Evanescent Plane Wave Approximation of Helmholtz Solutions in Spherical Domains

Nicola Galante

Università degli Studi di Pavia

27 Aprile 2023

UNIVERSITÀ
DI PAVIA

Helmholtz equation and Trefftz methods

Let u be a solution of the homogeneous Helmholtz equation ($n=2,3$):

$$
\Delta u+\kappa^{2} u=0, \quad \text { in } \Omega \subset \mathbb{R}^{n}
$$

The wavenumber is $\kappa=\omega / c>0$ and the wavelength is $\lambda=\frac{2 \pi}{\kappa}$.
$u(\mathbf{x})$ represents the space dependence of time-harmonic solutions $U(\mathbf{x}, t)=\Re\left\{e^{-i \omega t} u(\mathbf{x})\right\}$ of the wave equation $\frac{1}{c^{2}} \frac{\partial^{2} U}{\partial t^{2}}-\Delta U=0$.

- 'Easy' PDE for small κ :
- 'Difficult' PDE for large κ :
perturbation of Laplace, high-frequency problem.

Helmholtz equation and Trefftz methods

Trefftz method: computing the approximation \tilde{u} of the form:

$$
\tilde{u}:=\sum_{p=1}^{P} \xi_{p} \phi_{p}
$$

where each element of the Trefftz space $\operatorname{span}\left\{\phi_{p}\right\}_{p=1}^{P}$ satisfies

$$
\Delta \phi_{p}+\kappa^{2} \phi_{p}=0
$$

Helmholtz equation and Trefftz methods

Trefftz method: computing the approximation \tilde{u} of the form:

$$
\tilde{u}:=\sum_{p=1}^{P} \xi_{p} \phi_{p}
$$

where each element of the Trefftz space $\operatorname{span}\left\{\phi_{p}\right\}_{p=1}^{P}$ satisfies

$$
\Delta \phi_{p}+\kappa^{2} \phi_{p}=0
$$

The setting of this presentation:

- Single-cell mesh, i.e. no h-refinement, and

$$
\Omega \equiv B_{1} \subset \mathbb{R}^{n} \text { is the unit ball, }
$$

- ϕ_{p} are plane waves.

Propagative plane waves (PPWs)

Propagative plane waves have the form:
$\mathbf{x} \mapsto e^{i \kappa \mathrm{~d} \cdot \mathbf{x}}, \quad$ where $\mathrm{d} \in \mathbb{R}^{n}$ and $\mathrm{d} \cdot \mathrm{d}=1$.

PPWs are complex exponentials, thus easy and cheap to evaluate, differentiate, integrate...

For isotropic approximations, one can use (almost) evenly-spaced propagation direction $\left\{\mathrm{d}_{p}\right\}_{p}$:

$$
\phi_{p}=e^{i \kappa \mathrm{~d}_{p} \cdot \mathrm{x}}
$$

If $n=3$, e.g. extremal point systems [Sloan, Womersley 2004].

Instability of PPWs

Can we construct accurate approximations $u(\mathbf{x}) \approx \sum_{p=1}^{P} \xi_{p} e^{i \kappa \mathrm{~d}_{p} \cdot \mathbf{x}}$?

In theory, yes: better rates w.r.t \#DOFs than polynomial spaces:

- [Cessenat, Després 1998],
- [Melenk 1995], [Moiola, Hiptmair, Perugia 2011].

Instability of PPWs

Can we construct accurate approximations $u(\mathbf{x}) \approx \sum_{p=1}^{P} \xi_{p} e^{i \kappa \mathrm{~d}_{p} \cdot \mathbf{x}}$?

In theory, yes: better rates w.r.t \#DOFs than polynomial spaces:

- [Cessenat, Després 1998],
- [Melenk 1995], [Moiola, Hiptmair, Perugia 2011].

In pratice (finite-precision arithmetic), not always:
The issue is 'instability'.
Increasing \#PPWs, at some point convergence stagnates.

- Numerical phenomenon due to finite-precision arithmetic and cancellation,
- PPW instability already observed in all PPW-based Trefftz methods and usually described as ill-conditioning issue.

Adcock-Huybrechs theory

Regardless of the reconstruction strategy, the linear system matrix $A \in \mathbb{C}^{S \times P}$ is ill-conditioned [Moiola, Hiptmair, Perugia 2011].

