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CO2 sequestration

Geological model, BRGM (21 million grid
points)

Long term capture of CO2
in saline aquifer

Simulation to understand
CO2 migration through
salt

Coupling of liquid and gas
phase, reactive transport

SHPCO2 project (funded by ANR) High Performance Simulation of CO2
sequestration
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CO2 sequestration : a synthetic model

Minimal chemical system that still "looks like" realistic for CO2 storage

Dissolution of CO2 in water,
dissolution of calcite. Gas
assumed immobile (capillary
trapping), decouples two phase
flow from reactive transport.

Chemical system

H2O−−⇀↽−− H+ + OH– Water dissociation

CO2 (g) −−⇀↽−− CO2 (aq) Gas dissolution

H2O + CO2 (aq) −−⇀↽−− HCO–
3 + H+ Dissociation of aqueous CO2

CaCO3 + H+ −−⇀↽−− Ca+
2 + HCO–

3 Dissolution of calcite
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Nuclear waste storage

Assess safety of deep geological nuclear
waste storage (clay layer)

Long term simulation of radionuclide transport
(one million years)

Wide variation of scales : from package
(meter) to regional (kilometers)

Geochemistry : large number of species

Strong government regulation

Present choice in France : a sedimentary
geological formation (in the Meuse region)

Research in mathematical and numerical
modeling is conducted in the CNRS
MOMAS group (Director A. Ern).
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Flow model

Flow equations : Darcy’s law

q =−K ∇h

∇ ·q = 0

h piezometric head

q Darcy velocity

K permeability tensor
(heterogeneous,
anisotropic)

Mixed finite elements

Approximate both head and velocity

Continuous flux across element faces

Locally mass conservative

Allows full diffusion tensor
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Pressure and velocity for CO2 example (A. Fumagalli, M.
Franco)
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Transport model

Convection–diffusion equation

φ
∂c
∂ t
−div(Dgradc)

dispersion
+ div(uc)

advection
+ φλc = f

c : concentration [mol/l]

φ : porosity [–]

λ radioactive decay [s−1]

u Darcy velocity [m/s]

Dispersion tensor

D = deI + |u|[α lE(u) + α t(I−E(u))], Eij(u) =
uiuj

|u|

α l ,α t dispersivity coeff. [m], de molecular diffusion [m/s2]
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Solution by operator splitting

Advection step
Explicit, finite volumes / discontinuous Galerkine

Locally mass conservative

Allows unstructured meshes

CFL condition : use
sub–time–steps

Dispersion step
Like flow equation (time dependent) : mixed finite elements (implicit)

See Ackerer et al., Putti et al., Arbogast et al., ...

Condense transport solver, one time step

Cn+1 = ΨT (f n,Cn)
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Transport for synthetic CO2 example

Left T = 1 day, right T = 6 days

Left T = 12 day, right T = 37 days
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Classification of chemical reactions

According to nature of reaction
Homogeneous In the same phase (aqueous, gaseous, ...)

Examples : Acid base, oxydo–reduction

Heterogeneous Involve different phases
Examples : Sorption, precipitation – dissolution, ...

According to speed of reaction
Fast reactions Reversible, modeled using equilibrium

Examples : Aqueous reactions, sorption, precipitation –
dissolution

Slow reactions Irreversible, modeled using kinetic law
Examples : Precipitation – dissolution

Depends on relative speed of reactions and transport.
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Chemical equilibrium

c j aqueous (mobile) species, c̄ j fixed (immobile) species,

Chemical reactions

Smmc⇔ 0

Smf c + Sff c̄⇔ 0

Let(
Pmm Pmf

0 Pff

)(
ST

mm ST
mf

0 ST
ff

)
= 0

System of non-linear equations

Mass action law
Smm logc = logK ,

Smf logc + Sff log c̄ = log K̄ .

Mass conservation
Pmmc + Pmf c̄ = T

Pff c̄ = W ,
T ,W known from transport

M. Kern (INRIA) Algorrithms for reactive transport DyCap Workshop, Oct. 7-8 2010 14 / 33



Chemical equilibrium

c j aqueous (mobile) species, c̄ j fixed (immobile) species,

Chemical reactions

Smmc⇔ 0

Smf c + Sff c̄⇔ 0

Let(
Pmm Pmf

0 Pff

)(
ST

mm ST
mf

0 ST
ff

)
= 0

System of non-linear equations

Mass action law
Smm logc = logK ,

Smf logc + Sff log c̄ = log K̄ .

