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Adaptive methods and a posteriori error estimation June 24–27, 2024
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Computer tutorial N◦4

Identification of error components, adaptivity of linear and nonlinear solvers
Strongly monotone and Lipschitz-continuous nonlinear problem, conforming finite

element method, equilibrated flux reconstruction for inexact solvers, error
components, stopping criteria

We consider the same geometric setup as in Tutorial N◦1: let Ω ⊂ R2 be a polygon
with Lipschitz boundary ∂Ω = ΓD ∪ ΓN, f ∈ L2(Ω) a given source term, and gD a given
prescribed data on the Dirichlet part of the boundary ΓD. Additionally, we introduce
a scalar-valued function a : (0,∞) → (0,∞), satisfying the assumptions below. The
problem of interest in then to find u : Ω → R such that

−∇·(a(|∇u|)∇u) = f in Ω, (1a)

u = gD on ΓD, (1b)

−a(|∇u|)∇u·nΩ = 0 on ΓN. (1c)

Note that when a(s) = 1, problem (1) becomes the Poisson equation of Tutorial N◦1. The
weak solution of problem (1) is a function u ∈ H1(Ω) such that u|ΓD

= gD and

(a(|∇u|)∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω). (2)

For a conforming simplicial mesh Tℓ of Ω and the space V p
ℓ , with fixed polynomial

degree p ≥ 1,

V p
ℓ = {vℓ ∈ H1(Ω), vℓ|K ∈ Pp(K) ∀K ∈ Tℓ} = Pp(Tℓ) ∩H1(Ω), (3)

this leads to the discrete problem: find uℓ ∈ V p
ℓ such that uℓ|ΓD

= gD and such that

(a(|∇uℓ|)∇uℓ,∇vℓ) = (f, vℓ) ∀vℓ ∈ V p
ℓ such that vℓ|ΓD

= 0. (4)

We consider nonlinear functions a satisfying, for all x,y ∈ Rd,

|a(|x|)x− a(|y|)y| ≤ L|x− y| (Lipschitz continuity), (5a)

(a(|x|)x− a(|y|)y) · (x− y) ≥ α|x− y|2 (strong monotonicity), (5b)

where α and L are fixed positive real constants. Under these assumptions, problems (2)
and (4) are well posed.

We henceforth consider Ω being the unit square, ΓD = ∂Ω and ΓN = ∅, and the exact
solution taking the form

u(x, y) = x(x− 1)y(y − 1),

so that gD = 0. We pick the particular form

a(s) := 1 +
L− 1√
1 + s2

, (6)

corresponding to the so-called mean curvature flow. Here L ≥ 1 is a fixed real parameter.
One finds that assumptions (5) are satisfied with this constant L and α = 1. The right-
hand side f is then obtained by inserting u into (1a). For the illustrations below, we
consider 10× 10× 2 isosceles triangles in the mesh Tℓ.
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Exercice 1. (The Picard iteration)

In this exercise, we will investigate solving the model problem (1) using the Picard (fixed-
point) iteration: given u0ℓ ∈ V p

ℓ , we seek to solve iteratively, for k ≥ 1, for ukℓ ∈ V p
ℓ such

that uℓ|ΓD
= gD and such that

(a(|∇uk−1
ℓ |)∇ukℓ ,∇vℓ) = (f, vℓ) ∀vℓ ∈ V p

ℓ such that vℓ|ΓD
= 0. (7)

In this exercise we will focus on the code inside the block if (DoEx1). In order to
check that the Picard method is converging, we will compute the following error between
consecutive iterates

∥∇(ukℓ − uk−1
ℓ )∥. (8)

The criteria to stop the solver is that the quantity (8) is less than 1e−7. This is given
in the code by real SolverTol = 1e-7. You may experiment with different values.
We also compute the H1-seminorm error as in Exercise 4 of Tutorial N◦1:

∥∇(u− ukℓ )∥. (9)

To run this exercise, set the flag bool DoEx1 = 1. After the script is finished, you
should have the gnuplot script file Exercise1.plt in the same directory. Run >gnuplot

Exercise1.plt whereupon you can open the plot as Exercise1.png. What do you ob-
serve?

Answer 1. (The Picard iteration)

The result is given in Figure 1. We observe that the H1-seminorm error more or less
stabilizes after three iterations. The difference of iterates appears to decrease quite rapidly
at an exponential rate. In the following exercises, we will explore error estimates for this
problem as well as adaptive stopping criteria.

