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Abstract We present a unified framework based on potential and fluxnreco
struction for guaranteed and efficient a posteriori errginggion. We consider
as model problems the Laplace equation, the singularlyugeeti convection-
diffusion-reaction equation, and the heat equation. Thadyais is performed for
a wide class of space discretization schemes. Three sinopliditons need to be
verified, which we do for cell- and vertex-centered finiteurakes for all model
problems.
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1 Introduction

A posteriori error estimation is an important tool in praaticomputations for error
control and computational efficiency by adapting the digzation parameters. In
the context of finite element methods, residual-based a&posterror estimation
has been initiated by BabuSka and Rheinboldt [2] over thesmdes ago. The ap-
plication to finite volume (FV) schemes is more recent; wemeimong others, to
Achdou, Bernardi, and Coquel [1], Nicaise [19], and Ohlleeig@1, 20].

The purpose of this work is to present some recent resultd éxtensions
thereof) by the authors [9, 11, 29, 28, 30] in a general fraotkwThe salient
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features of this framework can be summarized as followstlgirthe error up-
per bound is formulated in terms ofpotentialand aflux reconstructionwhich
must comply with some basic physical properties relatedhéomodel problem at
hand. This approach allows one to achiguaranteecerror upper bounds, that is,
upper boundsvithout undetermined constanishich is a key feature in the con-
text of error control. Flux-based a posteriori error estiorafor elliptic problems
hinges on the Prager—Synge equality [22] and was first dpedlamong others, by
Ladeveze [18] and Haslinger and Hlavacek [14].

Next, the present approach does not rely on a specific dizatien scheme (in
space), that is, we bound the difference between the exltisoand an arbitrary
approximate solution which is only required to be piecewis®oth. Owing to this
generality, the approach encompasses a wide class of ssheoheding FVs and
many other schemes (discontinuous Galerkin, mixed fingeehts, etc.) in ani-
fied setting At this stage, quitgieneral mesheg.g., with polygonal elements and
so-called hanging nodes) can be considered as well. Tungixiggolocal efficiency
that is, to local lower bounds on the error, we still proceedagally without re-
sorting to any specific discretization scheme under twotahdil assumptions. On
the one hand, we suppose that the approximate solution ofeafml and flux re-
constructions, and the problem data are piecewise polyalsm@ind that the meshes
possess some regularity which we formulate by introducingagching simplicial,
shape-regular submesh. On the other hand, we assume thaatthsial and flux
reconstructions satisfy some local approximation progewhich are expressed in
terms of suitable local residuals of the approximate sofufplus its jumps). Local
lower bounds on the error then result from the combinatidhese two assumptions
and the fact that the local residuals provide local lowemuts.on the approximation
error, as previously shown, e.g., in Verflrth [24].

This paper is organized as follows. 2, we collect some useful notation and
basic ingredients for the analysis. Then, we present owltsesn three model
problems. In§3, we consider the Laplace equation. The aim is to presengin d
tail the key ideas in the context of a simple model problenm§4nwe turn to the
convection-diffusion-reaction equation. We focus on alagy perturbed regimes
resulting from dominant convection or reaction and show topresent approach
can achieveobustnessvith respect to physical parameters.si we consider the
heat equation and the backward Euler scheme to discretimeenThe purpose is to
show how the present approach handles evolution problechgling time-varying
meshes. In all cases, we first derive upper and lower boundiseoapproximation
error in an abstract framework applicable to a wide classsafdtization schemesin
space. Then, we show how the framework can be applied tcecllvertex-centered
FV schemes. For the sake of simplicity, we only consider rhpdeblems with ho-
mogeneous Dirichlet boundary conditions. Inhomogeneausilet and Neumann
boundary conditions can be taken into account followind.[Egally, we observe
that some interesting applications of a posteriori erroineges are not covered
herein; we mention, in particular, the use of such estimageadaptive stopping
criteria for linear [15] and nonlinear [7] iterative solger
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2 Basic ingredients

