

Space-time domain decomposition methods for linear and non-linear diffusion problems

Michel Kern

with T.T.P. Hoang, E. Ahmed, C. Japhet, J. Roberts, J.Jaffré

INRIA Paris–Rocquencourt — Maison de la Simulation Work supported by Andra & ANR Dedales

Journées MoMaS – Multiphasiques LJAD – Université de Nice October 2015

Motivations and problem setting

2 Linear problem

Motivations and problem setting

2 Linear problem

M. Kern (INRIA - MdS)

▶ < 글 > < 글 >

Geological repository for nuclear waste

Waste package $1.3m \times Ø0.43m$

A repository 2km × 2km

< ロ ト < 同

Geological formation 20km \times 20km \times 500m

M. Kern (INRIA - MdS)

▶ < 글 > < 글 >

Simulation of the transport of radionuclides around a repository

Challenges

- Different materials → strong heterogeneity, different time scales.
- Large differences in spatial scales.
- Long-term computations.
- \rightarrow How to simulate efficiently & accurately?

Simulation of the transport of radionuclides around a repository

 \rightarrow How to simulate efficiently & accurately?

M. Kern (INRIA – MdS)

Space-time DD for diffusion

▶ < (De b < (De) < (De < (De) <

Model problem: Two-phase immiscible flow

Mathematical model

$$\partial_t (\omega \rho_\alpha S_\alpha) + \operatorname{div} (\rho_\alpha u_\alpha) = q_\alpha \quad \text{mass conservation}$$
$$u_\alpha = -\frac{k_{r\alpha}}{\mu_\alpha} \mathcal{K} (\nabla p_\alpha - \rho_\alpha \nabla g) \qquad \text{Darcy's law}$$
$$S_n + S_w = 1$$
$$p_n - p_w = \pi(S_w) \qquad \text{capillary pressure}$$

Phase $\alpha = w$ water, *n* gas or oil. $\pi(S_w)$ increasing function on [0, 1] (extend continuously to **R**).

- ω porosity
- S_{α} phase saturation
- u_{α} phase velocity
- $k_{r\alpha}$ relative permeability

- K permeability
- *p*_α: phase pressure
- ho_{lpha} phase density
- μ_{α} viscosity

M. Kern (INRIA – MdS)

Space-time DD for diffusion

Simplified model

Follow [Enchery et al. (06), Cances (08), Brenner et al. (13)], no gravity

Global pressure (Chavent) \$P_g(S) = p_w + \int_0^S \frac{k_{rn}(u)/\mu_n}{\frac{k_{rm}(u)}{\mu_n} + \frac{k_{rw}(u)}{\mu_w}} \pi'(u) du,
 Kirchhoff transformation : \$\phi(S) = \int_0^S K \frac{k_{rn}(u)k_{rw}(u)}{\mu_n k_{rw}(u) + \mu_w k_{rn}(u)} \pi'(u) du.

• • • • • • • •

Simplified model

Follow [Enchery et al. (06), Cances (08), Brenner et al. (13)], no gravity

$$\begin{cases} \omega \partial_t \mathbf{S} + \operatorname{div} \left(f(\mathbf{S}) \mathbf{q}_T \right) - \Delta \phi(\mathbf{S}) = 0\\ \operatorname{div} \mathbf{q}_T = 0, \quad \mathbf{q}_T = -K\lambda(\mathbf{S}) \operatorname{grad} \mathbf{P}_g \end{cases} \quad \text{in } \Omega \times [0, T]$$