Figure 1: Difference of iterates given by (8) and the error in the H1-seminorm (9) for the
Picard iteration (7), L = 10
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Exercice 2. (A posteriori estimates for the linearized problem)

We now consider the problem of error estimation for the nonlinear problem. In particular,
we consider the equilibrated flux of Exercise 3 in Tutorial N◦1, with a slight difference
highlighted in green,

σk,a
ℓ := arg min

vℓ∈RTp′ (Ta)∩H0(div,ωa)

∇·vℓ=Πp′ (fψ
a−a(|∇uk−1

ℓ |)∇ukℓ ·∇ψ
a)

∥ψaa(|∇uk−1
ℓ |)∇ukℓ + vℓ∥ωa , (10a)

σk
ℓ :=

∑
a∈Vℓ

σk,a
ℓ : (10b)

only the flux ∇ukℓ from the linear problem of Tutorial N◦1 is replaced by the current
flux, featuring in addition the multiplication by the nonlinear function a. Note that the
function a is evaluated at |∇uk−1

ℓ | of the previous Picard iterate. The reason is that the
term a(|∇uk−1

ℓ |) is taken from (7), where a(|∇ukℓ |) could not appear, since it is not known
yet.

As in Tutorial N◦1, problem (10) is equivalent to the following problem: find σk,a
ℓ ∈

RTp′(Ta) ∩H0(div, ωa), together with the additional scalar-valued piecewise polynomial
γaℓ ∈ Pp′(Ta), such that

(σk,a
ℓ ,vℓ)ωa

−(γaℓ ,∇·vℓ)ωa = −(ψaa(|∇uk−1
ℓ |)∇ukℓ ,vℓ)ωa ∀vℓ ∈ RTp′(Ta) ∩H0(div, ωa),

(11a)

(∇·σa
ℓ , qℓ)ωa = (fψa − a(|∇uk−1

ℓ |)∇ukℓ ·∇ψa, qℓ)ωa ∀qℓ ∈ Pp′(Ta). (11b)

Recall from the lectures the residual stemming from the weak formulation (2): for
the current Picard iterate ukℓ , k ≥ 1,

⟨R(ukℓ ), v⟩ := (f, v)− (a(|∇ukℓ |)∇ukℓ ,∇v).

Its dual norm is then given by

∥R(ukℓ )∥−1 := sup
v∈H1

0,D(Ω),∥∇v∥=1

⟨R(ukℓ ), v⟩. (12)

Then, the guaranteed upper bound

∥R(ukℓ )∥−1 ≤ ηkℓ :=

{ ∑
K∈Tℓ

[
∥a(|∇ukℓ |)∇ukℓ + σk

ℓ ∥K +
hK
π

∥f − Πp′f∥K
]2} 1

2

(13)

is valid, and we know from the theory that the converse inequality, the efficiency, is also
true, and this for a generic constant independent of both α and L, i.e., structurally, up
to data oscillation and quadrature errors,

ηkℓ ≲ ∥R(ukℓ )∥−1. (14)

Moreover, (14) also holds locally, on patches of elements.
The dual norm of the residual (12) is closely related to the error in the fluxes

∥a(∇u)∇u− a(|∇ukℓ |)∇ukℓ∥. (15)
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Indeed, (15) is an upper bound to (12), as seen from

∥R(ukℓ )∥−1 = sup
v∈H1

0,D(Ω),∥∇v∥=1

(f, v)− (a(|∇ukℓ |)∇ukℓ ,∇v)

= sup
v∈H1

0,D(Ω),∥∇v∥=1

(a(|∇u|)∇u− a(|∇ukℓ |)∇ukℓ ,∇v)

≤ sup
v∈H1

0,D(Ω),∥∇v∥=1

{
∥a(|∇u|)∇u− a(|∇ukℓ |)∇ukℓ∥ ∥∇v∥

}
≤ ∥a(|∇u|)∇u− a(|∇ukℓ |)∇ukℓ∥.

(16)

Set bool DoEx2 = 1 and run the script. This will produce Exercise2.plt which
can be run with >gnuplot Exercise2.plt. This will produce Exercise2.png. The plot
includes the flux error (15), the estimator from (13), and the H1-seminorm error from (9)
as a function of the Picard iterations. What do you observe about the estimator? Can
you justify, based on theory, which of the two errors the estimator tracks better? Try
redoing the experiment with various values of the Lipschitz constant L ≥ 1.

Answer 2. (A posteriori estimates for the linearized problem)

The result is presented in Figure 2. We observe that the plotted quantities do not change
substantially after three iterations, but additional iterations are needed to satisfy our
stopping criteria (the same as in Exercise 1). Next we notice that the estimator ηkℓ
from (13) provides an excellent upper bound on the flux error (15), whereas the H1-
seminorm error (9) is much smaller than ηkℓ . This will be explored in more detail in the
following exercises.