Let Q c RY, d > 2, be a polygonal (polyhedral) domain (open, bounded, and co
nected set). Let’;; be a partition ofQ into polygonal elements. The elemerds
can benonconveor non star-shapedVe denote by the diameter oK € %, and
by nk its outward normal. The partitio;, can benonmatchingthat is, so-called
hanging nodes are allowed. We only suppose later on (cf.mAgsan 2 below) the
existence of a simplicial matching and shape-regular ssho@. We say thau is
a mesh side it has positive(d—1)-dimensional measure and if there are distinct
K,L € 9 such thato = dK N JL or if there isK € 7}, such thato = dKNdQ.
Mesh sides are collected in the gt We denote by, the diameter ob € &}, we
fix a unit normal too denoted byn,, and define the jump acrossas the difference
following the direction oh,. Besides the usual Sobolev spaee$Q) andH2(Q),
we consider the so-called broken Sobolev spateZh,) spanned by those functions
whose restriction to each eleméfitc %, belongs taH!(K) and the so-called bro-
ken gradient operatdfy, acting elementwise on functions it (.%,). Additionally,
we need the spadé(div, Q) spanned by those functions i’ ()] with square-
integrable weak divergence. The notat®y{.7,) stands for the space of piecewise
polynomials of total degre& k on %, whereas, for%, simplicial and matching,
RTN(.%,) C H(div,Q) stands for the (lowest-order) Raviart—-Thomas—Nédélec fi
nite element space [3]. For al} € RTN(%,), vi-ng is constant on all sides € &,
the univalued side fluxe,-ng, 1) s representing the degrees of freedom.

LetD C Q be a polygon or polyhedron. The Poincaré inequality stiteis

16— doll5 <Cpphp|Od|5 Vo € HY(D), 1)

whereg¢p is the mean ofy overD given by¢p := (¢,1)p/|D|. WhenD is convex,
the constanCpp can be evaluated ag . The constan€pp can also be evaluated
for nonconve)D, cf. [12, Lemma 10.2] or [552]. Let nowK C Q be a simplex and
let o be one of its sides. The trace inequality states that

18115 < Cik.o (91K + 110l Ddllk) ¥ € HY(K). (@)

It follows from [23, Lemma 3.12] that the consta@ik s can be evaluated as
|olhk /|K|, see also [5, Theorem 4.1] fdr= 2.

3 Laplace equation

We consider the second-order elliptic problem

—Ap="f in Q, (3a)
p=0 onoQ, (3b)
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with f € L?(Q). The weak formulation consists in findimge H3(Q2) such that

(Op,0¢)=(f.9) V¢ €Hs(Q). (4)

The scalar-valued functiop € H}(Q) is called thepotentialand the vector-valued
functiont := —Op € H(div, Q) the (diffusive)flux

3.1 Abstract framework

The purpose of this section is to present a unified abstrantdwork for a poste-
riori error estimation in problem (3a)—(3b). In order to peed generally, without
the specification of the numerical scheme at hand, we meoglyase that we are
given a functionp, € H(.%,) (which will represent the discrete solution later on).
We define the energy (semi-)norm|dg/|| := ||0nv|| for all ve H(.%). The a pos-
teriori estimate for the energy errfp — pr||| is formulated in terms of potential
reconstruction g and aflux reconstructiorty,. These reconstructions must comply
with the following assumption.

Assumption 1 (Potential and flux reconstruction for(3a}-(3b)) There holdsge
HE(Q), th € H(div, Q), and

(Oth, Dk = (f,1)x VK€ %, (5)

Remark 1 (Assumption 1TAssumption 1 is concerned with basic physicah-
straintsandlocal conservationFor the exact solutiomp € H3 (Q) andt € H(div, Q)
(physical constraints); moreovétt = f (conservation). The potential and flux re-
constructions mimic these continuous properties.

We can now state and prove our main result concerning the epger bound,
see [27, Theorem 4.2] and [30, Theorem 4.5].

