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CO2 sequestration: a synthetic model

Minimal chemical system that still ”looks like” realistic for CO2 storage

Dissolution of CO2 in water,
dissolution of calcite. Gas
assumed immobile (capillary
trapping), decouples two phase
flow from reactive transport.

Chemical system

H2O−−⇀↽−− H+ + OH– water dissociation

CO2 (g) −−⇀↽−− CO2 (aq) gas dissolution

H2O + CO2 (aq) −−⇀↽−− HCO–
3 + H+ dissociation of aqueous CO2

CaCO3 + H+ −−⇀↽−− Ca+
2 + HCO–

3 Dissolution of calcite
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Outline

1 Numerical model

2 Formulations and solution methods

3 Preconditioning (joint work with A. Taakili)
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Chemical phenomena

Different reaction types

According to nature of reaction
Homogeneous In the same phase (aqueous, gaseous, ...)

Heterogeneous Involve different phases: gas dissolution, precipitation /
dissolution, ...

According to speed of reaction
Slow reactions Irreversible, modeled using kinetic law

Fast reactions Reversible, modeled using equilibrium

Morel formalism:
(c, c̄) primary species (x , x̄) secondary species

(c,x) mobile species (c̄, x̄) fixed species
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Reactive transport model

Balance equations

φ∂tc + Lc =ST Ra
e +AT Rh

e +HT Rk (c,x , c̄, x̄)

φ∂tx + Lx =−Ra
e +K T Rk (c,x , c̄, x̄)

φ∂t c̄ = BT Rh
e +PT Rk (c,x , c̄, x̄)

φ∂ x̄ = −Rh
e +QT Rk (c,x , c̄, x̄)

L advection diffusion operator

Lc =−div(Dgradc)
dispersion

+ div(uc)
advection

u Darcy velocity (saturated flow model)

Dispersion tensor: D = deI + αT |u| I + (αL−αT )
u⊗u
|u|

M. Kern (INRIA) Reactive transport SHPCO2 2010 5 / 23



Flow and transport solution

Flow computation: mixed finite elements

Approximate both head and velocity

Continuous flux across element faces

Locally mass conservative

Allows full diffusion tensor

Transport simulation by operator splitting
Advection step Explicit, finite volumes / discontinuous Galerkine

Locally mass conservative
Allows unstructured meshes
CFL condition: use sub–time–steps

Dispersion step Like flow equation (time dependent): mixed finite elements
(implicit)

Condense transport solver, one time step

Cn+1 = ΨT (f n,Cn)
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Transport for synthetic CO2 example (M. Franco)

Left T = 1 day, right T = 6 days

Left T = 12 day, right T = 37 days
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Numerical solution of chemical equilibrium

System of non-linear equations

Mass action law
logx = S logc + logK ,

log x̄ = A logc + B log c̄ + log K̄ .

Mass conservation
c+ ST x+ AT x̄ = T , T known from transport

c̄ + BT x̄ = W , W imposed

Role of chemical model
Given totals T (and W , known), split into

Mobile C = c + ST x ,

Fixed F = AT x̄ .

total concentrations

Chemistry solver

H

(
logc
log c̄

)
=

(
T
W

)
F = ΨC(T ,W )
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Handling minerals

Reactions with threshold, which species appear unknown a priori.
Standard procedure: combinatorial search, sequence of standard
problems
Reformulate as complementarity problem
Interior point algorithm (Saaf et al. (’96), J.-Ch. Gilbert, I. Ben Gharbia)
Also semi–smooth Newton (Kräutle)

pH-pE diagram for iron
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Coupled formulation

Elimination of equilibrium rates

φ∂tC+ φ∂tF+ LC = ST Rk (T ,W )

φ∂tW = SW Rk (T ,W )

+ local chemical equilibrium.

Special case: no kinetic reactions

φ
∂T ic

∂ t
+ L(C ic) = 0, ic = 1, . . . ,Nc

T ic
ix = C ic

ix + F ic
ix ic = 1, ..,Nc and ix = 1, ..,Nx

F ix = Ψ(T ix ) ix = 1, . . . ,Nx .
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Solution strategies

Fixed point (aka OS) Yeh–Tripathi, Carrayrou et al., Carrera et al.

+ easy to program, code reuse
− not robust, small time steps

Direct subsitution Lichtner et al., Saaltink et al.

+ accurate, robust,
− difficult to code, large non-linear system

DAE formulation Erhel and de Dieuleveult

+ use quality DAE software, accurate
− expensive

Elimination technique Knabner et al.

+ Efficient, accurate,
− difficult to code
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A global method based on DAE formulation

CC formulation, explicit chemistry
φ

dC
dt

+
dF
dt

+ LC = 0

H(z)−
(

C + F
W

)
= 0

F −F(z) = 0.

