When should one stop the iterations in a domain decomposition method?

Sarah Ali Hassan, Caroline Japhet, Michel Kern, Martin Vohralík

INRIA Paris \& ENPC (project-team SERENA) - University Paris 13 (LAGA) - Maison de la Simulation
Work supported by Andra, ANR DEDALES and ERC GATIPOR

6th Workshop on Parallel-in-Time methods
Locarno, October 23-27, 2017
erc

Outline

(9) Motivations and problem setting
(2) Space time domain decomposition
(3) A posteriori estimates

Outline

(1) Motivations and problem setting
(2) Space time domain decomposition
(3) A posteriori estimates

Geological repository for nuclear waste

Deep underground repository
(High-level waste)

Challenges

- Different materials \rightarrow strong heterogeneity, different time scales.
- Large differences in spatial scales.
- Long-term computations.

Geological repository for nuclear waste

Deep underground repository
(High-level waste)

Challenges

- Different materials \rightarrow strong heterogeneity, different time scales.
- Large differences in spatial scales.
- Long-term computations.

Geological repository for nuclear waste

Deep underground repository
(High-level waste)

Challenges

- Different materials \rightarrow strong heterogeneity, different time scales.
- Large differences in spatial scales.
- Long-term computations.
\Rightarrow Use space-time DD methods
\Rightarrow Estimate the error at DD iterations

Geological repository for nuclear waste

Deep underground repository
(High-level waste)

Challenges

- Different materials \rightarrow strong heterogeneity, different time scales.
- Large differences in spatial scales.
- Long-term computations.
\Rightarrow Use space-time DD methods
\Rightarrow Estimate the error at DD iterations
\Rightarrow Develop stopping criteria to stop DD iterations as soon as the discretization error is reached

Model problem: one phase unsteady flow

Time-dependent diffusion equation

$$
\begin{aligned}
\mathbf{u} & =-\boldsymbol{S} \nabla p, & & \text { in } \quad \Omega \times(0, T), \\
\phi \frac{\partial p}{\partial t}+\nabla \cdot \mathbf{u} & =f, & & \text { in } \Omega \times(0, T), \\
p & =g_{\mathrm{D}} & & \text { on } \quad \Gamma_{\mathrm{D}} \cap \partial \Omega \times(0, T), \\
-\mathbf{u} \cdot \boldsymbol{n} & =g_{\mathrm{N}} & & \text { on } \quad \Gamma_{\mathrm{N}} \cap \partial \Omega \times(0, T), \\
p(\cdot, 0) & =p_{0} & & \text { in } \Omega .
\end{aligned}
$$

- $\Omega \subset \mathbb{R}^{d}, d=2,3$,
- Γ_{D} Dirichlet boundaries,
- 「 ${ }_{\mathrm{N}}$ Neumann boundaries,
- n : unit normal vector outward from Ω.
- $f \in L^{2}(\Omega)$ the source term,
- ϕ porosity

Outline

(1) Motivations and problem setting

(2) Space time domain decomposition

A posteriori estimates

Domain decomposition in space

- Discretize in time and apply the DD algorithm at each time step:

Domain decomposition in space

- Discretize in time and apply the DD algorithm at each time step:
- Solve stationary problems in the subdomains
- Exchange information through the interface

Domain decomposition in space

- Discretize in time and apply the DD algorithm at each time step:
- Solve stationary problems in the subdomains
- Exchange information through the interface

Domain decomposition in space

- Discretize in time and apply the DD algorithm at each time step:
- Solve stationary problems in the subdomains
- Exchange information through the interface

Domain decomposition in space

- Discretize in time and apply the DD algorithm at each time step:
- Solve stationary problems in the subdomains
- Exchange information through the interface

Domain decomposition in space

- Discretize in time and apply the DD algorithm at each time step:
- Solve stationary problems in the subdomains
- Exchange information through the interface
© Same time step on the whole domain.

Domain decomposition in space

- Discretize in time and apply the DD
algorithm at each time step:
- Solve stationary problems in the subdomains
- Exchange information through the interface
© Same time step on the whole domain.

Space-time domain decomposition

Domain decomposition in space

- Discretize in time and apply the DD algorithm at each time step:
- Solve stationary problems in the subdomains
- Exchange information through the interface
© Same time step on the whole domain.

Space-time domain decomposition

- Solve time-dependent problems in the subdomains

Domain decomposition in space

- Discretize in time and apply the DD algorithm at each time step:
- Solve stationary problems in the subdomains
- Exchange information through the interface
© Same time step on the whole domain.

Space-time domain decomposition

- Solve time-dependent problems in the subdomains

Domain decomposition in space

- Discretize in time and apply the DD algorithm at each time step:
- Solve stationary problems in the subdomains
- Exchange information through the interface
© Same time step on the whole domain.

Space-time domain decomposition

- Solve time-dependent problems in the subdomains
- Exchange information through the space-time interface . . . Following [Halpern-Nataf-Gander (03), Martin (05)]

Domain decomposition in space

- Discretize in time and apply the DD algorithm at each time step:
- Solve stationary problems in the subdomains
- Exchange information through the interface
© Same time step on the whole domain.

Space-time domain decomposition

- Solve time-dependent problems in the subdomains
- Exchange information through the space-time interface . . . Following [Halpern-Nataf-Gander (03), Martin (05)]
- Different time steps can be used in each subdomain according to its physical properties.
. . . Following [Halpern-J.-Szeftel (12), Hoang-Japhet-Jaffré-K.-Roberts (13)]

Equivalent space-time DD formulation

Solve the transmission problem, with $i=1,2$

$$
\begin{aligned}
\mathbf{u}_{i} & =-\boldsymbol{S} \nabla p_{i} & & \text { in } \quad \Omega_{i} \times(0, T) \\
\phi_{i} \frac{\partial p_{i}}{\partial t}+\nabla \cdot \mathbf{u}_{i} & =f & & \text { in } \quad \Omega_{i} \times(0, T) \\
p_{i} & =g_{\mathrm{D}} & & \text { on } \quad\left(\Gamma_{\mathrm{D}} \cap \partial \Omega_{i}\right) \times(0, T) \\
-\mathbf{u}_{i} \cdot \boldsymbol{n}_{i} & =g_{\mathrm{N}} & & \text { on } \quad\left(\Gamma_{\mathrm{N}} \cap \partial \Omega_{i}\right) \times(0, T) \\
p_{i}(\cdot, 0) & =p_{0} & & \text { in } \quad \Omega_{i} \\
p_{1} & =p_{2} & & \text { on } \quad \Gamma_{1,2} \\
\mathbf{u}_{1} \cdot \boldsymbol{n}_{1} & =\mathbf{u}_{2} \cdot \boldsymbol{n}_{1} & & \text { on } \quad \Gamma_{1,2}
\end{aligned}
$$

- with physical transmission conditions

Equivalent space-time DD formulation

Solve the transmission problem, with $i=1,2$

$$
\begin{aligned}
\mathbf{u}_{i} & =-\boldsymbol{S} \nabla p_{i} & & \text { in } \Omega_{i} \times \\
\phi_{i} \frac{\partial p_{i}}{\partial t}+\nabla \cdot \mathbf{u}_{i} & =f & & \text { in } \Omega_{i} \times \\
p_{i} & =g_{\mathrm{D}} & & \text { on }\left(\Gamma_{\mathrm{D}} \Gamma\right. \\
-\mathbf{u}_{i} \cdot \boldsymbol{n}_{i} & =g_{\mathrm{N}} & & \text { on }\left(\Gamma_{\mathrm{N}} \Gamma\right. \\
p_{i}(\cdot, 0) & =p_{0} & & \text { in } \Omega_{i}, \\
-\beta_{1,2} \mathbf{u}_{1} \cdot \boldsymbol{n}_{1}+p_{1} & =-\beta_{1,2} \mathbf{u}_{2} \cdot n_{1}+p_{2} & & \text { on } \Gamma_{1,2}, \\
-\beta_{2,1} \mathbf{u}_{2} \cdot \boldsymbol{n}_{2}+p_{2} & =-\beta_{2,1} \mathbf{u}_{1} \cdot n_{2}+p_{1} & & \text { on } \Gamma_{1,2},
\end{aligned}
$$

- with Robin transmission conditions . . . Following [P.-L. Lions (88)]
- Equivalent to original problem

