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Adaptive methods and a posteriori error estimation June 24-27, 2024
Web page: link https://freefem.org/

Computer tutorial N°1

Error certification
Poisson equation, conforming finite element method, flux reconstruction by
averaging, equilibrated flux reconstruction by local problems, energy error, a
posteriori error estimate, effectivity index

Let Q C R? be a polygon with Lipschitz boundary 9 = I'n U 'y. We consider the
following model problem: for a given source term f € L*(Q) and a given prescribed data
gp on the Dirichlet part of the boundary I'p, find u : 2 — R such that

—Au=f in €, (1a)
U= gp on I'p, (1b)
—Vung =0 on I'x. (1c)

The weak solution of problem (1) is a function v € H'(€2) such that u|r, = gp and
(Vu,Vv) = (f,v) Vv € H'(Q) such that u|p, = 0. (2)

Let 7, be a triangulation of 2. In this tutorial N°1, the mesh index ¢ is fixed, but
in the forthcoming tutorials, we will consider sequence of meshes indexed by ¢. For a
polynomial degree p > 1, consider a finite-dimensional subspace of H*(),

VP = {v € H' (Q),v|x € P,(K) VK € T} =P,(To) N H'(Q). (3)

Above, P,(K) stands for the space of polynomials of total degree at most ¢ > 0 on
the mesh element K € T, and P,(7;) denotes piecewise (pw) g-degree polynomials with
respect to the mesh 7;. Note that by the inclusion in H*(€2), the functions in V}/ have their
traces continuous over all mesh faces (actually, in the discrete world, P,(7;) N H*(Q) =
P,(T) NC°(Q), so that the functions from V' are actually simply continuous and not just
trace continuous).

The finite element (FE) method seeks for an approximate solution wu, to the exact
solution u of (2) in the finite-dimensional subspace V' of H'(Q) given by (3). It reads:
find u, € V' such that w|r, = gp and

(Vug, Vug) = (f, v0) Vue € VP such that ve|r, = 0. (4)

Exercices 1-6 below are designed for the case where €2 is a unit square, I'n = 0f,
I'n=0,gp=0,and f = —2(z* +4?) + 2(z + y). In this case, the exact solution is

u(r,y) = x(z - y(y — 1), (5)

which is smooth, u € C*(2). Exercice 7 then presents an extension to an L-shaped
domain with a singular solution.

Exercice 1. (The finite element method)
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1. Specify the user input in the Freefem++ script TP1.edp:

int nds = 10; // number of mesh points on one unit boundary edge of the domain
Q

macro Pcont P1 // Lagrange pw polynomial space (3) with the specified polynomial
degree: macro means that we choose it once and for all here and name it Pcont; we
can choose “P1” or “P2” or “P3” or “P4” to later define (3) with p=1or p =2 or
p=3orp=4

macro Pcontp P2 // Lagrange pw polynomial space (3) with the specified polyno-
mial degree later used for plotting the exact solution (ideally Pcontp = Pcont + 1):
“P277 OI' MP377 Or (CP477

macro RTrec RTO // Raviart-Thomas pw polynomial space for the averaged flux:
“RT0” or “RT1” or “RT2”

macro RT RT1 // Raviart-Thomas pw polynomial space for the equilibrated flux:
“RT0” or “RT1” or “RT2”

macro Pdisc Pidc // Lagrange multipliers of the Raviart—Thomas space: “P0” or
“Pldc” or “P2dc”

int verb = 0; // verbosity for demonstrations and debugging of this script

bool RecFluxAver = 1, RecFlux = 1, Err = 1, Est = 1; // what to compute
bool PlotSolAppr = 1, PlotSolApprFluxes = 1, PlotRecFluxAver = 1,
PlotRecFlux = 1, PlotDetails = 1, PlotErr = 1, PlotEst = 1; // what to
plot

2. Specify the exact solution u together with its derivatives, the right-hand side f, and
the Dirichlet boundary datum ¢gp. This is done in the section exact solution and
its derivatives.

