INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

centre de recherche PARIS - ROCQUENCOURT

A Newton–Krylov method for reactive transport in porous media

Laila Amir, Michel Kern, Abdelaziz Taakili Michel.Kern@inria.fr

Institut National de Recherche en Informatique et Automatique

SIAM Conference on Mathematical and Numerical Issues in the Geosciences Leipzig June 2009

Outline

Mathematical model

- Solving chemical equilibrium problems
- Flow and transport model
- Coupled problem

Application to the MoMaS Benchmark

- Preconditioners for a simple system
 - Single species sorption model
 - Numerical experiments

Conclusions

Work sponsored by Itasca Consultants, Groupement MoMaS (Andra – CEA – CNRS – EDF – IRSN), and ANR SHPCO2 project

Plan

Mathematical model

- Solving chemical equilibrium problems
- Flow and transport model
- Coupled problem

Application to the MoMaS Benchmark

Preconditioners for a simple system

- Single species sorption model
- Numerical experiments

Conclusions

Only take into account equilibrium, model, aqueous and sorption reactions

Chemical reactions, mass action laws

$$\begin{aligned} \mathbf{x}_i &\leftrightarrows \sum_{j=1}^{N_c} S_{ij} \mathbf{c}_j, & i = 1, \dots, N_x, \\ \mathbf{y}_i &\hookrightarrow \sum_{j=1}^{N_c} A_{ij} \mathbf{c}_j + \sum_{j=1}^{N_s} B_{ij} \mathbf{s}_j, & i = 1, \dots, N_y, \end{aligned}$$

 c_j aqueous (mobile) components, s_j sorbed (immobile) components, x_i aqueous secondary species, y_i fixed secondary species.

Amir, Kern, Taakili (INRIA)

Numerical solution of nonlinear problem

System of non-linear equations

Ma	ass	acti	ion	law
IVIC	133	acti		avv

 $\log x = S \log c + \log K_x$ lc

$$\log y = A \log c + B \log s + \log K_y.$$

Mass conservation

$$\mathbf{x} + \mathbf{S}^t \mathbf{x} + \mathbf{A}^T \mathbf{y} = \mathbf{T}$$

 $\mathbf{s} + \mathbf{B}^T \mathbf{v} = \mathbf{W}$

T known from transport

W imposed

Take concentration logarithms as main unknowns

Use globalized Newton's method (line search, trust region).

С

Amir, Kern, Taakili (INRIA)

SIAM GS 09 5/25

Numerical solution of nonlinear problem

System of non-linear equations

Mass action law

 $\log x = S \log c + \log K_x$ k

$$\log y = A \log c + B \log s + \log K_y.$$

Mass conservation

$$c + S^{t}x + A^{T}y = T,$$

$$s + B^{T}y = W,$$

T known from transport

W imposed

Result of chemical problem

 $F = \Psi_C(T)$

Take concentration logarithms as main unknowns

Use globalized Newton's method (line search, trust region).

Role of chemical model

Given totals T (and W, known), split into

Mobile
$$C = c + S^T x$$

Fixed
$$F = A^T y$$
.

total concentrations

Amir, Kern, Taakili (INRIA)

Flow model: Darcy's law and mixed finite elements

Flow equations

 $u = -K\nabla h$, Darcy's law $\nabla \cdot u = 0$ incompressibility

h piezometric head

K permeability tensor

u Darcy velocity

Solution by mixed finite elements

- Approximate both head and velocity
- Flux continuous across element faces

- Locally mass conservative
- Allows full diffusion tensor

Amir, Kern, Taakili (INRIA)

Convection-diffusion equation

$$\omega \frac{\partial c}{\partial t} - \operatorname{div}(\operatorname{D}\operatorname{grad} c) + \operatorname{div}(\operatorname{u} c) = f$$

ω: porosity (–)

• U Darcy velocity [m/s]

....