Mass conservation
Pmmc + Pmf c̄ = T

Pff c̄ = W ,
T ,W known from transport

M. Kern (INRIA) Algorrithms for reactive transport DyCap Workshop, Oct. 7-8 2010 14 / 33



Chemical equilibrium

c j aqueous (mobile) species, c̄ j fixed (immobile) species,

Chemical reactions

Smmc⇔ 0

Smf c + Sff c̄⇔ 0

Let(
Pmm Pmf

0 Pff

)(
ST

mm ST
mf

0 ST
ff

)
= 0

System of non-linear equations

Mass action law
Smm logc = logK ,

Smf logc + Sff log c̄ = log K̄ .

Mass conservation
Pmmc + Pmf c̄ = T

Pff c̄ = W ,
T ,W known from transport

M. Kern (INRIA) Algorrithms for reactive transport DyCap Workshop, Oct. 7-8 2010 14 / 33



Numerical solution of nonlinear problem

Take concentration logarithms as main unknowns
Use globalized Newton’s method (line search, trust region).

Mineral reactions
Reactions with threshold, which species appear unknown a priori.

Standard procedure : combinatorial search

Reformulate as complementarity problem

Interior point algorithm (Saaf et al. (’96), J.-Ch. Gilbert, I. Ben Gharbia)

Also semi–smooth Newton (Kräutle)

Role of chemical model
Given totals T (and W , known), split into
C = Pmmc, F = Pmf c̄, G = Pff c̄.

Result of chemical problem

(F ,G) = ΨC(T ,W )
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Reactive transport model

Balance equations

φ∂tc + Lc =ST
mmRa

e +ST
mf R

h
e +PT Rk (c, c̄)

φ∂t c̄ = ST
ff Rh

e +QT Rk (c, c̄)

Re equilibrium rates unknown, Rk kinetic rates, known expression

Example

Rk =

{
kd (T )SrM (1−Q/K ) for dissolution

kp(T )SrM (Q/K −1) for precipitation

Q is solubility product, Sr reactive surface, k speed per unit surface.
Non Lipschitz
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Coupled formulation

Elimination of equilibrium rates

φ∂tC + φ∂tF +LC = ST Rk (T ,W )

φ∂tW = SW Rk (T ,W )

C + F = T

(F ,G) = ΨC(T ,W )

Special case : no kinetic reactions

φ
∂T ic

∂ t
+ L(C ic) = 0, ic = 1, . . . ,Nc

T ic
ix = C ic

ix + F ic
ix ic = 1, ..,Nc and ix = 1, ..,Nx

F ix = ΨC(T ix ) ix = 1, . . . ,Nx .
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Solution strategies

Fixed point (aka OS) Yeh–Tripathi, Carrayrou et al., Carrera et al.

+ easy to program, code reuse
− not robust, small time steps

Direct substitution Lichtner et al., Saaltink et al.

+ accurate, robust,
− difficult to code, large non-linear system

DAE formulation Erhel and de Dieuleveult

+ use quality DAE software, accurate
− expensive

Elimination technique Knabner et al.

+ Efficient, accurate,
− difficult to code
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A global method from the fixed–point formulation (1)

Discrete non-linear system

Cn+1 = ΨT

(
ST Rk (T n+1,W n+1)−φ

F n+1−F n

∆t
,Cn
)

W n+1 = W n +
∆t
φ

SW Rk (T n+1,W n+1)

T n+1 = Cn+1 + F n+1

(F n+1,Gn+1) = ΨC(T n+1,W n+1)

Formulation without kinetic reactionsCn+1 = ΨT

(
φ

F n−F n+1

∆t
,Cn
)

F n+1 = ΨC(Cn+1 + F n+1)
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Formulation without kinetic reactionsCn+1 = ΨT

(
φ

F n−F n+1

∆t
,Cn
)

