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Motivations

Nuclear waste storage (1)

Assess safety of deep geological nuclear waste storage (clay layer)

Long term simulation of radionuclide transport (one million years)

Wide variation of scales : from package (meter) to regional (kilometers)

Geochemistry : large number of species

Strong government regulation

Main actors : , ,

Research in mathematical and numerical modeling is conducted in the

CNRS MOMAS group (Director A. Ern).

M. Kern (INRIA) Algorithms for reactive transport LMAC, Nov. 2010 4 / 38



Motivations

Nuclear waste storage (2)

Present choice in France : a sedimentary geological formation (Bures, in the
Meuse region)
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Motivations

A 3D far field model (V. Martin)

Blown-up 30 times vertically

Difficulties
Distorted geometry (horizontal ≈
40 km, vertical 700 m)

Strong heterogenities
(permeability varies by 8 orders of
magnitude)

General hexahedral mesh

Simulation over 500 000 years
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Motivations

CO2 sequestration

Geological model, BRGM (21 million grid
points)

Long term capture of CO2
in saline aquifer

Simulation to understand
CO2 migration through
salt

Coupling of liquid and gas
phase, reactive transport

ANR SHPCO2 project High
Performance Simulation of
CO2 sequestration
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Motivations

CO2 sequestration : a synthetic model

Minimal chemical system that still "looks" realistic for CO2 storage

Dissolution of CO2 in water,
dissolution of calcite. Gas
assumed immobile (capillary
trapping), decouples flow from
reactive transport.

Chemical system

H2O−−⇀↽−− H+ + OH– water dissociation

CO2 (g) −−⇀↽−− CO2 (aq) gas dissolution

H2O + CO2 (aq) −−⇀↽−− HCO–
3 + H+ dissociation of aqueous CO2

CaCO3 + H+ −−⇀↽−− Ca+
2 + HCO–

3 Dissolution of calcite
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Basic models and methods

Transport and chemical phenomena
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Basic models and methods Flow model

Flow model

Flow equations

q =−K ∇h Darcy’s law h piezometric head

∇ ·q = 0 incompressibility q Darcy velocity

K permeability tensor (heterogeneous, anisotropic)

Mixed finite elements

Approximate both head and velocity

Continuous flux across element faces

Locally mass conservative

Allows full diffusion tensor
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Basic models and methods Flow model

Pressure and velocity for CO2 example (A. Fumagalli, M.
Franco)
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Basic models and methods Transport model

Transport model

Convection–diffusion equation

φ
∂c
∂ t
−div(Dgradc)

dispersion
+ div(qc)

advection
+ φλc = f

c : concentration [mol/l]

φ : porosity [–]

λ radioactive decay [s−1]

q Darcy velocity [m/s]

Dispersion tensor

D = deI + |q|[α lE(q) + α t(I−E(q))], Eij(q) =
qiqj

|q|

α l ,α t dispersivity coeff. [m], de molecular diffusion [m/s2]

Notation div(qc−Dgradc) + φλc =
def

Lc
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Basic models and methods Transport model

Solution by operator splitting

Advection step
Explicit, finite volumes / discontinuous Galerkine

Locally mass conservative

Allows unstructured mesh

CFL condition : use
sub–time–steps

Dispersion step
Like flow equation (time dependent) : mixed finite elements (implicit)

See Ackerer et al., Putti et al., Arbogast et al., ...

Condense transport solver, one time step

Cn+1 = ΨT (f n,Cn)
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Basic models and methods Transport model

Transport for synthetic CO2 example

Left T = 1 day, right T = 6 days

Left T = 12 day, right T = 37 days
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Basic models and methods Chemistry

Classification of chemical reactions

According to nature of reaction
Homogeneous In the same phase (aqueous, gaseous, ...)

Examples : Acid base, oxydo–reduction

Heterogeneous Involve different phases
Examples : Sorption, mineral precipitation / dissolution, gas
dissolution, ...

According to speed of reaction
Slow reactions Irreversible, modeled using kinetic law

Fast reactions Reversible, modeled using equilibrium

Depends on relative speed of reactions and transport.

This talk : only equilibrium reactions
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Basic models and methods Chemistry

Sorption processes

Definition
Sorption is the accumulation of a fluid on a solid at the fluid–solid interface.

Main mechanism for exchanges between dissolved species and solid surfaces.

Several possible mechanisms
Surface complexation Formation of bond between surface and aqueous

species, due to electrostatic interactions. Depends on surface
potential.

Ion exchange Ions are exchanged between sorption sites on the surface.
Depends on Cationic Exchange Capacity.

