

Numerical simulation of multicomponent two-phase reactive flow

E. Ahusborde¹ M. $Kern^{2,3}$ V. Vostrikov^{1,3}

¹LMAP, CNRS, Université de Pau, France

²Inria Paris–Rocquencourt, France

³Maison de la Simulation, France

SIAM GS 15 Stanford – June 30, 2015

M. Kern (Inria)

Two-phase reactive flow

SIAM GS15 1 / 16

Outline

2 Coupled problem: formulation and algorithm

M. Kern (Inria)

< A

Motivation: CO2 sequestration

Carbon capture & geological storage

Capture and storage of CO₂ (Lacq pilot site)

Goals

Numerical simulation of multicomponent two-phase flow with chemical reactions

 \bullet Implementation in $\mathsf{Du}\mathsf{Mu}^\mathsf{X}$ of a reactive transport module

M. Kern (Inria)

Two-phase reactive flow

Simplified chemical system

Chemical components

Liquid phase (I)	Gas phase (g)	Solid phase (s)
$H_2O, CO_2, H^+, OH^-, HCO_2^- Ca^{2+}$	CO _{2(g)}	CaCO ₃

Chemical reactions (all equilibrium) Homogeneous reactions $\begin{array}{rcl} \mathrm{OH}^{-} &\rightleftharpoons & \mathrm{H_2O} - \mathrm{H}^+, \\ \mathrm{HCO}_3^{-} &\rightleftharpoons & \mathrm{H_2O} - \mathrm{H}^+ + \mathrm{CO}_{2(1)}, \end{array}$ Heterogeneous reactions $\begin{array}{rcl} \mathrm{CO}_{2(\mathrm{g})} &\rightleftharpoons & \mathrm{CO}_{2(\mathrm{l})}, \\ \mathrm{CaCO}_{3} &\rightleftharpoons & \mathrm{H}_{2}\mathrm{O}-2\mathrm{H}^{+}+\mathrm{CO}_{2(\mathrm{l})}+\mathrm{Ca}^{2+}, \end{array}$ ・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ э

M. Kern (Inria)

Modeling chemical equilibrium

 N_s chemical species, N_r reactions, S stoichiometric matrix .

$$\sum_{j=1}^{N_s} S_{ij} Y_j \leftrightarrows 0, \quad i=1,\ldots,N_r \Longleftrightarrow SY \leftrightarrows 0$$

(Usually) $N_r \ge N_s$, S full rank: define Kernel matrix U st $US^T = 0$ (Saaltink et al. (98), Knabner et al. (07), Amir, K. (10)).

Nonlinear system

- Mass action laws $S \log c = \log k$
- Mass conservation Uc = C, C known from transport

Newton's method with line search, use $\log c$ as unknown.

Local elimination of chemical concentrations $c = \Psi_C(T)$.

Mathematical model for two-phase multicomponent flow

Notation

Phase index $\alpha = I, g, s \ i$ - species index. α_i = index of the phase that contains species *i*. Phase flow operator $L_{\alpha}(c) = -\nabla \cdot (\phi S_{\alpha} D_{\alpha} \nabla c) + \nabla \cdot (c \overrightarrow{q_{\alpha}}), \ \alpha = I, g, \ L_s = 0.$

• Mass conservation law for each species:

$$\partial_t(\phi S_{\alpha_i} c^i) + L_{\alpha_i}(c^i) = \sum_j \mathbb{S}_{ji} r_j, \quad i = 1 \dots N_s,$$

together with Darcy's law and state equations (for each phase), capillary pressure, closure relations.

• *r_j* rate for *j*th reaction (unknown for equilibrium)

Primary variables: phase pressures p_{α} , phase saturations S_{α} , chemical concentrations c_i .

