# Space-Time Domain Decomposition Methods for Transport Problems in Porous Media

Thi-Thao-Phuong Hoang, Elyes Ahmed, Jérôme Jaffré, Caroline Japhet, **Michel Kern**, Jean Roberts

> INRIA Paris-Rocquencourt Maison de la Simulation

> > October 16, 2015 Enit Lamsin, Tunis





ANDRA La maîtrise des déchets radioactifs



1/49

# OUTLINE

## Introduction

### Pure diffusion problems

- Multi-domain mixed formulations
- Nonconforming discretizations in time

### Advection-diffusion problems

- Operator splitting
- Extension to two-phase flow
- 5 Extension to reduced fracture models

## Outline

## Introduction

- Pure diffusion problems
  - Multi-domain mixed formulations
  - Nonconforming discretizations in time
- 3 Advection-diffusion problems
  - Operator splitting
- 4 Extension to two-phase flow
- 5 Extension to reduced fracture models

# Objective: to formulate numerical methods for flow and transport in heterogeneous porous media

Examples of heterogeneous media:

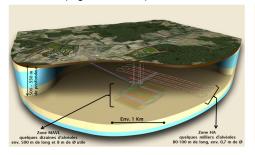
# Objective: to formulate numerical methods for flow and transport in heterogeneous porous media

Examples of heterogeneous media:

• porous media around underground nuclear waste deposit sites

## Heterogeneities mean difficulties for simulation

#### Deep underground repository (High-level waste)



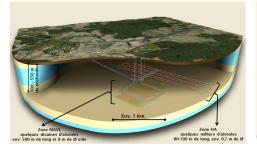


A repository  $2km \times 2km$ 

<ロ> < 部> < き> < き> き のへで 5/49

## Heterogeneities mean difficulties for simulation

#### Deep underground repository (High-level waste)





A repository 2km  $\times$  2km

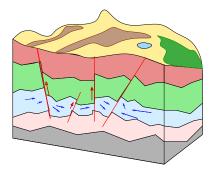
- Different materials → strong heterogeneity, different time scales.
- Large differences in spatial scales.
- Long-term computations.

# Objective: to formulate numerical methods for flow and transport in heterogeneous porous media

Examples of heterogeneous media:

- porous media around underground nuclear waste deposit sites
- porous media with fractures

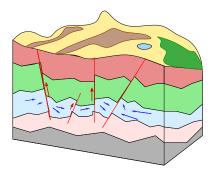
# Difficulty for modeling flow in media with fractures



A problem requiring multi-scale modelling

・ロト ・ 一部 ・ < 言 > ・ ミ ・ う へ ()・ 7/49

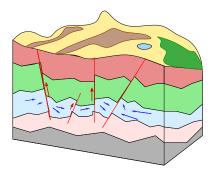
# Difficulty for modeling flow in media with fractures



#### A problem requiring multi-scale modelling

- Fractures represent heterogeneities in porous media
  - Usually of much higher permeability than surrounding medium
  - May be of much lower permeability so that they act as a barrier

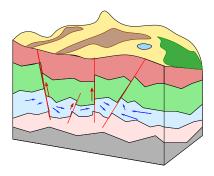
# Difficulty for modeling flow in media with fractures



#### A problem requiring multi-scale modelling

- Fractures represent heterogeneities in porous media
  - Usually of much higher permeability than surrounding medium
  - May be of much lower permeability so that they act as a barrier
- Fracture width much smaller than any reasonable parameter of spatial discretization.

# Difficulty for modeling flow in media with fractures



#### A problem requiring multi-scale modelling

- Fractures represent heterogeneities in porous media
  - Usually of much higher permeability than surrounding medium
  - May be of much lower permeability so that they act as a barrier
- Fracture width much smaller than any reasonable parameter of spatial discretization.

#### Different types of models for flow in fractures

- double continuum models.
- discrete fracture networks (DFN's) (no exchange with surrounding matrix rock)
- reduced fracture models (with exchange with matrix rock)

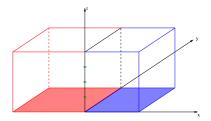
# Objective here: to formulate methods for subdomain time-stepping

More specifically:

- develop and compare two different space-time (global in time) domain decomposition methods for the linear transport problem in mixed formulation.
- extend these methods to the case of a domain with a discrete fracture
- extend these method to two phase flow models, with discontinuous capillary pressure (in progress)

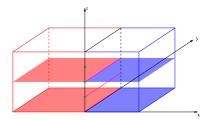
# Domain decomposition (DD) methods

#### Domain decomposition in space



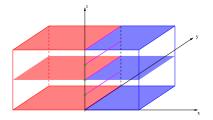
# Domain decomposition (DD) methods

#### Domain decomposition in space



# Domain decomposition (DD) methods

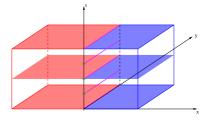
#### Domain decomposition in space



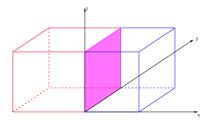
- Discretize in time and apply DD algorithm at each time step:
  - ► Solve stationary problems in the subdomains
  - ► Exchange information through the interface
- Use the same time step on the whole domain.

# Domain decomposition (DD) methods

#### Domain decomposition in space



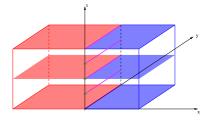
#### Space-time domain decomposition



- Discretize in time and apply DD algorithm at each time step:
  - ► Solve stationary problems in the subdomains
  - ► Exchange information through the interface
- Use the same time step on the whole domain.

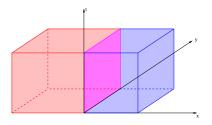
# Domain decomposition (DD) methods

#### Domain decomposition in space



- Discretize in time and apply DD algorithm at each time step:
  - ► Solve stationary problems in the subdomains
  - ► Exchange information through the interface
- Use the same time step on the whole domain.

#### Space-time domain decomposition

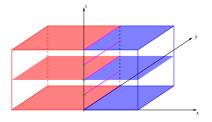


- Solve time-dependent problems in the subdomains
- Exchange information through the space-time interface
- Enable local discretizations both in space and in time

 $\longrightarrow$  local time stepping

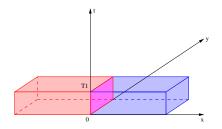
# Domain decomposition (DD) methods

#### Domain decomposition in space



- Discretize in time and apply DD algorithm at each time step:
  - ► Solve stationary problems in the subdomains
  - ► Exchange information through the interface
- Use the same time step on the whole domain.

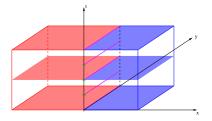
#### Space-time DD with Time windows



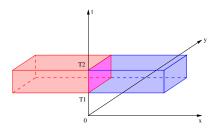
(ロ)
 (日)
 (日)

# Domain decomposition (DD) methods

#### Domain decomposition in space



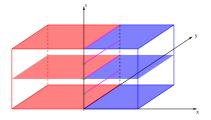
Space-time DD with Time windows



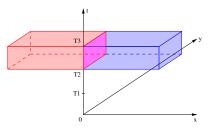
- Discretize in time and apply DD algorithm at each time step:
  - ► Solve stationary problems in the subdomains
  - ► Exchange information through the interface
- Use the same time step on the whole domain.

# Domain decomposition (DD) methods

#### Domain decomposition in space



Space-time DD with Time windows

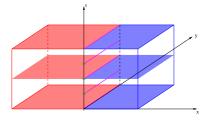


9/49

- Discretize in time and apply DD algorithm at each time step:
  - ► Solve stationary problems in the subdomains
  - ► Exchange information through the interface
- Use the same time step on the whole domain.

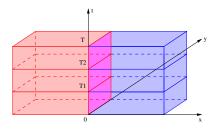
# Domain decomposition (DD) methods

#### Domain decomposition in space



- Discretize in time and apply DD algorithm at each time step:
  - ► Solve stationary problems in the subdomains
  - ► Exchange information through the interface
- Use the same time step on the whole domain.

#### Space-time DD with Time windows



- Perform few iterations per window
- Use different space-time grids in each window
- Use the solution in the previous window to calculate a "good" initial guess on the interface.

## Outline

## Introduction

### Pure diffusion problems

- Multi-domain mixed formulations
- Nonconforming discretizations in time
- 3 Advection-diffusion problems
  - Operator splitting
- 4 Extension to two-phase flow
- 5 Extension to reduced fracture models

## Model problem

Transport of a contaminant in a porous medium under the effect of diffusion, written in mixed form:

$$\begin{split} \mathcal{L}(\boldsymbol{c},\boldsymbol{r}) &:= \phi \partial_t \boldsymbol{c} + \text{div} \, \boldsymbol{r} &= \boldsymbol{f} & \text{in } \Omega \times (0,T), \\ \mathcal{M}(\boldsymbol{c},\boldsymbol{r}) &:= \boldsymbol{D}^{-1} \boldsymbol{r} + \nabla \boldsymbol{c} &= \boldsymbol{0} & \text{in } \Omega \times (0,T), \\ \boldsymbol{c} &= \boldsymbol{0} & \text{on } \partial \Omega \times (0,T), \\ \boldsymbol{c}(\cdot,\boldsymbol{0}) &= \boldsymbol{c}_{\boldsymbol{0}} & \text{in } \Omega, \end{split}$$

- c concentration of a contaminant dissolved in a fluid, **r** diffusive flux.
- $\phi$  porosity; **D** symmetric, positive definite, time-independent diffusion tensor.

