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Nuclear waste storage (1)

Assess safety of deep geological nuclear waste storage (clay layer)

Long term simulation of radionuclide transport (one million years)

Wide variation of scales : from package (meter) to regional (kilometers)

Geochemistry: large number of species

Strong government regulation

Main actors : , ,

Research in mathematical and numerical modeling is conducted in the

CNRS MOMAS group (Director A. Ern).
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Nuclear waste storage (2)

Present choice in France: a sedimentary geological formation (in the Meuse
region)
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A 3D far field model

Used as a benchmark, similar to Andra safety model

Blown-up 30 times vertically

Difficulties
Distorted geometry (horizontal ≈
40 km, vertical 700 m)

Strong heterogenities
(permeability varies by 8 orders of
magnitude)

General hexahedral mesh

Simulation over 500 000 years

M. Kern (INRIA) Reactive transport 6 / 39



CO2 sequestration

Geological model, BRGM (21 million grid
points)

Long term capture of CO2
in saline aquifer

Simulation to understand
CO2 migration through
salt

Coupling of liquid and gas
phase, reactive transport

SHPCO2 project (funded by
ANR) High Performance
Simulation of CO2
sequestration
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CO2 sequestration: a synthetic model

Minimal chemical system that still ”looks like” realistic for CO2 storage

Dissolution of CO2 in water,
dissolution of calcite. Gas
assumed immobile (capillary
trapping), decouples two phase
flow from reacftive transport.

Chemical system

H2O−−⇀↽−− H+ + OH– water dissociation

CO2 (g) −−⇀↽−− CO2 (aq) gas dissolution

H2O + CO2 (aq) −−⇀↽−− HCO–
3 + H+ dissociation of aqueous CO2

CaCO3 + H+ −−⇀↽−− Ca+
2 + HCO–

3 Dissolution of calcite
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Flow model

Flow equations

q =−K ∇h Darcy’s law h piezometric head

∇ ·q = 0 incompressibility q Darcy velocity

K permeability tensor (heterogeneous, anisotropic)

Mixed finite elements

Approximate both head and velocity

Continuous flux across element faces

Locally mass conservative

Allows full diffusion tensor

Extension: a composite mixed finite element for hexahedra
Convergence theory not valid for RTN space over general (deformed)
hexahedra,

Kuznetsov, Repin (2003): construct macroelement on a hexahedron by
subdividing it into 5 tetrahedra. Same DOFs as before, optimal order error
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Mixed finite elements

Simulation for 3D far field benchmark model, horizontal cros section of
modulus of velocity

RTN FE New FE

A. Sboui’s PhD thesis, Sboui, Jaffré , Roberts SIAM J. SCi. Comp. (2009).
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Transport model

Convection–diffusion equation

φ
∂c
∂ t
−div(Dgradc)

dispersion
+ div(uc)

advection
+ φλc = f

c: concentration [mol/l]

φ : porosity [–]

λ radioactive decay [s−1]

u Darcy velocity [m/s]

Dispersion tensor

D = deI + |u|[α lE(u) + α t(I−E(u))], Eij(u) =
uiuj

|u|

α l ,α t dispersicity coeff. [m], de molecular diffusion [m/s2]
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Solution by operator splitting

Advection step
Explicit, finite volumes / discontinuous Galerkine

Locally mass conservative

Allows unstructured meshes

CFL condition: use
sub–time–steps

Dispersion step
Like flow equation (time dependent): mixed finite elements (implicit)

See Ackerer et al., Putti et al., Arbogast et al., ...

Condense transport solver, one time step

Cn+1 = ΨT (f n,Cn)
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Transport around a nuclear waste storage site

GdR MoMaS benchmark, Andra model

Concentration at 130 000 years Concentration at 460 000 years

A. Sboui, E. Marchand (INRIA, Estime)
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Transport for synthetic CO2 example (M. Franco)

Left T = 1 day, right T = 6 days

Left T = 12 day, right T = 37 days
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Chemical phenomena
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Classification of chemical reactions

According to nature of reaction
Homogeneous In the same phase (aqueous, gaseous, ...)

Examples: Acid base, oxydo–reduction

Heterogeneous Involve different phases
Examples: Sorption, precipitation / dissolution, ...

According to speed of reaction
Slow reactions Irreversible, modeled using kinetic law

Fast reactions Reversible, modeled using equilibrium

Depends on relative speed of reactions and transport.

