

centre de recherche PARIS - ROCQUENCOURT

Coupled formulations and coupling algorithms for reactive transport in porous media

Michel Kern with L. Amir, B. Gueslin, A. Taakili

INRIA Rocquencourt

DyCap Workshop Microbiology and Reactive Transport in the Capilary Fringe

Heidelberg, October 7-8, 2010

Basic models and methods

- Flow model
- Transport model
- Chemistry

Formulations and solution methods

4 Examples

- Ion exchange
- CO2 example

Conclusions

Outline

Motivations

- Flow model
- Transport model ۲

- Ion exchange

M. Kern (INRIA)

Image: A matrix and a matrix

EN INFORMATIONS

Geological model, BRGM (21 million grid

- Long term capture of CO₂ in saline aquifer
- Simulation to understand CO₂ migration through salt
- Coupling of liquid and gas phase, reactive transport

SHPCO2 project (funded by ANR) High Performance Simulation of CO₂ sequestration

points)

CO₂ sequestration : a synthetic model

Minimal chemical system that still "looks like" realistic for CO2 storage

Dissolution of CO_2 in water, dissolution of calcite. Gas assumed immobile (capillary trapping), decouples two phase flow from reactive transport.

Chemical system

٩	H_2O	<u> </u>	H^+	+	OH
---	--------	----------	-------	---	----

•
$$CO_{2(g)} \rightleftharpoons CO_{2(aq)}$$

- $H_2O + CO_{2(aq)} \Longrightarrow HCO_3^- + H^+$
- $CaCO_3 + H^+ \rightleftharpoons Ca_2^+ + HCO_3^-$

Water dissociation

Gas dissolution

Dissociation of aqueous CO₂

イロト イポト イヨト イヨト 二日

Dissolution of calcite

Nuclear waste storage

- Assess safety of deep geological nuclear waste storage (clay layer)
- Long term simulation of radionuclide transport (one million years)
- Wide variation of scales : from package (meter) to regional (kilometers)
- Geochemistry : large number of species
- Strong government regulation

Present choice in France : a sedimentary geological formation (in the Meuse region)

Research in mathematical and numerical modeling is conducted in the CNRS MOMAS group (Director A. Ern).

Outline

Motivations

Basic models and methods

- Flow model
- Transport model
- Chemistry

Formulations and solution methods

4 Examples

- Ion exchange
- CO2 example

Conclusions

< □ ▶ < 両

EN INFORMATIONS

NRIA

Flow equations : Darcy's law

- $q = -K\nabla h$
- $\nabla \cdot \boldsymbol{q} = 0$

- h piezometric head
- q Darcy velocity

 K permeability tensor (heterogeneous, anisotropic)

Mixed finite elements

- Approximate both head and velocity
- Continuous flux across element faces
- Locally mass conservative
- Allows full diffusion tensor

Pressure and velocity for CO2 example (A. Fumagalli, M. Franco)

Convection-diffusion equation

$$\phi \frac{\partial c}{\partial t} - \operatorname{div}(\mathbf{D}\operatorname{grad} c) + \operatorname{div}(\mathbf{u}c) + \phi \lambda c = f$$

$$\operatorname{dispersion} \operatorname{advection}$$

• ϕ : porosity [–]

•
$$\lambda$$
 radioactive decay [s⁻¹]

< □ > < @ > < 注

$${\ensuremath{\, \bullet \,}}$$
 u Darcy velocity $[m/s]$

Dispersion tensor

$$\mathbf{D} = d_e \mathbf{I} + |\mathbf{u}|[\alpha_I \mathbf{E}(\mathbf{u}) + \alpha_t (I - \mathbf{E}(\mathbf{u}))], \quad E_{ij}(\mathbf{u}) = \frac{u_i u_j}{|\mathbf{u}|}$$

 α_l, α_t dispersivity coeff. [m], d_e molecular diffusion [m/s²]

ER INFORMATIONS

-

RINRIA

....

Solution by operator splitting

Advection step

Explicit, finite volumes / discontinuous Galerkine

- Locally mass conservative
- Allows unstructured meshes
- CFL condition : use sub-time-steps

Dispersion step

Like flow equation (time dependent) : mixed finite elements (implicit)

See Ackerer et al., Putti et al., Arbogast et al., ...

Solution by operator splitting

Advection step

Explicit, finite volumes / discontinuous Galerkine

- Locally mass conservative
- Allows unstructured meshes
- CFL condition : use sub-time-steps

Dispersion step

Like flow equation (time dependent) : mixed finite elements (implicit)

See Ackerer et al., Putti et al., Arbogast et al., ...