Dispersion tensor

$$\mathbf{D} = d_e \mathbf{I} + |\mathbf{u}| [\alpha_I \mathbf{E}(\mathbf{u}) + \alpha_t (I - \mathbf{E}(\mathbf{u}))], \quad E_{ij}(\mathbf{u}) = \frac{u_i u_j}{|\mathbf{u}|}$$

 α_l, α_t dispersivity coeff. [m], d_e molecular diffusion [m/s²]

Notation: Lc = div(D grad c) + div(uc)

EN INFORMATIONE

Solution by operator splitting

Advection step

Explicit, finite volumes / discontinuous Galerkine

- Locally mass conservative
- Allows unstructured meshes
- CFL condition: use sub-time-steps

Dispersion step

Like flow equation (time dependent): mixed finite elements (implicit)

See Ackerer et al., Putti et al., Arbogast et al., ...

SIAM GS 09 8 / 25

Solution by operator splitting

Advection step

Explicit, finite volumes / discontinuous Galerkine

- Locally mass conservative
- Allows unstructured meshes
- CFL condition: use sub-time-steps

Dispersion step

Like flow equation (time dependent): mixed finite elements (implicit)

See Ackerer et al., Putti et al., Arbogast et al., ...

Condense transport solver, one time step								
$\mathbf{C}^{n+1} = \Psi_T(f^n, \mathbf{C}^n)$								

Coupled problem formulationn

Benchmark formulation

$$\begin{cases} \frac{C^{n+1} - C^n}{\Delta t} + \frac{F^{n+1} - F^n}{\Delta t} + L(C^{n+1}) = 0\\ T^{n+1} = C^{n+1} + F^{n+1}\\ F^{n+1} = \Psi_C(T^{n+1}) \end{cases}$$

Other formulations: see other MS speakers, Valocchi et al., Saaltink et al.,

Equivalent form

$$\begin{cases} \boldsymbol{C}^{n+1} = \Psi_T \left(\frac{\boldsymbol{F}^{n+1} - \boldsymbol{F}^n}{\Delta t}, \boldsymbol{C}^n \right) \\ \boldsymbol{T}^{n+1} = \boldsymbol{C}^{n+1} + \boldsymbol{F}^{n+1} \\ \boldsymbol{F}^{n+1} = \Psi_C(\boldsymbol{T}^{n+1}) \end{cases}$$

Decoupling of transport and chemistry modules

Amir, Kern, Taakili (INRIA)

Coupled problem (2)

Solution by block Gauss-Seidel (fixed point) or Jacobian structure

by Newton–Krylov : keep transport and chemistry as black–boxes (up to Jacobian computation)

Residual computation:

- Apply Ψ_T : solve transport for each species,
- Apply Ψ_C : solve chemistry for each grid cell.

Coupled problem (2)

Solution by block Gauss-Seidel (fixed point) or Jacobian structure

by Newton-Krylov : keep transport and chemistry as black-boxes (up to Jacobian computation)

Residual computation:

- Apply Ψ_T : solve transport for each species,
- 2 Apply Ψ_C : solve chemistry for each grid cell.

Alternative formulation

Eliminate T, C

$$\boldsymbol{F}^{n+1} = \Psi_{\boldsymbol{C}}\left(\boldsymbol{F}^{n+1} + \Psi_{\boldsymbol{T}}\left(\frac{\boldsymbol{F}^{n+1} - \boldsymbol{F}^{n}}{\Delta t}, \boldsymbol{C}^{n}\right)\right)$$

Newton Krylov method

- Solve the linear system by an iterative method
- GMRES, TFQMR and BiCGStab require only jacobian matrix by vector products.

Can be computed by blocks for transport and chemistry separately

Newton Krylov method

- Solve the linear system by an iterative method
- GMRES, TFQMR and BiCGStab require only jacobian matrix by vector products.

Can be computed by blocks for transport and chemistry separately

Inexact Newton

Approximation of the Newton's direction:

 $\|f'(x_k)d + f(x_k)\| \le \eta \|f(x_k)\| \quad (0 < \eta < 1)$

- Choice of the forcing term η?
 - Keep quadratic convergence (locally)
 - Avoid oversolving the linear system

• $\eta = \gamma \|f(x_k)\|^2 / \|f(x_{k-1})\|^2$ (Kelley, Eisenstat and Walker)

Plan

Mathematical model

- Solving chemical equilibrium problems
- Flow and transport model
- Coupled problem

2 Application to the MoMaS Benchmark

Preconditioners for a simple system

- Single species sorption model
- Numerical experiments

Conclusions

MoMaS Benchmark: easy, 1D, advective case

- 4 aqueous, 1 sorbed primary, 5 aqueous, 2 sorbed secondary species.
- Huge variation in equilibrium constants, large stoichiometric coeffs.
- Long simulation time

Snapshots of components concentrations. Left t = 10, right t = 50 Laila Amir's thesis (December '08).