In this talk: Equilibrium reactions, with sorption.
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Sorption processes

Definition
Sorption is the accumulation of a fluid on a solid at the fluid–solid interface.

Main mechanism for exchanges between dissolved species and solid surfaces.

Several possible mechanisms
Surface complexation Formation of bond between surface and aqueous

species, due to electrostatic interactions. Depends on surface
potential.

Ion exchange Ions are exchanged between sorption sites on the surface.
Depends on Cationic Exchange Capacity.

Can be modeled as mass action law
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Modeling general equilibrium models

General chemical reactions : Ns species, Nr reactions

Ns

∑
j=1

νijY j � 0, i = 1, . . . ,Nr

νij stoichiometric coefficients. Matrix equation νY = 0

Assumption
ν has full rank : Rankν = Nr .

Basis for null-space of ν has
dimensions Nc = Ns−Nr .

Partition ν =
(
G N

)
, B ∈ RNr×Nr invertible, N ∈ RNc×Nr . Let H =−G−1N

General solution of νY = 0: Y =

(
x
c

)
,x = Hc. c ∈ RNc , x ∈ RNr .
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Chemical equilibrium

Only take into account equilibrium, with aqueous and sorption reactions

Chemical reactions, mass action laws

x i �
Nc

∑
j=1

Sijc j , i = 1, . . . ,Nx ,

x̄ i �
Nc

∑
j=1

Aijc j +
Ns

∑
j=1

Bij c̄ j , i = 1, . . . ,Ny ,

c j aqueous (mobile) components, c̄ j sorbed (immobile) components,
x i aqueous secondary species, x̄ i fixed secondary species.
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Numerical solution of nonlinear problem

System of non-linear equations

Mass action law
logx = S logc + logK ,

log x̄ = A logc + B log c̄ + log K̄ .

Mass conservation
c + ST x + AT x̄ = T , T known from transport

c̄ + BT x̄ = W , W imposed

Take concentration logarithms as main unknowns
Use globalized Newton’s method (line search, trust region).

Role of chemical model
Given totals T (and W , known), split into

Mobile C = c + ST x ,

Fixed F = AT x̄ .

total concentrations

Result of chemical problem

F = ΨC(T )
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Sorption models

Definition
An adsorption isotherm relates quantity of adsorbed component F (mol/g) to
its concentration C (mol/l) in the fluid

Common isotherms
Linear ψ(C) = Kd C

Langmuir ψ(C) =
kf σ0C

kf C + kb

Freundlich ψ(C) = γC1/p (p > 1 possible)

Coupled model
φ

∂C
∂ t

+ φ
∂F
∂ t

+ LC = 0, L adv. diff operator

F = Ψ(C).

Mathematical, numerical analysis: van Duijn, Knabner, Frolkovic
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Formulations of coupled system

After space and time discretization,

Coupled formulation

F

(
C
F

)
=

(
(M + ∆tL)C + MF + b

F −Ψ(C)

)
= 0

Eliminate F F1(C) = (M + ∆tL)C + MΨ(C)−bn

Eliminate C F2(F) = F −Ψ
(
M + ∆tL)−1(b−MF)

)
Jacobian for coupled formulation,with D = diag(Ψ′(C1), . . . ,Ψ′(CN))

J =

(
M + ∆tL M
−D I

)
J2 = I + D(M + ∆tL)−1M is Schur complement of J
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Multicomponent models: the coupled system

Transport for each species (same dispersion tensor for all species)
Eliminate (unknown) reaction rates by using conservation laws (T = C + F )

φ
∂T ic

∂ t
+ L(C ic) = 0, ic = 1, . . . ,Nc

T ic
ix = C ic

ix + F ic
ix ic = 1, ..,Nc and ix = 1, ..,Nx

F ix = Ψ(T ix ) ix = 1, . . . ,Nx .

Coupling methods
Iterative, based on fixed point (Yeh Tripathi ’89, Carrayrou et al. ’04)

Substitution, global (Saaltink ’98, Hammond et al. ’05)

Reduction method (Knabner, Kraütle, ’06)
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Coupling formulations and algorithms(1)

CC formulation, explicit chemistry
φ

dC
dt

+
dF
dt

+ LC = 0

H(z)−
(

C + F
W

)
= 0

F −F(z) = 0.