Figure 2: The H1-seminorm error (9), the flux error (15), and the estimator (13), L = 10

Exercice 3. (Closer investigation along the iterations)

In the last exercise, we saw that the estimator (13) does a good job of tracking the flux
error (15). We now want to study more carefully the approximate solutions, equilibrated
fluxes, errors, and estimators that are produced at each Picard iterate. We also want to
stress that the equilibrated flux σk

ℓ physical, ensuring both mass balance over the mesh
faces and the equilibrium constraint, and this on any Picard iteration k ≥ 1. To run this
exercise, set the flag DoEx3 = true.

4



Answer 3. (Closer investigation along the iterations)

We plot here the various objects for L = 10 at the third Picard iteration k = 3 in
Figures 3–6. We first remark that in Figure 3, the exact solution is of course the same
as in the linear case, and the approximate solution is also not too different. In Figure 4,
we see that now the fluxes obtained from the true and approximate solutions have a
different size with respect to the linear case of Tutorial N◦1. This is the first place we see
a difference with the linear case, since even for the true solution, we have the coefficient
a(|∇u|). It can be seen that the true solution is in H(div,Ω), as it has continuous normal
components over the inter-element boundaries. The approximate flux, on the other hand,
does not have continuous normal components, same as in the linear case.

Next, we have probably the most interesting plot, the divergence misfit. We re-
mark that the divergence misfit is essentially machine precision. This is to be expected
theoretically from the fact that, up to oscillation errors, the equilibrated flux satisfies
∇·σk

ℓ = Πp′f , and this at each Picard iteration. Thus, crucially, we construct an object
that respects the mass balance at each step of the linearization. As a consequence, we
can terminate the linearization procedure at any time, with the conservation of mass
guaranteed.

Finally, we consider in Figure 6 the elementwise contributions to the two different
notions of error, as well as the elementwise estimators. We observe that the estimator
actually captures the distribution of the error well in both cases, but interestingly, the es-
timator and the flux error are about an order of magnitude greater than the H1-seminorm
error. We will explore this phenomenon more in the next exercise.

IsoValue
0
0.00315625
0.0063125
0.00946875
0.012625
0.0157813
0.0189375
0.0220938
0.02525
0.0284063
0.0315625
0.0347187
0.037875
0.0410313
0.0441875
0.0473438
0.0505
0.0536563
0.0568125
0.0599688
0.063125

exact solution
IsoValue
7.90283e-61
0.00314591
0.00629182
0.00943773
0.0125836
0.0157296
0.0188755
0.0220214
0.0251673
0.0283132
0.0314591
0.034605
0.0377509
0.0408968
0.0440427
0.0471887
0.0503346
0.0534805
0.0566264
0.0597723
0.0629182

numerical approximation

Figure 3: Exact solution u (left) and approximate solution u3ℓ (right, p = 1) at the third
Picard iteration, L = 10

Exercice 4. (Scaling with respect to the Lipschitz constant L)

In this exercise, we will observe the scaling of the estimator and of both notions or error
with respect to the Lipschitz constant L. To run this exercise, set the flag bool DoEx1 = 4.
After the script is finished, you should have the gnuplot script file Exercise4.plt in the
same directory. Run >gnuplot Exercise4.plt whereupon you can open the plot as
Exercise4.png. What do you observe?
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Vec Value
0
0.128051
0.256103
0.384154
0.512206
0.640257
0.768308
0.89636
1.02441
1.15246
1.28051
1.40857
1.53662
1.66467
1.79272
1.92077
2.04882
2.17687
2.30493
2.43298

exact flux
Vec Value
0
0.116144
0.232289
0.348433
0.464577
0.580722
0.696866
0.81301
0.929155
1.0453
1.16144
1.27759
1.39373
1.50988
1.62602
1.74217
1.85831
1.97445
2.0906
2.20674

finite element flux

Figure 4: Flux of the exact solution −a(|∇u|)∇u (left) and flux of the approximation
−a(|∇u3ℓ |)∇u3ℓ (right, p = 1) at the third Picard iteration, L = 10

IsoValue
0
2.09276e-16
4.18552e-16
6.27828e-16
8.37104e-16
1.04638e-15
1.25566e-15
1.46493e-15
1.67421e-15
1.88348e-15
2.09276e-15
2.30204e-15
2.51131e-15
2.72059e-15
2.92986e-15
3.13914e-15
3.34841e-15
3.55769e-15
3.76697e-15
3.97624e-15
4.18552e-15

divergence misfit of the equilibrated flux

Figure 5: Divergence misfit of the equilibrated flux σ3
ℓ at the third Picard iteration,