## Model problem

Transport of a contaminant in a porous medium under the effect of diffusion, written in mixed form:

$$\begin{split} \mathcal{L}(\boldsymbol{c},\boldsymbol{r}) &:= \phi \partial_t \boldsymbol{c} + \text{div} \, \boldsymbol{r} &= \boldsymbol{f} & \text{in } \Omega \times (\boldsymbol{0},T), \\ \mathcal{M}(\boldsymbol{c},\boldsymbol{r}) &:= \boldsymbol{D}^{-1} \boldsymbol{r} + \nabla \boldsymbol{c} &= \boldsymbol{0} & \text{in } \Omega \times (\boldsymbol{0},T), \\ \boldsymbol{c} &= \boldsymbol{0} & \text{on } \partial \Omega \times (\boldsymbol{0},T), \\ \boldsymbol{c}(\cdot,\boldsymbol{0}) &= \boldsymbol{c}_{\boldsymbol{0}} & \text{in } \Omega, \end{split}$$

- c concentration of a contaminant dissolved in a fluid, r diffusive flux.
- $\phi$  porosity; **D** symmetric, positive definite, time-independent diffusion tensor.

#### Existence and uniqueness

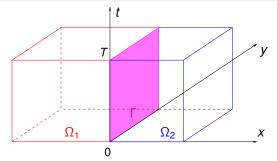
If  $\mathbf{D} \in L^{\infty}(\Omega)$ ,  $f \in L^{2}(0, T; L^{2}(\Omega))$  and  $c_{0} \in H_{0}^{1}(\Omega)$  then problem above has a unique weak solution  $(c, \mathbf{r}) \in H^{1}(0, T; L^{2}(\Omega)) \times (L^{2}(0, T; H(\operatorname{div}, \Omega)) \cap L^{\infty}(0, T; L^{2}(\Omega))).$ 

Moreover, if  $\mathbf{D} \in \boldsymbol{W}^{1,\infty}(\Omega)$ ,  $f \in H^1(0, T; L^2(\Omega))$  and  $c_0 \in H^2(\Omega) \cap H^1_0(\Omega)$ , then

$$(\boldsymbol{c},\mathbf{r})\in W^{1,\infty}(0,T;L^2(\Omega))\times \left(L^\infty(0,T;H(\operatorname{div},\Omega))\cap H^1(0,T;L^2(\Omega))\right).$$

Proof. Galerkin's method and a priori estimates.

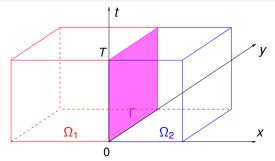
## Multi-domain problem



Equivalent multi-domain problem:

| $\mathcal{L}(c_1,\mathbf{r}_1)$ | = f,     | on $\Omega_1 \times (0, T)$ , | $\mathcal{L}(c_2, \mathbf{r}_2)$ | = <b>f</b> , | on $\Omega_2 \times (0, T)$ , |
|---------------------------------|----------|-------------------------------|----------------------------------|--------------|-------------------------------|
| $\mathcal{M}(c_1,\mathbf{r}_1)$ | = 0,     | on $\Omega_1 \times (0, T)$ , | $\mathcal{M}(c_2, \mathbf{r}_2)$ | = <b>0</b> , | on $\Omega_2 \times (0, T)$ , |
| $c_1(\cdot,0)$                  | $= c_0,$ | in $\Omega_1$ ,               | <i>c</i> <sub>2</sub> (·, 0)     | $= c_0,$     | in $\Omega_2$ ,               |

## Multi-domain problem



Equivalent multi-domain problem:

| $\mathcal{L}(c_1,\mathbf{r}_1)$ | = f,     | on $\Omega_1 \times (0, T)$ , | $\mathcal{L}(c_2, r_2)$     | = <b>f</b> , | on $\Omega_2 \times (0, T)$ , |
|---------------------------------|----------|-------------------------------|-----------------------------|--------------|-------------------------------|
| $\mathcal{M}(c_1,\mathbf{r}_1)$ | = 0,     | on $\Omega_1 \times (0, T)$ , | $\mathcal{M}(c_2, r_2)$     | = <b>0</b> , | on $\Omega_2 \times (0, T)$ , |
| $c_1(\cdot,0)$                  | $= c_0,$ | in $\Omega_1$ ,               | <i>c</i> <sub>2</sub> (·,0) | $= c_0,$     | in $\Omega_2$ ,               |

together with the transmission conditions on the space-time interface

$$\begin{array}{ll} c_1 = c_2 \\ \mathbf{r}_1 \cdot \mathbf{n}_1 + \mathbf{r}_2 \cdot \mathbf{n}_2 = 0 \end{array} \quad \text{ on } \Gamma \times (0, T) \,. \end{array}$$

Different (equivalent) transmission conditions (TCs)

Different (equivalent) transmission conditions (TCs)

GTP Schur

Physical TCs+ N-N preconditioner

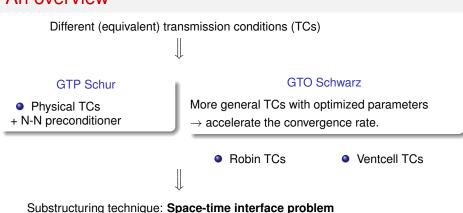
GTO Schwarz

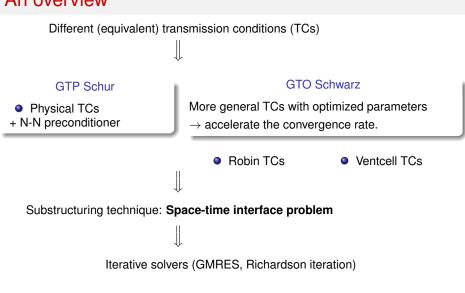
More general TCs with optimized parameters  $\rightarrow$  accelerate the convergence rate.

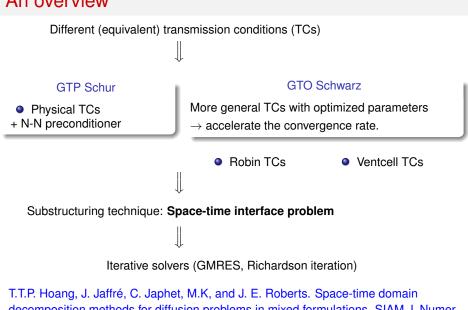
Robin TCs

Ventcell TCs

<ロ><一><一><一><一><一><一><一</td>13/49







decomposition methods for diffusion problems in mixed formulations. SIAM J. Numer. Anal., 51(6):3532–3559, 2013. 13/49

## Time-dependent Steklov-Poincaré operator

• Dirichlet-to-Neumann operators, for i = 1, 2:

$$\mathcal{S}_{i}^{DtN}:(\lambda,f,c_{0})\longmapsto\left(\mathbf{r}_{i}\cdot\mathbf{n}_{i}\right)_{|\Gamma},$$

where  $(c_i, \mathbf{r}_i)$ , i = 1, 2, is the solution of

$$\begin{array}{ll} \mathcal{L}(\boldsymbol{c}_i, \mathbf{r}_i) &= f, & \text{on } \Omega_i \times (0, T), \\ \mathcal{M}(\boldsymbol{c}_i, \mathbf{r}_i) &= 0, & \text{on } \Omega_i \times (0, T), \\ \boldsymbol{c}_i &= \lambda, & \text{on } \Gamma \times (0, T), \\ \boldsymbol{c}_i(\cdot, 0) &= \boldsymbol{c}_0, & \text{in } \Omega_i. \end{array}$$

## Time-dependent Steklov-Poincaré operator

• Dirichlet-to-Neumann operators, for i = 1, 2:

$$\mathcal{S}_{i}^{DtN}:(\lambda,f,c_{0})\longmapsto\left(\mathbf{r}_{i}\cdot\mathbf{n}_{i}\right)_{|\Gamma},$$

where  $(c_i, \mathbf{r}_i)$ , i = 1, 2, is the solution of

$$\begin{array}{ll} \mathcal{L}(\boldsymbol{c}_i, \mathbf{r}_i) &= f, & \text{on } \Omega_i \times (0, T), \\ \mathcal{M}(\boldsymbol{c}_i, \mathbf{r}_i) &= 0, & \text{on } \Omega_i \times (0, T), \\ \boldsymbol{c}_i &= \lambda, & \text{on } \Gamma \times (0, T), \\ \boldsymbol{c}_i(\cdot, 0) &= \boldsymbol{c}_0, & \text{in } \Omega_i. \end{array}$$

Space-time interface problem:

$$S_{1}^{DtN}(\lambda, f, c_{0}) + S_{2}^{DtN}(\lambda, f, c_{0}) = 0,$$

$$\updownarrow$$

$$\sum_{i=1}^{2} S_{i}^{DtN}(\lambda, 0, 0) = \sum_{i=1}^{2} S_{i}^{DtN}(0, f, c_{0}),$$

$$\Leftrightarrow$$

$$S\lambda = \chi, \text{ on } \Gamma \times (0, T).$$

## Time-dependent Steklov-Poincaré operator

• Dirichlet-to-Neumann operators, for i = 1, 2:

$$\mathcal{S}_{i}^{DtN}:(\lambda,f,c_{0})\longmapsto\left(\mathbf{r}_{i}\cdot\mathbf{n}_{i}\right)_{|\Gamma},$$

where  $(c_i, \mathbf{r}_i)$ , i = 1, 2, is the solution of

$$\begin{array}{ll} \mathcal{L}(\boldsymbol{c}_i, \mathbf{r}_i) &= f, & \text{on } \Omega_i \times (0, T), \\ \mathcal{M}(\boldsymbol{c}_i, \mathbf{r}_i) &= 0, & \text{on } \Omega_i \times (0, T), \\ \boldsymbol{c}_i &= \lambda, & \text{on } \Gamma \times (0, T), \\ \boldsymbol{c}_i(\cdot, 0) &= \boldsymbol{c}_0, & \text{in } \Omega_i. \end{array}$$

Space-time interface problem:

Neumann-Neumann preconditioner with weights:

$$\left(\sigma_1 \mathcal{S}_1^{NtD} + \sigma_2 \mathcal{S}_2^{NtD}\right) \mathcal{S}\lambda = \widehat{\chi}, \quad \text{on } \Gamma \times (0, T).$$

where  $\sigma_i : \Gamma \times (0, T) \rightarrow [0, 1]$  such that  $\sigma_1 + \sigma_2 = 1$ .