Simplified model

Follow [Enchery et al. (06), Cances (08), Brenner et al. (13)], no gravity

Global pressure (Chavent) $P_g(S) = p_w + \int_0^S \frac{k_{rn}(u)/\mu_n}{\frac{k_{rn}(u)}{\mu_n} + \frac{k_{rw}(u)}{\mu_w}} \pi'(u) du$, Kirchhoff transformation : $\phi(S) = \int_0^S K \frac{k_{rn}(u)k_{rw}(u)}{\mu_n k_{rw}(u) + \mu_w k_{rn}(u)} \pi'(u) du$. Transformed system : $f(S) = \frac{\mu_w k_{rn}(S)}{\mu_w k_{rn}(s) + \mu_n k_{rw}(S)}, \lambda(S) = \frac{k_{rn}(S)}{\mu_n} + \frac{k_{rw}(S)}{\mu_w}.$

$$\begin{cases} \omega \partial_t S + \operatorname{div} (f(S)q_T) - \Delta \phi(S) = 0 \\ \operatorname{div} q_T = 0, \quad q_T = -K\lambda(S) \operatorname{grad} P_g \end{cases} \quad \text{in } \Omega \times [0, T]$$

Simplified system: neglect advection

$$\omega \partial_t \mathbf{S} - \Delta \phi(\mathbf{S}) = 0$$
 in $\Omega \times [0, T]$

Nonlinear (degenerate) diffusion equation

Discontinuous capillary pressure: transmission conditions

Two subdomains $\bar{\Omega} = \bar{\Omega_1} \cup \bar{\Omega_2}, \Omega_1 \cap \Omega_2 = \emptyset$. $\Gamma = \bar{\Omega_1} \cap \bar{\Omega_2}$

Transmission conditions on the interface

Continuity of capillary pressure $\pi_1(S_1) = \pi_2(S_2)$ on Γ Continuity of the flux $\nabla \phi_1(S_1).n_1 = \nabla \phi_2(S_2).n_2$ on Γ

Chavent – Jaffré (86), Enchéry et al. (06), Cances (08), Ern et al (10), Brenner et al. (13).

Domain decomposition in space

Domain decomposition in space

Domain decomposition in space

Domain decomposition in space

- Discretize in time and apply DD algorithm at each time step:
 - ► Solve stationary problems in the subdomains
 - ► Exchange information through the interface
- Use the same time step on the whole domain.

Domain decomposition in space

Space-time domain decomposition

- Discretize in time and apply DD algorithm at each time step:
 - ► Solve stationary problems in the subdomains
 - ► Exchange information through the interface
- Use the same time step on the whole domain.

Domain decomposition in space

- Discretize in time and apply DD algorithm at each time step:
 - ► Solve stationary problems in the subdomains
 - ► Exchange information through the interface
- Use the same time step on the whole domain.

Space-time domain decomposition

- Solve time-dependent problems in the subdomains
- Exchange information through the space-time interface
- Enable local discretizations both in space and in time
 - \longrightarrow local time stepping

Motivations and problem setting

2 Linear problem

M. Kern (INRIA - MdS)

▶ < 글 > < 글 >

Diffusion Problem in a mixed formulation

► Time-dependent diffusion equation

$$\omega \partial_t c + \operatorname{div}(-\mathbf{D}\nabla c) = f \quad \text{in } \Omega \times (0,T),$$

+ homogeneous Dirichlet BC & IC $c(\cdot, 0) = c_0$.

▶ 0 < $\omega \in L^{\infty}(\Omega)$, **D** = **D**(x) ∈ $W^{1,\infty}(\Omega)$ symmetric, positive definite.

Mixed variational formulation

$$\begin{array}{ll} \frac{d}{dt}(\omega c,\mu) + (\operatorname{div} \mathbf{r},\mu) &= (f,\mu), \quad \forall \mu \in L^2(\Omega), \\ -(\operatorname{div} \mathbf{v},c) + (\mathbf{D}^{-1}\mathbf{r},\mathbf{v}) &= 0, \qquad \forall \mathbf{v} \in H(\operatorname{div},\Omega), \\ IC. \end{array}$$
(MVF)

Diffusion Problem in a mixed formulation

► Time-dependent diffusion equation

$$\omega \partial_t c + \operatorname{div}(-\mathbf{D}\nabla c) = f \quad \text{in } \Omega \times (0,T),$$

+ homogeneous Dirichlet BC & IC $c(\cdot, 0) = c_0$.

▶ 0 < $\omega \in L^{\infty}(\Omega)$, **D** = **D**(x) ∈ $W^{1,\infty}(\Omega)$ symmetric, positive definite.