Condense transport solver, one time step						
$\mathbf{C}^{n+1} = \Psi_T(f^n, \mathbf{C}^n)$						

Transport for synthetic CO₂ example

Left T = 1 day, right T = 6 days

Left T = 12 day, right T = 37 days

M. Kern (INRIA)

< □ ▶ < 両

According to nature of reaction

Homogeneous In the same phase (aqueous, gaseous, ...) Examples : Acid base, oxydo-reduction Heterogeneous Involve different phases

Examples : Sorption, precipitation – dissolution, ...

According to nature of reaction

Homogeneous In the same phase (aqueous, gaseous, ...) Examples : Acid base, oxydo-reduction

Heterogeneous Involve different phases

Examples : Sorption, precipitation - dissolution, ...

According to speed of reaction

Fast reactions Reversible, modeled using equilibrium Examples : Aqueous reactions, sorption, precipitation – dissolution

Slow reactions Irreversible, modeled using kinetic law Examples : Precipitation – dissolution

Depends on relative speed of reactions and transport.

13/33

Chemical equilibrium

 c_i aqueous (mobile) species, \overline{c}_i fixed (immobile) species,

Chemical reactions
S_{mm} $c \Leftrightarrow 0$
S_{mf} C + S_{ff} C \Leftrightarrow 0

 c_j aqueous (mobile) species, \overline{c}_j fixed (immobile) species,

Chemical reactionsLet
$$S_{mm}c \Leftrightarrow 0$$
 $\begin{pmatrix} P_{mm} & P_{mf} \\ 0 & P_{ff} \end{pmatrix} \begin{pmatrix} S_{mm}^T & S_{mf}^T \\ 0 & S_{ff}^T \end{pmatrix} = 0$

 c_i aqueous (mobile) species, \overline{c}_i fixed (immobile) species,

Chemical reactionsLet
$$S_{mm}c \Leftrightarrow 0$$
 $\begin{pmatrix} P_{mm} & P_{mf} \\ 0 & P_{ff} \end{pmatrix} \begin{pmatrix} S_{mm}^T & S_{mf}^T \\ 0 & S_{ff}^T \end{pmatrix}$

System of non-linear equations

Mass setien low	$S_{mm}\log c = \log K$,					
Mass action law	$S_{mf}\log c + S_{ff}\log c =$	log $ar{K}$.				
Mass conservation	$P_{mm}c + P_{mf}\overline{c} = T$ $P_{ff}\overline{c} = W$,	T, W known from transport				

= 0

Take concentration logarithms as main unknowns Use globalized Newton's method (line search, trust region).

Mineral reactions

- Reactions with threshold, which species appear unknown a priori.
- Standard procedure : combinatorial search
- Reformulate as complementarity problem
- Interior point algorithm (Saaf et al. ('96), J.-Ch. Gilbert, I. Ben Gharbia)
- Also semi-smooth Newton (Kräutle)

Take concentration logarithms as main unknowns Use globalized Newton's method (line search, trust region).

Mineral reactions

- Reactions with threshold, which species appear unknown a priori.
- Standard procedure : combinatorial search
- Reformulate as complementarity problem
- Interior point algorithm (Saaf et al. ('96), J.-Ch. Gilbert, I. Ben Gharbia)
- Also semi-smooth Newton (Kräutle)

Outline

- Flow model
- Transport model ۲

Formulations and solution methods

- Ion exchange

EN INFORMATIONS

Balance equations

$\phi \partial_t \mathbf{c} + L \mathbf{c}$	$=S_{mm}^T R_e^a$	$+S_{mf}^{T}R_{e}^{h}$	$+P^TR_k(\mathbf{c},\mathbf{\bar{c}})$
$\phi \partial_t \overline{c}$	=	$S_{\it ff}^{\it T} R_e^h$	$+Q^T R_k(\mathbf{c},\mathbf{\bar{c}})$

 R_e equilibrium rates unknown, R_k kinetic rates, known expression

Balance equations

$$\begin{split} \phi \partial_t \mathbf{c} + L \mathbf{c} &= S_{mm}^T R_e^a + S_{mf}^T R_e^h + P^T R_k(\mathbf{c}, \mathbf{\bar{c}}) \\ \phi \partial_t \mathbf{\bar{c}} &= S_{ff}^T R_e^h + Q^T R_k(\mathbf{c}, \mathbf{\bar{c}}) \end{split}$$

Re equilibrium rates unknown, Rk kinetic rates, known expression

Example

$$R_{k} = \begin{cases} k_{d}(T) Sr_{M}(1 - Q/K) & \text{for dissolution} \\ k_{p}(T) Sr_{M}(Q/K - 1) & \text{for precipitation} \end{cases}$$