Theorem 1 (A posteriori estimate for(3a)(3b)). Let p be the solution of4) and
let p, € HY(.%,) be arbitrary. Let Assumption 1 be satisfied. Then,

1/2
[I/P— Pl S{ > UI%C,K‘F(’]R,K—H"IDF,K)Z} ;
Ke

where, for all Ke %, thediffusive flux estimataorthenonconformity estimatoand
theresidual estimataaire respectively given by

Nork ‘= ||0pn+thllk, (6a)
Nnek = [10(ph—sn) Ik, (6b)
NRk = Coehi | — Oty (6¢)
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Proof. Following [17, Lemma 4.4], we obtain usirsg € H}(Q),

2
|||p_ph|||2§|||ph—5h|||2+{ sup (Dh(p—ph),DdJ)} :
peHL(Q).]16]1=1

The first term equals the Hilbertian sum of the nonconformstymators, and we are
thus left with bounding the second term. Using (4) &nd H(div, Q), we obtain

(On(p—pn),0¢) = (f,¢) — (Onpn, 0¢) = (f,¢) — (Ohpn +th, 0¢) + (th, O¢)
= (f=0th,¢) — (Chpn+th,09).

We now bound the two above terms separately. Fakal %, let ¢k be the mean
value of¢ overK. Then, using (5), the Poincaré inequality (1), and the Gguc
Schwarz inequality, we infer

|(f — Oth, @)k | = |(f — Otn, ¢ — b k| < Nrcll| @]k

Moreover, bounding(Opn +th, 0¢ )k | < nork|||@|llk is immediate using the Cau-
chy—Schwarz inequality. The conclusion is straightfoidvar a

We now address local efficiency and we still proceed gengraithout any no-
tion of a particular numerical scheme. We make two more apsorns.

Assumption 2 (Local efficiency) We suppose that

e there exists a shape-regular matching simplicial submeglof .74, such that, for
each Ke %, the number of subelementsiK, L € .%}, is uniformly bounded;

e for a fixed integer k> 1, the approximate solutionypand the datum f are in
Pw(.%), and the flux reconstructiot, is in [Px(.#)]%;

Henceforth, we usé < B when there exists a positive const&hthat can only
depend on the space dimensihthe shape-regularity parameter of the megh
and the polynomial degrde such thatA < CB. For allK € %, let ¥ denote all
the elements i, having a nonempty intersection with, ¢k all the sides ins,
having a nonempty intersection wikh, and 6}2“ the subset o€k collecting those
sides lying in the interior of2. We introduce thelassical residual estimatorf®r
problem (3a)—(3b) (cf. [24] for conforming methods and [Bfdr nonconforming
methods) given by

Mresk = i f -+ A phl|ic + il [Onn] g (7a)
[Prlax = ™% o] e (7b)

Assumption 3 (Approximation property for (3a){(3b)) We assume that, for all
K€ I,
[[0(ph —sn)llk + [[OPn+thllk < Mresk + [Pnlak- (8)

We can now state and prove our main result concerning eftigien
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Theorem 2 (Efficiency of the estimate of Theorem 1) et p be the solution of4)
and let Assumptions 2 and 3 be satisfied. Then, for all &,

Nnek +NrRk +NMork S 1P — Pnllls + [ Prlak-

Proof. Our first step is to observe thatic k + Nrk + NoFk < MNresk + | Prlak . This
bound is immediate fonnck andnprk owing to Assumption 3, while fonrk,
the triangle and inverse inequalities yield k < h || +Apnllk + [|0pn +thllk <
Nresk + |Pnlak, owing to Assumptions 2 and 3. Our second step is to obseate th
Nresk S Il — Pnll|=» @s can be derived using suitable bubble functions [24]0

Remark 2 (Equivalence result]. py is in H}(Q), the jump seminormpy|;k van-
ishes. If the jumps opy, have zero mean on each side, proceeding as in [1, Theo-
rem 10] yields|pn|3k < |/[P— pnll|< - Finally, in the general case, an equivalence
result is achieved by adding the jump semindmm- pp|ik = |pn|sk to both the
error measure and the nonconformity estimator.