14/49

## GTO Schwarz: Robin transmission conditions

• Equivalent Robin TCs on  $\Gamma \times (0, T)$ : for  $\alpha_1, \alpha_2 > 0$ 

$$\begin{aligned} -\mathbf{r}_1 \cdot \mathbf{n}_1 + \alpha_1 c_1 &= -\mathbf{r}_2 \cdot \mathbf{n}_1 + \alpha_1 c_2, \\ -\mathbf{r}_2 \cdot \mathbf{n}_2 + \alpha_2 c_2 &= -\mathbf{r}_1 \cdot \mathbf{n}_2 + \alpha_2 c_1, \end{aligned}$$

#### GTO Schwarz: Robin transmission conditions

• Equivalent Robin TCs on  $\Gamma \times (0, T)$ : for  $\alpha_1, \alpha_2 > 0$ 

$$\begin{array}{rcl} -\mathbf{r}_1 \cdot \mathbf{n}_1 + \alpha_1 c_1 & = -\mathbf{r}_2 \cdot \mathbf{n}_1 + \alpha_1 c_2, \\ -\mathbf{r}_2 \cdot \mathbf{n}_2 + \alpha_2 c_2 & = -\mathbf{r}_1 \cdot \mathbf{n}_2 + \alpha_2 c_1, \end{array}$$

• Robin-to-Robin operators, for i = 1, 2 and j = 3 - i:

$$S_i^{RtR}: (\xi_i, f, c_0) \longmapsto (-\mathbf{r}_i \cdot \mathbf{n}_j + \alpha_j c_i)_{|\Gamma},$$

where  $(c_i, \mathbf{r}_i)$ , i = 1, 2, is the solution of

$$\begin{array}{ll} \mathcal{L}(\boldsymbol{c}_i, \mathbf{r}_i) &= f, & \text{on } \Omega_i \times (0, T), \\ \mathcal{M}(\boldsymbol{c}_i, \mathbf{r}_i) &= 0, & \text{on } \Omega_i \times (0, T), \\ -\mathbf{r}_i \cdot \mathbf{n}_i + \alpha_i \boldsymbol{c}_i &= \xi_i, & \text{on } \Gamma \times (0, T), \\ \boldsymbol{c}_i(\cdot, 0) &= \boldsymbol{c}_0, & \text{in } \Omega_i. \end{array}$$

#### GTO Schwarz: Robin transmission conditions

• Equivalent Robin TCs on  $\Gamma \times (0, T)$ : for  $\alpha_1, \alpha_2 > 0$ 

$$\begin{array}{rcl} -\mathbf{r}_1 \cdot \mathbf{n}_1 + \alpha_1 c_1 & = -\mathbf{r}_2 \cdot \mathbf{n}_1 + \alpha_1 c_2, \\ -\mathbf{r}_2 \cdot \mathbf{n}_2 + \alpha_2 c_2 & = -\mathbf{r}_1 \cdot \mathbf{n}_2 + \alpha_2 c_1, \end{array}$$

• Robin-to-Robin operators, for i = 1, 2 and j = 3 - i:

$$S_i^{RtR}: (\xi_i, f, c_0) \longmapsto (-\mathbf{r}_i \cdot \mathbf{n}_j + \alpha_j c_i)_{|\Gamma},$$

where  $(c_i, \mathbf{r}_i)$ , i = 1, 2, is the solution of

$$\begin{array}{ll} \mathcal{L}(\boldsymbol{c}_i, \mathbf{r}_i) &= f, & \text{on } \Omega_i \times (0, T), \\ \mathcal{M}(\boldsymbol{c}_i, \mathbf{r}_i) &= 0, & \text{on } \Omega_i \times (0, T), \\ -\mathbf{r}_i \cdot \mathbf{n}_i + \alpha_i c_i &= \xi_i, & \text{on } \Gamma \times (0, T), \\ c_i(\cdot, 0) &= c_0, & \text{in } \Omega_i. \end{array}$$

Space-time interface problem with two Lagrange multipliers:

$$\begin{array}{ll} \xi_1 & = \mathcal{S}_2^{RtR}(\xi_2, f, c_0), \\ \xi_2 & = \mathcal{S}_1^{RtR}(\xi_1, f, c_0), \end{array} \quad \text{on } \Gamma \times (0, T) \,, \end{array}$$

or equivalently,

$$\mathcal{S}_R \left( \begin{array}{c} \xi_1 \\ \xi_2 \end{array} \right) = \chi_R, \quad \text{on } \Gamma \times (0, T).$$

15/49

イロト 不得 とくき とくき とうき

#### OSWR algorithm with Robin TCs

**OSWR iterative algorithm**: at the  $k^{th}$  iteration, for i = 1, 2 and j = (3 - i)

$$\begin{split} \phi_i \partial_t c_i^k + \operatorname{div} \mathbf{r}_i^k &= f \text{ in } \Omega_i \times (0, T) \\ \mathbf{D}_i^{-1} \mathbf{r}_i^k + \nabla c_i^k &= 0 \text{ in } \Omega_i \times (0, T) \\ -\mathbf{r}_i^k \cdot \mathbf{n}_i + \alpha_i c_i^k &= -\mathbf{r}_j^{k-1} \cdot \mathbf{n}_i + \alpha_i c_j^{k-1} \text{ on } \Gamma \times (0, T) , \end{split}$$
for given initial guess  $g_i = \left( -\mathbf{r}_i^0 \cdot \mathbf{n}_i + \alpha_i c_i^0 \right), \ i = 1, 2. \end{split}$ 

#### OSWR algorithm with Robin TCs

**OSWR iterative algorithm**: at the  $k^{th}$  iteration, for i = 1, 2 and j = (3 - i)

$$\begin{aligned} \phi_i \partial_t c_i^k + \operatorname{div} \mathbf{r}_i^k &= f \text{ in } \Omega_i \times (0, T) \\ \mathbf{D}_i^{-1} \mathbf{r}_i^k + \nabla c_i^k &= 0 \text{ in } \Omega_i \times (0, T) \\ -\mathbf{r}_i^k \cdot \mathbf{n}_i + \alpha_i c_i^k &= -\mathbf{r}_j^{k-1} \cdot \mathbf{n}_i + \alpha_i c_j^{k-1} \text{ on } \Gamma \times (0, T) , \end{aligned} \\ \end{aligned}$$
for given initial guess  $g_i = \left( -\mathbf{r}_i^0 \cdot \mathbf{n}_i + \alpha_i c_i^0 \right), \ i = 1, 2. \end{aligned}$ 

Theorem (Convergence of OSWR algorithm in mixed formulation)

If the algorithm above is initialized by  $(g_i) \in H^1(0, T; L^2(\Gamma))$  for i = 1, 2, then

• a sequence of iterates  $(c_i^k, \mathbf{r}_i^k) \in H^1(0, T; L^2(\Omega_i)) \times L^2(0, T; \mathcal{H}(\operatorname{div}, \Omega_i))$  is well-defined

• 
$$\sum_{i=1}^{2} \left( \|\boldsymbol{c}_{i}^{k} - \boldsymbol{c}_{|\Omega_{i}|}\|_{H^{1}\left(0,T;L^{2}(\Omega_{i})\right)} + \|\boldsymbol{r}_{i}^{k} - \boldsymbol{r}_{|\Omega_{i}|}\|_{L^{2}(0,T;\mathcal{H}(\operatorname{div},\Omega_{i}))}^{2} \right) \stackrel{k \to \infty}{\longrightarrow} 0.$$

where  $\mathcal{H}(\operatorname{div}, \Omega_i) := \left\{ \mathbf{v} \in H(\operatorname{div}, \Omega_i) : (\mathbf{v} \cdot \mathbf{n}_i)_{|\Gamma} \in L^2(\Gamma) \right\}.$ 

Remark. The proof is carried out for the multiple subdomain case.