+ Explicit Jacobian

+ Chemistry function, no
chemical solve

− Intrusive approach (chemistry
not a black box)

− Precipitation not easy to include

Coupled system is index 1 DAE

K
dy
dt

+ f (y) = 0

Use standard DAE software
C. de Dieuleveult (Andra thesis), J. Erhel, MK (JCP ’09)
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Coupling formulations and algorithms(2)

TC formulation, implicit chemistry
φ

dT
dt

+ LC = 0

T −C−F = 0

F −Ψ(T ) = 0

+ Non-intrusive approach
(chemistry as black box)

+ Precipitation can (probably) be
included

− One chemical solve for each
function evaluation

Cn+1 = ΨT

(
F n−F n+1

∆t
,Cn
)

T n+1 = Cn+1 + F n+1

F n+1 = ΨC(T n+1)

Fixed point problem, can be solved by block Gauss Seidel or by Newton’s
method
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Coupled problem (2)

Solution by block Gauss–Seidel (fixed point) or
by Newton–Krylov : keep transport and
chemistry as black–boxes (up to Jacobian
computation)
Residual computation:

1 Apply ΨT : solve transport for each
species,

2 Apply ΨC : solve chemistry for each grid
cell.

Jacobian structure

Alternative formulation
Eliminate T , C

F n+1 = ΨC

(
F n+1 + ΨT

(
F n+1−F n

∆t
,Cn
))
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Solution by Newton–Krylov

Solve the linear system by an iterative method (GMRES)

Requires only jacobian matrix by vector products.

Used for CFD, shallow water, radiative transfer(Keyes, Knoll, JCP 04), and for
reactive transport (Hammond et al., Adv. Wat. Res. 05)

Inexact Newton
Approximation of the Newton’s direction ‖f ′(xk )d + f (xk )‖ ≤ η‖f (xk )‖
Choice of the forcing term η?

Keep quadratic convergence (locally)
Avoid oversolving the linear system

η = γ‖f (xk )‖2/‖f (xk−1)‖2 (Kelley, Eisenstat and Walker)

L. Amir’s thesis, Amir, MK (Comp. Geosci. 09)
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Example: ion exchange

Column experiment (Phreeqc ex. 11, Alliances ex. 3)

Column contains a solution with
1mmol, Na, 0.2mmol, K and 1.2mmol,
NO3. Inject solution with 1.2mmol
CaCl2. CEC = 1.110−3.
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Ion exchange example (ctd)

Snapshots at t = 35

Cl

Na

Ca

K
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3D example (O. Saouli)
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Performance of Newton’s method

Convergence of Newton and fixed point
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Preconditioning

Essential for good linear performance

Difficult for matrix free formulation

Block Jacobi

P =

(
M + ∆t L 0

0 I

)
Solve transport at each step

Block Gauss–Seidel preconditioner

P =

(
M + ∆t L 0
−D I

)
Solve transport at each step, some coupling

Formulation with elimination of C equivalent to Schur complement of
Gauss–Seidel.
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Gmres convergence: field of values analysis

Convergence of GMRES not determined by eigenvalues (Greenbaum,
Strakos).

Nevertheless ...

Eigenvalues of preconditioned operators

Assume spectrum(M + δ tL)≈ O(1/h2).

Jacobi Λ(P−1J)⊂ [1− iCh,1 + iCh]

Gauss-Seidel Λ(P−1J)⊂ [1,1 + Ch2], 1 is multiple ev

Schur Λ(J2)⊂ [1,1 + Ch2]

Bounded independent of h.
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Field of value analysis

GMRES convergence

W (A)≡
{

x∗Ax
x∗x
|x ∈ Cn,x 6= 0

}
, convex set, contains eigenvalues of A

‖rk‖2

‖r0‖2
≤ 2 min

p∈P∗
k

max
z∈W(A)

‖p(z)‖2.

Eingenvalues, field of values and pseudospectrum for GS preconditioning
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Preconditioner performance

h h/2 h/4 h/8
NI LI NI LI NI LI NI LI

None 8 54 10 100 17 238 33 658

BGS 8 11 10 15 14 22 21 36
Elimination 6 25 6 25 6 25 6 25

Inverting transport gives mesh independent convergence for both linear (LI)
and nonlinear (NI) iterations.

In practice: approximate inverse should give spectral equivalence
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Conclusions – perspectives

Robust methods for solving flow and transport in porous media

Preliminary results for reactive transport

Newton–Krylov promising framework, implementation in progress

Move to two-phase (multiphase) flows (water and gas)

Transport in fractured media

For chemistry, take into account “real” phenomena (minerals, kinetics,...)
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