MoMaS benchmark (2)

	220 pc	oints	440 po	oints	660 po	ints
Step	Non lin	lin	Non lin	lin	Non lin	lin
101	18	377	22	682	25	814
103	25	494	18	551	25	636
105	15	426	22	583	21	741

Amir, Kern, Taakili (INRIA)

SIAM GS 09 14 / 25

< ≣ >

RINRIA

MoMaS benchmark (3)

Oscillations due to discretization (cf V. Lagneau)

SIAM GS 09 15 / 25

ER INFORMATIONS

Plan

Mathematical model

- Solving chemical equilibrium problems
- Flow and transport model
- Coupled problem

Application to the MoMaS Benchmark

Preconditioners for a simple system

- Single species sorption model
- Numerical experiments

Conclusions

Key issue for Newton-Krylov is preconditioning

Single species with sorption

Conservation law $\omega \partial_t u + \omega \partial_t v + L u = 0$ in $\Omega \times (0, T)$

Sorption models $\mathbf{v} = \psi(\mathbf{u})$, ψ known explicitely Linear isotherm $\psi(\mathbf{u}) = k_f \mathbf{u}$ Langmuir isotherm $\mathbf{v} = \psi(\mathbf{u}) = \frac{k_f \sigma_0 \mathbf{u}}{k_f \mathbf{u} + k_b}$, Freundlich isotherm $\psi(\mathbf{u}) = k_f \mathbf{u}^p$, p < 1.

Amir, Kern, Taakili (INRIA)

Alternative formulations

Coupled system

$$F\begin{pmatrix} \mathbf{u} \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} (\mathbf{M} + \Delta t \mathbf{L})\mathbf{u} + \mathbf{M}\mathbf{v} - \mathbf{b}^n \\ \mathbf{v} - \Psi(\mathbf{u}) \end{pmatrix}$$

Jacobian $J = \begin{pmatrix} \mathbf{M} + \Delta t \mathbf{L} & \mathbf{M} \\ -\mathbf{D} & 0 \end{pmatrix} = I - \Delta t J_T + J_T,$
 $\mathbf{D} = \operatorname{diag}(\psi'(u_1), \dots, \psi'(u_N)).$

Alternative formulations

Coupled system

$$F\begin{pmatrix} \mathbf{u} \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} (\mathbf{M} + \Delta t \mathbf{L})\mathbf{u} + \mathbf{M}\mathbf{v} - \mathbf{b}^n \\ \mathbf{v} - \Psi(\mathbf{u}) \end{pmatrix}$$
Jacobian $J = \begin{pmatrix} \mathbf{M} + \Delta t \mathbf{L} & \mathbf{M} \\ -\mathbf{D} & 0 \end{pmatrix} = I - \Delta t J_T + J_T,$

$$\mathbf{D} = \operatorname{diag}(\psi'(u_1), \dots, \psi'(u_N)).$$

Elimination of **u**

$$F_2(\mathbf{v}) = \mathbf{v} - \Psi((\mathbf{M} + \Delta t \mathbf{L})^{-1} (\mathbf{b}^n - \mathbf{M} \mathbf{v}))$$

Schur complement of coupled system Jacobian $J_2 = I + \mathbf{D} \left(\mathbf{M} + \Delta t \mathbf{L} \right)^{-1} \right) \mathbf{M}$

NINRIA

Preconditioners for coupled system

Block Jacobi

$$\mathbf{P} = \begin{pmatrix} \mathbf{M} + \Delta t \, \mathbf{L} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{pmatrix}$$

Solve transport at each step

Preconditioners for coupled system

Block Jacobi

$$\mathbf{P} = \begin{pmatrix} \mathbf{M} + \Delta t \, \mathbf{L} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{pmatrix}$$