With sufficient regularity  $\rightarrow$  equivalent Ventcell transmission conditions

With sufficient regularity  $\rightarrow$  equivalent Ventcell transmission conditions

• In primal form: on  $\Gamma \times (0, T)$ :

 $-\mathbf{r}_1 \cdot \mathbf{n}_1 + \alpha_1 c_1 + = -\mathbf{r}_2 \cdot \mathbf{n}_1 + \alpha_1 c_2 + \mathbf{n}_1 + \mathbf{n}_1 c_2 +$ 

 $-\mathbf{r}_2 \cdot \mathbf{n}_2 + \alpha_2 c_2 + = -\mathbf{r}_1 \cdot \mathbf{n}_2 + \alpha_2 c_1 + c_2 c_1 + c_2 c_2 + c_2$ 

With sufficient regularity  $\rightarrow$  equivalent Ventcell transmission conditions

• In primal form: on  $\Gamma \times (0, T)$ :

$$\begin{aligned} -\mathbf{r}_{1}\cdot\mathbf{n}_{1}+\alpha_{1}\mathbf{c}_{1}+\beta_{1}\left(\phi_{2}\partial_{t}\mathbf{c}_{1}+\mathsf{div}_{\tau}\left(-\mathbf{D}_{2,\Gamma}\nabla_{\tau}\mathbf{c}_{1}\right)\right) &=-\mathbf{r}_{2}\cdot\mathbf{n}_{1}+\alpha_{1}\mathbf{c}_{2}+\\ &\beta_{1}\left(\phi_{2}\partial_{t}\mathbf{c}_{2}+\mathsf{div}_{\tau}\left(-\mathbf{D}_{2,\Gamma}\nabla_{\tau}\mathbf{c}_{2}\right)\right),\end{aligned}$$

 $\begin{aligned} -\mathbf{r}_{2}\cdot\mathbf{n}_{2}+\alpha_{2}\mathbf{c}_{2}+\beta_{2}\left(\phi_{1}\partial_{t}\mathbf{c}_{2}+\mathsf{div}_{\tau}\left(-\mathbf{D}_{1,\Gamma}\nabla_{\tau}\mathbf{c}_{2}\right)\right) &=-\mathbf{r}_{1}\cdot\mathbf{n}_{2}+\alpha_{2}\mathbf{c}_{1}+\\ &\beta_{2}\left(\phi_{1}\partial_{t}\mathbf{c}_{1}+\mathsf{div}_{\tau}\left(-\mathbf{D}_{1,\Gamma}\nabla_{\tau}\mathbf{c}_{1}\right)\right).\end{aligned}$ 

 $\rightarrow \alpha_i, \beta_i$ : positive constants to be optimized to accelerate convergence rate.

With sufficient regularity  $\rightarrow$  equivalent Ventcell transmission conditions

• In primal form: on  $\Gamma \times (0, T)$ :

$$\begin{aligned} -\mathbf{r}_{1}\cdot\mathbf{n}_{1}+\alpha_{1}c_{1}+\beta_{1}\left(\phi_{2}\partial_{t}c_{1}+\mathsf{div}_{\tau}\left(-\mathsf{D}_{2,\Gamma}\nabla_{\tau}c_{1}\right)\right) &=-\mathbf{r}_{2}\cdot\mathbf{n}_{1}+\alpha_{1}c_{2}+\\ &\beta_{1}\left(\phi_{2}\partial_{t}c_{2}+\mathsf{div}_{\tau}\left(-\mathsf{D}_{2,\Gamma}\nabla_{\tau}c_{2}\right)\right),\end{aligned}$$

$$\begin{aligned} -\mathbf{r}_{2}\cdot\mathbf{n}_{2}+\alpha_{2}\mathbf{c}_{2}+\beta_{2}\left(\phi_{1}\partial_{t}\mathbf{c}_{2}+\mathsf{div}_{\tau}\left(-\mathbf{D}_{1,\Gamma}\nabla_{\tau}\mathbf{c}_{2}\right)\right) &=-\mathbf{r}_{1}\cdot\mathbf{n}_{2}+\alpha_{2}\mathbf{c}_{1}+\\ &\beta_{2}\left(\phi_{1}\partial_{t}\mathbf{c}_{1}+\mathsf{div}_{\tau}\left(-\mathbf{D}_{1,\Gamma}\nabla_{\tau}\mathbf{c}_{1}\right)\right).\end{aligned}$$

 $\rightarrow \alpha_i, \beta_i$ : positive constants to be optimized to accelerate convergence rate.

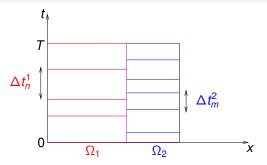
• In mixed form: introduce Lagrange multipliers on the interface,  $c_{i,\Gamma}$  and  $\mathbf{r}_{\Gamma,i}$ , for i = 1, 2,

$$\begin{aligned} -\mathbf{r}_{i} \cdot \mathbf{n}_{i} + \alpha_{i} \mathbf{c}_{i,\Gamma} + \beta_{i} \left( \phi_{j} \partial_{t} \mathbf{c}_{i,\Gamma} + \operatorname{div}_{\tau} \mathbf{r}_{\Gamma,i} \right) &= -\mathbf{r}_{j} \cdot \mathbf{n}_{i} + \alpha_{i} \mathbf{c}_{j,\Gamma} + \\ & \beta_{i} \left( \phi_{j} \partial_{t} \mathbf{c}_{j,\Gamma} + \operatorname{div}_{\tau} \left( \mathbf{D}_{j,\Gamma} \mathbf{D}_{i,\Gamma}^{-1} \mathbf{r}_{\Gamma,j} \right) \right), \\ \mathbf{D}_{j,\Gamma}^{-1} \mathbf{r}_{\Gamma,i} + \nabla_{\tau} \mathbf{c}_{i,\Gamma} &= 0. \end{aligned}$$

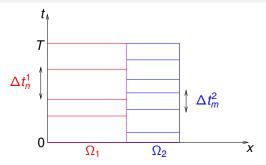
•  $c_{i,\Gamma}$ : pressure trace on  $\Gamma$ .

•  $\mathbf{r}_{\Gamma,i} := -\mathbf{D}_{j,\Gamma} \nabla_{\tau} c_{i,\Gamma}$ : NOT the tangential trace of  $\mathbf{r}_i$  on  $\Gamma \times (0, T)$ .

#### Nonconforming discretizations in time



#### Nonconforming discretizations in time



- Time discretization: non-conforming time grids T<sub>1</sub>, T<sub>2</sub>; discontinuous Galerkin with piecewise polynomials of degree 0.
- Projections: Π<sub>ji</sub> is an L<sup>2</sup> projection from piecewise constant functions on *T<sub>i</sub>* onto piecewise constant functions on *T<sub>j</sub>*.
   Ex:

$$(\Pi_{21}(\lambda_1))^m = \frac{1}{|J_m^2|} \sum_{n=1}^{M_1} \int_{J_n^1 \cap J_m^2} \lambda_1, \text{ for } m = 1, \cdots, M_2.$$

# Semi-discrete transmission conditions with nonconforming time grids

• For GTP Schur method: take  $\lambda = (\lambda^1, \dots, \lambda^{M_1})$  piecewise constant on

$$J_n^1 = (t_1^n, t_1^{n+1})$$
, for  $n = 0, \cdots, M_1 - 1$ .

- Continuity of concentration:  $c_1 = \Pi_{11}(\lambda)$  and  $c_2 = \Pi_{21}(\lambda)$ .
- Conservation of the flux over each time subinterval

$$\int_{J_n^1} \int_{\Gamma} (\Pi_{11} (\mathbf{r}_1 \cdot \mathbf{n}_1) + \Pi_{12} (\mathbf{r}_2 \cdot \mathbf{n}_2)) dt = 0, \text{ for } \mathbf{n} = 0, \cdots, \mathbf{M}_1 - 1.$$

# Semi-discrete transmission conditions with nonconforming time grids

• For GTP Schur method: take  $\lambda = (\lambda^1, \dots, \lambda^{M_1})$  piecewise constant on

$$U_n^1 = (t_1^n, t_1^{n+1}), \text{ for } n = 0, \cdots, M_1 - 1.$$

- Continuity of concentration:  $c_1 = \Pi_{11}(\lambda)$  and  $c_2 = \Pi_{21}(\lambda)$ .
- Conservation of the flux over each time subinterval

$$\int_{J_n^1} \int_{\Gamma} (\Pi_{11} (\mathbf{r}_1 \cdot \mathbf{n}_1) + \Pi_{12} (\mathbf{r}_2 \cdot \mathbf{n}_2)) dt = 0, \text{ for } \mathbf{n} = 0, \cdots, \mathbf{M}_1 - 1.$$

 For GTO Schwarz method: conservation of the two Robin (Ventcell) conditions across the interface over each time subinterval

$$\int_{J_n^1} \int_{\Gamma} \left[ (-\mathbf{r}_1 \cdot \mathbf{n}_1 + \alpha_1 c_1) - \Pi_{12} \left( -\mathbf{r}_2 \cdot \mathbf{n}_1 + \alpha_1 c_2 \right) \right] dt = 0, \ \forall n = 0, \cdots, M_1 - 1,$$
  
$$\int_{J_m^2} \int_{\Gamma} \left[ (-\mathbf{r}_2 \cdot \mathbf{n}_2 + \alpha_2 c_2) - \Pi_{21} \left( -\mathbf{r}_1 \cdot \mathbf{n}_2 + \alpha_2 c_1 \right) \right] dt = 0, \ \forall m = 0, \cdots, M_2 - 1.$$

 $\rightarrow$  Convergence of semi-discrete, nonconforming in time, OSWR algorithm