M. Kern (Inria)

Coupled problem

Elimination of reaction rates

Multiply conservation laws by U:

$$\sum_{\alpha} \left(\partial_t (\phi S_{\alpha} C_{\alpha}^k) + L_{\alpha} C_{\alpha}^k \right) = 0, \quad k = 1, \dots, N_s - N_r$$

with $C_{\alpha}^{k} = \sum_{i \text{ st } \alpha_{i} = \alpha} U_{ki}c_{i}$ total component concentrations. System closed by mass action laws

M. Kern (Inria)

▲■ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ のへで

Coupled problem

Elimination of reaction rates

Multiply conservation laws by U:

$$\sum_{\alpha} \left(\partial_t (\phi S_{\alpha} C_{\alpha}^k) + L_{\alpha} C_{\alpha}^k \right) = 0, \quad k = 1, \dots, N_s - N_r$$

with $C_{\alpha}^{k} = \sum_{i \text{ st } \alpha_{i} = \alpha} U_{ki}c_{i}$ total component concentrations. System closed by mass action laws

Solving the coupled system

- Fully coupled approach Solve full system for phase pressures, phase saturations and all species concentrations (Fan et al., 2012, Saaltink et al, 2013). Large nonlinear system
- Sequential approach Solve separately for flow (pressures, saturations, mass fractions of H₂O and CO₂) and reactive transport (other species concentrations). Used in ToughReact (Xu et al., 2012).

A consistent decoupled approach

Decoupling strategy

Identify a dominant component in each phase: H_2O in liquid, CO_2 in gas.

- Dominant components form a compositional two-phase flow system, include CO₂ dissolution (Henry's law), variables are p_{α} , S_{α} , component concentrations.
- Other components follow reactive transport system with given velocity q_{α} , variables c_i

Decoupled system

Two phase, two components flow

$$\begin{split} &\mathsf{H}_{2}\mathsf{O} \ \partial_{t}(\phi S_{I}\boldsymbol{c}_{\mathrm{H}_{2}\mathrm{O}}) + L_{I}\boldsymbol{c}_{\mathrm{H}_{2}\mathrm{O}} = R_{1}(\boldsymbol{c}_{\mathrm{OH}^{-}}, \boldsymbol{c}_{\mathrm{HCO}_{3}^{-}}, \boldsymbol{c}_{\mathrm{CaCO}_{3}}),\\ &\mathsf{CO}_{2(I)} \ \partial_{t}(\phi S_{I}\boldsymbol{c}_{\mathrm{CO}_{2(I)}} + \phi S_{I}\boldsymbol{c}_{\mathrm{CO}_{2(g)}}) + L_{I}\boldsymbol{c}_{\mathrm{CO}_{2(I)}} + L_{g}\boldsymbol{c}_{\mathrm{CO}_{2(g)}} = R_{2}(\boldsymbol{c}_{\mathrm{HCO}_{3}^{-}}, \boldsymbol{c}_{\mathrm{CaCO}_{3}}),\\ &\mathsf{CO}_{2(g)} \ \gamma(\boldsymbol{c}_{\mathrm{CO}_{2(g)}})\boldsymbol{p}_{g} = \boldsymbol{c}_{\mathrm{CO}_{2(I)}}. \end{split}$$

イロト イポト イヨト イヨト 二日

Decoupled system

Two phase, two components flow

$$\begin{array}{l} \mathsf{H}_{2}\mathsf{O} \ \partial_{t}(\phi S_{I}c_{\mathrm{H}_{2}\mathrm{O}}) + L_{I}c_{\mathrm{H}_{2}\mathrm{O}} = R_{1}(c_{\mathrm{OH}^{-}}, c_{\mathrm{HCO}_{3}^{-}}, c_{\mathrm{CaCO}_{3}}), \\ \mathsf{CO}_{2(1)} \ \partial_{t}(\phi S_{I}c_{\mathrm{CO}_{2(1)}} + \phi S_{I}c_{\mathrm{CO}_{2(g)}}) + L_{I}c_{\mathrm{CO}_{2(1)}} + L_{g}c_{\mathrm{CO}_{2(g)}} = R_{2}(c_{\mathrm{HCO}_{3}^{-}}, c_{\mathrm{CaCO}_{3}}), \\ \mathsf{CO}_{2(g)} \ \gamma(c_{\mathrm{CO}_{2(g)}})p_{g} = c_{\mathrm{CO}_{2(1)}}. \end{array}$$