Optimized Schwarz waveform relaxation algorithm

For $k \geq 0$, at step k, solve in parallel the space-time Robin subdomain problems ($i=1,2$):

$$
\mathbf{u}_{i}^{k+1}=-\boldsymbol{S} \nabla p_{i}^{k+1} \quad \text { in } \quad \Omega_{i} \times(0, T),
$$

$$
\phi_{i} \frac{\partial p_{i}^{k+1}}{\partial t}+\nabla \cdot \mathbf{u}_{i}^{k+1}=f \quad \text { in } \Omega_{i} \times(0, T)
$$

$$
p_{i}^{k+1}=g_{\mathrm{D}}
$$

$$
-\mathrm{u}_{i}^{k+1} \cdot \boldsymbol{n}_{i}=g_{\mathrm{N}}
$$

$$
p_{i}^{k+1}(\cdot, 0)=p_{0}
$$

$$
-\beta_{1,2} \mathbf{u}_{1}^{k+1} \cdot \boldsymbol{n}_{1}+p_{1}^{k+1}=-\beta_{1,2} \mathbf{u}_{2}^{k} \cdot \boldsymbol{n}_{1}+p_{2}^{k} \quad \text { on } \quad \Gamma_{1,2} \times(0, T) \text {, }
$$

$$
-\beta_{2,1} \mathbf{u}_{2}^{k+1} \cdot \boldsymbol{n}_{2}+p_{2}^{k+1}=-\beta_{2,1} \mathbf{u}_{1}^{k} \cdot \boldsymbol{n}_{2}+p_{1}^{k}
$$

$$
\text { on } \quad \Gamma_{1,2} \times(0, T) \text {, }
$$

- where $-\beta_{i, j} \mathbf{u}_{j}^{0} \cdot \boldsymbol{n}_{i}+p_{j}^{0}=g_{i}^{0}$, with g_{i}^{0} a given function, $i=1,2$.
... Following [Halpern-Nataf-Gander
 (03), Martin (05)]

The semi-discrete in time subdomain problem

(DG0 time stepping)

- $\left\{t^{n}\right\}_{0 \leq n \leq N}$ discrete times: $t^{0}=0<t^{1}<\cdots<t^{n}<\cdots<t^{N}=T$.
- \mathcal{T}_{τ} the partition of $(0, T)$ into sub-intervals $I_{n}:=\left(t^{n-1}, t^{n}\right]$, and $\tau^{n}:=t^{n}-t^{n-1}, 1 \leq n \leq N$
- $P_{\mathcal{T}_{\tau}}^{0}(E):=\left\{v_{\tau}:(0, T) \rightarrow E\right.$; where v_{τ} is constant on $\left.I_{n}, 1 \leq n \leq N\right\}$.
- $v^{n}:=\left.v_{\tau}\right|_{n} \quad$ and $\quad \tilde{f}^{n}:=\frac{1}{\tau^{n}} \int_{I_{n}} f(\cdot, t) d t$.

The semi-discrete in time subdomain problem is:

Find $\left(p_{\tau, i}, \mathbf{u}_{\tau, i}\right) \in P_{\tau}^{0}\left(L^{2}\left(\Omega_{i}\right)\right) \times P_{\tau}^{0}\left(\mathbf{H}\left(\right.\right.$ div,$\left.\left.\Omega_{i}\right)\right)$ solution of the following problem, for $n=1, \ldots, N$:

$$
\begin{aligned}
\mathbf{u}_{i}^{n} & =-\boldsymbol{S} \nabla p_{i}^{n} & & \text { in } \quad \Omega_{i}, \\
\frac{p_{i}^{n}-p_{i}^{n-1}}{\tau^{n}}+\nabla \cdot \mathbf{u}_{i}^{n} & =\tilde{f}^{n} & & \text { in } \quad \Omega_{i}, \\
-\beta_{i, j} \mathbf{u}_{i}^{n} \cdot \boldsymbol{n}_{i}+p_{i}^{n} & =\xi_{i, j}^{n} & & \text { on } \quad \Gamma_{i, j}, \forall j \in B^{i}, \\
p_{i}^{0} & =p_{0} & & \text { in } \quad \Omega_{i} .
\end{aligned}
$$

- Later, for the a posteriori estimates, we also define:

$$
P_{\mathcal{T}_{\tau}}^{1}(E):=\left\{v_{\tau}:(0, T) \rightarrow E ; v_{\tau} \in C^{0}(0, T), v_{\tau} \text { is affine on } I_{n}, 1 \leq n \leq N\right\}
$$

Semi-discrete in time interface problem

- Robin to Robin operators, for $i=1,2, j=3-i$:

$$
\mathcal{S}_{i}^{\mathrm{RtR}}:\left(\xi_{\tau, i}, \tilde{f}, p_{0}\right) \rightarrow\left(-\mathbf{u}_{\tau, i} \cdot \boldsymbol{n}_{j}+\beta_{j, i} p_{\tau, i}\right)_{\mid \Gamma_{i, j}}
$$

where $\left(p_{\tau, i}, \mathbf{u}_{\tau, i}\right)(i=1,2)$ solves, for $n=1, \ldots, N$:

$$
\begin{aligned}
\mathbf{u}_{i}^{n} & =-\boldsymbol{S} \nabla p_{i}^{n} & & \text { in } \Omega_{i} \\
\frac{p_{i}^{n}-p_{i}^{n-1}}{\tau^{n}}+\nabla \cdot \mathbf{u}_{i}^{n} & =\tilde{f}^{n} & & \text { in } \Omega_{i} \\
-\beta_{i, j} \mathbf{u}_{i}^{n} \cdot \boldsymbol{n}_{i}+p_{i}^{n} & =\xi_{i, j}^{n} & & \text { on } \Gamma_{i, j}, \forall j \in B^{i} \\
p_{i}^{0} & =p_{0} & & \text { in } \Omega_{i}
\end{aligned}
$$

- Space-time interface problem

$$
\begin{aligned}
& \xi_{1,2}=S_{1}^{\mathrm{RtR}}\left(\xi_{2,1}, \tilde{f}, p_{0}\right) \\
& \xi_{2,1}=S_{2}^{\mathrm{RtR}}\left(\xi_{1,2}, \tilde{f}, p_{0}\right)
\end{aligned} \quad \text { on } \Gamma \times(0, T) \quad \text { or } S_{R}\binom{\xi_{1,2}}{\xi_{2,1}}=\chi
$$

- Solve with block-Jacobi (OSWR algorithm) or GMRES

Semi-discrete in time interface problem

- Robin to Robin operators, for $i=1,2, j=3-i$:

$$
\mathcal{S}_{i}^{\mathrm{RtR}}:\left(\xi_{\tau, i}, \tilde{f}, p_{0}\right) \rightarrow\left(-\mathbf{u}_{\tau, i} \cdot \boldsymbol{n}_{j}+\beta_{j, i} p_{\tau, i}\right)_{\mid \Gamma_{i, j}}
$$

where $\left(p_{\tau, i}, \mathbf{u}_{\tau, i}\right)(i=1,2)$ solves, for $n=1, \ldots, N$:

$$
\begin{aligned}
\mathbf{u}_{i}^{n} & =-\boldsymbol{S} \nabla p_{i}^{n} & & \text { in } \Omega_{i} \\
\frac{p_{i}^{n}-p_{i}^{n-1}}{\tau^{n}}+\nabla \cdot \mathbf{u}_{i}^{n} & =\tilde{f}^{n} & & \text { in } \Omega_{i} \\
-\beta_{i, j} \mathbf{u}_{i}^{n} \cdot \boldsymbol{n}_{i}+p_{i}^{n} & =\xi_{i, j}^{n} & & \text { on } \Gamma_{i, j}, \forall j \in B^{i} \\
p_{i}^{0} & =p_{0} & & \text { in } \Omega_{i}
\end{aligned}
$$

- Space-time interface problem

$$
\begin{aligned}
& \xi_{1,2}=\Pi_{i, j} S_{1}^{\mathrm{RtR}}\left(\xi_{2,1}, \tilde{f}, p_{0}\right) \\
& \xi_{2,1}=\Pi_{j, i} S_{2}^{\mathrm{RtR}}\left(\xi_{1,2}, \tilde{f}, p_{0}\right)
\end{aligned} \quad \text { on } \Gamma \times(0, T) \quad \text { or } S_{R}\binom{\xi_{1,2}}{\xi_{2,1}}=\chi
$$

- Solve with block-Jacobi (OSWR algorithm) or GMRES
- L^{2} projection operator $\Pi_{i, j}$ from $P_{\mathcal{T}_{\tau, j}}^{0}\left(L^{2}\left(\Gamma_{i, j}\right)\right)$ onto $P_{\mathcal{T}_{\tau, i}}^{0}\left(L^{2}\left(\Gamma_{i, j}\right)\right)$,