Can be modeled as mass action law
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Basic models and methods Chemistry

Modeling general equilibrium models

General chemical reactions : Ns species, Nr reactions

Ns

∑
j=1

νijY j � 0, i = 1, . . . ,Nr

νij stoichiometric coefficients. Matrix equation νY = 0

Assumption
ν has full rank : Rankν = Nr .

Basis for null-space of ν has
dimensions Nc = Ns−Nr .

Partition ν =
(
G N

)
, B ∈ RNr×Nr invertible, N ∈ RNc×Nr . Let H =−G−1N

General solution of νY = 0 : Y =

(
x
c

)
,x = Hc. c ∈ RNc , x ∈ RNr .

Morel formalism :
(c, c̄) primary species (x , x̄) secondary species

(c,x) mobile species (c̄, x̄) fixed species
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Basic models and methods Chemistry

Chemical equilibrium (aqueous and sorption reactions)

Chemical reactions, mass action laws

x i �
Nc

∑
j=1

Sijc j , i = 1, . . . ,Nx ,

x̄ i �
Nc

∑
j=1

Aijc j +
Ns

∑
j=1

Bij c̄ j , i = 1, . . . ,Ny ,

System of non-linear equations

Mass action law
logx = S logc + logK ,

log x̄ = A logc + B log c̄ + log K̄ .

Mass conservation
c + ST x + AT x̄ = T , T known from transport

c̄ + BT x̄ = W , W imposed

M. Kern (INRIA) Algorithms for reactive transport LMAC, Nov. 2010 19 / 38



Basic models and methods Chemistry

Chemical equilibrium (aqueous and sorption reactions)

Chemical reactions, mass action laws

x i �
Nc

∑
j=1

Sijc j , i = 1, . . . ,Nx ,

x̄ i �
Nc

∑
j=1

Aijc j +
Ns

∑
j=1

Bij c̄ j , i = 1, . . . ,Ny ,

System of non-linear equations

Mass action law
logx = S logc + logK ,

log x̄ = A logc + B log c̄ + log K̄ .

Mass conservation
c + ST x + AT x̄ = T , T known from transport

c̄ + BT x̄ = W , W imposed

M. Kern (INRIA) Algorithms for reactive transport LMAC, Nov. 2010 19 / 38



Basic models and methods Chemistry

Mineral reactions

Dissolution of solid, precipitation of aqueous species. Reactions with
threshold : which species appear unknown a priori.

Solubility product Π = logKp + Sp logc{
p = 0 if Π < 0

Π = 0 otherwise

Solution methods
Standard procedure : combinatorial search

Reformulate as complementarity problem

Interior point algorithm (Saaf et al. (’96), MK (05))

Also semi–smooth Newton (Kräutle)

Remark
Same treatment for gas, with Henry’s law
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Basic models and methods Chemistry

Numerical solution of nonlinear problem

Take concentration logarithms as main unknowns
Use globalized Newton’s method (line search, trust region).

Role of chemical model
Given totals T (and W , known), split into

Mobile C = c + ST x ,

Fixed F = AT x̄ + ST
p p.

total concentrations

Result of chemical problem

F = ΨC(T )
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Formulations and solution methods Reactive transport

Reactive transport model

Balance equations

φ∂tc + Lc =ST
mmRa

e +ST
mf R

h
e

φ∂t c̄ = ST
ff Rh

e

Re equilibrium rates unknown,

Elimination of equilibrium rates

φ
∂T ic

∂ t
+ L(C ic) = 0, ic = 1, . . . ,Nc

T ic
ix = C ic

ix + F ic
ix ic = 1, ..,Nc and ix = 1, ..,Nx

F ix = ΨC(T ix ) ix = 1, . . . ,Nx .
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Formulations and solution methods Reactive transport

Solution strategies

Fixed point (aka OS) Yeh–Tripathi, Carrayrou et al., Carrera et al.

+ easy to program, code reuse
− not robust, small time steps

Direct substitution Lichtner et al., Saaltink et al.

+ accurate, robust,
− difficult to code, large non-linear system

DAE formulation Erhel and de Dieuleveult

+ use quality DAE software, accurate
− expensive

Elimination technique Knabner et al.