3. Generate a triangular mesh 7, of the unit square 2. In Freefem++, this is achieved
via the command mesh Th = square(nds,nds);

4. Define some more useful macros
macro Div(ul,u2) (dx(ul)+dy(u2)) // divergence
macro Grad(u) [dx(u),dy(u)] // gradient

5. Prepare some more tools for nice plotting (standard colormaps, under- and over-
shoot factors for correct visualisation, ... ).

6. Define the space V from (3) in Freefem++: this is done via the command
fespace Vh(Th,Pcont);
which employs the macro Pcont defined above (“P1” or “P2” or “P3” or “P4”)

7. Compute the finite element approximation u, given by (4). This is achieved via the
commands
Vh uh,vh; // FE approximation and test functions u, and v,

varf a(uh,vh)=int2d(Th) (Grad(uh) ’*Grad(vh))
+ int2d (Th) (f*vh) + on(1,2,3,4,uh=gd); // the FE bilinear form and right-
hand side and boundary data



matrix A=a(Vh,Vh,solver=SolverGlob); // construction of the stiffness matrix
and choice of the solver

real[int] b=a(0,Vh); // construction of the right-hand side vector
uh[]=A"-1%b; // linear algebra solve

8. Plot the exact solution v and its finite element approximation w,. This is described in
the Freefem++ script in the block if (PlotSolAppr). Polynomial degrees 1 < p <4
in the definition of the finite element spaces (3) can be tested upon changing the
parameter Pcont from P1 to P4 and Pcontp from P2 to P4.

9. Plot the flux of the exact solution given by —Vu and the flux of the finite element
approximation given by —Vwu,. This is described in the Freefem++ script in the
block if (PlotSolApprFluxes). (In the FreeFem++ graphics window, the size of
the arrows is modified by pressing “a” and “A”.) Choose some two neighboring
mesh elements and plot the details, as prepared in the script in the part with
if (PlotDetails). What do you observe? Does the exact flux —Vu seem to be
continuous across the mesh faces, or at least to have the normal component —Vu-npg
continuous across any mesh face F'? (Here, np is a unit normal vector of F'.) Please
notice that the latter, weaker, property, means that, for a given mesh face F', what
“flows out” from one mesh element sharing I’ across F' “flows in” the neighboring
mesh element sharing F'. What about the flux approximation —Vu,? Please inspect
various polynomial degrees 1 < p < 4.

Answer 1. (The finite element method)

The answers to items 1-7 are contained in the script TP1.edp. We now illustrate answers
to questions 8-9. We take nds=10, so that there are 10 x 10 x 2 isosceles triangles in the
mesh 7.

8. One should obtain the results as in Figures 1 and 2.

Figure 1: Exact solution u (left) and approximate solution w, (right, p = 1)

9. One should obtain the results as in Figures 3 and 4. We plot the details of two mesh
elements sharing the center vertex (0.5,0.5) in Figures 5 (exact flux —Vu) and 6
(approximate flux —Vuy, p = 1). One in particular observes that the flux of the
exact solution is a smooth, continuous vector-valued field, so that it is continuous
across the mesh faces. The flux of the finite element approximation, in turn, is
a smooth vector-valued field only inside each mesh element K € 7,. It is not
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Figure 2: Approximate solution wu, for p = 2 (left) and p = 3 (right)

continuous across the mesh faces, nor it has the normal component continuous
across the mesh faces. This is clearly seen near the center and corners in Figure 3,
right, and in Figure 6: —Vu, for p = 1 is a piecewise constant, discontinuous,
vector-valued field. This in particular means that, for a given mesh face F', it is
not true that “flows out” from one mesh element sharing F' across F' “flows in” the
neighboring mesh element sharing F'; the approximate flux —Vu, is unphysical, non-
conservative. The exception is only the case p = 4: since the exact solution is here
a polynomial of order 4 and since for p = 4, the finite element method reproduces it
exactly, uy, = u, we actually in this case have u,(z,y) = u(z,y) = z(z — Dy(y — 1),
which is a polynomial over the entire domain € (not just inside each mesh element)

and thus actually u, € C*(Q2) here.

