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Chemical equilibrium

Only take into account equilibrium, model, aqueous and sorption reactions

Chemical reactions, mass action laws

x i �
Nc

∑
j=1

Sijc j , i = 1, . . . ,Nx ,

y i �
Nc

∑
j=1

Aijc j +
Ns

∑
j=1

Bijsj , i = 1, . . . ,Ny ,

c j aqueous (mobile) components, sj sorbed (immobile) components,
x i aqueous secondary species, y i fixed secondary species.
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Numerical solution of nonlinear problem

System of non-linear equations

Mass action law
logx = S logc + logKx ,

logy = A logc + B logs + logKy .

Mass conservation
c + Stx + AT y = T , T known from transport

s + BT y = W , W imposed

Take concentration logarithms as main unknowns
Use globalized Newton’s method (line search, trust region).

Role of chemical model
Given totals T (and W , known), split into

Mobile C = c + ST x ,

Fixed F = AT y .

total concentrations

Result of chemical problem

F = ΨC(T )
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Flow model: Darcy’s law and mixed finite elements

Flow equations

u =−K ∇h, Darcy’s law

∇ ·u = 0 incompressibility

h piezometric head K permeability tensor u Darcy velocity

Solution by mixed finite elements

Approximate both head and velocity

Flux continuous across element faces

Locally mass conservative

Allows full diffusion tensor
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Transport model

Convection–diffusion equation

ω
∂c
∂ t
−div(Dgradc)

dispersion
+ div(uc)

advection
= f

c: concentration [mol/l]

ω : porosity (–)
u Darcy velocity [m/s]

Dispersion tensor

D = deI + |u|[α lE(u) + α t(I−E(u))], Eij(u) =
uiuj

|u|

α l ,α t dispersivity coeff. [m], de molecular diffusion [m/s2]

Notation: Lc = div(Dgradc) + div(uc)
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Solution by operator splitting

Advection step
Explicit, finite volumes / discontinuous Galerkine

Locally mass conservative

Allows unstructured meshes

CFL condition: use
sub–time–steps

Dispersion step
Like flow equation (time dependent): mixed finite elements (implicit)

See Ackerer et al., Putti et al., Arbogast et al., ...

Condense transport solver, one time step

Cn+1 = ΨT (f n,Cn)

Amir, Kern, Taakili (INRIA) Newton–Krylov for reactive transport SIAM GS 09 8 / 25



Solution by operator splitting

Advection step
Explicit, finite volumes / discontinuous Galerkine

Locally mass conservative

Allows unstructured meshes

CFL condition: use
sub–time–steps

Dispersion step
Like flow equation (time dependent): mixed finite elements (implicit)

See Ackerer et al., Putti et al., Arbogast et al., ...

Condense transport solver, one time step

Cn+1 = ΨT (f n,Cn)

Amir, Kern, Taakili (INRIA) Newton–Krylov for reactive transport SIAM GS 09 8 / 25



Coupled problem formulationn

Benchmark formulation
Cn+1−Cn

∆t
+

F n+1−F n

∆t
+ L(Cn+1) = 0

T n+1 = Cn+1 + F n+1

F n+1 = ΨC(T n+1)

Other formulations: see other MS speakers, Valocchi et al., Saaltink et al., ....

Equivalent form 
Cn+1 = ΨT

(
F n+1−F n

∆t
,Cn
)

T n+1 = Cn+1 + F n+1

F n+1 = ΨC(T n+1)

Decoupling of transport and chemistry modules
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Coupled problem (2)

Solution by block Gauss–Seidel (fixed point) or
by Newton–Krylov : keep transport and
chemistry as black–boxes (up to Jacobian
computation)
Residual computation:

1 Apply ΨT : solve transport for each
species,

2 Apply ΨC : solve chemistry for each grid
cell.

Jacobian structure

Alternative formulation
Eliminate T , C

F n+1 = ΨC

(
F n+1 + ΨT

(
F n+1−F n

∆t
,Cn
))
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Newton Krylov method