#### Outline

#### Introduction

- Pure diffusion problems
  - Multi-domain mixed formulations
  - Nonconforming discretizations in time

## Advection-diffusion problems Operator splitting

- Extension to two-phase flow
- 5 Extension to reduced fracture models

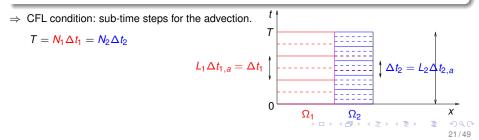
#### Extension to advection-diffusion problems

Linear advection-diffusion equation:

$$\begin{aligned} \phi \partial_t \boldsymbol{c} + \operatorname{div} \left( \boldsymbol{u} \boldsymbol{c} \right) + \operatorname{div} \boldsymbol{r} &= \boldsymbol{f} & \text{ in } \Omega \times (0, T), \\ \nabla \boldsymbol{c} + \boldsymbol{D}^{-1} \boldsymbol{r} &= \boldsymbol{0} & \text{ in } \Omega \times (0, T), \\ \boldsymbol{c} &= \boldsymbol{0} & \text{ on } \partial \Omega \times (0, T), \\ \boldsymbol{c}(\cdot, \boldsymbol{0}) &= \boldsymbol{c}_0 & \text{ in } \Omega. \end{aligned}$$

Operator splitting

- Advection eq.: explicit Euler + upwind, cell-centered finite volumes.
- Diffusion eq.: implicit Euler + mixed finite elements.



#### Discrete interface problems

GTP Schur method:

$$\widetilde{\mathcal{S}}_h \left( egin{array}{c} \lambda_a \ \lambda \end{array} 
ight) = \widetilde{\chi}_h, \quad ext{on } \Gamma imes (0, T).$$

 $\implies$  Generalized Neumann-Neumann preconditioner

• GTO Schwarz method with Robin TCs:

$$\widetilde{\mathcal{S}}_{R,h}\left(egin{array}{c} \lambda_{a} \ \xi_{1} \ \xi_{2} \end{array}
ight)=\widetilde{\chi}_{R,h}, \quad ext{on } \Gamma imes(0,T).$$

 $\implies$  Optimized Robin parameters for the diffusion eq. only  $\neq$  fully implicit scheme.

*Remark.*  $\lambda_a \in \Lambda_h^{N \times L}$  while  $\lambda, \xi_1, \xi_2 \in \Lambda_h^N$ .

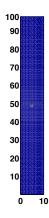
T.T.P. Hoang, J. Jaffré, C. Japhet, M.K., and J. E. Roberts. Proc. Mamern 2015, in preparation.

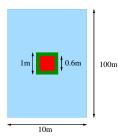
#### Test case 2: A near-field simulation (project PAMINA\*)

\* Performance Assessment Methodologies IN Application to Guide the Development of the Safety Case

#### Parameters of the simulation

| Material        | Permeability (m.s <sup>-1</sup> ) | Porosity | Diffusion (m <sup>2</sup> . $s^{-1}$ ) |
|-----------------|-----------------------------------|----------|----------------------------------------|
| Host rock       | 10 <sup>-13</sup>                 | 0.06     | 6 10 <sup>-13</sup>                    |
| EDZ             | 510 <sup>-11</sup>                | 0.2      | 210-11                                 |
| Vitrified waste | 10 <sup>-8</sup>                  | 0.1      | 10 <sup>-11</sup>                      |





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

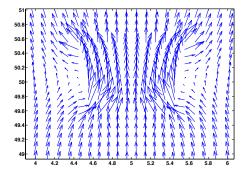
## Advection field: Darcy flow

$$\begin{aligned} \text{div } \mathbf{u} &= \mathbf{0} & \text{in } \Omega, \\ \mathbf{u} &= -\mathbf{K} \nabla p & \text{in } \Omega. \end{aligned}$$

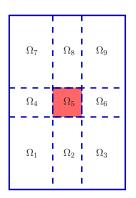
BCs:

Homogeneous Neumann at x = 0 and x = 10,

Dirichlet conditions with p = 100 Pa at y = 0 and p = 0 at y = 100.



#### Transport problem: time windows and decomposition

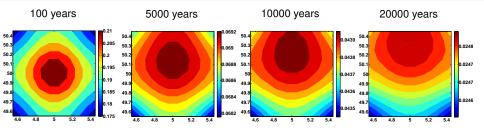


- Final time:  $T_f = 2 \, 10^{11} \text{s} \ (\approx 20000 \text{ years})$ 
  - $\rightarrow$  200 time windows with size  $T = 10^9$ s.
- Decomposition into 9 subdomains.
- Nonconforming time grids:
  - Diffusion step:

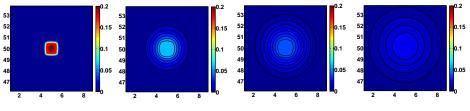
 $\Delta t_i = T/500, \quad i = 5, \\ \Delta t_i = T/100, \quad i \neq 5.$ 

- Diffusion-dominated:  $\text{Pe}_L \leq 0.0513$  $\longrightarrow \Delta t_{a,i} = \Delta t_i.$
- Non-uniform mesh in space: uniform mesh in the repository (10 by 10), then progressively coarser with a factor of 1.05.

#### Evolution of concentration field

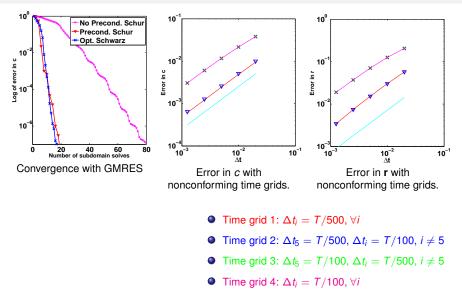


In the repository



In the host rock

#### Performance of one time window

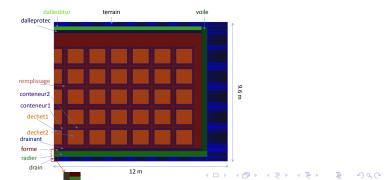


・ロト・西・・ヨ・・ヨ・ ヨー りへぐ

27/49

## A subsurface waste storage simulation

| Zone                   | Hydraulic conductivity  | Porosity | Molecular diffusion             |
|------------------------|-------------------------|----------|---------------------------------|
|                        | K (m/year)              | $\phi$   | <i>d</i> <sub>m</sub> (m²/year) |
| terrain                | 94608                   | 0.30     | 1                               |
| dalleprotec/dalleobtur | 3.1536 10 <sup>-3</sup> | 0.20     | 1.5810 <sup>-3</sup>            |
| voile                  | 3.1536 10 <sup>-3</sup> | 0.20     | 1.58 10 <sup>-3</sup>           |
| remplissage            | 5045.76                 | 0.30     | 5.36 10 <sup>-2</sup>           |
| conteneur1/conteneur2  | $3.153610^{-4}$         | 0.12     | $4.4710^{-4}$                   |
| dechet1/dechet2        | $3.153610^{-4}$         | 0.30     | 1.37 10 <sup>-3</sup>           |
| radier                 | $3.153610^{-4}$         | 0.15     | 6.31 10 <sup>-5</sup>           |
| drainant               | 94608                   | 0.30     | 5.36 10 <sup>-2</sup>           |



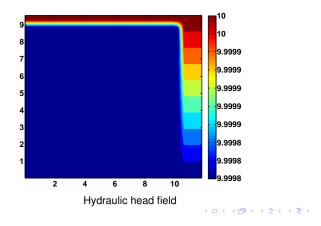
#### Darcy flow

$$\begin{array}{ll} \operatorname{div} \mathbf{u} &= 0 & \operatorname{in} \Omega, \\ \mathbf{u} &= -\mathbf{K} \nabla h & \operatorname{in} \Omega. \end{array}$$

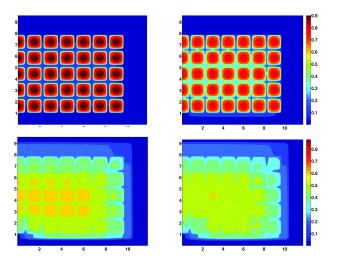
BCs:

Homogeneous Neumann at x = 0 and x = 12m,

Dirichlet conditions with h = 9.998m at y = 0 and h = 10m at y = 9.6m.



#### Concentration field after 500 years



#### Outline

#### Introduction

- Pure diffusion problems
  - Multi-domain mixed formulations
  - Nonconforming discretizations in time
- 3 Advection-diffusion problems
  - Operator splitting

#### Extension to two-phase flow

Extension to reduced fracture models

### Model problem: Two-phase immiscible flow

#### Mathematical model

$$\partial_t (\omega \rho_\alpha S_\alpha) + \operatorname{div} (\rho_\alpha u_\alpha) = q_\alpha \quad \text{mass conservation}$$
$$u_\alpha = -\frac{k_{r\alpha}}{\mu_\alpha} K (\nabla \rho_\alpha - \rho_\alpha \nabla g) \quad \text{Darcy's law}$$
$$S_n + S_w = 1$$
$$\rho_n - \rho_w = \pi(S_w) \quad \text{capillary pressure}$$

Phase  $\alpha = w$  water, *n* gas or oil.  $\pi(S_w)$  increasing function on [0, 1] (extend coninuously to **R**).