finite element flux
Vec Value

0011751

et T\T'\ ] { { 1

| /T ;e valve

97381

1054 7
T mozaes o 4 ) 0186767
/ W0.236858 R 7 N7 / - /0211518
[0 - / \ iy /'~ 0223269

250016

Figure 3: Flux of the exact solution —Vu (left) and flux of the approximation —Vu,
(right, p = 1)

Exercice 2. (Flux reconstruction by averaging)
Let

VP = {v, € H(div,Q),v|x € RTy(K) VK € T;} = RT,(T) N H(div,Q)  (6)

be the Raviart-Thomas space of degree p’ > 0. Here, RT,(K) = [Py (K)]* + P, (K) is
the Raviart-Thomas space on a single mesh element K € 7, and RT,(7;) is the space of
all functions that belong to R7,/(K) on each mesh element, the so-called broken Raviart—
Thomas space. The inclusion into H (div,€2) ensures that all functions from the space
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Figure 4: Flux of the approximation —Vu, for p = 2 (left) and p = 3 (right)
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Figure 5: Flux of the exact solution —Vu, two neighboring elements sharing the center
vertex (0.5,0.5)

|74 " have their normal trace continuous over all mesh faces. We usually set the degree p’
to p or to p — 1, i.e., equal to that of the finite element approximation u, ore one less.

1. Implement a flux reconstruction o in the Raviart—Thomas space V,” / by averaging.
This idea is to start from —Vwu, and to use a simple averaging of the values that
—Vuy takes in the degrees of freedom of Raviart—-Thomas space V", i.e.,

o¢(DoF) := mean value of all — Vu,(DoF); (7)

In the lowest-order case p’ = 0 in (6) and for interior mesh faces F', this means that

ornp = 5((=Vug)|e-np)(@r) + 5((= V) --np) (@r), (8)

where K+ and K~ are the two mesh elements sharing the face F.

This is achieved in FreeFem++ by the simple command mean in the script section
if (RecFluxAver):

[sigmalrec, sigma2rec]=[mean(-dx(uh)),mean(-dy(uh))]; //averaging of the
values in the degrees of freedom of the space RTRec

The degree p’ = p—1in (6) is in FreeFem-++ script achieved by choosing the value
of RTrec respectively as “RT0”, “RT1”, and “RT2” when Pcont is given by “P1”,
4(P2’7’ and CCPS’? .



finite element flux detail finite element flux detail

Figure 6: Flux of the approximation —Vuy, p = 1, two neighboring elements sharing the
center vertex (0.5,0.5)

2. Plot the reconstructed flux o,. What do you observe?

3. Plot the misfit of the optimal divergence of the reconstructed flux o,. More precisely,
the goal is to compute the following L? norms on each mesh element K € 7;:

MLy f = Voo (9)

where I, is the L?(2)-orthogonal projection onto discontinus piecewise polynomials
of degree p’ of the space Py (Te), i.e., Iy f € Py(T¢) is such that

(Hp'fa Uf) - (f? Uf) Vg € PP’ (72)7

or, still equivalently,
(M fov)k = (f,v)x Yo € Py(K), VK € T.

For an equilibrated flux, the quantities in (9) would be zero. What do you observe
here?

Answer 2. (Flux reconstruction by averaging)

The answer to item 1 is contained in the script in the section if (RecFluxAver). We now
illustrate answers to questions 2-3.

2. Figures 7 and 8 give the results. Details in the two mesh elements sharing the vertex
(0.5,0.5) are depicted in Figure 9. It is now true that what “flows out” from one
mesh element sharing a face F' across F “flows in” the neighboring mesh element
sharing F', i.e., the normal component oy-np is continuous across any mesh face F
(though the tangential component of o, and thus o, as a vector-valued function,
may be discontinuous). In that sense, and in contrast to —Vuy, the flux o is now
physical, not loosing mass over mesh faces (but still not mass conservative, see the
next question!).