+ Efficient, accurate,
− difficult to code
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Formulations and solution methods Algorithms

A global method from the fixed–point formulation (1)

Discrete non-linear systemCn+1 = ΨT

(
φ

F n−F n+1

∆t
,Cn
)

F n+1 = ΨC(Cn+1 + F n+1)

Can be solved by block Gauss Seidel or by Newton’s method

Residual computation
1 Apply ΨT : solve transport for each species,
2 Apply ΨC : solve chemistry for each grid cell.
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Formulations and solution methods Algorithms

A global method from the fixed–point formulation (2)

+ Non-intrusive approach

+ Precipitation can be included

− One chemical equilibrium solve
for each function evaluation

Solution by Newton–Krylov method
Solve the linear system by an
iterative method (GMRES)

Requires only jacobian matrix by
vector products, Jacobian not
stored

Keep transport and chemistry as
black–boxes (up to Jacobian
computation)

Jacobian structure

M. Kern (INRIA) Algorithms for reactive transport LMAC, Nov. 2010 26 / 38



Formulations and solution methods Algorithms

A global method from the fixed–point formulation (2)

+ Non-intrusive approach

+ Precipitation can be included

− One chemical equilibrium solve
for each function evaluation

Solution by Newton–Krylov method
Solve the linear system by an
iterative method (GMRES)

Requires only jacobian matrix by
vector products, Jacobian not
stored

Keep transport and chemistry as
black–boxes (up to Jacobian
computation)

Jacobian structure

M. Kern (INRIA) Algorithms for reactive transport LMAC, Nov. 2010 26 / 38



Formulations and solution methods Algorithms

A global method from the fixed–point formulation (2)

+ Non-intrusive approach

+ Precipitation can be included

− One chemical equilibrium solve
for each function evaluation

Solution by Newton–Krylov method
Solve the linear system by an
iterative method (GMRES)

Requires only jacobian matrix by
vector products, Jacobian not
stored

Keep transport and chemistry as
black–boxes (up to Jacobian
computation)

Jacobian structure

M. Kern (INRIA) Algorithms for reactive transport LMAC, Nov. 2010 26 / 38



Formulations and solution methods Algorithms

Newton–Krylov method

Used for CFD, shallow water, radiative transfer(Keyes, Knoll, JCP 04), and for
reactive transport (Hammond, Valocchi, Lichtner, Adv. Wat. Res. 05)

Inexact Newton
Approximation of the Newton’s direction ‖f ′(xk )d + f (xk )‖ ≤ η‖f (xk )‖
Choice of the forcing term η ?

Keep quadratic convergence (locally)
Avoid oversolving the linear system

η = γ‖f (xk )‖2/‖f (xk−1)‖2 (Kelley, Eisenstat and Walker)

L. Amir’s thesis, Amir, MK (Comp. Geosci. 09)
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Formulations and solution methods Algorithms

Newton vs fixed-point performance
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Examples Ion exchange

Example : ion exchange

Column experiment (Phreeqc ex. 11)

Column contains a solution with
1mmolNa, 0.2mmolK and
1.2mmolNO3. Inject solution with
1.2mmolCaCl2, CEC = 1.110−3.
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Examples Ion exchange

Ion exchange example (ctd)

Snapshots at t = 35

Cl

Na

Ca

K
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Examples CO2 example

Application to CO2 model

Simulation code LifeV (EPFL, MOX, INRIA), nonlinear solver Kinsol (LLNL).

Coarse grid
5700 grid points, ∆x = 50m, ∆t = 100 years

Simulate 10 000 years

CPU time 2h10 min

Fine grid
142 500 grid points, ∆x = 10m, ∆t = 100 years

Simulate 1 600 years

CPU time 2.5 days
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Examples CO2 example

Evolution of CO2 concentration on coarse grid

M. Kern (INRIA) Algorithms for reactive transport LMAC, Nov. 2010 33 / 38



Examples CO2 example

Evolution of CO2 concentration on fine grid
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Examples CO2 example

Evolution of concentrations

t = 0
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Examples CO2 example

Evolution of concentrations

t = 400 years
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Examples CO2 example

Evolution of concentrations

t = 800 years
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Examples CO2 example

Evolution of concentrations

t = 1200 years
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Examples CO2 example

Evolution of concentrations

t = 1600 years
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Examples CO2 example

Evolution of concentrations

t = 2000 years
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Examples CO2 example

Evolution of concentrations

t = 2400 years
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Examples CO2 example

Evolution of concentrations

t = 2800 years
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Examples CO2 example

Evolution of concentrations

t = 3200 years
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Examples CO2 example

Evolution of concentrations

t = 3600 years
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Examples CO2 example

Evolution of concentrations

t = 4000 years
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Examples CO2 example

Evolution of concentrations

t = 5000 years
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Examples CO2 example

Evolution of concentrations

t = 7000 years
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Examples CO2 example

Evolution of concentrations

t = 10000 years
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Examples CO2 example

Evolution of gas saturation

t = 0 t = 800 years

t = 1600 t = 2400 years
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Conclusions

Conclusions – perspectives

Robust methods for flow and transport

Newton–Krylov as a framework for code coupling

Extension of chemical solver to handle minerals and gas

Preconditioner for simplified system, mesh independent convergence

Implement analytical Jacobian – vector product

Implement kinetic reactions

Parallel computing (w. MOX, Milano)

Extension to multiphase (compositional) flow
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