DD using the lowest-order Raviart-Thomas (RT0)

Let \mathcal{T}_{h} be a matching mesh of Ω, with $\mathcal{T}_{h, i}:=\mathcal{T}_{h} \mid \Omega_{i}, i=1, \ldots, \mathcal{N}$. Discrete spaces:

$$
\begin{aligned}
M_{h, i} & =\left\{q_{h, i} \in L^{2}\left(\Omega_{i}\right), q_{h, i \mid K} \in \mathcal{P}^{0}(K), \forall K \in \mathcal{T}_{h i}\right\} \\
\mathbf{W}_{h, i} & =\left\{\mathbf{v}_{h, i} \in \mathbf{H}\left(\operatorname{div}, \Omega_{i}\right), \mathbf{v}_{h, i_{\mid} \mid} \in \mathbf{R T}_{0}(K), \forall K \in \mathcal{T}_{h i}\right\} .
\end{aligned}
$$

Find the discrete solutions $p_{h \tau, i}^{k+1} \in P_{\mathcal{T}_{\tau}}^{0}\left(M_{h, i}\right)$ and $u_{h \tau, i}^{k+1} \in P_{\mathcal{T}_{\tau}}^{0}\left(\mathbf{W}_{h, i}\right)$

- The energy norm on $H_{\Gamma_{D}}^{1}(\Omega)$ is $\|v v\|^{2}:=\left\|S^{\frac{1}{2}} \nabla v\right\|^{2}$
- The energy norm for vectors on $\mathbf{L}^{2}(\Omega)$ is defined by: $\|\|\mathbf{v}\|\|_{\star}^{2}:=\left\|\boldsymbol{S}^{-\frac{1}{2}} \mathbf{v}\right\|^{2}$

Outline

(1) Motivations and problem setting

2 Space time domain decomposition
(3) A posteriori estimates

- Strategy
- Pressure and flux reconstruction
- Example in an industrial context
- A posteriori error estimates for nonconforming time grids

A posteriori estimates: overview

$$
-\underbrace{\left\|\mid p-p_{h}^{k+1}\right\|}_{\text {unknown }}
$$

A posteriori estimates: overview

- $\underbrace{\left\|\left|p-p_{h}^{k+1}\right|\right\|}_{\text {unknown }} \leq$
$\underbrace{\text { Fully computable estimators }}$
depend on $\mathbf{H}(\operatorname{div}, \Omega)$ flux and $H^{1}(\Omega)$ potential reconstructions

A posteriori estimates: overview

- $\underbrace{\left\|\left|p-\tilde{p}_{h \tau}^{k+1}\right|\right\|}_{\text {unknown }} \leq$

Fully computable estimators

- Post-processing $\tilde{p}_{h \tau, i}^{k}$ of the pressure $p_{h \tau, i}^{k}$, at each time step $n, n=0, \ldots, N$:
$\nabla p_{h}^{k, n}=0$, as $p_{h}^{k, n} \in \mathcal{P}_{0}\left(\mathcal{T}_{h, i}\right)$ in the MFE, so that $\left\|S^{\frac{1}{2}} \nabla\left(p-p_{h}^{k, n}\right)\right\|^{2}=\left\|\boldsymbol{S}^{\frac{1}{2}} \nabla p\right\|^{2}$ not suitable.

A posteriori estimates: overview

- $\underbrace{\left\|\left|p-\tilde{p}_{h \tau}^{k+1}\right|\right\|}_{\text {unknown }} \leq$

Fully computable estimators

 depend on $\mathbf{H}(\operatorname{div}, \Omega)$ flux and $H^{1}(\Omega)$ potential reconstructions- Post-processing $\tilde{p}_{h \tau, i}^{k}$ of the pressure $p_{h \tau, i}^{k}$, at each time step $n, n=0, \ldots, N$:
$\nabla p_{h}^{k, n}=0$, as $p_{h}^{k, n} \in \mathcal{P}_{0}\left(\mathcal{T}_{h, i}\right)$ in the MFE, so that $\left\|\boldsymbol{S}^{\frac{1}{2}} \nabla\left(p-p_{h}^{k, n}\right)\right\|^{2}=\left\|\boldsymbol{S}^{\frac{1}{2}} \nabla p\right\|^{2}$ not suitable.
® MFE method gives $\tilde{p}_{h}^{k, n} \notin H^{1}\left(\Omega_{i}\right)$

A posteriori estimates: overview

"블

Fully computable estimators

 depend on $\mathbf{H}(\operatorname{div}, \Omega)$ flux and $H^{1}(\Omega)$ potential reconstructions- Post-processing $\tilde{p}_{h \tau, i}^{k}$ of the pressure $p_{h \tau, i}^{k}$, at each time step $n, n=0, \ldots, N$:
$\nabla p_{h}^{k, n}=0$, as $p_{h}^{k, n} \in \mathcal{P}_{0}\left(\mathcal{T}_{h, i}\right)$ in the MFE, so that $\left\|\boldsymbol{S}^{\frac{1}{2}} \nabla\left(p-p_{h}^{k, n}\right)\right\|^{2}=\left\|\boldsymbol{S}^{\frac{1}{2}} \nabla p\right\|^{2}$ not suitable.
- MFE method gives $\tilde{p}_{h}^{k, n} \notin H^{1}\left(\Omega_{i}\right)$
© Robin DD method gives $\mathbf{u}_{h}^{k, n} \notin \mathbf{H}(\operatorname{div}, \Omega)$ and $\tilde{p}_{h}^{k, n}$ jumps across $\Gamma_{i j}$

A posteriori estimates: overview

- $\underbrace{\left\|\mid p-\tilde{p}_{h \tau}^{k+1}\right\|}_{\text {unknown }} \leq$

Fully computable estimators

depend on $\mathbf{H}(\operatorname{div}, \Omega)$ flux and $H^{1}(\Omega)$ potential reconstructions

- Post-processing $\tilde{p}_{h \tau, i}^{k}$ of the pressure $p_{h \tau, i}^{k}$, at each time step $n, n=0, \ldots, N$:
$\nabla p_{h}^{k, n}=0$, as $p_{h}^{k, n} \in \mathcal{P}_{0}\left(\mathcal{T}_{h, i}\right)$ in the MFE, so that $\left\|\boldsymbol{S}^{\frac{1}{2}} \nabla\left(p-p_{h}^{k, n}\right)\right\|^{2}=\left\|\boldsymbol{S}^{\frac{1}{2}} \nabla p\right\|^{2}$ not suitable.
© MFE method gives $\tilde{p}_{h}^{k, n} \notin H^{1}\left(\Omega_{i}\right)$
(Robin DD method gives $\mathbf{u}_{h}^{k, n} \notin \mathbf{H}$ (div,$\left.\Omega\right)$ and $\tilde{p}_{h}^{k, n}$ jumps across $\Gamma_{i j}$
Pressure and flux reconstructions:
- $\bar{s}_{h \tau, i}^{k+1}: H^{1}\left(\Omega_{i}\right)$-conforming but not continuous over the DD interfaces (New strategy), continuous and piecewise affine in time
- $s_{h \tau}^{k+1}: H^{1}(\Omega)$-conforming, continuous and piecewise affine in time
- $\sigma_{h}^{k+1}: \mathbf{H}(\operatorname{div}, \Omega)$-conforming and local conservative in each element, piecewise constant in time

Figure: p_{h}^{k+1}

Figure: \tilde{p}_{h}^{k+1}

Figure: $\bar{s}_{h \tau, i}^{k+1}$
Figure: $s_{h \tau}^{k+1}$

Following [Ern-Vohralík (10), Ern-Smears-Vohralík (16)]