Q is solubility product, S_r reactive surface, k speed per unit surface. Non Lipschitz

EN INFORMATIQUE

Elimination of equilibrium rates

$\phi \partial_t \mathbf{C} + \phi \partial_t \mathbf{F}$	$+LC = S_T R_k(T, W)$
$\phi \partial_t W$	$= S_W R_k(T, W)$
<i>C</i> + <i>F</i>	= T
(<i>F</i> , <i>G</i>)	$=\Psi_{C}(T,W)$

Elimination of equilibrium rates

$$\phi \partial_t C + \phi \partial_t F + LC = S_T R_k(T, W)$$

$$\phi \partial_t W = S_W R_k(T, W)$$

$$C + F = T$$

$$(F, G) = \Psi_C(T, W)$$

Special case : no kinetic reactions

$$\begin{split} \phi \frac{\partial T^{ic}}{\partial t} + L(C^{ic}) &= 0, \quad ic = 1, \dots, N_c \\ T^{ic}_{ix} &= C^{ic}_{ix} + F^{ic}_{ix} \qquad ic = 1, \dots, N_c \text{ and } ix = 1, \dots, N_x \\ F_{ix} &= \Psi_C(T_{ix}) \qquad ix = 1, \dots, N_x. \end{split}$$

M. Kern (INRIA)

- + easy to program, code reuse
- not robust, small time steps

- + easy to program, code reuse
- not robust, small time steps

Direct substitution Lichtner et al., Saaltink et al.

- + accurate, robust,
- - difficult to code, large non-linear system

- + easy to program, code reuse
- not robust, small time steps

Direct substitution Lichtner et al., Saaltink et al.

• + accurate, robust,

• - difficult to code, large non-linear system

DAE formulation Erhel and de Dieuleveult

- + use quality DAE software, accurate
- - expensive

- + easy to program, code reuse
- not robust, small time steps

Direct substitution Lichtner et al., Saaltink et al.

• + accurate, robust,

difficult to code, large non-linear system

DAE formulation Erhel and de Dieuleveult

- + use quality DAE software, accurate
- - expensive

Elimination technique Knabner et al.

- + Efficient, accurate,
- difficult to code

Discrete non-linear system

$$\boldsymbol{C}^{n+1} = \Psi_T \left(\boldsymbol{S}_T \boldsymbol{R}_k(\boldsymbol{T}^{n+1}, \boldsymbol{W}^{n+1}) - \boldsymbol{\phi} \frac{\boldsymbol{F}^{n+1} - \boldsymbol{F}^n}{\Delta t}, \boldsymbol{C}^n \right)$$

M. Kern (INRIA)

Discrete non-linear system

$$C^{n+1} = \Psi_T \left(S_T R_k(T^{n+1}, W^{n+1}) - \phi \frac{F^{n+1} - F^n}{\Delta t}, C^n \right)$$
$$W^{n+1} = W^n + \frac{\Delta t}{\phi} S_W R_k(T^{n+1}, W^{n+1})$$

Discrete non-linear system

$$C^{n+1} = \Psi_T \left(S_T R_k(T^{n+1}, W^{n+1}) - \phi \frac{F^{n+1} - F^n}{\Delta t}, C^n \right)$$
$$W^{n+1} = W^n + \frac{\Delta t}{\phi} S_W R_k(T^{n+1}, W^{n+1})$$
$$T^{n+1} = C^{n+1} + F^{n+1}$$

Discrete non-linear system

$$C^{n+1} = \Psi_T \left(S_T R_k(T^{n+1}, W^{n+1}) - \phi \frac{F^{n+1} - F^n}{\Delta t}, C^n \right)$$
$$W^{n+1} = W^n + \frac{\Delta t}{\phi} S_W R_k(T^{n+1}, W^{n+1})$$
$$T^{n+1} = C^{n+1} + F^{n+1}$$
$$F^{n+1}, G^{n+1}) = \Psi_C(T^{n+1}, W^{n+1})$$

EN INFORMATIONS Image: A matrix and a matrix DyCap Workshop, Oct. 7-8 2010 20/33

îR I INRIA

Discrete non-linear system

$$C^{n+1} = \Psi_T \left(S_T R_k(T^{n+1}, W^{n+1}) - \phi \frac{F^{n+1} - F^n}{\Delta t}, C^n \right)$$
$$W^{n+1} = W^n + \frac{\Delta t}{\phi} S_W R_k(T^{n+1}, W^{n+1})$$
$$T^{n+1} = C^{n+1} + F^{n+1}$$
$$(F^{n+1}, G^{n+1}) = \Psi_C(T^{n+1}, W^{n+1})$$