3. Figures 10 and 11 present the results. They unfortunately reveal that the fluxes
reconstructed by the simple (and fast for programming in FreeFem++ and com-
putation!) averaging (7) are still unphysical, non mass conservative, as they do
not satisfy the equilibrium with the source term f (or more precisely with I, f)
V-0, =1I,; f, neither the weaker condition

(Vo g =(f, 1)k VK €7, (10)



Figure 7: Averaged flux o, for p=1 and p
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Figure 8: Averaged flux o for p = 2
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Figure 9: Averaged flux o, p = 1 and p’ = 0, two neighboring elements sharing the center

vertex (0.5,0.5)
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divergence misiit of the averaged flux

Figure 10: Divergence misfit of the averaged flux oy, p =1 and p/ =
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Figure 11: Divergence misfit of the averaged flux oy, p = 2 and p’ = 1 (left) and p = 3
and p’ = 2 (right)



Exercice 3. (Flux reconstruction by equilibration)

Let the Raviart—Thomas space of degree p’ > 0 be given by (6).

1. Implement the equilibrated flux reconstruction o in the Raviart—Thomas space V}/ "
Let —Vu, be computed. For each fixed mesh vertex a € Vy, let T, be the patch of
all mesh elements from 7, that share the vertex a and w, the corresponding patch
subdomain. Let ©® be the hat function, i.e., the unique continuous and piecewise
1-st order polynomial that takes the value 1 in the vertex a and the value 0 in all
other mesh vertices; note that the support of 1) is the patch subdomain w,. For a
vertex a inside the computational domain €2, let Hy(div,w,) be the subspace of all
functions from H (div,w,) whose normal trace vanishes on dw,. For a vertex a on
the boundary of €2, we only request the normal trace to vanish on 1) the part of dw,
where 1% is zero (typically the part of Ow, not contained in 992); and 2) I'y N Jwy.

The local equilibration has two stages: first we need to solve the local quadratic
minimization problem

a._ ; AV v 2 11
T are vzeﬂﬁl(%g}io(div,wa) ||,¢ et EHwa ( a)
Vevp=ILy, (f¢p*—Vu,-Vp®)

for all mesh vertices a € V,. Then we run over all a € V, and sum the individual
contributions o as

oy = Z oy (11b)

acl,

Evoking the Euler-Lagrange optimality conditions of (11a), (11a) can be equiv-
alently written as: find of € RT,(T.) N Ho(div,w,) with V-ef = IL,(fy* —
Vu,-Vip®) such that

(0’;’, ’Ug)wa = —(@D‘IVW, ’Ug)wa \V/'Ug S R’TZ;/(E) N Ho(div,wa) with V"Ug = 0.

(12)
One could now implement (12), but one would need for this purpose to construct a
divergence-free basis of the Raviart—Thomas space of piecewise polynomial vector-
valued fields from RT,(7,) N Hoy(div,w,), i.e., a basis with the property V-v, =
0. To avoid this, we further rewrite equivalently (12) as: find of € RT,(T.) N
H(div,wg) together with the additional scalar-valued piecewise polynomial ¢ €
Py (Ta), such that

(08, V0)wa — (0, V0 )wy = —(¥*Vug, ve)u, Yo, € RT,(Ta) N Ho(div, wa),
(13a)
(Vo q0)wa = (JU* = Vuer VY qo)w, Ve € Py (Ta). (13b)

2. Plot the finite element flux —Vu,, the hat-function-weighted finite element flux
—1*Vuy, the equilibrated flux contribution o, and the hat-function-weighted exact
flux —¢*Vu on each patch subdomain w,. Describe what you observe: differences
and similarities between the plots, sizes of these vector fields close to the vertex a
and close to the boundary of the patch subdomain w, (not shared by the boundary
0L2), continuity across the mesh faces, and normal component continuity across the
mesh faces. (Attention, FreeFem++ mainly distinguishes the sizes of vector fields
by color and not by size.) (Recall that in the FreeFem++ graphics window, the size
of the arrows is modified by pressing “a” and “A”.)
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3. Plot the reconstructed flux o,. What do you observe?