$X:=L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right),\| \|\left\|_{X}^{2}:=\sum_{n=1}^{N} \int_{I_{n}} \sum_{K \in \mathcal{T}_{h}}\right\| S^{\frac{1}{2}} \nabla q(\cdot, t) \|_{K}^{2} d t$,
$X^{\prime}:=L^{2}\left(0, T ; H^{-1}(\Omega)\right)$,
$Y:=\left\{q \in X ; \partial_{t} q \in X^{\prime}\right\},\|q\|\left\|_{Y}^{2}:=\right\|\|q\|_{X}^{2}+\left\|\partial_{t} q\right\|_{X^{\prime}}^{2}+\|q(\cdot, T)\|^{2}$.
A posteriori error estimate distinguishing error components At each iteration $k+1$ of the DD method :

$$
\left\|p-\tilde{p}_{h \tau}^{k+1}\right\|\left\|\zeta \leq \eta_{\mathbf{s p}}^{k+1}+\eta_{\mathrm{DD}}^{k+1}+\eta_{\mathrm{tm}}^{\boldsymbol{k + 1}}+\eta_{\mathrm{IC}}^{k+1}+\right\| f-\tilde{f}\left\|_{X^{\prime}}+\right\| s_{h}^{k+1, N}-\tilde{p}_{h}^{k+1, N} \|,
$$

where :

$$
\begin{aligned}
& \boldsymbol{\eta}_{\mathbf{s p}}^{\boldsymbol{k}+\mathbf{1}}:=\text { subdomain discretization estimator, } \\
& \boldsymbol{\eta}_{\mathbf{D D}}^{\boldsymbol{k + 1}}:=\text { domain decomposition estimator, } \\
& \eta_{\mathrm{IC}}^{k+1}:=\left\|s_{h}^{k+1,0}-p_{0}\right\| \quad \text { initial condition estimator, } \\
& \boldsymbol{\eta}_{\mathbf{t m}}^{\boldsymbol{k + 1}}:=\left\{\left.\sum_{n=1}^{N} \sum_{k \in \mathcal{T}_{h}} \frac{1}{3} \tau^{n}\left\|s_{h}^{k+1, n}-s_{h}^{k+1, n-1}\right\|\right|_{K} ^{2}\right\}^{\frac{1}{2}} \text { time discretization estimator, } \\
& \cdots \quad \tilde{p}_{h \tau, i}^{k+1}, s_{h \tau}^{k+1}, \bar{s}_{h \tau, i}^{k+1}, \text { and } \sigma_{h \tau}^{k+1}
\end{aligned}
$$

$$
\boldsymbol{\eta}_{\mathbf{s p}}^{\boldsymbol{k + 1}}:=\left\{\sum_{n=1}^{N} \tau^{n} \sum_{K \in \mathcal{T}_{h}}\left(\eta_{\mathrm{osc}, K}^{k+1, n}+\eta_{\mathrm{DF}, K}^{k+1, n}\right)^{2}\right\}^{\frac{1}{2}}+\left\{\sum_{n=1}^{N} \int_{I_{n}} \sum_{i=1}^{\mathcal{N}} \sum_{K \in \mathcal{T}_{h, i}}\left(\eta_{\mathrm{NCP}, 1, K}^{k+1}(t)\right)^{2} \mathrm{~d} t\right\}^{\frac{1}{2}}+\left\{\sum_{n=1}^{N} \tau^{n} \sum_{i=1}^{\mathcal{N}} \sum_{K \in \mathcal{T}_{h, i}}\left(\eta_{\mathrm{NCP}, 2, K}^{k+1, n}\right)^{2}\right\}^{\frac{1}{2}}
$$

$$
\eta_{\mathrm{osc}, K}^{k+1, n}:=\frac{h_{K}}{\pi} c_{S, K}^{-\frac{1}{2}}\left\|\tilde{f}^{n}-\partial_{t} S_{h}^{k+1, n}-\nabla \cdot \sigma_{h}^{k+1, n}\right\|_{K}
$$

"data oscillation", $\eta_{\mathrm{D}, k, k}^{k+1, n}:=\left\|\boldsymbol{\|} \nabla s_{h}^{k+1, n}+\mathbf{u}_{n}^{k+1, n}\right\| \|_{*, \kappa}$,

$$
\eta_{\text {NCP }, 1, \kappa}^{k+1}(t):=\left\|\left(\tilde{p}_{h r, i}^{k+1}-\widetilde{s}_{h r, i)}^{k+1}\right)(t)\right\| \|_{\kappa}, \quad t \in I_{n}
$$

$$
\eta_{\mathrm{NCP}, 2, k}^{k+1, n}:=\frac{h_{k}}{\pi} c_{s, k}^{-\frac{1}{2}}\left\|\partial_{t}\left(\tilde{p}_{n, i}^{k+1, n}-\bar{s}_{h, i}^{k+1, n}\right)\right\| \kappa,
$$

$$
\begin{aligned}
& \boldsymbol{\eta}_{\mathrm{sp}}^{\boldsymbol{k + 1}}:=\left\{\sum_{n=1}^{N} \tau^{n} \sum_{K \in \mathcal{T}_{h}}\left(\eta_{\mathrm{osc}, K}^{k+1, n}+\eta_{\mathrm{DF}, K}^{k+1, n}\right)^{2}\right\}^{\frac{1}{2}}+\left\{\sum_{n=1}^{N} \int_{I_{n}} \sum_{i=1}^{\mathcal{N}} \sum_{K \in \mathcal{T}_{h, i}}\left(\eta_{\mathrm{NCP}, 1, K}^{k+1}(t)\right)^{2} \mathrm{~d} t\right\}^{\frac{1}{2}}+\left\{\sum_{n=1}^{N} \tau^{n} \sum_{i=1}^{\mathcal{N}} \sum_{K \in \mathcal{T}_{h, i}}\left(\eta_{\mathrm{NCP}}^{k+1, n}\right)^{2}\right\}^{\frac{1}{2}} \\
& \eta_{\mathrm{osc}, K}^{k+1, n}:=\frac{h_{k}}{\pi} c_{S, K}^{-\frac{1}{2}}\left\|\tilde{f}^{n}-\partial_{t} S_{h}^{k+1, n}-\nabla \cdot \sigma_{h}^{k+1, n}\right\| K \\
& \eta_{\mathrm{DF}, K}^{k+1, n}:=\| \| S \nabla \bar{S}_{h}^{k+1, n}+\mathbf{u}_{h}^{k+1, n} \|_{\star, K}, \\
& \eta_{\mathrm{NCP}, 1, K}^{k+1}(t):=\left\|\left(\tilde{p}_{h \tau, i}^{k+1}-\bar{S}_{h \tau, i}^{k+1}\right)(t)\right\| k, \quad t \in I_{n} \quad \text { "scheme potential nonconformity" } \\
& \eta_{\mathrm{NCP}, 2, K}^{k+1, n}:=\frac{h_{K}}{\pi} C_{S, K}^{-\frac{1}{2}}\left\|\partial_{t}\left(\tilde{p}_{h, i}^{k+1, n}-\frac{s_{h, i}^{k+1}, n}{\pi}\right)\right\| K \\
& \text { "data oscillation", } \\
& \text { "constitutive relation", } \\
& \text { "scheme potential nonconformity", } \\
& \text { "scheme potential nonconformity", }
\end{aligned}
$$

$$
\begin{aligned}
& \eta_{\text {DDF }, k}^{k+1, n}:=\| \|_{h}^{k+1, n}-\sigma_{h}^{k+1, n}\| \|_{\neq \kappa}, \\
& \eta_{\text {DDP }, 1, \kappa}^{k+1}(t):=\| \|\left(\bar{S}_{h t, i}^{k+1}-s_{h T, i}^{k+1}\right)(t) \| \kappa, t \in I_{n} \quad \text { "DD potential nonconformity", } \\
& \eta_{\mathrm{DPP}, 2, k}^{k+1, n}:=\frac{h_{K}}{\pi} c_{s, k}^{-\frac{1}{2}}\left\|\partial_{t}\left(s_{h, i}^{k+1, n}-s_{h, l}^{k+1, n}\right)\right\|_{\kappa}, \\
& \text { "DD flux nonconformity", } \\
& \text { "DD potential nonconformity". }
\end{aligned}
$$

Postprocessing $\tilde{p}_{h \tau, i}^{k+1}$ of $p_{h \tau, i}^{k+1}$

$\tilde{p}_{h, i}^{k+1, n} \in \mathcal{P}_{2}\left(\mathcal{T}_{h, i}\right)$ at each iteration $k+1$ and at each time step $n, n=0, \ldots, N$, is constructed as:

$$
\begin{aligned}
-\left.\boldsymbol{S}_{K} \nabla \tilde{p}_{h, i}^{K+1, n}\right|_{K} & =\left.\mathbf{u}_{h, i}^{\kappa+1, n}\right|_{K}, & & \forall K \in \mathcal{T}_{h, i}, \\
\pi_{0}\left(\left.\tilde{p}_{h, i}^{k+1, n}\right|_{K}\right) & =\left.p_{h, i}^{k+1, n}\right|_{K}, & & \forall K \in \mathcal{T}_{h, i} .
\end{aligned}
$$

仓 $\tilde{p}_{h, i}^{k+1} \notin H^{1}\left(\Omega_{i}\right)$,

- $\tilde{p}_{h, i}^{k+1} \in W_{0}\left(\mathcal{T}_{h, i}\right):=\left\{\varphi \in H^{1}\left(\mathcal{T}_{h, i}\right) ;\langle\llbracket \varphi \rrbracket, 1\rangle_{e}=0, \quad \forall e \in \mathcal{E}_{h, i}^{\text {int }}\right\} \cdots$ weak continuity.