Oversampling $(S \gg P) \&$ SVD ϵ-regularization:

$$
A=U \Sigma V^{*} \quad \rightarrow \quad A \approx U \Sigma_{\epsilon} V^{*} \quad \rightarrow \quad \xi_{S, \epsilon}:=V \Sigma_{\epsilon}^{\dagger} U^{*} \mathbf{b},
$$

where the singular values below ϵ have been trimmed in Σ_{ϵ}.
Consider approximations $\tilde{u}[\mu](\mathbf{x}):=\sum_{p=1}^{P} \mu_{p} e^{i \kappa \mathrm{~d}_{p} \cdot \mathbf{x}}$, with $\mu:=\left(\mu_{p}\right)_{p}$
Theorem: [Parolin, Huybrechs, Moiola 2022]
Given $\epsilon \in(0,1], \forall \mu \in \mathbb{C}^{P}$ we have that, if S is large enough,

$$
\left\|u-\tilde{u}\left[\boldsymbol{\xi}_{S, \epsilon}\right]\right\| \lesssim\|u-\tilde{u}[\boldsymbol{\mu}]\|+\epsilon\|\boldsymbol{\mu}\| .
$$

Outline

Outline of the presentation:

- Instability of propagative plane waves (PPWs)
- Stability of evanescent plane waves (EPWs)
- Recipe for choosing the EPWs
- Numerical results

Instability of propagative plane waves (PPWs)

Spherical waves - Fourier-Bessel functions

Spherical waves are separable solutions in spherical coordinates:

$$
b_{\ell}^{m}(\mathbf{x}):=\beta_{\ell} j_{\ell}(\kappa|\mathbf{x}|) Y_{\ell}^{m}(\mathbf{x} /|\mathbf{x}|), \quad 0 \leq|m| \leq \ell, \quad \forall \mathbf{x} \in B_{1}
$$

where $\beta_{\ell} \stackrel{\ell \rightarrow \infty}{\sim} 2 \sqrt{2} \kappa\left(\frac{2}{e \kappa}\right)^{\ell} \ell^{\ell+\frac{1}{2}}$ is a H^{1}-normalization constant.

Propagative mode $\ell=2 m=\kappa / 2=8$

Grazing mode

$$
\ell=2 m=\kappa=16
$$

Evanescent mode

$$
\ell=2 m=3 \kappa=48
$$

Orthonormal basis for $\mathcal{B}:=\left\{u \in H^{1}\left(B_{1}\right): \Delta u+\kappa^{2} u=0\right\}$.

Modal analysis - PPW instability

The Jacobi-Anger identity relates PPWs to spherical waves b_{ℓ}^{m} :

$$
e^{i \kappa \mathrm{~d} \cdot \mathbf{x}}=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell}\left(4 \pi i^{\ell} \overline{Y_{\ell}^{m}(\mathrm{~d})} \beta_{\ell}^{-1}\right) b_{\ell}^{m}(\mathbf{x})
$$

Modal analysis - PPW instability

The Jacobi-Anger identity relates PPWs to spherical waves b_{ℓ}^{m} :

$$
e^{i \kappa \mathrm{~d} \cdot \mathbf{x}}=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell}\left(4 \pi i^{\ell} \overline{Y_{\ell}^{m}(\mathrm{~d})} \beta_{\ell}^{-1}\right) b_{\ell}^{m}(\mathbf{x})
$$

Asymptotics of Fourier coefficients:

$$
\left|4 \pi i^{\ell} \overline{Y_{\ell^{m}}(\mathrm{~d})} \beta_{\ell}^{-1}\right| \stackrel{\ell \rightarrow \infty}{\sim} \mathcal{O}\left(\ell^{-\ell}\right)
$$

Modal analysis - PPW instability

The Jacobi-Anger identity relates PPWs to spherical waves b_{ℓ}^{m} :

$$
e^{i \kappa \mathrm{~d} \cdot \mathbf{x}}=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell}\left(4 \pi i^{\ell} \overline{Y_{\ell}^{m}(\mathrm{~d})} \beta_{\ell}^{-1}\right) b_{\ell}^{m}(\mathbf{x})
$$