- ω porosity
- $S_{\alpha}$  phase saturation
- $\boldsymbol{u}_{\alpha}$  phase velocity
- $k_{r\alpha}$  relative permeability

- K permeability
- $p_{\alpha}$ : phase pressure
- $\rho_{\alpha}$  phase density
- $\mu_{\alpha}$  viscosity

## Simplified model

Enchery et al. (06), Cances (08), Brenner et al. (13), no gravity

- Global pressure (Chavent)  $P_g(S) = p_w + \int_0^S \frac{k_{rn}(u)/\mu_n}{\frac{k_{rm}(u)}{u} + \frac{k_{rw}(u)}{u}} \pi'(u) du$ ,
- 2 Kirchhoff transformation :  $\phi(S) = \int_0^S K \frac{k_{rn}(u)k_{rw}(u)}{\mu_n k_{rw}(u) + \mu_w k_{rn}(u)} \pi'(u) du.$

### Simplified model

Enchery et al. (06), Cances (08), Brenner et al. (13), no gravity

**1** Global pressure (Chavent)  $P_g(S) = p_w + \int_0^S \frac{k_{rn}(u)/\mu_n}{\frac{k_{rm}(u)}{\mu_n} + \frac{k_{rw}(u)}{\mu_w}} \pi'(u) du$ ,

**2** Kirchhoff transformation : 
$$\phi(S) = \int_0^S K \frac{k_m(u)k_{rw}(u)}{\mu_n k_{rw}(u) + \mu_w k_m(u)} \pi'(u) du.$$

Transformed system :  $f(S) = \frac{\mu_w k_{rn}(S)}{\mu_w k_{rn}(S) + \mu_n k_{rw}(S)}, \ \lambda(S) = \frac{k_{rn}(S)}{\mu_n} + \frac{k_{rw}(S)}{\mu_w}.$ 

$$\begin{cases} \omega \partial_t \mathbf{S} + \operatorname{div} \left( f(\mathbf{S}) \mathbf{q}_T \right) - \Delta \phi(\mathbf{S}) = \mathbf{0} \\ \operatorname{div} \mathbf{q}_T = \mathbf{0}, \quad \mathbf{q}_T = -K\lambda(\mathbf{S}) \operatorname{grad} \mathbf{P}_g \end{cases} \quad \text{in } \Omega \times [\mathbf{0}, T]$$

### Simplified model

Enchery et al. (06), Cances (08), Brenner et al. (13), no gravity

**1** Global pressure (Chavent)  $P_g(S) = p_w + \int_0^S \frac{k_{rn}(u)/\mu_n}{\frac{k_{rm}(u)}{\mu_n} + \frac{k_{rw}(u)}{\mu_w}} \pi'(u) du$ ,

**2** Kirchhoff transformation : 
$$\phi(S) = \int_0^S K \frac{k_m(u)k_{rw}(u)}{\mu_n k_{rw}(u) + \mu_w k_m(u)} \pi'(u) du.$$

Transformed system :  $f(S) = \frac{\mu_w k_{rn}(S)}{\mu_w k_{rn}(S) + \mu_n k_{rw}(S)}, \lambda(S) = \frac{k_{rn}(S)}{\mu_n} + \frac{k_{rw}(S)}{\mu_w}.$ 

$$\begin{cases} \omega \partial_t \mathbf{S} + \operatorname{div} \left( f(\mathbf{S}) \mathbf{q}_T \right) - \Delta \phi(\mathbf{S}) = \mathbf{0} \\ \operatorname{div} \mathbf{q}_T = \mathbf{0}, \quad \mathbf{q}_T = -K\lambda(\mathbf{S}) \text{ grad } \mathbf{P}_g \end{cases} \quad \text{in } \Omega \times [\mathbf{0}, T]$$

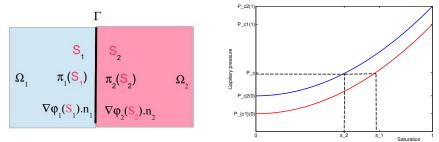
Simplified system: neglect advection

$$\omega \partial_t S - \Delta \phi(S) = 0$$
 in  $\Omega \times [0, T]$ 

Nonlinear (degenerate) diffusion equation

## Discontinuous capillary pressure: transmission conditions

Two subdomains  $\bar{\Omega} = \bar{\Omega_1} \cup \bar{\Omega_2}, \Omega_1 \cap \Omega_2 = \emptyset$ .  $\Gamma = \bar{\Omega_1} \cap \bar{\Omega_2}$ 



Transmission conditions on the interface

Continuity of capillary pressure  $\pi_1(S_1) = \pi_2(S_2)$  on  $\Gamma$ 

Continuity of the flux  $\nabla \phi_1(S_1).n_1 = \nabla \phi_2(S_2).n_2$  on  $\Gamma$ 

Chavent – Jaffré (86), Enchéry et al. (06), Cances (08), Ern et al (10), Brenner et al. (13).

34/49

#### Non-linear Schwarz algorithm

#### Robin transmission conditions

$$\nabla \phi_1(\mathbf{S}_1).\mathbf{n}_1 + \beta_1 \pi_1(\mathbf{S}_1) = -\nabla \phi_2(\mathbf{S}_2).\mathbf{n}_2 + \beta_1 \pi_2(\mathbf{S}_2)$$
$$\nabla \phi_2(\mathbf{S}_2).\mathbf{n}_2 + \beta_2 \pi_2(\mathbf{S}_2) = -\nabla \phi_1(\mathbf{S}_1).\mathbf{n}_1 + \beta_2 \pi_1(\mathbf{S}_1)$$

#### Schwarz algorithm

Given  $\mathbf{S}_{i}^{0}$ , iterate for k = 0, ...Solve for  $\mathbf{S}_{i}^{k+1}$ , i = 1, 2, j = 3 - i $\omega \partial_{t} \mathbf{S}_{i}^{k+1} - \Delta \phi_{i}(\mathbf{S}_{i}^{k+1}) = 0$  in  $\Omega_{i} \times [0, T]$  $\nabla \phi_{i}(\mathbf{S}_{i}^{k+1}).n_{i} + \beta_{i}\pi_{i}(\mathbf{S}_{i}^{k+1}) = -\nabla \phi_{j}(\mathbf{S}_{j}^{k}).n_{j} + \beta_{i}\pi_{j}(\mathbf{S}_{j}^{k})$  on  $\Gamma \times [0, T]$ ,

 $(\beta_1, \beta_2)$  are free parameters chosen to accelerate convergence

Basic ingredient: subdomain solver with Robin bc.

### Finite volume scheme (1)

Extension to Robin bc of cell centered FV scheme by Enchéry et al. (06). Triangulation  $\mathcal{T}$ , cells  $K \in \mathcal{T}$ , boundary faces  $\sigma \subset \Gamma$ . Unknowns : cell values ( $S_K$ )<sub> $K \in \mathcal{T}$ </sub>, boundary face values ( $S_\sigma$ )<sub> $\sigma \in \mathcal{E}_\Gamma$ </sub>



Notations: K|L = edge between K and L,  $\tau_{K|L} = \frac{m(K|L)}{\bar{K}_{K|L}}$  (eg harmonic average).

## Finite volume scheme (2)

#### Interior equation

$$m(\mathcal{K})\frac{S_{\mathcal{K}}^{n+1}-S_{\mathcal{K}}^{n}}{\delta t} + \sum_{L\in\mathcal{N}(\mathcal{K})}\tau_{\mathcal{K}|L}\left(\phi(S_{\mathcal{K}}^{n+1})-\phi(S_{L}^{n+1})\right) + \sum_{\sigma\in\mathcal{E}_{\Gamma}\cap\mathcal{E}_{\mathcal{K}}}\tau_{\mathcal{K},\sigma}\left(\phi(S_{\mathcal{K}}^{n+1})-\phi(S_{\sigma}^{n+1})\right) = 0, \quad \mathcal{K}\in\mathcal{T}.$$

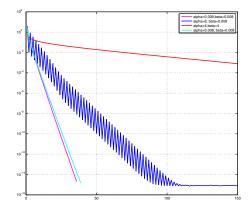
Robin BC for boundary faces

$$-\tau_{\mathcal{K},\sigma}\left(\phi(\boldsymbol{S}_{\mathcal{K}}^{n+1})-\phi(\boldsymbol{S}_{\sigma}^{n+1})\right)+\beta \boldsymbol{m}(\sigma)\pi(\boldsymbol{S}_{\sigma}^{n+1})=\boldsymbol{g}_{\sigma},\quad\sigma\in\mathcal{E}_{\Gamma}$$

Implemented with Matlab Reservoir Simulation Toolbox (K. A. Lie et al. (14)) Solver with automatics differentiation : no explicit computation of Jacobian

#### Numerical example

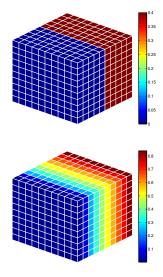
Homogeneous medium,  $\Omega_1 = (0, 100)^3$ ,  $\Omega_2 = (100, 200) \times (0, 100)^2$ . Mobilities  $\lambda_0(S) = S$ ,  $S \in [0, 1]$ , Capillary pressure  $\pi(S) = 5S^2$ ,  $S \in [0, 1]$ 