Potential reconstruction $s_{h \tau}^{k+1}$

Captures

- scheme potential nonconformity
- DD potential nonconformity

Potential reconstruction $s_{h \tau}^{k+1}$

Captures

- scheme potential nonconformity
- DD potential nonconformity
$s_{h \tau}^{k+1}$ is $H^{1}(\Omega)$-conforming in space and piecewise affine continuous in time:

$$
\begin{aligned}
s_{h \tau}^{K+1} & \in P_{\tau}^{1}\left(H^{1}(\Omega) \cap C^{0}(\bar{\Omega})\right), \\
\left(s_{h}^{k+1, n}, 1\right)_{K} & =\left(\tilde{p}_{h, i}^{\tilde{p}_{1}+1,}, 1\right)_{K}, \quad \forall K \in \mathcal{T}_{h}, \quad 0 \leq n \leq N .
\end{aligned}
$$

$$
s_{h}^{k+1, n}:=\mathcal{I}_{\mathrm{av}}\left(\tilde{p}_{h}^{k+1, n}\right)+\sum_{K \in \mathcal{T}_{h}} \alpha_{K}^{k+1, n} b_{K},
$$

where $\left.\mathcal{I}_{\mathrm{av}}\left(\tilde{p}_{h}^{\kappa+1, n}\right)(\mathbf{a})=\frac{1}{\left|\mathcal{T}_{\mathbf{a}}\right|} \sum_{K \in \mathcal{T}_{\mathbf{a}}} \tilde{\tilde{p}}_{h}^{\kappa+1, n} \right\rvert\,{ }_{K}(\mathbf{a})$,
b_{K} is a bubble function on K, and

$$
\left|\mathcal{T}_{\mathbf{a}}\right|=8
$$

$\alpha_{K}^{k+1, n}:=\frac{1}{\left(b_{K}, 1\right)_{K}}\left(\tilde{p}_{h}^{\kappa+1, n}-\mathcal{I}_{\mathrm{av}}\left(\tilde{p}_{h}^{\kappa+1, n}\right), 1\right)_{K}$

Subdomain potential reconstruction $\bar{s}_{h \tau, i}^{k+1}$

Captures the scheme potential nonconformity in each subdomain

- $\bar{s}_{h, i}^{k+1, n} \in H^{1}\left(\Omega_{i}\right) \quad \forall i \in \llbracket 1, \mathcal{N} \rrbracket$,

Subdomain potential reconstruction $\bar{s}_{h \tau, i}^{k+1}$

Captures the scheme potential nonconformity in each subdomain

- $\bar{s}_{h, i}^{k+1, n} \in H^{1}\left(\Omega_{i}\right) \quad \forall i \in \llbracket 1, \mathcal{N} \rrbracket$,
- $\bar{s}_{h, i}^{k+1, n}(\mathbf{a})=s_{h, i}^{k+1, n}(\mathbf{a})$,

Subdomain potential reconstruction $\bar{s}_{h \tau, i}^{k+1}$

Captures the scheme potential nonconformity in each subdomain

- $\bar{s}_{h, i}^{k+1, n} \in H^{1}\left(\Omega_{i}\right) \quad \forall i \in \llbracket 1, \mathcal{N} \rrbracket$,
- $\bar{s}_{h, i}^{k+1, n}(\mathbf{a})=s_{h, i}^{k+1, n}(\mathbf{a})$,
- $\bar{s}_{h, i}^{k+1, n}(\mathrm{a})=$
$\left.w_{i, \mathbf{a}}^{k+1, n} \sum_{K \in \mathcal{T}_{\mathbf{a}}^{i}} \tilde{p}_{h, i}^{k+1, n}\right|_{K}(\mathrm{a})+\left.w_{i, \mathbf{a}}^{k+1, n}\left(1-\bar{w}_{\mathbf{a}}^{k+1, n}\right) \sum_{j \in \tilde{B}^{\prime}} \sum_{K \in \mathcal{T}_{\mathbf{a}}^{j}} \tilde{p}_{h, j}^{k+1, n}\right|_{K}(\mathrm{a}), \mathrm{a} \subset \Gamma_{i}$.

Subdomain potential reconstruction $\bar{s}_{h \tau, i}^{k+1}$

Captures the scheme potential nonconformity in each subdomain

- $\bar{s}_{h, i}^{k+1, n} \in H^{1}\left(\Omega_{i}\right) \quad \forall i \in \llbracket 1, \mathcal{N} \rrbracket$,
- $\bar{s}_{h, i}^{k+1, n}(\mathbf{a})=s_{h, i}^{k+1, n}(\mathbf{a})$,
- $\bar{S}_{h, i}^{k+1, n}(\mathrm{a})=$
$\left.w_{i, \mathbf{a}}^{k+1, n} \sum_{K \in \mathcal{T}_{\mathbf{a}}^{i}} \tilde{p}_{h, i}^{k+1, n}\right|_{K}(\mathrm{a})+\left.w_{i, \mathbf{a}}^{k+1, n}\left(1-\bar{w}_{\mathbf{a}}^{k+1, n}\right) \sum_{j \in \tilde{B}^{i}} \sum_{K \in \mathcal{T}_{\mathbf{a}}^{j}} \tilde{p}_{h, j}^{k+1, n}\right|_{K}(\mathrm{a}), \mathrm{a} \subset \Gamma_{i}$.
Redistribute nonuniform weights that depend on the mean jump of $\tilde{p}_{h, i}^{k+1, n}$.

Subdomain potential reconstruction $\bar{s}_{h \tau, i}^{k+1}$

Captures the scheme potential nonconformity in each subdomain

- $\bar{s}_{h, i}^{k+1, n} \in H^{1}\left(\Omega_{i}\right) \quad \forall i \in \llbracket 1, \mathcal{N} \rrbracket$,
- $\bar{s}_{h, i}^{k+1, n}(\mathbf{a})=s_{h, i}^{k+1, n}(\mathbf{a})$,
- $\bar{s}_{h, i}^{k+1, n}(\mathrm{a})=$
$\underbrace{w_{i, \mathbf{a}}^{k+1, n}}_{\frac{1}{\left|\boldsymbol{T}_{\mathbf{a}}^{I}\right|}} \sum_{K \in \mathcal{T}_{\mathbf{a}}^{i}} \tilde{p}_{h, i}^{k+1, n}|K(\mathrm{a})+\underbrace{w_{i, \mathbf{a}}^{k+1, n}\left(1-\bar{w}_{\mathbf{a}}^{\kappa+1, n}\right)}_{0} \sum_{j \in B^{i}} \sum_{K \in \mathcal{T}_{\mathbf{a}}^{j}} \tilde{p}_{h, j}^{k+1, n}|_{K}(\mathrm{a}), \mathrm{a} \subset \Gamma_{i}$
at the beginning of the DD algorithm ($k=0$)

Subdomain potential reconstruction $\bar{s}_{h \tau, i}^{k+1}$

Captures the scheme potential nonconformity in each subdomain

- $\bar{s}_{h, i}^{k+1, n} \in H^{1}\left(\Omega_{i}\right) \quad \forall i \in \llbracket 1, \mathcal{N} \rrbracket$,
- $\bar{s}_{h, i}^{k+1, n}(\mathbf{a})=s_{h, i}^{k+1, n}(\mathbf{a})$,
- $\bar{s}_{h, i}^{k+1, n}(a)=$
$\left.\underbrace{w_{i, \mathbf{a}}^{k+1, n}}_{\frac{1}{\left|T_{\mathbf{a}}\right|}} \sum_{K \in \mathcal{T}_{\mathbf{a}}^{i}} \tilde{p}_{h, i}^{k+1, n}\right|_{K}(\mathrm{a})+\left.\underbrace{w_{i, \mathbf{a}}^{k+1, n}\left(1-\bar{w}_{\mathbf{a}}^{k+1, n}\right)}_{\frac{1}{|T \mathrm{a}|}} \sum_{j \in B^{i}} \sum_{K \in \mathcal{T}_{\mathbf{a}}^{j}} \tilde{p}_{h, j}^{k+1, n}\right|_{K}(\mathrm{a}), \mathrm{a} \subset \Gamma_{i}$
at convergence of the DD algorithm $\bar{s}_{h, i}^{k+1, n}(\mathrm{a})=s_{h, i}^{k+1, n}(\mathrm{a}) \cdots \eta_{\mathrm{DDP}, K}$ disappears.