Solve the linear system by an iterative method

GMRES, TFQMR and BiCGStab require only jacobian matrix by vector
products.
Can be computed by blocks for transport and chemistry separately

Inexact Newton
Approximation of the Newton’s direction:

‖f ′(xk )d + f (xk )‖ ≤ η‖f (xk )‖ (0<η<1)

Choice of the forcing term η?
Keep quadratic convergence (locally)
Avoid oversolving the linear system

η = γ‖f (xk )‖2/‖f (xk−1)‖2 (Kelley, Eisenstat and Walker)
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MoMaS Benchmark: easy, 1D, advective case

4 aqueous, 1 sorbed primary, 5 aqueous, 2 sorbed secondary species.

Huge variation in equilibrium constants, large stoichiometric coeffs.

Long simulation time
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MoMaS benchmark (2)

Mesh dependence
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MoMaS benchmark (3)
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A simpler system

Key issue for Newton–Krylov is preconditioning

Single species with sorption

Conservation law ω∂tu + ω∂tv + Lu = 0 in Ω× (0,T )

Sorption models v = ψ(u), ψ known explicitely

Linear isotherm ψ(u) = kf u

Langmuir isotherm v = ψ(u) =
kf σ0u

kf u + kb
,

Freundlich isotherm ψ(u) = kf u
p, p < 1.
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Alternative formulations

Coupled system

F

(
u
v

)
=

(
(M + ∆t L)u + Mv−bn

v−Ψ(u)

)
Jacobian J =

(
M + ∆t L M
−D 0

)
= I−∆t JT + JT ,

D = diag(ψ ′(u1), . . . ,ψ ′(uN)).

Elimination of u

F2(v) = v−Ψ((M + ∆t L)−1(bn−Mv))

Schur complement of coupled system
Jacobian J2 = I + D

(
M + ∆t L)−1

)
M
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Preconditioners for coupled system

Block Jacobi

P =

(
M + ∆t L 0

0 I

)
Solve transport at each step

Block Gauss–Seidel preconditioner

P =

(
M + ∆t L 0
−D I

)
Solve transport at each step, some coupling

Physics based preconditioner

P = (I−∆t JT )(I + JC),

Operator splitting, O(∆t) error
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Numerical results

Geometry of MoMaS benchmark, T = 200, ∆t = 1., KL = 0.25, σ = 1.

LifeV C++ library (EPFL, INRIA), and Kinsol (LLNL) nonlinear solver.

Cemracs 2008, J. B. Apoung-Kamga, P. Havé, J. Houot, M. K., A. Semin.
Kinsol interface by A. Taakili

Solver behavior as function of KL

KL = 0.25 KL = 1.0 KL = 2.5
PC NNI NLI RT NNI NLI RT NNI NLI RT

None 13 218 85 27 315 130 50 770 317
BJ 9 21 16 23 84 53 46 259 150

BGS 9 12 12 24 49 41 46 139 106
OS 9 12 15 24 49 54 46 138 140

NNI Nonlinear iterations

NLI Linear (inner) iterations

RT Run time (Matlab, 1D)
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Numerical results

Convergence of Newton and fixed point
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Preconditioner performance: mesh dependence

Mesh dependence for coupled formulation

Mesh/PC
h h/2 h/4 h/8

NNI NLI NNI NLI NNI NLI NNI NLI
None 8 54 10 100 17 238 33 658

BJ 8 22 9 26 13 38 20 62
BGS 8 11 10 15 14 22 21 36
OS 8 11 10 15 14 22 21 26

Good performance of BGS, dependence on mesh ?

Mesh dependence for v formulation

Mesh h h/2 h/4 h/8 h/16 h/32
NNI 6 6 6 6 6 6
NLI 25 25 25 25 26 26

The behavior of the solver is independant of mesh
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Conclusions – perspectives

Conclusions
Global formulation for equilibrium reactive transport, enabling software
decoupling
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