L = 10

Answer 4. (Scaling with respect to the Lipschitz constant L)

The result is reported in Figure 7. We recall from the theory that the H1-seminorm and
the dual norm of the residual are related, for any v ∈ H1

0,D(Ω), by

α∥∇(v − u)∥ ≤ ∥R(v)∥−1 ≤ L∥∇(v − u)∥. (17)

In our problem, α = 1, so the scaling between the dual norm of the residual and the
H1-seminorm is exactly L. We also know that the flux error is an upper bound for
the error in the dual norm of the residual, see (16) where merely the Cauchy–Schwarz
inequality has been used, so that from (13)–(14), we can expect the ratio of the flux error
to the estimator to be stable, i.e., robust. In contrast, the ratio of the flux error to the
H1-seminorm of the error is expected to diverge linearly in the Lipschitz constant L.

Exercice 5. (Adaptive stopping criteria)

In this exercise, we will consider a decomposition of the already established estimator ηkℓ
from (13) into error components. To this end, we consider two new fluxes,

lkℓ := a(|∇ukℓ |)∇ukℓ − a(|∇uk−1
ℓ |)∇ukℓ , (18a)

dkℓ := a(|∇uk−1
ℓ |)∇ukℓ + σk

ℓ . (18b)
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IsoValue
0
0.000184189
0.000368378
0.000552567
0.000736756
0.000920946
0.00110513
0.00128932
0.00147351
0.0016577
0.00184189
0.00202608
0.00221027
0.00239446
0.00257865
0.00276284
0.00294703
0.00313121
0.0033154
0.00349959
0.00368378

H1 errors

IsoValue
0
0.0018388
0.00367761
0.00551641
0.00735522
0.00919402
0.0110328
0.0128716
0.0147104
0.0165492
0.018388
0.0202268
0.0220657
0.0239045
0.0257433
0.0275821
0.0294209
0.0312597
0.0330985
0.0349373
0.0367761

flux errors
IsoValue
0
0.00200053
0.00400107
0.0060016
0.00800213
0.0100027
0.0120032
0.0140037
0.0160043
0.0180048
0.0200053
0.0220059
0.0240064
0.0260069
0.0280075
0.030008
0.0320085
0.0340091
0.0360096
0.0380101
0.0400107

equilibrated flux estimators

Figure 6: Elementwise H1-seminorm errors ∥∇(u−u3ℓ)∥K (top), flux errors ∥a(|∇u|)∇u−
a(|∇u3ℓ |)∇u3ℓ∥K (bottom left), and the estimators

[
∥a(|∇u3ℓ |)∇u3ℓ+σ3

ℓ∥K+ hK
π
∥f−Πp′f∥K

]
(bottom right) at the third Picard iteration, L = 10

We remark that ∥lkℓ∥ converges to 0 as the Picard iteration index k goes to infinity, because
|∇uk−1

ℓ | − |∇ukℓ | → 0. This allows us to split the upper bound as (neglecting the data
oscillation error)

ηkℓ = ∥a(|∇ukℓ |)∇ukℓ + σk
ℓ ∥ ≤ ∥dkℓ∥︸︷︷︸

discretization est. ηkℓ,dis

+ ∥lkℓ∥︸︷︷︸
linearization est. ηkℓ,lin

.

We then can stop the solver based on the criterion

ηkℓ,lin < γηkℓ,dis, (19)

where γ > 0 is a user-defined parameter for the desired residual part of the linearization
estimator ηkℓ,lin that is in the script given by real gamma = 0.1. To run this exercise,
set bool DoEx5 = 1. Then run the script. This will produce Exercise5.plt which can
be executed by >gnuplot Exercise5.plt. Remark on the number of iterates required
compared to the fixed criteria based on the difference of consecutive iterates. Try several
different values of γ to see if you can change the number of iterates.

Answer 5. (Adaptive stopping criteria)

The answer is given in Figure 8. We first remark that the two quantities ηkℓ,lin and ηkℓ,dis
are computable, so this is a valid criterion. Next we observe that the criterion is achieved
in only 3 iterations, exactly half of what was required for the naive criteria solely based
on the difference of consecutive iterates.
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Figure 7: The H1-seminorm error (9), the flux error (15), and the estimator (13) at Picard
“convergence”, when the error between the consecutive iterates (8) is below 1e − 7, in
function of the Lipschitz constant L

Figure 8: Adaptive stopping criterion (19) with the parameter γ = 0.1
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