Subdomain potential reconstruction $\bar{s}_{h \tau, i}^{k+1}$

Captures the scheme potential nonconformity in each subdomain

- $\bar{s}_{h, i}^{k+1, n} \in H^{1}\left(\Omega_{i}\right) \quad \forall i \in \llbracket 1, \mathcal{N} \rrbracket$,
- $\bar{s}_{h, i}^{k+1, n}(\mathbf{a})=s_{h, i}^{k+1, n}(\mathbf{a})$,
- $\bar{s}_{h, i}^{k+1, n}(\mathrm{a})=$
$\underbrace{w_{i, \mathbf{a}}^{k+1, n}}_{\frac{1}{\left\lvert\, \frac{1}{T_{\mathrm{a}}}\right.}} \sum_{K \in \mathcal{T}_{\mathbf{a}}^{i}} \tilde{\tilde{h}}_{n, i}^{k+1, n}|\kappa(\mathrm{a})+\underbrace{w_{i, \mathbf{a}}^{k+1, n}\left(1-\bar{w}_{\mathbf{a}}^{k+1, n}\right)}_{\frac{1}{\mid \mathcal{T}_{\mathrm{a}}}} \sum_{j \in B^{i}} \sum_{K \in \mathcal{T}_{\mathbf{a}}^{j}} \tilde{p}_{h, j}^{k+1, n}|_{K}(\mathrm{a})$, a $\subset \Gamma_{i}$
at convergence of the DD algorithm $\bar{s}_{h, i}^{k+1, n}(\mathrm{a})=s_{h, i}^{k+1, n}\left(\right.$ a) $\cdots \eta_{\mathrm{DDP}, K}$ disappears.

Add bubble function to ensure $\left(\bar{s}^{k+1, n}, 1\right)_{K}=\left(\tilde{p}_{h, i}^{k+1, n}, 1\right)_{K}, \quad \forall K \in \mathcal{T}_{h}, \quad 0 \leq n \leq N$.

Equilibrated flux reconstruction $\sigma_{h \tau}^{k+1}$

$$
\begin{aligned}
\sigma_{h \tau}^{k+1} & \in P_{\tau}^{0}(\mathbf{H}(\operatorname{div}, \Omega)), \\
\left(\nabla \cdot \sigma_{h}^{k+1, n}, 1\right)_{K} & =\left(\tilde{f}^{n}-\partial_{t} \tilde{p}_{h}^{k+1, n}, 1\right)_{K}, \quad \forall K \in \mathcal{T}_{h} .
\end{aligned}
$$

(1) Solve the following system for \mathcal{N} balancing conditions at each time step n :

$$
\sum_{\substack{b=1,2 / \\\left|\partial \Omega_{i} \cap \partial \Omega\right|>0}} c_{\Gamma_{i}^{b}}^{k+1, n}+\sum_{j \in B^{i}}\left(\boldsymbol{n}_{\Gamma_{i, j}} \cdot \boldsymbol{n}_{\partial \Omega_{i}^{\text {ext }}}\right) c_{\Gamma_{i, j}}^{k+1, n}=\left(\tilde{f}^{n}-\partial_{t} \tilde{p}_{h}^{k+1, n}, 1\right)_{\Omega_{i}^{\text {ext }}}-\left\langle\left\{\mathbf{u}_{h}^{k+1, n} \cdot \boldsymbol{n}_{\partial \Omega_{i}^{\text {ext }}}\right\}, \boldsymbol{1}\right\rangle_{\partial \Omega_{i}^{\text {ext }}}
$$

(2) Then solve local Neumann problems in bands near the interface with the corrections on the interfaces in order to obtain the flux reconstruction in the bands.

ANDRA test case

$T=10^{6}$ years, $\mathcal{N}=9$ domains, the repository Ω_{r} is the yellow one
$\phi=\left\{\begin{array}{ll}0.2 & \text { in } \Omega_{r} \\ 0.05 & \text { else }\end{array}, S=\left\{\begin{array}{ll}210^{-9} \mathrm{I} & \mathrm{m} / \mathrm{s}^{2} \text { in } \Omega_{r} \\ 510^{-12} \mathrm{I} & \mathrm{m} / \mathrm{s}^{2} \text { else }\end{array}, f= \begin{cases}10^{-5} \text { years }^{-1} & \text { if } t \leq 10^{5} \text { years } \\ 0 & \text { else }\end{cases}\right.\right.$

Mesh $\left|\mathcal{T}_{\boldsymbol{h}}\right|=106638$

ANDRA test case

$T=10^{6}$ years, $\mathcal{N}=9$ domains, the repository Ω_{r} is the yellow one
$\phi=\left\{\begin{array}{ll}0.2 & \text { in } \Omega_{r} \\ 0.05 & \text { else }\end{array}, \boldsymbol{S}=\left\{\begin{array}{ll}210^{-9} \mathbf{l} & \mathrm{~m} / \mathrm{s}^{2} \text { in } \Omega_{r} \\ 510^{-12} \mathrm{I} & \mathrm{m} / \mathrm{s}^{2} \text { else }\end{array}, f=\left\{\begin{array}{l}10^{-5} \text { years }^{-1} \\ 0\end{array}\right.\right.\right.$
if $t \leq 10^{5}$ years else

Mesh $\left|\mathcal{T}_{h}\right|=106638$

ANDRA test case

$T=10^{6}$ years, $\mathcal{N}=9$ domains, the repository Ω_{r} is the yellow one
$\phi=\left\{\begin{array}{ll}0.2 & \text { in } \Omega_{r} \\ 0.05 & \text { else }\end{array}, \boldsymbol{S}=\left\{\begin{array}{ll}210^{-9} \mathbf{l} & \mathrm{~m} / \mathrm{s}^{2} \text { in } \Omega_{r} \\ 510^{-12} \mathrm{I} & \mathrm{m} / \mathrm{s}^{2} \text { else }\end{array}, f=\left\{\begin{array}{l}10^{-5} \text { years }^{-1} \\ 0\end{array}\right.\right.\right.$
if $t \leq 10^{5}$ years else

Mesh $\left|\mathcal{T}_{h}\right|=106638$

ANDRA test case

$T=10^{6}$ years, $\mathcal{N}=9$ domains, the repository Ω_{r} is the yellow one
$\phi=\left\{\begin{array}{ll}0.2 & \text { in } \Omega_{r} \\ 0.05 & \text { else }\end{array}, \boldsymbol{S}=\left\{\begin{array}{ll}210^{-9} \mathbf{l} & \mathrm{~m} / \mathrm{s}^{2} \text { in } \Omega_{r} \\ 510^{-12} \mathrm{I} & \mathrm{m} / \mathrm{s}^{2} \text { else }\end{array}, f=\left\{\begin{array}{l}10^{-5} \text { years }^{-1} \\ 0\end{array}\right.\right.\right.$
if $t \leq 10^{5}$ years else

Mesh $\left|\mathcal{T}_{h}\right|=106638$

ANDRA test case

$T=10^{6}$ years, $\mathcal{N}=9$ domains, the repository Ω_{r} is the yellow one
$\phi=\left\{\begin{array}{ll}0.2 & \text { in } \Omega_{r} \\ 0.05 & \text { else }\end{array}, \boldsymbol{S}=\left\{\begin{array}{ll}210^{-9} \mathbf{l} & \mathrm{~m} / \mathrm{s}^{2} \text { in } \Omega_{r} \\ 510^{-12} \mathrm{I} & \mathrm{m} / \mathrm{s}^{2} \text { else }\end{array}, f=\left\{\begin{array}{l}10^{-5} \text { years }^{-1} \\ 0\end{array}\right.\right.\right.$
if $t \leq 10^{5}$ years else

Mesh $\left|\mathcal{T}_{h}\right|=106638$

ANDRA test case

$T=10^{6}$ years, $\mathcal{N}=9$ domains, the repository Ω_{r} is the yellow one
$\phi=\left\{\begin{array}{ll}0.2 & \text { in } \Omega_{r} \\ 0.05 & \text { else }\end{array}, \boldsymbol{S}=\left\{\begin{array}{ll}210^{-9} \mathbf{l} & \mathrm{~m} / \mathrm{s}^{2} \text { in } \Omega_{r} \\ 510^{-12} \mathrm{I} & \mathrm{m} / \mathrm{s}^{2} \text { else }\end{array}, f=\left\{\begin{array}{l}10^{-5} \text { years }^{-1} \\ 0\end{array}\right.\right.\right.$
if $t \leq 10^{5}$ years else