3.2 Application to finite volumes

We apply here the framework ¢f3.1 to cell- and vertex-centered finite volume
schemes, i.e., we specify andty, and we verify Assumptions 1, 2, and 3.

3.2.1 Cell-centered finite volumes

Definition 1 (Cell-centered FVs for(3a)-(3b)). A cell-centered FV scheme for dis-
cretizing (3a)—(3b), cf. [12], reads: fing, € Po(.%,) such that

Z FK,U = (f,l)K VK e <7h (9)

geék

Here, &k collects the sides of andFxk ¢ is the diffusive flux through the side,
which depends omy. A simple example is the so-called “two-point” scheme. In
what follows, we do not need the specific formF s, but only the conservation
propertyFx o = —F_ o for all interior sideso shared by the elemerisandL.

Let us first suppose that, is simplicial and matching. Following [13], lét €
RTN(%h) be prescribed on aK € %, by the fluxes o as

(thlk k)]0 == Fx.o/]0]. (10)

Sincepy, is piecewise constant, the energy efty— py||| = ||Op]| is not relevant.
Instead, following [28§3.2], we first postprocess, locally into p,, € P2(%,) such
that, for allK € %,

—0Opnlk = thlk, (P, Dk /K| = Pnlk- (11)
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The potentiak, is constructed by applying an averaging operafay : Px(9h) —
P(h) NHE(Q) to py. This operator sets the Lagrangian degrees of freedomeinsid
Q to the average of the values and sets @¢h Theorem 1 can now used to bound
the errorl||p — pnl|| observing that (5) in Assumption 1 results frqf-tp, 1)k =
(th'nk, 1) ok = Y oes .o = (f,1)k. Note thatpr k = 0 from (11), which is typi-
cal for cell-centered finite volumes. To apply Theorem 2, wafy Assumptions 2
and 3. Assumption 2 is straightforward with, = .7}, whereas Assumption 3 is triv-
ial for ty since||dpn +th|lk = 0, while the bound ofiO(pn — Zav(pn)) ||k results
from[1, 16, 4].

When % is not simplicial or is nonmatching, the submegh needs to be in-
troduced. We can then proceed as in [28], and [10]. The averaging operator for
potential reconstruction maps intp(.#4) NHZ(Q), while the flux is reconstructed
in RTN(.#,) either by direct prescription of its degrees of freedom osblving
local Neumann problems.

3.2.2 Vertex-centered finite volumes

We suppose here thaf, is simplicial and matching. Le®;, be a dual mesh with
dual volume® associated with the vertices &F. We refer to Figure 1, left, for an
illustration. We decomposeh, into 2" and 2, with Z{™ associated with interior
vertices and?r‘]EXt with boundary ones.

Fig. 1 Simplicial meshZ;, and the dual mesh, (left); simplicial submesh#, (right)

Definition 2 (Vertex-centered FVs for (3a)}{(3b)). A vertex-centered FV scheme
for discretizing (3a)—(3b), cf. [12], reads: fingl € P1(.%) N Hol(Q) such that

—(Opnnp,L)sp = (f,1)p VD e Z4M (12)

To apply the framework 0§3.1, we first note that, sincp, € H(}(Q), we can
sets, = pn. Consequentlynck = 0 in Theorem 1, which is typical for vertex-
centered finite volumes. To construct the ftyxwe introduce a matching simplicial
submesh#, cf. Figure 1, right. Such# is a refinement of bott¥;, and %;,. The
flux ty is reconstructed iIRTN (.#4,) such that, at all interior sides of .#}, which lie
on the boundary of soni@ € %, th-ng := —Opp-ng. Owing to the Green theorem,
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(Oth, 1)p = (f,1)p for all D € Z". There are various ways of prescribing the
remaining degrees of freedom tf. We can merely prescribe them directly, but
better computational results are obtained if a local NeunmarNeumann/Dirichlet
problem is solved using mixed finite elements in eBch %, [30, §4.3]. Verifying
Assumptions 1 and 2 is immediate, while Assumption 3 is pn@&in [30,55].