4. Plot the divergence misfit of the reconstructed flux o,. More precisely, the idea is
to compute the elementwise L? norms (9). From definition (11), we obtain

11b 11la
Voo, 2V ( > 02‘) =3 Voo N T (ft - Vuevee)

acVy acVy acVy (14)
= I, ( > (fo* - vw-wa)) =11, f.

a€Vy

Thus, |1, f — V-0||x should be zero on each mesh element. What do you observe
here?

Answer 3. (Flux reconstruction by equilibration)

The answer to item 1 is contained in the script TP1.edp in the function ComputEquilFlux ().
We now illustrate the answers to questions 2—4.

2. Figure 12 collects the results. We have chosen there the middle patch around the
center vertex a = (0.5,0.5). For p = 1, the finite element flux —Vu, is piecewise
constant and (normal-trace) discontinuous from one mesh element to the other.
The hat-function-weighted finite element flux —¢*Vu, scales the finite element flux
—Vuy such that its values close to the vertex a = (0.5, 0.5) approach those of —Vu,
but its values close to the patch subdomain boundary Ow, vanish; we call it a
“cut-off” by the hat function ¥®. Remark that —¢)®Vu, is still (normal-trace) dis-
continuous from one mesh element to the other. From the minimization form (11a),
the equilibrated flux contribution of tries to stay as close as possible to —1*Vuy,
but as the same time has to ensure that its normal trace of-nr is continuous across
all the faces F' sharing the vertex a and vanishes at the patch subdomain boundary
Owgq. Moreover, the divergence constraint V-of = IL,(f1® — Vu,-Vi)*) has to be
ensured.

There are two sets of arrows on the horizontal middle line y = 0.5, since one is
plotted from the triangles below the line y = 0.5, and the other from above y =
0.5. Interestingly enough, they do not always coincide, so that the flux o itself
is not continuous (a similar observation also holds for the vertical line z = 0.5).
Importantly, though, their y-components, representing of-n across the line y = 0.5,
with n = (0,1)", are of the same sign and magnitude, so that the normal trace of-n
of o is indeed continuous across all mesh faces sharing the vertex a. Ideally, o
should approach the hat-function-weighted exact flux —¢*Vu, which happens here
to be fully continuous and not just normal-trace continuous.

3. Figures 13 and 14 give the results. Details in the two mesh elements close to the
center vertex (0.5,0.5) are depicted in Figure 15. As above for flux reconstruction by
averaging, it is also true here that what “flows out” from one mesh element sharing
F across F' “flows in” the neighboring mesh element sharing F'. Thus, in this sense,
in contrast to —Vuy, the flux o, is physical, not loosing mass over mesh faces (and
also mass conservative, as we will see in the next question!).

4. Figures 16 and 17 present the results. They confirm that the fluxes reconstructed
by the local equilibration (11) are now fully physical, mass conservative, as they
satisfy the equilibrium with the source term

V'O’[ = Hp/f

10
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Figure 12: Finite element flux —Vu, (top left), the hat-function-weighted finite element
flux —¢*Vu, (top right), the equilibrated flux contribution & (bottom left), and the hat-
function-weighted exact flux —1*Vu (bottom right) on a patch subdomain w, around the
center vertex @ = (0.5,0.5), p=1and p' =1

(neglecting the difference f —1II, f), as well as, of course, the weaker condition (10).
Please note that the fact that al the values in Figures 16 and 17 are not exactly
equal to 0 is only because of rounding errors.
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Figure 14: Equilibrated flux o4, p =2 and p’ = 1 (left) and p = 3 and p’ = 2 (right)
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Figure 15: Equilibrated flux oy, p = 1 and p’ = 1, two neighboring elements sharing the
center vertex (0.5,0.5)
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Figure 16: Divergence misfit of the equilibrated flux oy, p =1 and p’ = 0 (left) and p =1
and p’ =1 (right)
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Figure 17: Divergence misfit of the equilibrated flux oy, p =2 and p’ = 1 (left) and p = 3
and p’ = 2 (right)
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Exercice 4. (Error)

We will compute here the errors between the exact solution u of (2) and its finite element
approximation wu, of (4).