Mesh $\left|\mathcal{T}_{h}\right|=106638$

ANDRA test case

$T=10^{6}$ years, $\mathcal{N}=9$ domains, the repository Ω_{r} is the yellow one
$\phi=\left\{\begin{array}{ll}0.2 & \text { in } \Omega_{r} \\ 0.05 & \text { else }\end{array}, \boldsymbol{S}=\left\{\begin{array}{ll}210^{-9} \mathbf{l} & \mathrm{~m} / \mathrm{s}^{2} \text { in } \Omega_{r} \\ 510^{-12} \mathrm{I} & \mathrm{m} / \mathrm{s}^{2} \text { else }\end{array}, f=\left\{\begin{array}{l}10^{-5} \text { years }^{-1} \\ 0\end{array}\right.\right.\right.$
if $t \leq 10^{5}$ years else

$t=400000$

Mesh $\left|\mathcal{T}_{h}\right|=106638$

ANDRA test case

$T=10^{6}$ years, $\mathcal{N}=9$ domains, the repository Ω_{r} is the yellow one
$\phi=\left\{\begin{array}{ll}0.2 & \text { in } \Omega_{r} \\ 0.05 & \text { else }\end{array}, \boldsymbol{S}=\left\{\begin{array}{ll}210^{-9} \mathbf{l} & \mathrm{~m} / \mathrm{s}^{2} \text { in } \Omega_{r} \\ 510^{-12} \mathrm{I} & \mathrm{m} / \mathrm{s}^{2} \text { else }\end{array}, f=\left\{\begin{array}{l}10^{-5} \text { years }^{-1} \\ 0\end{array}\right.\right.\right.$
if $t \leq 10^{5}$ years else

Mesh $\left|\mathcal{T}_{h}\right|=106638$

ANDRA test case

$T=10^{6}$ years, $\mathcal{N}=9$ domains, the repository Ω_{r} is the yellow one
$\phi=\left\{\begin{array}{ll}0.2 & \text { in } \Omega_{r} \\ 0.05 & \text { else }\end{array}, \boldsymbol{S}=\left\{\begin{array}{ll}210^{-9} \mathbf{l} & \mathrm{~m} / \mathrm{s}^{2} \text { in } \Omega_{r} \\ 510^{-12} \mathrm{I} & \mathrm{m} / \mathrm{s}^{2} \text { else }\end{array}, f=\left\{\begin{array}{l}10^{-5} \text { years }^{-1} \\ 0\end{array}\right.\right.\right.$
if $t \leq 10^{5}$ years else

Mesh $\left|\mathcal{T}_{h}\right|=106638$

Stopping criterion

- $\tau=4000$ years
- Relative DD stopping criterion : $10^{-6} \Rightarrow$ iterations: 44 (GMRES)
- A posteriori stopping criterion: $\eta_{\mathrm{DD}} \leq 0.1 \mathrm{max}\left(\eta_{\mathrm{m}}, \eta_{\mathrm{sp}}\right) \Rightarrow$ iterations: 11
- Iterations saved: $\approx 75 \%$ (GMRES)

Global-in-time DD using nonconforming time grids

- $\left\{t^{n^{\prime},}\right\}_{0 \leq n \leq N_{i}}$ discrete times of Ω_{i}, $i \in \llbracket 1, \mathcal{N} \rrbracket$:

$$
t^{0, i}=0<t^{1, i}<\cdots<t^{N_{i}, i}=T .
$$

- $\left\{t^{n^{i},}\right\}_{0 \leq n \leq N_{i}} \neq\left\{t^{n_{j}^{j}}\right\}_{0 \leq n \leq N_{j}}, \quad j \in B^{i}$.
- Information on one time grid at the interface is passed to the other time grid using L^{2}-projections.

Following

[Hoang-Jaffré-Japhet-Kern-Roberts (13)]

Global-in-time DD using nonconforming time grids

- $\left\{t^{n^{, i}}\right\}_{0 \leq n \leq N_{i}}$ discrete times of Ω_{i}, $i \in \llbracket 1, \mathcal{N} \rrbracket$:

$$
t^{0, i}=0<t^{1, i}<\cdots<t^{N_{i}, i}=T .
$$

- $\left\{t^{n^{, j}}\right\}_{0 \leq n \leq N_{i}} \neq\left\{t^{n^{\prime}, j}\right\}_{0 \leq n \leq N_{j}}, j \in B^{i}$.
- Information on one time grid at the interface is passed to the other time grid using L^{2}-projections.

Following

[Hoang-Jaffré-Japhet-Kern-Roberts (13)]

A posteriori estimates for NC time grids

- $\left\{t_{\text {new }}^{n}\right\}_{0 \leq n \leq N_{\text {new }}}$ discrete times: $\forall \Omega_{i}$ $i \in \llbracket 1, \mathcal{N} \rrbracket$:

$$
t_{\text {new }}^{0}=0<t_{\text {new }}^{1}<\cdots<t_{\text {new }}^{N_{\text {new }}}=T .
$$

- This new sequence is defined as:

$$
\left\{t_{\text {new }}^{n}\right\}_{0 \leq n \leq N_{\text {new }}}=\bigcup_{i=1}^{\mathcal{N}}\left\{t^{n, i}\right\}_{0 \leq n \leq N_{i}} .
$$

Global-in-time DD using nonconforming time grids

- $\left\{t^{n^{, i}}\right\}_{0 \leq n \leq N_{i}}$ discrete times of Ω_{i}, $i \in \llbracket 1, \mathcal{N} \rrbracket$:

$$
t^{0, i}=0<t^{1, i}<\cdots<t^{N_{i}, i}=T .
$$

- $\left\{t^{n^{, j}}\right\}_{0 \leq n \leq N_{i}} \neq\left\{t^{n^{, j}}\right\}_{0 \leq n \leq N_{j}}, j \in B^{i}$.
- Information on one time grid at the interface is passed to the other time grid using L^{2}-projections.

Following

[Hoang-Jaffré-Japhet-Kern-Roberts (13)]

A posteriori estimates for NC time grids

- $\left\{t_{\text {new }}^{n}\right\}_{0 \leq n \leq N_{\text {new }}}$ discrete times: $\forall \Omega_{i}$ $i \in \llbracket 1, \mathcal{N} \rrbracket$:

$$
t_{\text {new }}^{0}=0<t_{\text {new }}^{1}<\cdots<t_{\text {new }}^{N_{\text {new }}}=T .
$$

- This new sequence is defined as: $\left\{t_{\text {new }}^{n}\right\}_{0 \leq n \leq N_{\text {new }}}=\bigcup_{i=1}^{\mathcal{N}}\left\{t^{n, i}\right\}_{0 \leq n \leq N_{i}}$.
- Do a linear interpolation

Global-in-time DD using nonconforming time grids

$$
\left(\mathbf{u}_{h, 1}^{k+1,1}, p_{h, 1}^{k+1,1}\right)
$$

- $\left\{t^{\left.n^{\prime},\right\}_{0}}\right\}_{0 \leq n \leq N_{i}}$ discrete times of Ω_{i}, $i \in \llbracket 1, \mathcal{N} \rrbracket$:

$$
t^{0, i}=0<t^{1, i}<\cdots<t^{N_{i}, i}=T .
$$

- $\left\{t^{n^{, j}}\right\}_{0 \leq n \leq N_{i}} \neq\left\{t^{n^{, j}}\right\}_{0 \leq n \leq N_{j}}, j \in B^{i}$.
- Information on one time grid at the interface is passed to the other time grid using L^{2}-projections.

Following

[Hoang-Jaffré-Japhet-Kern-Roberts (13)]

A posteriori estimates for NC time grids

- $\left\{t_{\text {new }}^{n}\right\}_{0 \leq n \leq N_{\text {new }}}$ discrete times: $\forall \Omega_{i}$ $i \in \llbracket 1, \mathcal{N} \rrbracket$:

$$
t_{\text {new }}^{0}=0<t_{\text {new }}^{1}<\cdots<t_{\text {new }}^{N_{\text {new }}}=T .
$$

- This new sequence is defined as:
$\left\{t_{\text {new }}^{n}\right\}_{0 \leq n \leq N_{\text {new }}}=\bigcup_{i=1}^{\mathcal{N}}\left\{t^{n, i}\right\}_{0 \leq n \leq N_{i}}$.
- Do a linear interpolation

Global-in-time DD using nonconforming time grids

- $\left\{t^{\left.n^{\prime},\right\}_{0}}\right\}_{0 \leq n \leq N_{i}}$ discrete times of Ω_{i}, $i \in \llbracket 1, \mathcal{N} \rrbracket$:

$$
t^{0, i}=0<t^{1, i}<\cdots<t^{N_{i}, i}=T .
$$

- $\left\{t^{n^{, j}}\right\}_{0 \leq n \leq N_{i}} \neq\left\{t^{n^{, j}}\right\}_{0 \leq n \leq N_{j}}, j \in B^{i}$.
- Information on one time grid at the interface is passed to the other time grid using L^{2}-projections.