Asymptotics of Fourier coefficients:

$$
\left|4 \pi i^{\ell} \overline{Y_{\ell}^{m}(\mathrm{~d})} \beta_{\ell}^{-1}\right| \stackrel{\ell \rightarrow \infty}{\sim} \mathcal{O}\left(\ell^{-\ell}\right)
$$

Approximating $u=\sum_{\ell} \sum_{m} \hat{u}_{\ell}^{m} b_{\ell}^{m} \in \mathcal{B}$ needs exponentially large coefficients:

$$
u \in H^{s}\left(B_{1}\right), s \geq 1 \Longleftrightarrow\left|\hat{u}_{\ell}^{m}\right| \stackrel{\sim}{\sim}^{\ell} o\left(\ell^{-s}\right)
$$

Modal analysis - PPW instability

The Jacobi-Anger identity relates PPWs to spherical waves b_{ℓ}^{m} :

$$
e^{i \kappa \mathrm{~d} \cdot \mathbf{x}}=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell}\left(4 \pi i^{\ell} \overline{Y_{\ell}^{m}(\mathrm{~d})} \beta_{\ell}^{-1}\right) b_{\ell}^{m}(\mathbf{x})
$$

Asymptotics of Fourier coefficients:

$$
\left|4 \pi i^{\ell} \overline{Y_{\ell}^{m}(\mathrm{~d})} \beta_{\ell}^{-1}\right| \stackrel{\ell \rightarrow \infty}{\sim} \mathcal{O}\left(\ell^{-\ell}\right)
$$

Approximating $u=\sum_{\ell} \sum_{m} \hat{u}_{\ell}^{m} b_{\ell}^{m} \in \mathcal{B}$ needs exponentially large coefficients:

$$
u \in H^{s}\left(B_{1}\right), s \geq 1 \Longleftrightarrow\left|\hat{u}_{\ell}^{m}\right| \stackrel{\sim}{\sim}_{\sim} o\left(\ell^{-s}\right)
$$

Theorem: For every $0 \leq|m| \leq \ell, P \in \mathbb{N}, \mu \in \mathbb{C}^{P}$, and $0<\eta \leq 1$

$$
\left\|b_{\ell}^{m}-\tilde{u}[\mu]\right\| \leq \eta \Longrightarrow\|\mu\| \geq(1-\eta) \beta_{\ell} / 2 \sqrt{\pi(2 \ell+1)} .
$$

Approximation of spherical waves by PPWs

Find $\xi_{S, \epsilon}:=\left(\xi_{p}\right)_{p=1}^{P}$ s.t.
$b_{\ell}^{m}(\mathbf{x}) \approx \sum_{p=1}^{P} \xi_{p} e^{i \kappa \mathrm{~d}_{p} \cdot \mathbf{x}}$

Propagative mode $\ell=2 m=\kappa / 2=8$

Approximation of spherical waves by PPWs

Find $\xi_{S, \epsilon}:=\left(\xi_{p}\right)_{p=1}^{P}$ s.t.

$$
b_{\ell}^{m}(\mathbf{x}) \approx \sum_{p=1}^{P} \xi_{p} e^{i \kappa \mathrm{~d}_{p} \cdot \mathbf{x}}
$$

Evanescent mode

$$
\ell=2 m=3 \kappa=48
$$

Stability of evanescent plane waves (EPWs)

Evanescent plane waves (EPWs)

Evanescent plane waves have the form:
$\mathbf{x} \mapsto e^{i \kappa \mathrm{~d} \cdot \mathbf{x}}, \quad$ where $\mathrm{d} \in \mathbb{C}^{3}$ and $\mathrm{d} \cdot \mathrm{d}=1$.
EPWs are exponential Helmholtz solutions again.