4 Convection-diffusion-reaction equation

We consider the convection-diffusion-reaction equation

—0O-(e0p—wp)+rp="f in Q, (13a)
p=0 onodQ, (13b)

with € > 0,1 € L°(Q), w € W3*(Q)]9, and f € L?(Q). We assume thaw is
divergence-free with piecewise polynomial componentsthatt is piecewise con-
stant taking nonnegative values. We introduce the bilif@an % := %s+ %a on
H(Q) x H}(Q) such that

#s(p,¢) = &(0p,0¢) +(rp, ¢), (14a)

2a(p,9) :=—(wp,0¢). (14b)
The weak formulation consists in findinme H(Q) such that

Bp.¢)=(f.9) vV eH Q). (15)

The vector-valued functioris;.= —e[p andq := wp are inH(div, Q) and are, re-
spectively, called thdiffusiveandconvective flux

4.1 Abstract framework

We present here a unified abstract framework for a postegioor estimation in
problem (13a)—(13b). Extending the above bilinear formdt0.%,) x H(.%,) us-
ing broken gradients, we now define the energy (semi-)norm as

1/2
V1= (w2 = (Ile¥20nv?+ [rY22) " weHY (). (16)
To achieve robustness of the a posteriori error estimattseisingularly perturbed

regime resulting from dominant convection, we introduodpfving Verfurth [26],
the augmented (semi-)norm defined as
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IMlle =Vl +  sup  ZBa(v$)  WeHY(F). (17
dHE(@) 10l1=1

The a posteriori error estimate fip — pn||| is formulated in terms of potential
reconstruction g, adiffusive flux reconstructioty, and aconvective flux reconstruc-
tion gn. These reconstructions must comply with the following agstion.

Assumption 4 (Potential and flux reconstruction for(13a}(13b) There holdsis
€ H(Q), th,0n € H(div,Q), and

(Oth+0agn+rpnlk = (f,1)k  VKe S (18)

We can now state and prove our main result concerning the epmer bound.
For simplicity, we assume that the mes$h is matching and simplicial so as to use
the trace inequality (2). The general case can be treateddayting to a matching
simplicial submesh.

Theorem 3 (A posteriori estimate for(13a}+(13b)). Let p be the solution of15)
and let g, € HY(.%,) be arbitrary. Let Assumption 4 be satisfied. Assume gt
matching and simplicial. Then,

1/2 1/2
IIP=pnllle <n = 2{ > UE]C,K} +{ > ﬁlglC,K}
Ke Ke

1/2
+3{ Z (’7R,K+’70DF,K)2} -

Ke
For all K € %, theconvective-diffusive flux estimatas given by
Ncork i= MIN(Ncor 1k NCDF 2k ) (19a)
Neorak ==& 2|k (19b)
. ~1/2 1/2
Neor2k 1= Mk || (I = Mo)U-an|[ + M ; Cik ollannollo, (19c¢)
geok

with a, := th+ 0 + €0ppr — Ws, and g the L2-orthogonal projector ontd®o(.%,),
thenonconformity estimatorisy

nnek = [llpn—snlllk, MINC.K := MIN(Nnc,1K, INC.2.K), (20a)
NNC1K = 871/2|\bh|\K, (20b)
~ } _1/2 1/2
Nnc 2k = Mk [|(I = Mo)B-bn ||k + My Z Cik.ollbrnsla, (20c)
geék

with by, := w(pn — s), and theresidual estimatdoy

Nrk =Mk || f — O-th — 0-0nh — rpn|lk- (21)
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Here nk := min(Cé{,fe*l/th, r,zl/z) andfk ;= 2(1+Cé{,<2)£*1/2mK.
Proof. Following [27, Lemma 7.1] and [8, Lemma 3.1], we infer

P — Pnlll < [llph — sl + sup {#(p—pn¢)+Ba(ph—n,9)},
peHI(Q).lI9lI=1

and proceeding as in [9, Lemma 4.2] yields
1P = phllle < 2|[lpn— snlll + sup  Za(ph—%h,9)
peHF(Q).lI9lI=1
+3 sup  {Z(P—Pn, @)+ Ba(Pn—n, )}
peHF(Q),ll#llI=1