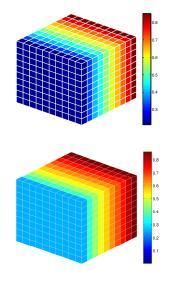


Convergence history for various parameters

38/49

### Evolution of the concentration





#### Outline

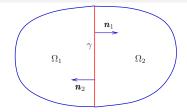
#### Introduction

- Pure diffusion problems
  - Multi-domain mixed formulations
  - Nonconforming discretizations in time
- 3 Advection-diffusion problems
  - Operator splitting
- 4 Extension to two-phase flow
- 5 Extension to reduced fracture models

## A reduced model: interface-fracture

Alboin-Jaffré-Roberts-Serres (2002) Martin-Jaffré-Roberts (2005) Knabner-Roberts (2014) (Forchheimer flow)

In this work: assume that  $D/\delta$  large  $\Rightarrow$  concentration continuity across the fracture In the subdomains



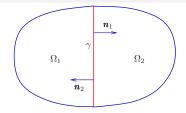
41/49

$$\begin{array}{lll} \phi_i \partial_t c_i + \operatorname{div} \mathbf{r}_i &= f_i & \text{in } \Omega_i \times (0, T), \\ \mathbf{r}_i &= -\mathbf{D}_i \nabla c_i & \text{in } \Omega_i \times (0, T), \\ c_i &= 0 & \text{on } \partial \Omega_i \cap \partial \Omega \times (0, T), \\ c_i &= c_\gamma & \text{on } \gamma \times (0, T), \\ c_i(\cdot, 0) &= c_{0,i} & \text{in } \Omega_i, \end{array}$$
 for  $i = 1, 2,$ 

# A reduced model: interface-fracture

Alboin-Jaffré-Roberts-Serres (2002) Martin-Jaffré-Roberts (2005) Knabner-Roberts (2014) (Forchheimer flow)

In this work: assume that  $\mathbf{D}/\delta$  large  $\Rightarrow$  concentration continuity across the fracture In the subdomains



$$\begin{array}{rcl} \phi_i \partial_t c_i + \operatorname{div} \mathbf{r}_i &= f_i & \text{in } \Omega_i \times (0, T), \\ \mathbf{r}_i &= -\mathbf{D}_i \nabla c_i & \text{in } \Omega_i \times (0, T), \\ c_i &= 0 & \text{on } \partial \Omega_i \cap \partial \Omega \times (0, T), \\ c_i &= c_\gamma & \text{on } \gamma \times (0, T), \\ c_i(\cdot, 0) &= c_{0,i} & \text{in } \Omega_i, \end{array}$$
for  $i = 1, 2,$ 

and in the fracture

$$\begin{array}{rcl} \phi_{\gamma}\partial_{t}\boldsymbol{c}_{\gamma}+\mathsf{div}_{\tau}~\mathbf{r}_{\gamma}&=f_{\gamma}+\left(\mathbf{r}_{1}\cdot\mathbf{n}_{1|\gamma}+\mathbf{r}_{2}\cdot\mathbf{n}_{2|\gamma}\right) & \text{ in } \gamma\times(0,T),\\ \mathbf{r}_{\gamma}&=-\mathbf{D}_{\gamma}\delta\nabla_{\tau}\boldsymbol{c}_{\gamma} & \text{ in } \gamma\times(0,T),\\ \boldsymbol{c}_{\gamma}&=0 & \text{ on } \partial\gamma\times(0,T),\\ \boldsymbol{c}_{\gamma}(\cdot,0)&=\boldsymbol{c}_{0,\gamma} & \text{ in } \gamma. \end{array}$$

 $\Rightarrow$  Communication between the fracture and the rock matrix.

• The same (as with simple DD) Dirichlet-to-Neumann operators, for i = 1, 2:

$$\mathcal{S}_{i}^{DtN}:\left(\lambda,f,c_{0}
ight)\longmapsto\left(\mathbf{r}_{i}\cdot\mathbf{n}_{i}
ight)_{|\Gamma},$$

where  $(c_i, \mathbf{r}_i)$ , i = 1, 2, is the solution of

$$\begin{array}{ll} \mathcal{L}(\boldsymbol{c}_i, \mathbf{r}_i) &= f, & \text{ in } \Omega_i \times (0, T), \\ \mathcal{M}(\boldsymbol{c}_i, \mathbf{r}_i) &= 0, & \text{ in } \Omega_i \times (0, T), \\ \boldsymbol{c}_i &= \lambda, & \text{ on } \gamma \times (0, T), \\ \boldsymbol{c}_i(\cdot, 0) &= \boldsymbol{c}_0, & \text{ in } \Omega_i. \end{array}$$

• The same (as with simple DD) Dirichlet-to-Neumann operators, for i = 1, 2:

$$\mathcal{S}_{i}^{DtN}:(\lambda,f,c_{0})\longmapsto\left(\mathbf{r}_{i}\cdot\mathbf{n}_{i}
ight)_{|\Gamma},$$

where  $(c_i, \mathbf{r}_i)$ , i = 1, 2, is the solution of

$$\begin{array}{ll} \mathcal{L}(\boldsymbol{c}_i, \mathbf{r}_i) &= f, & \text{ in } \Omega_i \times (0, T), \\ \mathcal{M}(\boldsymbol{c}_i, \mathbf{r}_i) &= 0, & \text{ in } \Omega_i \times (0, T), \\ \boldsymbol{c}_i &= \lambda, & \text{ on } \gamma \times (0, T), \\ \boldsymbol{c}_i(\cdot, 0) &= \boldsymbol{c}_0, & \text{ in } \Omega_i. \end{array}$$

Different space-time interface problem: instead of

(a) < (a) < (b) < (b)

42/49

• The same (as with simple DD) Dirichlet-to-Neumann operators, for i = 1, 2:

$$\mathcal{S}_{i}^{DtN}:(\lambda,f,c_{0})\longmapsto\left(\mathbf{r}_{i}\cdot\mathbf{n}_{i}
ight)_{|\Gamma},$$

where  $(c_i, \mathbf{r}_i)$ , i = 1, 2, is the solution of

$$\begin{array}{ll} \mathcal{L}(c_i,\mathbf{r}_i) &= f, & \text{ in } \Omega_i \times (0,T), \\ \mathcal{M}(c_i,\mathbf{r}_i) &= 0, & \text{ in } \Omega_i \times (0,T), \\ c_i &= \lambda, & \text{ on } \gamma \times (0,T), \\ c_i(\cdot,0) &= c_0, & \text{ in } \Omega_i. \end{array}$$

Different space-time interface problem:

$$\begin{aligned} \mathcal{L}_{\gamma}(\lambda,\mathbf{r}_{\gamma}) + \mathcal{S}\lambda &= \chi + f_{\gamma}, & \text{ in } \gamma \times (0,T), \\ \mathcal{M}_{\gamma}(\lambda,\mathbf{r}_{\gamma}) &= 0 & \text{ in } \gamma \times (0,T), \\ \lambda(\cdot,0) &= c_{0,\gamma}, & \text{ in } \gamma. \end{aligned}$$

(a) < (a) < (b) < (b)

42/49

• The same (as with simple DD) Dirichlet-to-Neumann operators, for i = 1, 2:

$$S_i^{DtN}: (\lambda, f, c_0) \longmapsto (\mathbf{r}_i \cdot \mathbf{n}_i)_{|\Gamma},$$

where  $(c_i, \mathbf{r}_i)$ , i = 1, 2, is the solution of

$$\begin{array}{ll} \mathcal{L}(c_i,\mathbf{r}_i) &= f, & \text{ in } \Omega_i \times (0,T), \\ \mathcal{M}(c_i,\mathbf{r}_i) &= 0, & \text{ in } \Omega_i \times (0,T), \\ c_i &= \lambda, & \text{ on } \gamma \times (0,T), \\ c_i(\cdot,0) &= c_0, & \text{ in } \Omega_i. \end{array}$$

Different space-time interface problem:

$$\begin{aligned} \mathcal{L}_{\gamma}(\lambda,\mathbf{r}_{\gamma}) + \mathcal{S}\lambda &= \chi + f_{\gamma}, & \text{ in } \gamma \times (0,T), \\ \mathcal{M}_{\gamma}(\lambda,\mathbf{r}_{\gamma}) &= 0 & \text{ in } \gamma \times (0,T), \\ \lambda(\cdot,0) &= c_{0,\gamma}, & \text{ in } \gamma. \end{aligned}$$

Two possible preconditionners:

a Neumann-Neumann preconditionner with weights

• The same (as with simple DD) Dirichlet-to-Neumann operators, for i = 1, 2:

$$S_i^{DtN}: (\lambda, f, c_0) \longmapsto (\mathbf{r}_i \cdot \mathbf{n}_i)_{|\Gamma},$$

where  $(c_i, \mathbf{r}_i)$ , i = 1, 2, is the solution of

$$\begin{array}{ll} \mathcal{L}(c_i,\mathbf{r}_i) &= f, & \text{ in } \Omega_i \times (0,T), \\ \mathcal{M}(c_i,\mathbf{r}_i) &= 0, & \text{ in } \Omega_i \times (0,T), \\ c_i &= \lambda, & \text{ on } \gamma \times (0,T), \\ c_i(\cdot,0) &= c_0, & \text{ in } \Omega_i. \end{array}$$