Following

[Hoang-Jaffré-Japhet-Kern-Roberts (13)]

A posteriori estimates for NC time grids

- $\left\{t_{\text {new }}^{n}\right\}_{0 \leq n \leq N_{\text {new }}}$ discrete times: $\forall \Omega_{i}$ $i \in \llbracket 1, \mathcal{N} \rrbracket$:

$$
t_{\text {new }}^{0}=0<t_{\text {new }}^{1}<\cdots<t_{\text {new }}^{N_{\text {new }}}=T .
$$

- This new sequence is defined as:
$\left\{t_{\text {new }}^{n}\right\}_{0 \leq n \leq N_{\text {new }}}=\bigcup_{i=1}^{\mathcal{N}}\left\{t^{n, i}\right\}_{0 \leq n \leq N_{i}}$.
- Do a linear interpolation

Global-in-time DD using nonconforming time grids

- $\left\{t^{n^{, i}}\right\}_{0 \leq n \leq N_{i}}$ discrete times of Ω_{i}, $i \in \llbracket 1, \mathcal{N} \rrbracket$:

$$
t^{0, i}=0<t^{1, i}<\cdots<t^{N_{i}, i}=T .
$$

- $\left\{t^{n^{, j}}\right\}_{0 \leq n \leq N_{i}} \neq\left\{t^{n^{, j}}\right\}_{0 \leq n \leq N_{j}}, j \in B^{i}$.
- Information on one time grid at the interface is passed to the other time grid using L^{2}-projections.

Following

[Hoang-Jaffré-Japhet-Kern-Roberts (13)]

A posteriori estimates for NC time grids

- $\left\{t_{\text {new }}^{n}\right\}_{0 \leq n \leq N_{\text {new }}}$ discrete times: $\forall \Omega_{i}$ $i \in \llbracket 1, \mathcal{N} \rrbracket$:

$$
t_{\text {new }}^{0}=0<t_{\text {new }}^{1}<\cdots<t_{\text {new }}^{N_{\text {new }}}=T .
$$

- This new sequence is defined as:
$\left\{t_{\text {new }}^{n}\right\}_{0 \leq n \leq N_{\text {new }}}=\bigcup_{i=1}^{\mathcal{N}}\left\{t^{n, i}\right\}_{0 \leq n \leq N_{i}}$.
- Do a linear interpolation

Global-in-time DD using nonconforming time grids

- $\left\{t^{n^{, i}}\right\}_{0 \leq n \leq N_{i}}$ discrete times of Ω_{i}, $i \in \llbracket 1, \mathcal{N} \rrbracket$:

$$
t^{0, i}=0<t^{1, i}<\cdots<t^{N_{i}, i}=T .
$$

- $\left\{t^{n^{, j}}\right\}_{0 \leq n \leq N_{i}} \neq\left\{t^{n^{, j}}\right\}_{0 \leq n \leq N_{j}}, j \in B^{i}$.
- Information on one time grid at the interface is passed to the other time grid using L^{2}-projections.

Following

[Hoang-Jaffré-Japhet-Kern-Roberts (13)]

A posteriori estimates for NC time grids

- $\left\{t_{\text {new }}^{n}\right\}_{0 \leq n \leq N_{\text {new }}}$ discrete times: $\forall \Omega_{i}$ $i \in \llbracket 1, \mathcal{N} \rrbracket$:

$$
t_{\text {new }}^{0}=0<t_{\text {new }}^{1}<\cdots<t_{\text {new }}^{N_{\text {new }}}=T .
$$

- This new sequence is defined as:
$\left\{t_{\text {new }}^{n}\right\}_{0 \leq n \leq N_{\text {new }}}=\bigcup_{i=1}^{\mathcal{N}}\left\{t^{n, i}\right\}_{0 \leq n \leq N_{i}}$.
- Do a linear interpolation

Global-in-time DD using nonconforming time grids

- $\left\{t^{n^{, i}}\right\}_{0 \leq n \leq N_{i}}$ discrete times of Ω_{i}, $i \in \llbracket 1, \mathcal{N} \rrbracket$:

$$
t^{0, i}=0<t^{1, i}<\cdots<t^{N_{i}, i}=T .
$$

- $\left\{t^{n^{i},}\right\}_{0 \leq n \leq N_{i}} \neq\left\{t^{n^{\prime} j}\right\}_{0 \leq n \leq N_{j}}, j \in B^{i}$.
- Information on one time grid at the interface is passed to the other time grid using L^{2}-projections.

Following

[Hoang-Jaffré-Japhet-Kern-Roberts (13)]

A posteriori estimates for NC time grids

- $\left\{t_{\text {new }}^{n}\right\}_{0 \leq n \leq N_{\text {new }}}$ discrete times: $\forall \Omega_{i}$ $i \in \llbracket 1, \mathcal{N} \rrbracket$:

$$
t_{\text {new }}^{0}=0<t_{\text {new }}^{1}<\cdots<t_{\text {new }}^{N_{\text {new }}}=T .
$$

- This new sequence is defined as:
$\left\{t_{\text {new }}^{n}\right\}_{0 \leq n \leq N_{\text {new }}}=\bigcup_{i=1}^{\mathcal{N}}\left\{t^{n, i}\right\}_{0 \leq n \leq N_{i}}$.
- Do a linear interpolation
- Potential reconstructions, bands, and flux reconstruction.

Global-in-time DD using nonconforming time grids

- $\left\{t^{n^{, i}}\right\}_{0 \leq n \leq N_{i}}$ discrete times of Ω_{i}, $i \in \llbracket 1, \mathcal{N} \rrbracket$:

$$
t^{0, i}=0<t^{1, i}<\cdots<t^{N_{i}, i}=T .
$$

- $\left\{t^{n^{i},}\right\}_{0 \leq n \leq N_{i}} \neq\left\{t^{n^{\prime} j}\right\}_{0 \leq n \leq N_{j}}, j \in B^{i}$.
- Information on one time grid at the interface is passed to the other time grid using L^{2}-projections.

Following

[Hoang-Jaffré-Japhet-Kern-Roberts (13)]

A posteriori estimates for NC time grids

- $\left\{t_{\text {new }}^{n}\right\}_{0 \leq n \leq N_{\text {new }}}$ discrete times: $\forall \Omega_{i}$ $i \in \llbracket 1, \mathcal{N} \rrbracket$:

$$
t_{\text {new }}^{0}=0<t_{\text {new }}^{1}<\cdots<t_{\text {new }}^{N_{\text {new }}}=T .
$$

- This new sequence is defined as:
$\left\{t_{\text {new }}^{n}\right\}_{0 \leq n \leq N_{\text {new }}}=\bigcup_{i=1}^{\mathcal{N}}\left\{t^{n, i}\right\}_{0 \leq n \leq N_{i}}$.
- Do a linear interpolation
- Potential reconstructions, bands, and flux reconstruction.
- $\left\|\mid p-\tilde{p}_{h \tau}^{k+1}\right\|\left\|_{\gamma} \leq \eta_{\mathrm{sp}}^{k+1}+\eta_{\mathrm{Im}}^{k+1}+\eta_{\mathrm{DD}, \mathrm{NC}}^{k+1}+\eta_{\mathrm{IC}}^{k+1}+\right\| f-\tilde{f}\left\|_{X^{\prime}}+\right\| s_{h}^{k+1, N_{\text {new }}}-\tilde{p}_{h}^{k+1, N_{\text {new }}} \|$
- $\left\|\left\|\mathbf{u}_{h}^{k+1, n}-\boldsymbol{\sigma}_{h}^{k+1, n}\right\|_{{ }_{\star}, \kappa}\right.$ is the source of this new NC discretization error in time.

Error component estimates for the Andra example with the GMRES solver for different ratios of discretization in time $\frac{N_{5}}{N_{i}}$, for $i \neq 5: 1,5,10$.

Conclusions

- The quality of the result is assured by controlling the error between the approximate solution and the exact solution at each iteration of the DD algorithm.
- Different components of the error have been distinguished.
- An efficient stopping criterion for the domain decomposition iterations has been established.
- Many of the domain decomposition iterations usually performed can be saved.

Future work

- Assess how much computing time can be saved
- Extend to advection-diffusion
- Study the local efficiency
- Develop an a posteriori coarse-grid corrector