+ Explicit Jacobian

+ Chemistry function, no
chemical solve

− Intrusive approach (chemistry
not a black box)

− Precipitation not easy to include

Coupled system is index 1 DAE

K
dy
dt

+ f (y) = 0

Use standard DAE software
C. de Dieuleveult (Andra thesis), J. Erhel, MK (JCP ’09)
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A global method from the fixed–point formulation (1)

Discrete non-linear system

Cn+1 =ΨT

(
ST Rk (T n+1,W n+1)−φ

F n+1−F n

∆t
,Cn
)

F n+1 =ΨC(T n+1,W n+1)

W n+1 =W n +
∆t
φ

SW Rk (T n+1,W n+1)

T n+1 =Cn+1 + F n+1

Formulation without kinetic reactionsCn+1 = ΨT

(
φ

F n−F n+1

∆t
,Cn
)

F n+1 = ΨC(Cn+1 + F n+1)

Can be solved by block Gauss Seidel or by Newton’s method

M. Kern (INRIA) Reactive transport SHPCO2 2010 13 / 23



A global method from the fixed–point formulation (1)

Discrete non-linear system

Cn+1 =ΨT

(
ST Rk (T n+1,W n+1)−φ

F n+1−F n

∆t
,Cn
)

F n+1 =ΨC(T n+1,W n+1)

W n+1 =W n +
∆t
φ

SW Rk (T n+1,W n+1)

T n+1 =Cn+1 + F n+1

Formulation without kinetic reactionsCn+1 = ΨT

(
φ

F n−F n+1

∆t
,Cn
)

F n+1 = ΨC(Cn+1 + F n+1)

Can be solved by block Gauss Seidel or by Newton’s method
M. Kern (INRIA) Reactive transport SHPCO2 2010 13 / 23



A global method from the fixed–point formulation (2)

+ Non-intrusive approach

+ Precipitation can be included

− One chemical equilibrium solve
for each function evaluation

Solution by Newton–Krylov : keep
transport and chemistry as
black–boxes (up to Jacobian
computation)

Jacobian structure

Residual computation:
1 Apply ΨT : solve transport for each species,
2 Apply ΨC : solve chemistry for each grid cell.
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Solution by Newton–Krylov

Solve the linear system by an iterative method (GMRES)

Requires only jacobian matrix by vector products.

Used for CFD, shallow water, radiative transfer(Keyes, Knoll, JCP 04), and for
reactive transport (Hammond, Valocchi, Lichtner, Adv. Wat. Res. 05)

Inexact Newton
Approximation of the Newton’s direction ‖f ′(xk )d + f (xk )‖ ≤ η‖f (xk )‖
Choice of the forcing term η?

Keep quadratic convergence (locally)
Avoid oversolving the linear system

η = γ‖f (xk )‖2/‖f (xk−1)‖2 (Kelley, Eisenstat and Walker)

L. Amir’s thesis, Amir, MK (Comp. Geosci. 09)
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3D ion exchange example (O. Saouli)
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Application to SHPCO2 model

Aqueous species, gas (Henry’s law), equilibrium mineals

Calcite concentration: left t = 0, right t = 115 days

Computations by B. Gueslin.
LifeV library (EPFL, Milano, INRIA), Kinsol (LLNL)
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A simplified one species model, with sorption

Coupled model
φ

∂C
∂ t

+ φ
∂F
∂ t

+ LC = 0,

F = Ψ(C) =
kf σ0C

kf C + kb
.

Mathematical, numerical analysis: van Duijn, Knabner, Frolkovic

Coupled problem
Coupled formulation

F

(
C
F

)
=

(
(M + ∆tL)C + MF + b

F −Ψ(C)

)
= 0

Eliminate F F1(C) = (M + ∆tL)C + MΨ(C)−bn

Eliminate C F2(F) = F −Ψ
(
M + ∆tL)−1(b−MF)

)
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Performance of Newton’s method

Convergence of Newton and fixed point
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Jacobian preconditioning

Jacobian for coupled formulation,with D = diag(Ψ′(C1), . . . ,Ψ′(CN))

J =

(
M + ∆tL M
−D I

)
J2 = I + D(M + ∆tL)−1M is Schur complement of J

Block preconditioning
Jacobi Solve transport at each step

P =

(
M + ∆t L 0

0 I

)
Gauss–Seidel Solve transport at each step, some coupling

P =

(
M + ∆t L 0
−D I

)
Elimination of C is equivalent to Schur complement of Gauss–Seidel.

M. Kern (INRIA) Reactive transport SHPCO2 2010 20 / 23



Gmres convergence: field of values analysis

Convergence of GMRES not determined by eigenvalues (Greenbaum,
Strakos).

Nevertheless ...

Eigenvalues of preconditioned operators

Assume spectrum(M + δ tL)≈ O(1/h2).

Jacobi Λ(P−1J)⊂ [1− iCh,1 + iCh]

Gauss-Seidel Λ(P−1J)⊂ [1,1 + Ch2], 1 is multiple ev

Schur Λ(J2)⊂ [1,1 + Ch2]

Bounded independent of h.
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Field of value analysis

GMRES convergence

W (A)≡
{

x∗Ax
x∗x
|x ∈ Cn,x 6= 0

}
, convex set, contains eigenvalues of A

‖rk‖2

‖r0‖2
≤ 2 min

p∈P∗
k

max
z∈W(A)

‖p(z)‖2.

Eingenvalues, field of values and pseudospectrum for GS preconditioning
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Preconditioner performance

h h/2 h/4 h/8
NI LI NI LI NI LI NI LI

None 8 54 10 100 17 238 33 658

BGS 8 11 10 15 14 22 21 36
Elimination 6 25 6 25 6 25 6 25

Inverting transport gives mesh independent convergence for both linear (LI)
and nonlinear (NI) iterations.

In practice: approximate inverse should give spectral equivalence
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