1. Compute the error ||V (u — uy)||, as well as its elementwise contributions
IV (1 — )|l (15)
for each mesh element K € 7,.

2. Plot the elementwise error contributions (15).

Answer 4. (Error)
The answers to this part are contained in the FreeFem++ function ErrDist ().

1. This is achieved via the FreeFem-++ function int2d (Th).

2. The error distributions are depicted in Figures 18-19 below, alongside with the
corresponding estimators by equilibrated fluxes.

Exercice 5. (A posteriori error estimators by equilibrated fluxes)

We will now compute the a posteriori error estimators on the error between the exact
solution u of (2) and its finite element approximation u, of (4). We start by the equili-
brated fluxes of Exercice 3, in the setting with p’ = p according to the theory developed
in the lectures. Recall that in this case, we have

IV (=)l < me = { > [I!Vw+wHK+%KHf—Hp/fHKr} . (1)

KeT,

1. Plot the elementwise a posteriori error estimators [||Vu, + o x + 22| f — Iy f| ]
Compare them to the plots of the elementwise errors from Exercice 4. What do you
observe?

2. Plot the “data oscillation” part of the estimators given by hTKH =1y fllk-

3. Compare the size of the a posteriori error estimator 7, to the size of the error
|V (u — ug)||. This is best done in terms of the so-called effectivity index

e
IeH,E e TN (17)
IV (u = w)

What do you observe?

Answer 5. (A posteriori error estimators by equilibrated fluxes)

1. The answer is given in Figures 18-19. We observe an almost perfect match between
the actual (only known here in this test case, not known in general) and the es-
timated (always computed by the a posteriori error estimators) elementwise error
distributions.
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equilibrated flux estimators

Figure 18: Elementwise errors ||V (u—ug)||x (left) and estimators [||Vug+ 0| x + 22| f —
I, f|| k] (right), equilibrated fluxes, p =1 and p’ = 1

energy errors equilibrated flux estimators

V|
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Figure 19: Elementwise errors ||V (u—uy)||x (left) and estimators [||Vue+ ol x + 22| f —
Ly £ K} (right), equilibrated fluxes, p = 2 and p’ = 2

2. The answer is plotted in Figure 20. The elementwise data oscillations 2 || f —IL, f|
take much smaller values than the elementwise errors ||V (u — ug)||x (they converge
two orders of magnitude faster than the error in the mesh-size h for elementwise
smooth f when p’ = p and one order of magnitude faster when p’ = p—1). Moreover,
for p’ = 2, where I, f = f, we only observe rounding errors.

3. The effectivity indices Ig , given by (19) are greater or equal to one and tend to one
with both the mesh refinement and polynomial degree increase. For Figures 18-19,
they respectively take the values 1.04445 and 1.01167.
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Figure 20: Elementwise data oscillations 25| f — IL, f|| for p = 1 and p' = 1 (left) and
p =2 and p’ = 2 (right)
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Exercice 6. (A posteriori error estimators by averaged fluxes)

We will now go back to the averaged fluxes of Exercice 2 and use them in a posteriori
error estimators. In this case, there is no guaranteed upper bound, though we may still
hope to obtain

IV(u—=upll S [[Vue + o4 (18)

1. Plot the elementwise a posteriori error estimators |Vuy + o¢||x. Compare them to
the plots of the elementwise errors from Exercice 4. What do you observe?

2. Compare the size of the a posteriori error estimator |Vuy + o|| to the size of the
error ||V (u — uy)||. This is best done in terms of the so-called effectivity index

L ||VU@ -+ 0'gH

lgp = ———.
BTV (u— )|

(19)
What do you observe?