Let $\theta:=\left(\theta_{1}, \theta_{2}, \theta_{3}\right) \in \Theta:=[0, \pi] \times[0,2 \pi) \times[0,2 \pi)$ be the Euler angles and R_{θ} the associated rotation matrix. The wave direction is given by

$$
\mathrm{d}=\mathrm{d}(\theta, \zeta):=R_{\theta} \mathbf{d}_{\uparrow}(\zeta / 2 \kappa+1) \in \mathbb{C}^{3}, \quad \forall(\theta, \zeta) \in \Theta \times[0,+\infty)
$$

where \mathbf{d}_{\uparrow} is the reference upward complex direction vector defined by

$$
\mathbf{d}_{\uparrow}(z):=\left(i \sqrt{z^{2}-1}, 0, z\right), \quad \forall z \geq 1
$$

Evanescent plane waves (EPWs)

Evanescent plane waves have the form:
$\mathbf{x} \mapsto e^{i \kappa \mathrm{~d} \cdot \mathbf{x}}, \quad$ where $\mathrm{d} \in \mathbb{C}^{3}$ and $\mathrm{d} \cdot \mathrm{d}=1$.

EPWs are exponential Helmholtz solutions again.

Let $\theta:=\left(\theta_{1}, \theta_{2}, \theta_{3}\right) \in \Theta:=[0, \pi] \times[0,2 \pi) \times[0,2 \pi)$ be the Euler angles and R_{θ} the associated rotation matrix. The wave direction is given by

$$
\mathrm{d}=\mathrm{d}(\theta, \zeta):=R_{\theta} \mathbf{d}_{\uparrow}(\zeta / 2 \kappa+1) \in \mathbb{C}^{3}, \quad \forall(\theta, \zeta) \in \Theta \times[0,+\infty)
$$

where \mathbf{d}_{\uparrow} is the reference upward complex direction vector defined by

$$
\mathbf{d}_{\uparrow}(z):=\left(i \sqrt{z^{2}-1}, 0, z\right), \quad \forall z \geq 1
$$

Influence of the evanescence parameters θ_{3} and ζ :

$$
e^{i \kappa \mathrm{~d} \cdot \mathbf{x}}=e^{i\left(\frac{\zeta}{2}+\kappa\right) \mathrm{d}_{\mathrm{prop}}\left(\theta_{1}, \theta_{2}\right) \cdot \mathbf{x}} e^{-\left(\zeta\left(\frac{\zeta}{4}+\kappa\right)\right)^{1 / 2} \mathbf{d}_{\mathrm{d} \text { ecay }}^{\perp}(\theta) \cdot \mathbf{x}},
$$

where the directions $\mathbf{d}_{\text {prop }}\left(\theta_{1}, \theta_{2}\right)$ and $\mathbf{d}_{\text {decay }}^{\perp}(\boldsymbol{\theta})$ are real and orthogonal.

Modal analysis - EPW stability

The Jacobi-Anger identity holds also for EPWs:

$$
e^{i \kappa \mathrm{~d} \cdot \mathbf{x}}=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell}\left[4 \pi i^{\ell} \beta_{\ell}^{-1} \overline{\mathbf{D}_{\ell}^{m}(\theta) \cdot \mathbf{P}_{\ell}(\zeta)}\right] b_{\ell}^{m}(\mathbf{x})
$$

- $\mathbf{D}_{\ell}^{m}(\theta) \in \mathbb{C}^{2 \ell+1}$ is the $(\ell+m+1)$-column of the Wigner D-matrix,
- $\mathbf{P}_{\ell}(\zeta):=\left(\sqrt{\frac{2 \ell+1}{4 \pi} \frac{(\ell-n)!}{(\ell+n)!}} i^{n} P_{\ell}^{n}\left(\frac{\zeta}{2 \kappa}+1\right)\right)_{n=-\ell}^{\ell} \in \mathbb{C}^{2 \ell+1}$
where P_{ℓ}^{n} are the associated Legendre polynomials defined in $[1,+\infty)$.

Modal analysis - EPW stability

The Jacobi-Anger identity holds also for EPWs:

$$
e^{i \kappa \mathrm{~d} \cdot \mathbf{x}}=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell}\left[4 \pi i^{\ell} \beta_{\ell}^{-1} \overline{\mathbf{D}_{\ell}^{m}(\theta) \cdot \mathbf{P}_{\ell}(\zeta)}\right] b_{\ell}^{m}(\mathbf{x})
$$

- $\mathbf{D}_{\ell}^{m}(\theta) \in \mathbb{C}^{2 \ell+1}$ is the $(\ell+m+1)$-column of the Wigner D-matrix,
- $\mathbf{P}_{\ell}(\zeta):=\left(\sqrt{\frac{2 \ell+1}{4 \pi} \frac{(\ell-n)!}{(\ell+n)!}} i^{n} P_{\ell}^{n}\left(\frac{\zeta}{2 \kappa}+1\right)\right)_{n=-\ell}^{\ell} \in \mathbb{C}^{2 \ell+1}$
where P_{ℓ}^{n} are the associated Legendre polynomials defined in $[1,+\infty)$.