Mixed variational formulation

$$\begin{array}{ll} \frac{d}{dt}(\omega c,\mu) + (\operatorname{div} \mathbf{r},\mu) &= (f,\mu), \quad \forall \mu \in L^2(\Omega), \\ -(\operatorname{div} \mathbf{v},c) + (\mathbf{D}^{-1}\mathbf{r},\mathbf{v}) &= 0, \qquad \forall \mathbf{v} \in H(\operatorname{div},\Omega), \\ IC. \end{array}$$
(MVF)

Theorem 1 (Well-posedness for homogeneous Dirichlet BCs)

If $f \in L^2(0, T; L^2(\Omega))$ and $c_0 \in H^1_0(\Omega)$ then (MVF) has a unique solution

$$c,\mathbf{r}) \in H^1(0,T;L^2(\Omega)) \times \left(L^2(0,T;H(\operatorname{div},\Omega)) \cap L^{\infty}(0,T;L^2(\Omega))\right).$$

Moreover, if $f \in H^1(0, T; L^2(\Omega))$ and $c_0 \in H^2(\Omega) \cap H^1_0(\Omega)$ then

 $(\boldsymbol{c},\boldsymbol{r})\in W^{1,\infty}(\boldsymbol{0},T;L^2(\Omega))\times \left(L^\infty(\boldsymbol{0},T;H(\operatorname{div},\Omega))\cap H^1(\boldsymbol{0},T;L^2(\Omega))\right).$

Multi-domain mixed formulation

Equivalent multi-domain formulation obtained by solving subproblems

$$\begin{array}{ll} \mathbf{D}_i^{-1}\mathbf{r}_i + \nabla c_i &= 0 & \text{ in } \Omega_i \times (0,T) \\ \omega_i \partial_t c_i + \operatorname{div} (\mathbf{r}_i) &= f & \text{ in } \Omega_i \times (0,T) \\ c_i &= 0 & \text{ on } \partial \Omega_i \cap \partial \Omega \times (0,T) \\ c_i (\cdot,0) &= c_0 & \text{ in } \Omega_i, \end{array}$$
 for $i = 1,2,$

1 t

with transmission conditions on space-time interface

$$c_1 = c_2$$

 $\mathbf{r}_1 \cdot \mathbf{n}_1 + \mathbf{r}_2 \cdot \mathbf{n}_2 = 0$ on $\Gamma \times (0, T)$.

-

Time dependent Steklov – Poincaré operators

• Dirichlet to Neumann operators, for i = 1, 2:

$$\mathscr{S}^{\mathsf{DtN}}_i: (\lambda, f, c_0) \to (\mathbf{r}_i \cdot \mathbf{n}_i)_{|\Gamma|}$$

where (c_i, \mathbf{r}_i) (i = 1, 2) solution of

$$\begin{aligned} \mathbf{D}_{i}^{-1}\mathbf{r}_{i} + \nabla c_{i} &= 0 & \text{in } \Omega_{i} \times (0, T) \\ \omega_{i}\partial_{t}c_{i} + \text{div } (\mathbf{r}_{i}) &= f & \text{in } \Omega_{i} \times (0, T) \\ c_{i} &= \lambda & \text{on } \Gamma \times (0, T) \end{aligned}$$

Space – time interface problem

 $\mathscr{S}_{1}^{\mathsf{DtN}}(\lambda, f, c_{o}) + \mathscr{S}_{2}^{\mathsf{DtN}}(\lambda, f, c_{0}) = 0 \Longleftrightarrow \mathscr{S}\lambda = \chi, \text{ on } \Gamma \times [0, T]$

Solve with GMRES, preconditioned with Neumann – Neumann

Schwarz waveform relation: Robin transmission conditions

• Equivalent Robin TCs on $\Gamma \times [0, T]$. For $\beta_1, \beta_2 > 0$:

$$-\mathbf{r}_1 \cdot \mathbf{n}_1 + \beta_1 c_1 = -\mathbf{r}_2 \cdot \mathbf{n}_1 + \beta_1 c_2$$

$$-\mathbf{r}_2 \cdot \mathbf{n}_2 + \beta_2 c_2 = -\mathbf{r}_1 \cdot \mathbf{n}_2 + \beta_2 c_1$$