For the second term on the right-hand side, we obtain

Za(Ph— 5, @) = —(bn, 09) < zj ekl
Ke%

Indeed, for allK € %, the Cauchy—Schwarz inequality on the one hand yields

—(bn, 0¢)k < £ V2||bn||k[[|#][lk = Anc.1kl|@]llk, while integrating by parts on
K leads to

—(bn,0¢)k = ((I1 = Mo)B-bn, ¢ —d )k — > (bnNg, @ — dk)o < Nncaxlll$]llk

oc€ék

owing to the Poincaré inequality (1) and the trace inedqué®). For the third term
on the right-hand side, we observe that

B(P—Pnd)+Ba(Pn—sn,¢) = (f —Oth—0-agn—rpn, @) — (an,0¢)
< Z (NrRk + Ncorx)||19 ]k,
Ke

using Assumption 4 for the residual term and proceedingfa@s forby,. a

We now address the efficiency of the estimate of Theorem 3.hat fiollows,
< can include factors depending on the maximal rait/m_ for K,L having
a nonempty intersection. We introduce ttlassical residual estimatorf®r prob-
lem (13a)—(13b) given by

Mresi = M| £+ 0-(600pn —wpn) = rpnl|, +m e 4| [e0npu]-n| e, (222)

IPhlak = (€202 M2 V4wl Loeyo + 1 20 )N TPRD e - (22b)

. 2 Y2 1
We also setv|;:= {ZKE% |v|J’K} forallve H(.%).

Assumption 5 (Approximation property for (13a}(13b) We assume that, for all
K € %, with c, = ay, or by,
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1/2
mi[|(1 = o) 0+l + mi¢ %~/ > llenNollo < Nresk + [Pnlak-
oEdk

Proceeding as in [9, Theorems 3.2 and 3.4] leads to the foitplewer bound,
which is global in space owing to the use of a dual norm.

Theorem 4 (Efficiency of the estimate of Theorem 3).et p be the solution of15)
and let Assumption 5, and the second item of Assumption atiséed. Then,

n S|P —pallle + P~ Pala. (23)

Remark 3 (Fully robust equivalence resuljdding the jump seminorm; to the
error measure, a fully robust equivalence result is finadlyi@ved in the form

llP— phllle + P~ Pnla < N +1[pnla S IIP— Phllle +1P— Pnla- (24)

4.2 Application to finite volumes

We apply here the framework ¢#.1 to cell- and vertex-centered finite volume
schemes, i.e., we specify, t,, andgp, and we verify Assumption 4, and, at least in
some cases, Assumption 5.

4.2.1 Cell-centered finite volumes

Definition 3 (Cell-centered FVs for(13a)}(13b). A cell-centered FV scheme for
discretizing (13a)—(13b), cf. [12], reads: fipg € Po(Z}) such that

; Fiot Y Wko+rkpnlk =(f, )k VK€ . (25)
o€k gE&K

In addition to the diffusive fluxeBk o, Wk o are the convective fluxes, also depend-
ing on p,. We do not need the precise form of the fluxes, but ¢Rly = —F_ s and
Wk,o = —WL ¢ for all interior sideso shared by the elemenisandL.

Following the ideas exposed §3.2.1, we first definé,,qn € RTN (%) by
(talk Nk)|o :==Fx.o/l0],  (Anlk-Nk)|o =Wk /|O]. (26)

Definepy similarly to (11). It is immediate to see using the Green teeothat (26)
and (25) yield (18). A reasonable condition W  in the context of upwind or
centered convective fluxes is that

[Wk.o/10]=w-nkphlklo < [[W| Loyl TP lo- (27)
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Then, Assumption 5 holds, up to the oscillation termsg||(1 — Mo)O-(wpp)||k,
when additionally includindpp|;k on the right-hand side, and the efficiency re-
sult (23) holds when additionally includifg — pn|; on the right-hand side.