Reactive transport

$$\begin{array}{ll} \mathsf{H}^{+} & \partial_{t} \left(\phi S_{I} C_{I}^{\mathsf{H}^{+}} + C_{s}^{\mathsf{H}^{+}} \right) + \mathcal{L}_{I} C_{I}^{\mathsf{H}^{+}} = \mathbf{0}, \qquad C_{I}^{\mathsf{H}^{+}} & = c_{\mathsf{H}^{+}} - c_{\mathsf{OH}^{-}} - c_{\mathsf{HCO}_{3}^{-}}, \\ \mathsf{Ca}^{2+} & \partial_{t} \left(\phi S_{I} C_{I}^{\mathsf{Ca}^{2+}} + C_{s}^{\mathsf{Ca}^{2+}} \right) + \mathcal{L}_{I} C_{I}^{\mathsf{Ca}^{2+}} = \mathbf{0}, \qquad C_{s}^{\mathsf{H}^{+}} & = -2c_{\mathsf{CaCO}_{3}}, \\ \mathsf{OH}^{-} & c_{\mathsf{OH}^{-}} = \mathcal{K}_{\mathsf{OH}^{-}} c_{\mathsf{H}^{+}}, \qquad C_{I}^{\mathsf{Ca}^{2+}} & = \mathbf{0}, \\ \mathsf{HCO}_{3}^{-} & c_{\mathsf{HCO}_{3}^{-}} = \mathcal{K}_{\mathsf{HCO}_{3}^{-}} c_{\mathsf{H}^{+}}^{-1} c_{\mathsf{CO}_{2(1)}}, \qquad C_{s}^{\mathsf{Ca}^{2+}} & = c_{\mathsf{CaCO}_{3}}, \\ \mathsf{CaCO}_{3} & 1 = \mathcal{K}_{\mathsf{CaCO}_{3}} c_{\mathsf{H}^{+}}^{-2} c_{\mathsf{O}_{2(1)}} c_{\mathsf{Ca}^{2+}}. \end{array}$$

・ロト ・聞ト ・ヨト ・ヨト

Innin_

Numerical methods

- Implementation in DuMu^X : DUNE for Multi-Phase, Component, Scale, Physics, ... flow and transport in porous media
- Flow is 2p2c, fully coupled approach, vertex centered finite volumes.
- Reactive transport is new module, extends 1pNc, coupling through Standard Iterative Approach (Yeh and Tripathi, 89).

• • = • • = •

Numerical methods

- Implementation in DuMu^X : DUNE for Multi-Phase, Component, Scale, Physics, ... flow and transport in porous media
- Flow is 2p2c, fully coupled approach, vertex centered finite volumes.
- Reactive transport is new module, extends 1pNc, coupling through Standard Iterative Approach (Yeh and Tripathi, 89).

Estimation of splitting error

Variation of liquid CO₂ total concentration.

Time (years)	Without <i>R</i>	With <i>R</i>
50 years	334590649	335411173
100 years	334127585	335409334
200 years	333338905	335408767
Absolute change	-1928479	-7775
Relative change	-0.58%	-0.002%

Numerical example: the SHPCO2 benchmark

Study dissolution of gas bubble after injection of water. Compare one phase (immobile gas) and two-phase simulations

Geometry and (one phase) velocity field A. Michel, F. Haeberlein, L. Trenty (2009)

SHPCO2 benchmark: two-phase results

Liquid CO₂ (left) and pH (right). Top: 400 years, bottom: 1200 years.

M. Kern (Inria)

Two-phase reactive flow

SIAM GS15 12 / 16

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Innin_

SHPCO2: one phase and two-phase comparison Gas concentration.

Left: immobile gas (one phase), right: mobile gas (two phases) Top: 400 years, bottom: 1200 years.

M. Kern (Inria)

Innia-

CO₂ injection (after Saaltink et al., 2013)

Gas saturation after100 days, and 1 year of CO2 injection

Density and pressure variation at 20 ${\rm m}$ from injection well. Comparison with Saaltink et al.

M. Kern (Inria)

SIAM GS15 14 / 16

Precipitation of calcite: sensitivity to mesh and time step

Precipitated / dissolved calcite volume fraction after 100 days

Different time steps

M. Kern (Inria)

SIAM GS15 15 / 16

3 🖒 🖌 3

Conclusions – perspectives

- Uncoupled algorithms for a two-phase multicomponent flow with reactive transport
- Validation example: behavior different than one phase case
- Quantitative estimate for splitting error
- E. Ahusborde, M. K., V. Vostrikov, Numerical simulation of two-phase multicomponent flow with reactive transport in porous media: application to geological sequestration of CO2, ESAIM: Proc., 2015.

In progress (Ahusborde, Amaziane, El Ossmani, Poncet)

- Taking into account porosity changes from mineral reactions
- Extension to kinetic reactions

(日) (周) (日) (日)