tn
hτ‖K , (34b)

ηn
NC,1,K(t) := ‖∇n

h(shτ − phτ)(t)‖K , ∀t ∈ In, (34c)

ηn
NC,2,K := C1/2

P,KhK‖∂t(shτ − phτ)
n‖K . (34d)

Finally, theinitial condition estimatoris given byηIC := 21/2‖s0
hτ − p0‖.

We next turn to the efficiency of the estimate of Theorem 5. We introduce the
classical residual estimatorsfor problem (29a)–(29c) given by

ηn
res,K := hK‖ f̃ n− ∂t p

n
hτ + ∆ pn

hτ‖TK +h1/2
K ‖[[∇n

hpn
hτ ·n]]‖

Eint
K

, (35a)

|pn
hτ |J,K := h−1/2

K ‖[[pn
hτ ]]‖EK . (35b)

Assumption 7 (Approximation property for (29a)–(29c)) We assume that for all
1≤ n≤ N and for all K∈ T n

h ,

‖∇n
h(pn

hτ −sn
hτ)‖K +‖∇n

hpn
hτ + tn

hτ‖K . ηn
res,K + |pn

hτ |J,K . (36)

We can now state our efficiency result, see [11, Theorem 3.9].As in [25], the
lower bound is local in time, but global in space.

Theorem 6 (Efficiency of the estimate of Theorem 5).Let Assumption 7 hold, let
Assumption 2 hold at all discrete times, let both the refinement and coarsening in
time be not too abrupt, and let, for all1≤ n≤N, (hn)2 . τn. Then, for all1≤ n≤N,

ηn
sp+ ηn

tm . ‖p− phτ‖Y(In) +J n(phτ)+‖ f − f̃‖X′(In), (37)

whereJ n(phτ) :=
{

τn ∑K∈T n−1
h

|pn−1
hτ |2J,K + τn ∑K∈T n

h
|pn

hτ |
2
J,K

}1/2
.

Remark 4 (Equivalence result).We refer to [11, Remark 3.10] for bounding the
jumpsJ n(phτ), see also Remark 2.

5.2 Application to finite volumes

We apply here the framework of§5.1 to cell- and vertex-centered finite volume
schemes, i.e., we specifyshτ andthτ , and we verify Assumptions 6 and 7. For sim-
plicity, we only discuss matching simplicial meshes.

5.2.1 Cell-centered finite volumes

Definition 5 (Cell-centered FVs for (29a)–(29c)). A cell-centered FV scheme
for (29a)–(29c), cf. [12], reads: for all 1≤ n≤ N, find p̄n

hτ ∈ P0(T
n

h ) s. t.
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1
τn (p̄n

hτ − pn−1
hτ ,1)K + ∑

σ∈EK

Fn
K,σ = ( f̃ n,1)K ∀K ∈ T n

h . (38)

As in §3.2.1, the fluxestn
hτ are constructed from the side fluxesFn

K,σ by an equiv-
alent of (10). An elementwise postprocessing as (11) is applied to obtainpn

hτ from
p̄n

hτ . The potential is reconstructed at each discrete time from amodification of the
averaging operator of§3.1 where local bubble functions are used to satisfy (31a)
(cf. [11]). Then, owing to the construction oftn

hτ , (31b) is also satisfied, whence As-
sumption 6 follows. Finally, we setS n

h = T n
h ; Assumption 7 is trivial forthτ since

‖∇n
hpn

hτ + tn
hτ‖K = 0 and is proven forsn

hτ in [11].

5.2.2 Vertex-centered finite volumes

Definition 6 (Vertex-centered FVs for(29a)–(29c)). A vertex-centered FV scheme
for (29a)–(29c), cf. [12], reads: for all 1≤ n≤ N, find pn

hτ ∈ P1(T
n

h )∩H1
0(Ω) s. t.

(∂t p
n
hτ ,1)D −〈∇pn

hτ ·nD,1〉∂D = ( f̃ n,1)D ∀D ∈ D int,n
h . (39)

As in §3.2.2, pn
hτ ∈ H1

0(Ω) for all 1 ≤ n ≤ N, so that we setsn
hτ = pn

hτ . Con-
sequently,ηn

NC,1,K = ηn
NC,2,K = 0 in Theorem 5. The fluxesthτ are constructed as

in §3.2.2, using the simplicial submeshesS n
h . Assumptions 6 and 7 are then veri-

fied by proceeding as in§3.2.2.
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