4.2.2 \ertex-centered finite volumes

Definition 4 (Vertex-centered FVs for(13a){(13b). A vertex-centered FV scheme
for discretizing (13a)—(13b), cf. [12], reads: fipd € P1(7h) NH3(Q) such that

—(e0pn-np, 1) gp + (Wnppn, Dop + (rpn, o = (f,1)p VD ™. (28)
Note that we only consider a centered convective flux.

Asin §3.2.2, we se$, = py, in Assumption 4. Consequentlynck = Nnck =0
in Theorem 3. For the convective flux reconstruction, we $jmsptqn := wpp. For
the diffusive flux reconstruction, we introduce the megh(cf. Figure 1, right) and
we definet, € RTN(.#},) such thaty-ng := —e0py-ng at all interior sideso of
#h which lie on the boundary of sonie € Z;. As in §3.2.2, local problems can
be solved to fulfill Assumption 4. Assumption 5 can be verisdn§3.2.2 for the
diffusive part, while the convective part is trivial owing the choice ofy;,.

5 Heat equation

We consider the heat equation

gp—Ap=f inQx(0,T), (29a)
p=0 o0ndQ x(0,T), (29b)
p(-0)=po InQ, (29¢)

with f € L?(Q x (0,T)), initial condition pg € L?(Q), and final timeT > 0. The
exact solution is in the spade= {y € X; dy € X'}, with X := L?(0,T; H}(Q)) and
X' =L2%(0,T;H 1(Q)), satisfies (29c) in?(Q), and is such that, for a.ec (0,T),

(@p,d) (1) + (Op,0¢)(t) = (f,)(t) Vo € H5(Q). (30)

. N : 1/2
The space-time energy norm is given|pyfix := jOT [ Oy||?(t) dt forally e X.
Following Verfurth [25], we augment the energy norm by aldu@am of the time

o . T ) 1/2
derivative aslyily = [lyllx + [yllx with layllx = { g IvlIZ a0y}
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5.1 Abstract framework

We consider an increasing sequence of discrete titiBg<,<n such that® = 0
andtN = T and introduce the time intervallg:= (t"~,t"] and the time steps’ :=

t" —t"1 for all 1 < n < N. The meshes are allowed to vary in time; we denote by
1 the mesh used to march in time frafir! to t", for all 1< n <N, and by %?

the initial mesh. We suppose that the approximate solutiotY odenoted bypp,,

isin Hl(,?h”), and we letp,; be the space-time approximate solution, giverppy

at each discrete tim# and piecewise affine and continuous in time. We denote the
space of such functions B(H1(.%,)). We also denote b}(H3(Q)) the space

of functions that are piecewise affine and continuous in tmeéH3(Q) in space
and byPP(H(div, Q)) the space of functions that are piecewise constant in time
andH(div, Q) in space. For all K n <N, we setf" := r—lr,f,n f(-,t)dt, and, for

O € PHHY (), dPh, 1= (9 — i -

We aim at measuring the err@p— pnr) in the ||-|[y-norm using the broken gra-
dient operator in the energy norm. The a posteriori erramege is formulated in
terms of aspace-time potential reconstructiog @nd aspace-time flux reconstruc-
tion ty;. These reconstructions must comply with the following agstion.

Assumption 6 (Potential and flux reconstruction for(29a}(29c) There holdsg
€ PYHL(Q)), thr € PO(H(div, Q)), and, for all1 < n< N and for all K& ",

(&5, Dk = (Gphyr, Dk, (31a)

(f" = apfy — Oth D = 0. (31b)

We can now state our main result concerning the error uppendycsee [11,
Theorem 3.6] and also [11, Theorem 3.2] for a slightly shapoeind.