F n+1 = ΨC(Cn+1 + F n+1)

Can be solved by block Gauss Seidel or by Newton’s method
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Formulation without kinetic reactionsCn+1 = ΨT

(
φ

F n−F n+1

∆t
,Cn
)

uncoupled

F n+1 = ΨC(Cn+1 + F n+1)
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A global method from the fixed–point formulation (2)

+ Non-intrusive approach

+ Precipitation can be included

− One chemical equilibrium solve
for each function evaluation

Solution by Newton–Krylov : keep
transport and chemistry as
black–boxes (up to Jacobian
computation)

Jacobian structure

Residual computation :
1 Apply ΨT : solve transport for each species,
2 Apply ΨC : solve chemistry for each grid cell.
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Solution by Newton–Krylov

Solve the linear system by an iterative method (GMRES)

Requires only jacobian matrix by vector products.

Used for CFD, shallow water, radiative transfer(Keyes, Knoll, JCP 04), and for
reactive transport (Hammond, Valocchi, Lichtner, Adv. Wat. Res. 05)

Inexact Newton
Approximation of the Newton’s direction ‖f ′(xk )d + f (xk )‖ ≤ η‖f (xk )‖
Choice of the forcing term η ?

Keep quadratic convergence (locally)
Avoid oversolving the linear system

η = γ‖f (xk )‖2/‖f (xk−1)‖2 (Kelley, Eisenstat and Walker)

L. Amir’s thesis, Amir, MK (Comp. Geosci. 09)
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Example : ion exchange

Column experiment (Phreeqc ex. 11)

Column contains a solution with
1mmolNa, 0.2mmolK and
1.2mmolNO3. Inject solution with
1.2mmolCaCl2. CEC = 1.110−3.
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Ion exchange example (ctd)

Snapshots at t = 35

Cl

Na

Ca

K
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Application to CO2 model (LifeV, Kinsol )

Gas concentration pH
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Evolution of CO2 concentration
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Conclusions – perspectives

Robust methods for flow and transport

Newton–Krylov as a framework for code coupling

Extension of chemical solver to handle minerals and gas

Preconditioner for simplified system, mesh independent convergence

Implement analytical Jacoban – vector product

Implement kinetic reactions

Parallel computing (w. MOX, Milano)

Extension to multiphase (compositional) flow
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A simplified one species model, with sorption

Coupled model
φ

∂C
∂ t

+ φ
∂F
∂ t

+ LC = 0,

F = Ψ(C) =
kf σ0C

kf C + kb
.

Mathematical, numerical analysis : van Duijn, Knabner, Frolkovic

Coupled problem
Coupled formulation

F

(
C
F

)
=

(
(M + ∆tL)C + MF + b

F −Ψ(C)

)
= 0

Eliminate F F1(C) = (M + ∆tL)C + MΨ(C)−bn

Eliminate C F2(F) = F −Ψ
(
(M + ∆tL)−1(b−MF)

)
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Jacobian preconditioning

Jacobian for coupled formulation,with D = diag(Ψ′(C1), . . . ,Ψ′(CN))

J =

(
M + ∆tL M
−D I

)

Block preconditioning

Jacobi PJ =

(
M + ∆t L 0

0 I

)
, Λ(P−1

J J)⊂ [1− iCh,1 + iCh]

Gauss–Seidel PGS =

(
M + ∆t L 0
−D I

)
, Λ(P−1

GSJ)⊂ [1,1 + Ch2]

Schur J2 = I + D(M + ∆tL)−1M, Λ(J2)⊂ [1,1 + Ch2]

Elimination of C is equivalent to Schur complement of Gauss–Seidel.
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Preconditioner performance

Convergence of GMRES not determined by eigenvalues (Greenbaum,
Strakos).

Nevertheless ...

h h/2 h/4 h/8
NI LI NI LI NI LI NI LI

None 8 54 10 100 17 238 33 658
BGS 8 11 10 15 14 22 21 36

Elimination 6 25 6 25 6 25 6 25

Inverting transport gives mesh independent convergence for both linear (LI)
and nonlinear (NI) iterations.

In practice : approximate inverse should give spectral equivalence
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