Formulation without kinetic reactions

$$\begin{pmatrix} \boldsymbol{C}^{n+1} = \Psi_T \left(\boldsymbol{\phi} \frac{\boldsymbol{F}^n - \boldsymbol{F}^{n+1}}{\Delta t}, \boldsymbol{C}^n \right) \\ \boldsymbol{F}^{n+1} = \Psi_C (\boldsymbol{C}^{n+1} + \boldsymbol{F}^{n+1}) \end{pmatrix}$$

イロト イポト イヨト イヨ

Discrete non-linear system

$$C^{n+1} = \Psi_T \left(S_T R_k(T^{n+1}, W^{n+1}) - \phi \frac{F^{n+1} - F^n}{\Delta t}, C^n \right)$$
$$W^{n+1} = W^n + \frac{\Delta t}{\phi} S_W R_k(T^{n+1}, W^{n+1})$$
$$T^{n+1} = C^{n+1} + F^{n+1}$$
$$(F^{n+1}, G^{n+1}) = \Psi_C(T^{n+1}, W^{n+1})$$

Formulation without kinetic reactions

$$\begin{pmatrix} C^{n+1} = \Psi_T \left(\phi \frac{F^n - F^{n+1}}{\Delta t}, C^n \right) & \text{uncoupled} \\ F^{n+1} = \Psi_C (C^{n+1} + F^{n+1}) \end{pmatrix}$$

イロト イヨト イヨト イヨ

- + Non-intrusive approach
- Precipitation can be included
- One chemical equilibrium solve for each function evaluation

Solution by Newton–Krylov : keep transport and chemistry as black–boxes (up to Jacobian computation)

Jacobian structure

- + Non-intrusive approach
- + Precipitation can be included
- One chemical equilibrium solve for each function evaluation

Solution by Newton–Krylov : keep transport and chemistry as black–boxes (up to Jacobian computation)

Jacobian structure

Residual computation :

- Apply Ψ_T : solve transport for each species,
- 2 Apply Ψ_C : solve chemistry for each grid cell.

- Solve the linear system by an iterative method (GMRES)
- Requires only jacobian matrix by vector products.

Used for CFD, shallow water, radiative transfer(Keyes, Knoll, JCP 04), and for reactive transport (Hammond, Valocchi, Lichtner, Adv. Wat. Res. 05)

- Solve the linear system by an iterative method (GMRES)
- Requires only jacobian matrix by vector products.

Used for CFD, shallow water, radiative transfer(Keyes, Knoll, JCP 04), and for reactive transport (Hammond, Valocchi, Lichtner, Adv. Wat. Res. 05)

Inexact Newton

- Approximation of the Newton's direction $||f'(x_k)d + f(x_k)|| \le \eta ||f(x_k)||$
- Choice of the forcing term η ?
 - Keep quadratic convergence (locally)
 - Avoid oversolving the linear system

• $\eta = \gamma \|f(x_k)\|^2 / \|f(x_{k-1})\|^2$ (Kelley, Eisenstat and Walker)

L. Amir's thesis, Amir, MK (Comp. Geosci. 09)

EN INFORMATIONE

Outline

Motivations

Basic models and methods

- Flow model
- Transport model
- Chemistry

3 Formulations and solution methods

4 Examples

- Ion exchange
- CO2 example

Conclusions

Example : ion exchange

Column experiment (Phreeqc ex. 11)

Column contains a solution with 1mmol Na, 0.2mmol K and 1.2mmol NO₃. Inject solution with 1.2mmolCaCl₂. $CEC = 1.110^{-3}$.

M. Kern (INRIA)

Ion exchange example (ctd)

Snapshots at t = 35

Na

イロト イポト イヨト イヨト

э

Application to CO2 model (LifeV, Kinsol)

Application to CO2 model (LifeV, Kinsol)

イロト イロト イヨト イヨト

<ロト <回 > < 回 > < 三 > < 三

INRIA

M. Kern (INRIA)

<ロト <回 > < 回 > < 三 > < 三

Outline

- Flow model
- Transport model ۲

- Ion exchange

M. Kern (INRIA)

Conclusions

Image: A matrix and a matrix

EN INFORMATIONS

- Robust methods for flow and transport ٠
- Newton–Krylov as a framework for code coupling
- Extension of chemical solver to handle minerals and gas
- Preconditioner for simplified system, mesh independent convergence