β₁, β₂ numerical parameters, can be optimized to improve convergence rate
Robin to Robin operators, for *i* = 1, 2, *j* = 3 - *i*:

$$\mathscr{S}_{i}^{\mathsf{RtR}}: (\xi_{i}, f, c_{0}) \rightarrow (-\mathbf{r}_{i} \cdot \mathbf{n}_{j} + \beta_{j} c_{i})_{|\Gamma|}$$

where (c_i, \mathbf{r}_i) (i = 1, 2) solution of

$$\begin{aligned} \mathbf{D}_i^{-1} \mathbf{r}_i + \nabla \mathbf{c}_i &= 0 & \text{in } \Omega_i \times (0, T) \\ \omega_i \partial_t \mathbf{c}_i + \text{div } (\mathbf{r}_i) &= f & \text{in } \Omega_i \times (0, T) \\ -\mathbf{r}_i \cdot \mathbf{n}_i + \beta_i \mathbf{c}_i &= \xi_i & \text{on } \Gamma \times (0, T) \end{aligned}$$

Space – time interface problem with two Lagrange multipliers

$$\begin{aligned} \xi_1 &= S_1^{\text{RtR}}(\xi_2, f, c_0) \\ \xi_2 &= S_2^{\text{RtR}}(\xi_1, f, c_0) \end{aligned} \quad \text{on } \Gamma \times [0, T] \quad \text{or } S_R\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \kappa_R \end{aligned}$$

Solve with Richardson or GMRES

Nonconforming discretization in time

Information on one time grid at the interface is passed to the other time grid at the interface using L2-projections

ightarrow use an optimal projection algorithm, Gander-Japhet-Maday-Nataf (2005)

T. T. P. Hoang, J. Jaffré, C. Japhet, M. K., J.E. Roberts, Space-time domain decomposition methods for diffusion problems in mixed formulations. SIAM J. Numer. Anal., 51(6):3532–3559, 2013.

A test case (Andra)

- Porosity $\omega = 0.05$ in the clay layer (in yellow) and $\omega = 0.2$ in the repository (in red).
- Permeability $d = 510^{-12}$ m²/s in the clay layer and $d = 210^{-9}$ m²/s in the repository.

• Source term
$$f = 0$$
 in the clay layer, and $f = \begin{cases} 10^{-5} & \text{for } t \le 10^5 \\ 0 & \text{for } t > 10^5 \end{cases}$ in the repository.

- Decomposition: 9 rectangular subdomains. Non-uniform spatial mesh $\Delta x = 1/300$.
- Non-conforming time grids: $\Delta t = 2000$ (years) in the repository and $\Delta t = 10000$ (years) in the clay layer.
- 2 optimization techniques (discontinuous coefficients) for computing parameters α_{i,j}:
 - Opt. 1: 2 half-space Fourier analysis.
 - Opt. 2: taking into account the length of the domains Halpern-Japhet-Omnes (DD20, 11)

Snapshots of Solution

Snapshots of multi-domain solution at 2000 years, 10⁵ years, 210⁵ years and 1 million years respectively.

Ínnía Note. Color bars change. ъ M. Kern (INRIA - MdS) Space-time DD for diffusion 17/29 MoMas Multiphase Days (Oct. 15)

Convergence History for Short/Long Time Interval

Extension to advection - diffusion

- Splitting method: different time steps for advection and diffusion
- Steklov Poincaré method

$$\widetilde{\mathscr{S}}_h egin{pmatrix} \lambda_a \ \lambda \end{pmatrix} = \widetilde{\chi}_h \quad ext{on } \Gamma imes [0, T]$$

Generalized Neumann – Neumann preconditioner

• Schwarz WR with Robin TC

$$\tilde{\mathscr{S}}_{R,h} \begin{pmatrix} \lambda_a \\ \xi_1 \\ \xi_2 \end{pmatrix} = \tilde{\chi}_{R,h} \quad \text{on } \Gamma \times [0,T]$$