Theorem 5 (A posteriori estimate for(29a}+(29c). Let p be the solution 030)
and let p,; € PX(HY(%)) be arbitrary. Let Assumption 6 be satisfied. Then,

N 1/2 N 1/2
||p—pm||vs{z<n2p>2} +{z<m?n>2} +me+3|f—flx.  (32)

n=1 n=1
with, for all 1 < n <N, thespaceandtime error estimatorgiven by

(5= 5 3{aORx + M+ (Rczn)?)+ | (MRearP0e .
Keg! n

(33a)
(i)=Y 3t"|0(sh, — e Hllk- (33b)

n
A

For allK € 7", theresidual estimatothediffusive flux estimatorand thenoncon-
formity estimatorsare given by
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MRk = Ceheh| " = dkshe — Dt (342)
Noex = || Osne + thellk (34b)
Mc,k (O = [[OR(she — P (D lk, VYt € In, (34c)
NNc2K = Cé,/thK 116t (shr — phe)"llk - (34d)

Finally, theinitial condition estimators given bynic := 2%2||s2_ — po.

We next turn to the efficiency of the estimate of Theorem 5. Mduce the
classical residual estimatoffer problem (29a)—(29c) given by

T 1/2
rerasK = hKH fh— dpﬂr +Apﬂr”$K + hK/ ”[[Dﬂpﬂr'n]]Heirgla (353-)

-1/2
[PRela = D2 TP e (35b)
Assumption 7 (Approximation property for (29a}3(29c) We assume that for all
1<n<NandforallKe 7",
HDR(pRT - équ)HK + HDRDHT +tﬂr”K S rlrnesK + |pRT|J,K' (36)

We can now state our efficiency result, see [11, Theorem B39]n [25], the
lower bound is local in time, but global in space.

Theorem 6 (Efficiency of the estimate of Theorem 5).et Assumption 7 hold, let
Assumption 2 hold at all discrete times, let both the refingraad coarsening in
time be not too abrupt, and let, for dll< n <N, (h")? < . Then, foralll <n <N,

ﬂsnp"‘ Nim S llp— Prrlly (1) + " (pne) + [ — ﬂ|x’(|n)7 (37)

1/2
. -1
Wherefn(ph.r) = {Tn EKe%n—l |pRT |§,K + ™ EKe%n |pRT|§K} .

Remark 4 (Equivalence resulfjVe refer to [11, Remark 3.10] for bounding the
jumps_#"(pnr), see also Remark 2.

5.2 Application to finite volumes

We apply here the framework ¢b.1 to cell- and vertex-centered finite volume
schemes, i.e., we speci§y; andty;, and we verify Assumptions 6 and 7. For sim-
plicity, we only discuss matching simplicial meshes.

5.2.1 Cell-centered finite volumes

Definition 5 (Cell-centered FVs for (29a)+(29c). A cell-centered FV scheme
for (29a)—(29c), cf. [12], reads: for all4 n <N, find p; € Po(%)) s. t.
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1 ~
n (Phr — Pk + Y Ro=(f"1k  vKeF (38)

ocEék

Asin§3.2.1, the fluxes), are constructed from the side fluxg$, by an equiv-
alent of (10). An elementwise postprocessing as (11) isieghpd obtainpf, from
ph;- The potential is reconstructed at each discrete time fronodification of the
averaging operator df3.1 where local bubble functions are used to satisfy (31a)
(cf. [11]). Then, owing to the construction g, (31b) is also satisfied, whence As-
sumption 6 follows. Finally, we se¥! = .7;"; Assumption 7 is trivial fotty; since
|0RPh; +thllk = 0 and is proven fos, in [11].

5.2.2 \ertex-centered finite volumes

Definition 6 (Vertex-centered FVs for(29a}(29c)). A vertex-centered FV scheme
for (29a)—(29c), cf. [12], reads: for all4 n < N, find pll. € P1(F") NH(Q) s. t.

(3 PR Vo — (OpR-Np, Lop = (1, 1)p VD e ™" (39)

As in §3.2.2,pf € H3(Q) for all 1 < n <N, so that we sef), = pf,. Con-
sequently/iic 1k = NMNcok = 0 in Theorem 5. The fluxey,; are constructed as
in §3.2.2, using the simplicial submeshe4. Assumptions 6 and 7 are then veri-
fied by proceeding as i§8.2.2.
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