Solve transport at each step

Block Gauss-Seidel preconditioner

$$\mathbf{P} = \begin{pmatrix} \mathbf{M} + \Delta t \, \mathbf{L} & \mathbf{0} \\ -\mathbf{D} & \mathbf{I} \end{pmatrix}$$

Solve transport at each step, some coupling

19/25

SIAM GS 09

Preconditioners for coupled system

Block Jacobi

$$\mathbf{P} = \begin{pmatrix} \mathbf{M} + \Delta t \, \mathbf{L} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{pmatrix}$$

Solve transport at each step

Block Gauss-Seidel preconditioner

$$\mathbf{P} = egin{pmatrix} \mathbf{M} + \Delta t \, \mathbf{L} & \mathbf{0} \ -\mathbf{D} & \mathbf{I} \end{pmatrix}$$

Solve transport at each step, some coupling

Physics based preconditioner

$$\mathbf{P} = (I - \Delta t J_T)(I + J_C),$$

Operator splitting, $O(\Delta t)$ error

Amir, Kern, Taakili (INRIA)

Numerical results

Geometry of MoMaS benchmark, T = 200, $\Delta t = 1.$, $K_L = 0.25$, $\sigma = 1$.

LifeV C++ library (EPFL, INRIA), and Kinsol (LLNL) nonlinear solver.

Cemracs 2008, J. B. Apoung-Kamga, P. Havé, J. Houot, M. K., A. Semin. Kinsol interface by A. Taakili

Solver behavior as function of K_L

	$K_L = 0.25$			k	$\zeta_L = 1.$	0	$K_L = 2.5$		
PC	NNI	NLI	RT	NNI	NLI	RT	NNI	NLI	RT
None	13	218	85	27	315	130	50	770	317
BJ	9	21	16	23	84	53	46	259	150
BGS	9	12	12	24	49	41	46	139	106
OS	9	12	15	24	49	54	46	138	140

NNI Nonlinear iterations

NLI Linear (inner) iterations

RT Run time (Matlab, 1D)

Preconditioner performance: mesh dependence

Mesh dependence for coupled formulation

Mesh/PC	h		h/2		h/4		h/8		
	NNI	NLI	NNI	NLI	NNI	NLI	NNI	NLI	
None	8	54	10	100	17	238	33	658	
BJ	8	22	9	26	13	38	20	62	
BGS	8	11	10	15	14	22	21	36	
OS	8	11	10	15	14	22	21	26	
Good performance of BGS, dependence on mesh ?									

Amir, Kern, Taakili (INRIA)

SIAM GS 09 22 / 25

Preconditioner performance: mesh dependence

Mesh dependence for coupled formulation

Mesh/PC	h		h/2		h/4		h/8		
	NNI	NLI	NNI	NLI	NNI	NLI	NNI	NLI	
None	8	54	10	100	17	238	33	658	
BJ	8	22	9	26	13	38	20	62	
BGS	8	11	10	15	14	22	21	36	
OS	8	11	10	15	14	22	21	26	
Good performance of BGS, dependence on mesh ?									

Mesh dependence for v formulation

Mesh	h	h/2	h/4	h/8	<i>h</i> /16	h/32
NNI	6	6	6	6	6	6
NLI	25	25	25	25	26	26

The behavior of the solver is independant of mesh

Amir, Kern, Taakili (INRIA)

Newton-Krylov for reactive transport

SIAM GS 09 22 / 25

Plan

Mathematical model

- Solving chemical equilibrium problems
- Flow and transport model
- Coupled problem

2 Application to the MoMaS Benchmark

Preconditioners for a simple system

- Single species sorption model
- Numerical experiments

Conclusions

Conclusions

- Global formulation for equilibrium reactive transport, enabling software decoupling
- Preliminary results on MoMaS benchmark
- Comparison of precondiioners for one species sorption model

Conclusions

- Global formulation for equilibrium reactive transport, enabling software decoupling
- Preliminary results on MoMaS benchmark
- Comparison of precondiioners for one species sorption model

Perspectives

- Implement Newton–Krylov for 2D/3D platform
- Fully solve MoMaS benchmark
- Extension to mixed equilibrium kinetics models
- Further analysis of preconditioners (eigenvalues of Jacobian)