Optimize Robin parameters for diffusion only, \neq fully implicit method

Example: transport in a near-surface repository

Joint with C. Japhet, J. Roberts, PhD thesis of Ph. Hoang Thi Thao

MoMas Multiphase Days (Oct. 15) 20 / 29

Innin-

Motivations and problem setting

2 Linear problem

M. Kern (INRIA - MdS)

▶ < 글 > < 글 >

Robin transmission conditions

$$\nabla \phi_1(\mathbf{S}_1).n_1 + \beta_1 \pi_1(\mathbf{S}_1) = -\nabla \phi_2(\mathbf{S}_2).n_2 + \beta_1 \pi_2(\mathbf{S}_2)$$

$$\nabla \phi_2(\mathbf{S}_2).n_2 + \beta_2 \pi_2(\mathbf{S}_2) = -\nabla \phi_1(\mathbf{S}_1).n_1 + \beta_2 \pi_1(\mathbf{S}_1)$$

Schwarz algorithm

Given S_i^0 , iterate for k = 0, ...Solve for S_i^{k+1} , i = 1, 2, j = 3 - i

$$\begin{split} &\omega \partial_t \mathbf{S}_i^{k+1} - \Delta \phi_i(\mathbf{S}_i^{k+1}) = 0 & \text{in } \Omega_i \times [0, T] \\ &\nabla \phi_i(\mathbf{S}_i^{k+1}) . n_i + \beta_i \pi_i(\mathbf{S}_i^{k+1}) = -\nabla \phi_j(\mathbf{S}_j^k) . n_j + \beta_i \pi_j(\mathbf{S}_j^k) & \text{on } \Gamma \times [0, T], \end{split}$$

 (β_1,β_2) are free parameters chosen to accelerate convergence

Basic ingredient: subdomain solver with Robin bc.

Finite volume scheme (1)

Extension to Robin bc of cell centered FV scheme by Enchéry et al. (06). Triangulation \mathscr{T} , cells $K \in \mathscr{T}$, boundary faces $\sigma \subset \Gamma$. Unknowns : cell values $(S_K)_{K \in \mathscr{T}}$, boundary face values $(S_{\sigma})_{\sigma \in \mathscr{E}_{\Gamma}}$

Notations: K|L = edge between K and L, $\tau_{K|L} = \frac{m(K|L)}{\bar{K}_{K|L}}$ (eg harmonic average).

Finite volume scheme (2)

Interior equation

$$m(\kappa)\frac{\mathbf{S}_{K}^{n+1}-\mathbf{S}_{K}^{n}}{\delta t}+\sum_{L\in\mathscr{N}(\kappa)}\tau_{K|L}\left(\phi(\mathbf{S}_{K}^{n+1})-\phi(\mathbf{S}_{L}^{n+1})\right)\\+\sum_{\sigma\in\mathscr{E}_{\Gamma}\cap\mathscr{E}_{K}}\tau_{K,\sigma}\left(\phi(\mathbf{S}_{K}^{n+1})-\phi(\mathbf{S}_{\sigma}^{n+1})\right)=0,\quad K\in\mathscr{T}.$$

Robin BC for boundary faces

$$-\tau_{\mathcal{K},\sigma}\left(\phi(\boldsymbol{S}_{\mathcal{K}}^{n+1})-\phi(\boldsymbol{S}_{\sigma}^{n+1})\right)+\beta \textit{m}(\sigma)\pi(\boldsymbol{S}_{\sigma}^{n+1})=g_{\sigma}, \quad \sigma \in \mathscr{E}_{\Gamma}$$

Implemented with Matlab Reservoir Simulation Toolbox (K. A. Lie et al. (14)) Solver with automatics differentiation : no explicit computation of Jacobian