Answer 6. (A posteriori error estimators by averaged fluxes)

1. The answer is given in Figures 21-22. We observe a reasonable match, though
weaker than in Figures 18-19.

averaged flux estimators. averaged flux estimators.
IsoValue

0.000200364
0.000400729
0.000601093

Figure 21: Elementwise errors ||V (u—uy)| x (top) and estimators ||Vuy+ o] x (bottom),
averaged fluxes; p =1 and p’ =1 (left) and p =1 and p’ = 0 (right)
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averaged flux estimators averaged flux estimators

Figure 22: Elementwise errors ||V (u—u)| x (top) and estimators ||Vuy+ o x (bottom),
averaged fluxes; p =2 and p’ = 2 (left) and p = 2 and p’ = 1 (right)

2. The effectivity indices g, given by (19) are not necessarily greater or equal to one
here, and they do not necessarily tend to one with mesh refinement or polynomial
degree increase. For Figures 21-22, they take the values 0.908161 (p’ = 1) and
1.12652 (p' = 0), respectively 0.811856 (p’ = 2) and 1.01725 (p/ = 1).
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Exercice 7. (L-shaped domain with a singular solution)

The goal here is to extend the previous exercices to the L-shaped domain 2 = (—1,1) X
(—1,1)\ [0,1] x [—1,0] together with the exact solution written, in polar coordinates, as

u(r,0) = ri sin(26/3). (20)

We remark that we consider here 6 € (0,37/2). The corresponding source term f = 0,
and we take gp = u on I'p = 9Q and I'y = (). The point is that whereas u given by (5) is
smooth, u given by (20) is singular, u € H 1+%_€(Q) for any € > 0 only, with the gradient
exploding at the re-entrant corner (0,0).

Answer 7. (L-shaped domain with a singular solution)

Figures 23-31 present the results (these results were obtained with FreeFem++ v.4.5;
other versions of FreeFem++ generate a slightly different mesh, whereby subtle differences
might be observed). As for the effectivity indices I, given by (17), for the equilibrated
fluxes given by (11), they are greater or equal to one, rather close to one, but do not
tend here to one, neither with the mesh refinement, nor with the polynomial degree
increase. For Figure 30, where p = p’ = 1, I, takes the value 1.15228 (1.13601 for the
mesh of FreeFem++ v.4.11), whereas for the same mesh with p = p’ = 2 of Figure 31,
Igp = 1.19244 (1.20664 for the mesh of FreeFem++ v.4.11).

L-shaped domain and mesh
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numerical approximation

m114527
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m127252

Figure 24: Exact solution u (left) and approximate solution w, (right, p = 1)
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exact flux

Figure 25: Flux of
(right, p = 1)

exact flux magnitude

Figure 26: Magnitude

(right, p = 1)

averaged flux

Figure 27: Averaged flux o, for p =1 and p’ = 0 (left)

and p’ =1 (right)
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givergence misfitof the averaged flux divergence misfit of the equiibrated fiux
alsovalue IsoValue

m
550399 92753¢-15
1008 8551614

5 77826e-14

Figure 28: Divergence misfit of the averaged flux o, for p = 1 and p’ = 0 (left) and
divergence misfit of the equilibrated flux oy for p =1 and p’ = 1 (right)

finite element flux on a patch hat-weighted finite element flux on a patch
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equilibrated flux patch contribution hat-weighted exact flux on a patch
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Figure 29: Finite element flux —Vu, (top left), the hat-function-weighted finite element
flux —¢*Vu, (top right), the equilibrated flux contribution of (bottom left), and the
hat-function-weighted exact flux —¢*Vu (bottom right; there is some problem with
FreeFem++ roundoff (the black arrows are (almost) zero) and rendering (—¢*Vu is indeed
continuous)) on a patch subdomain w, around the re-entrant corner vertex a = (0,0),
p=1landp =1

21



energy errors equilibrated flux estimators

Figure 30: Elementwise errors ||V (u—ug)||x (left) and estimators [||Vug+ 0| x + 22| f —
IL, | K} (right), equilibrated fluxes, p =1 and p' =1

energy errors

Figure 31: Elementwise errors ||V (u—uy)||x (left) and estimators [||Vu,+ 0| + 22| f —
I, f||x] (right), equilibrated fluxes, p =2 and p/ = 2
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