Different space-time interface problem:

$$\begin{aligned} \mathcal{L}_{\gamma}(\lambda,\mathbf{r}_{\gamma}) + \mathcal{S}\lambda &= \chi + f_{\gamma}, & \text{ in } \gamma \times (0,T), \\ \mathcal{M}_{\gamma}(\lambda,\mathbf{r}_{\gamma}) &= 0 & \text{ in } \gamma \times (0,T), \\ \lambda(\cdot,0) &= c_{0,\gamma}, & \text{ in } \gamma. \end{aligned}$$

- Two possible preconditionners:
  - a Neumann-Neumann preconditionner with weights
  - a local preconditioner (coming from the observation that the interface problem is dominated by the 2nd order operator, Amir, MK, Martin, Robert, Arima 06)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

### Transmission conditions for a GTO Schwarz method

Taking a linear combination of the transmission conditions for the GTP Schur method we obtain:

$$-\mathbf{r}_{1} \cdot \mathbf{n}_{1} + \frac{\alpha_{1}c_{1,\gamma}}{\sigma_{1}} + \frac{\phi_{\gamma}\partial_{t}c_{i,\gamma}}{\sigma_{1}} + \frac{\operatorname{div}_{\tau} \mathbf{r}_{\gamma,1}}{\mathbf{r}_{\gamma,1}} = -\mathbf{r}_{2} \cdot \mathbf{n}_{1} + \frac{\alpha_{1}c_{2,\gamma}}{\sigma_{1,\gamma}} + f_{\gamma}$$

$$\begin{array}{rcl} -\mathbf{r}_{2}\cdot\mathbf{n}_{2}+\underline{\alpha_{2}}\mathbf{c}_{2,\gamma}+\phi_{\gamma}\partial_{t}\mathbf{c}_{2,\gamma}+\mathsf{div}_{\tau}\ \mathbf{r}_{\gamma,2}&=&-\mathbf{r}_{1}\cdot\mathbf{n}_{2}+\underline{\alpha_{2}}\mathbf{c}_{1,\gamma}+f_{\gamma}\\ \mathbf{r}_{\gamma,2}&=&-\mathbf{D}_{\gamma}\delta\nabla_{\tau}\mathbf{c}_{2,\gamma}\end{array}$$

• We use Ventcell to Robin operators, for i = 1, 2:

$$\mathcal{S}_{i}^{VtR}:\left(\theta_{i},f,c_{0},f_{\gamma},c_{0,\gamma}\right)\longmapsto\left(-\mathbf{r}_{i}\cdot\mathbf{n}_{j}+\alpha c_{i}\right)_{|\Gamma},$$

where  $(c_i, \mathbf{r}_i, c_{i,\gamma}, r_{\gamma,i})$ , i = 1, 2, is the solution of

$$\begin{aligned} \mathcal{L}(\boldsymbol{c}_{i},\mathbf{r}_{i}) &= f, & \text{in } \Omega_{i}\times(0,T), \\ \mathcal{M}(\boldsymbol{c}_{i},\mathbf{r}_{i}) &= 0, & \text{in } \Omega_{i}\times(0,T), \\ -\mathbf{r}_{i}\cdot\mathbf{n}_{i} &+ \alpha \boldsymbol{c}_{i,\gamma} &+ \phi_{\gamma}\partial_{t}\boldsymbol{c}_{i,\gamma} &+ \operatorname{div}_{\tau}\mathbf{r}_{\gamma,i} &= \theta_{i} & \text{on } \gamma\times(0,T), \\ \mathbf{r}_{\gamma,i} + \mathbf{D}_{\gamma}\delta\nabla_{\tau}\boldsymbol{c}_{i,\gamma} &= 0, & \text{on } \gamma\times(0,T), \\ \boldsymbol{c}_{i}(\cdot,0) &= \boldsymbol{c}_{0}, & \text{in } \Omega_{i} \\ \boldsymbol{c}_{i,\gamma}(\cdot,0) &= \boldsymbol{c}_{0,\gamma}, & \text{in } \gamma. \end{aligned}$$

<ロ><部</p>
<日><部</p>
<日><日><日><日><日><日</p>
<日><日</p>
<10</p>

• We use Ventcell to Robin operators, for i = 1, 2:

$$\mathcal{S}_{i}^{VtR}:\left(\theta_{i},f,c_{0},f_{\gamma},c_{0,\gamma}\right)\longmapsto\left(-\mathbf{r}_{i}\cdot\mathbf{n}_{j}+\alpha c_{i}\right)_{|\Gamma},$$

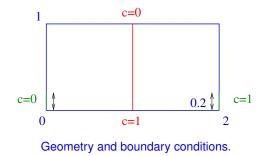
where  $(c_i, \mathbf{r}_i, c_{i,\gamma}, r_{\gamma,i})$ , i = 1, 2, is the solution of

$$\begin{aligned} \mathcal{L}(\boldsymbol{c}_{i},\mathbf{r}_{i}) &= f, & \text{in } \Omega_{i}\times(0,T), \\ \mathcal{M}(\boldsymbol{c}_{i},\boldsymbol{r}_{i}) &= 0, & \text{in } \Omega_{i}\times(0,T), \\ -\mathbf{r}_{i}\cdot\mathbf{n}_{i} &+ \alpha c_{i,\gamma} &+ \phi_{\gamma}\partial_{t}c_{i,\gamma} &+ \operatorname{div}_{\tau}\mathbf{r}_{\gamma,i} &= \theta_{i} & \text{on } \gamma\times(0,T), \\ \mathbf{r}_{\gamma,i} + \mathbf{D}_{\gamma}\delta\nabla_{\tau}c_{i,\gamma} &= 0, & \text{on } \gamma\times(0,T), \\ c_{i}(\cdot,0) &= c_{0}, & \text{in } \Omega_{i} \\ c_{i,\gamma}(\cdot,0) &= c_{0,\gamma}, & \text{in } \gamma. \end{aligned}$$

Space-time interface problem:

$$\begin{aligned} \theta_1 &= \mathcal{S}_2^{VtR}(\theta_2, f, c_0, f_\gamma, c_{0,\gamma}) + f_\gamma, & \text{on } \gamma \times (0, T), \\ \theta_2 &= \mathcal{S}_1^{VtR}(\theta_1, f, c_0, f_\gamma, c_{0,\gamma}) + f_\gamma, & \text{on } \gamma \times (0, T). \end{aligned}$$

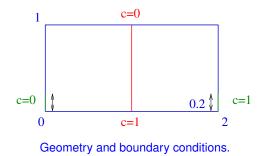
### Numerical results



• Isotropic coefficients:  $\mathbf{D}_i = 1$ , i = 1, 2, and  $\mathbf{D}_{\gamma} = 1/\delta = 1000$ .

<ロ><回><一><一><一><一><一><一</td>4日>4日>4日>45/49

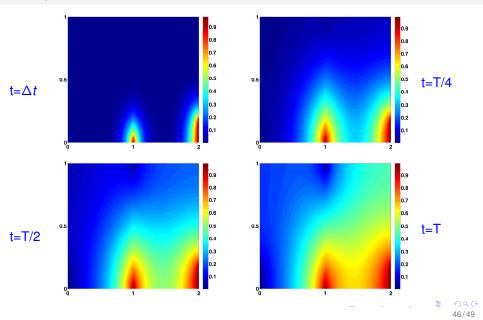
# Numerical results



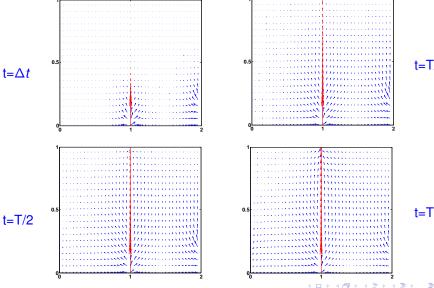
- Isotropic coefficients:  $\mathbf{D}_i = 1$ , i = 1, 2, and  $\mathbf{D}_{\gamma} = 1/\delta = 1000$ .
- Zero source terms and initial condition.
- Spatial discretization: uniform rectangular mesh *h* = 1/100 → mixed FE with the lowest-order Raviart-Thomas spaces.
- Time discretization (case 1): conforming grids  $\Delta t_m = \Delta t_\gamma = T/300$  with T = 0.5.

Extension to reduced fracture models

### Snapshots of solution - concentration field c



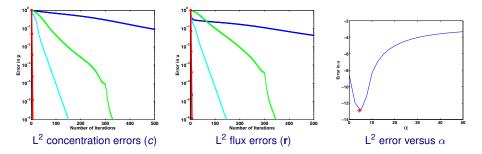
### Snapshots of solution - diffusive flux r



t=T/4

47/49

# **Convergence - GMRES**



- GT Schur with no preconditioner
- GTP Schur with local preconditioner
- GTP Schur with NN preconditioner
- GTO Schwarz method

T.T.P. Hoang, J. Jaffré, C. Japhet, M.K., and J. E. Roberts. Space-time Domain Decomposition and Mixed Formulation for reduced fracture models. SIAM J. Numer. Anal., to appear, 2016.

# **Conclusions – perspectives**

- Space-time DD method with Robi TC for diffusion and advection-diffusion
- Extension to fractured media
- Convergence for GTP Schur (Gander et al. for homogeneous media)
- Convergence for fractured media
- Influence of Robin parameter  $\beta$ , find optimal parameter
- Study interface problem for non-linear case, Jacobi (SWR) vs Newton
- Extension to full two-phase model
- Convergence of Schwarz alg. for nonlinear case
- Large scale parallel solver (MdS)