30/33

- Robust methods for flow and transport
- Newton–Krylov as a framework for code coupling
- Extension of chemical solver to handle minerals and gas
- Preconditioner for simplified system, mesh independent convergence
- Implement analytical Jacoban vector product
- Implement kinetic reactions
- Parallel computing (w. MOX, Milano)
- Extension to multiphase (compositional) flow

M. Kern (INRIA)

A simplified one species model, with sorption

Coupled model
$$\begin{aligned} \phi \frac{\partial C}{\partial t} + \phi \frac{\partial F}{\partial t} + LC &= 0, \\ F &= \Psi(C) = \frac{k_f \sigma_0 C}{k_f C + k_b}. \end{aligned}$$

Mathematical, numerical analysis : van Duijn, Knabner, Frolkovic

31/33

DyCap Workshop, Oct. 7-8 2010

A simplified one species model, with sorption

Coupled model

$$\phi \frac{\partial C}{\partial t} + \phi \frac{\partial F}{\partial t} + LC = 0,$$

$$F = \Psi(C) = \frac{k_f \sigma_0 C}{k_f C + k_b}.$$

Mathematical, numerical analysis : van Duijn, Knabner, Frolkovic

Coupled problem

Coupled formulation

$$F\begin{pmatrix} C\\ F \end{pmatrix} = \begin{pmatrix} (\mathbf{M} + \Delta t\mathbf{L})\mathbf{C} + \mathbf{M}F + b\\ F - \Psi(\mathbf{C}) \end{pmatrix} = \mathbf{C}$$

Eliminate F $F_1(C) = (\mathbf{M} + \Delta t \mathbf{L})C + \mathbf{M}\Psi(C) - b^n$ Eliminate C $F_2(F) = F - \Psi((\mathbf{M} + \Delta t \mathbf{L})^{-1}(b - \mathbf{M}F))$

э

• • • • • • •

Jacobian preconditioning

Jacobian for coupled formulation, with $D = \text{diag}(\Psi'(C_1), \dots, \Psi'(C_N))$

$$J = \begin{pmatrix} \mathbf{M} + \Delta t \mathbf{L} & \mathbf{M} \\ -\mathbf{D} & I \end{pmatrix}$$

Block preconditioning

Jacobi
$$\mathbf{P}_{\mathbf{J}} = \begin{pmatrix} \mathbf{M} + \Delta t \mathbf{L} & 0 \\ 0 & \mathbf{I} \end{pmatrix}, \qquad \Lambda(P_{J}^{-1}J) \subset [1 - iCh, 1 + iCh]$$

Gauss-Seidel $\mathbf{P}_{\mathbf{GS}} = \begin{pmatrix} \mathbf{M} + \Delta t \mathbf{L} & 0 \\ -\mathbf{D} & \mathbf{I} \end{pmatrix}, \qquad \Lambda(P_{GS}^{-1}J) \subset [1, 1 + Ch^{2}]$
Schur $J_{2} = I + \mathbf{D}(\mathbf{M} + \Delta t \mathbf{L})^{-1}\mathbf{M}, \qquad \Lambda(J_{2}) \subset [1, 1 + Ch^{2}]$

Elimination of C is equivalent to Schur complement of Gauss-Seidel.

→ 4 Ξ

NRIA

Convergence of GMRES not determined by eigenvalues (Greenbaum, Strakos).

Convergence of GMRES not determined by eigenvalues (Greenbaum, Strakos). Nevertheless ...

Convergence of GMRES not determined by eigenvalues (Greenbaum, Strakos).

Nevertheless ...

	h		h/2		h/4		h/8	
	NI	LI	NI	LI	NI	LI	NI	LI
None	8	54	10	100	17	238	33	658

< <p>> < <p>> < <p>> <</p>

Convergence of GMRES not determined by eigenvalues (Greenbaum, Strakos).

Nevertheless ...

	h		h/2		h/4		h/8	
	NI	LI	NI	LI	NI	LI	NI	LI
None	8	54	10	100	17	238	33	658
BGS	8	11	10	15	14	22	21	36

< <p>> < <p>> < <p>> <</p>

Convergence of GMRES not determined by eigenvalues (Greenbaum, Strakos).

Nevertheless ...

	h		h/2		h/4		h/8	
	NI	LI	NI	LI	NI	LI	NI	LI
None	8	54	10	100	17	238	33	658
BGS	8	11	10	15	14	22	21	36
Elimination	6	25	6	25	6	25	6	25

Inverting transport gives mesh independent convergence for both linear (LI) and nonlinear (NI) iterations.

In practice : approximate inverse should give spectral equivalence