M. Kern (INRIA - MdS)

A D F A B F A B F A

MRST Code

```
grad = Q(x) - C * x;
div = \mathcal{Q}(\mathbf{x}) C' * \mathbf{x}:
vEq=@(p) T .* grad(phi(p) - g*rho.*z);
pressureEq = 0(p, p0, dt, p_rr) (1/dt) \cdot (p - p0) - div(vEq(p)) + Arobin(p_rr);
robinEq =@(p,p rr) ft(face robin).*phi(p rr)+beta.*pc(p rr).*G.faces.areas(face robin) ...
                  -ft(face robin).*phi(p(Cellsonrobin));
[p ad, p rrad] = initVariablesADI(p init, p rrinit);
while t < totTime.
   t = t + dt; p0 = double(p ad);
    while (resNorm > tol) && (nit < maxits)
        % Create equations:
        eqs = cell([2, 1]);
        eqs{1} = pressureEq(p ad, p0, dt, p rrad);
        eqs{2} = robinEq(p_ad,p_rrad)-bc(step+1).value(1:length(face_robin));
        % Concatenate equations and solve:
        eq = cat(eqs{:});
        J = eq.jac{1}; % Jacobian
       res = eq.val; % residual
       upd = -(J \setminus res); % Newton update
        % Update variables
        p ad.val = p ad.val + upd(pIx); p rrad.val = p rrad.val + upd(pRx);
       resNorm = norm(res); nit = nit + 1;
    end
end
```

Numerical example

Homogeneous medium, $Ω_1 = (0, 100)^3$, $Ω_2 = (100, 200) \times (0, 100)^2$. Mobilities $λ_0(S) = S$, $S \in [0, 1]$, Capillary pressure $π(S) = 5S^2$, $S \in [0, 1]$

Convergence history for various parameters

M. Kern (INRIA - MdS)

Space-time DD for diffusion

MoMas Multiphase Days (Oct. 15) 26 / 29

Evolution of the concentration

Ínvía_

글 🕨 🖌 글

Local solver

$$S_{i}(g) = \left(\tau_{L,\sigma}\left(\phi(\mathbf{S}_{L}^{n}) - \phi(\mathbf{S}_{L,\sigma}^{n})\right) + \beta_{j}m(\sigma)\pi(\mathbf{S}_{L,\sigma}^{n})\right)_{L \in \mathscr{T}, \sigma \in \mathscr{E}_{\Gamma}}^{n=0,...,N}$$

where $(S_L^n, S_{L,\sigma})_{L \in \mathcal{T}, \sigma \in \mathscr{E}_{\Gamma}}^{n=,0,..,N}$ solves the local problem.

$$m(\kappa) \frac{S_{K}^{n+1} - S_{K}^{n}}{\delta t} + \sum_{L \in \mathscr{N}(\kappa)} \tau_{K|L} \left(\phi(S_{K}^{n+1}) - \phi(S_{L}^{n+1}) \right) \\ + \sum_{\sigma \in \mathscr{E}_{\Gamma} \cap \mathscr{E}_{K}} \tau_{K,\sigma} \left(\phi(S_{K}^{n+1}) - \phi(S_{\sigma}^{n+1}) \right) = 0, \quad K \in \mathscr{T}, \\ - \tau_{K,\sigma} \left(\phi(S_{K}^{n+1}) - \phi(S_{\sigma}^{n+1}) \right) + \beta m(\sigma) \pi(S_{\sigma}^{n+1}) = g_{\sigma}, \quad \sigma \in \mathscr{E}_{\Gamma}$$

Multi-domain prolem is equivalent to

Find
$$(\Psi_{\sigma,1}, \Psi_{\sigma,2})_{\sigma \in \mathscr{E}_{\Gamma}}^{n=0,...,N}$$
 such that $\begin{array}{l} \Psi_{\sigma,2} = S_1(\Psi_{\sigma,1}) \\ \Psi_{\sigma,1} = S_2(\Psi_{\sigma,2}) \end{array}$

Inría_

Extensions – Coming attractions

- Convergence for Schwarz algorithm
- Use DD for fractured media (Ventcell BC, cf Hoang, Japhet, K. Roberts, to appear)
- Study influence of parameter β
- Find optimal parameter, compare
- Study interface problem for non-linear case, Jacobi (SWR) vs Newton
- Extension to full two-phase model
- Convergence of Schwarz alg. for nonlinear case
- Large scale parallel solver (MdS)