It looks promising! But how to choose the evanescence parameters?

Recipe for choosing the EPWs

Integral representation via EPWs

We want to represent $u \in \mathcal{B}$ as continuous superposition of EPWs:

$$
u(\mathbf{x})=\int_{0}^{+\infty} \int_{\Theta} v(\theta, \zeta) e^{i \kappa \mathrm{~d}(\theta, \zeta) \cdot \mathbf{x}} w\left(\theta_{1}, \zeta\right) \mathrm{d} \theta \mathrm{~d} \zeta, \quad \forall \mathbf{x} \in B_{1}
$$

with density $v \in \mathcal{A}=\overline{\operatorname{span}\left\{a_{\ell}^{m}\right\}_{(\ell, m)}} \subsetneq L^{2}(\Theta \times[0,+\infty) ; w)$ and weight w.

Integral representation via EPWs

We want to represent $u \in \mathcal{B}$ as continuous superposition of EPWs:

$$
u(\mathbf{x})=\int_{0}^{+\infty} \int_{\Theta} v(\theta, \zeta) e^{i \kappa \mathrm{~d}(\theta, \zeta) \cdot \mathbf{x}} w\left(\theta_{1}, \zeta\right) \mathrm{d} \theta \mathrm{~d} \zeta=:[T v](\mathbf{x})
$$

with density $v \in \mathcal{A}=\overline{\operatorname{span}\left\{a_{\ell}^{m}\right\}_{(\ell, m)}} \subsetneq L^{2}(\Theta \times[0,+\infty) ; w)$ and weight w.

THEOREM: The operator $T: \mathcal{A} \rightarrow \mathcal{B}$ is bounded and invertible,

$$
\begin{gathered}
T a_{\ell}^{m}=\tau_{\ell} b_{\ell}^{m}, \quad \tau_{-}\|v\|_{\mathcal{A}} \leq\|T v\|_{\mathcal{B}} \leq \tau_{+}\|v\|_{\mathcal{A}}, \quad \forall v \in \mathcal{A} \\
\text { where } \tau_{\ell} \in \mathbb{C} \text { and } 0<\tau_{-} \leq\left|\tau_{\ell}\right| \leq \tau_{+}<+\infty \text { for every } \ell \geq 0
\end{gathered}
$$

Hence, every Helmholtz solution $u \in \mathcal{B}$ is a (continuous) linear combination of EPWs with bounded coefficients: $\|v\|_{\mathcal{A}} \leq \tau_{-}^{-1}\|u\|_{\mathcal{B}}$.

Sampling in the parametric domain

We seek suitable discretizations of the previous integral representation $u(\mathbf{x}) \approx \sum_{p=1}^{P} \xi_{p} e^{i \kappa \mathrm{~d}\left(\theta_{p}, \zeta_{p}\right) \cdot \mathbf{x}} \omega_{p}$ with bounded coefficients $\boldsymbol{\xi}_{S, \epsilon}:=\left(\xi_{p}\right)_{p}$.

- [Cohen, Migliorati 2017] and [Migliorati, Nobile 2022].

Sampling in the parametric domain

We seek suitable discretizations of the previous integral representation $u(\mathbf{x}) \approx \sum_{p=1}^{P} \xi_{p} e^{i \kappa \mathrm{~d}\left(\theta_{p}, \zeta_{p}\right) \cdot \mathbf{x}} \omega_{p}$ with bounded coefficients $\boldsymbol{\xi}_{S, \epsilon}:=\left(\xi_{p}\right)_{p}$.

- [Cohen, Migliorati 2017] and [Migliorati, Nobile 2022].

We approximate $u=T v$ by $u_{L}=T v_{L}$, where v_{L} is the orthogonal projection in $\mathcal{A}_{L}:=\operatorname{span}\left\{a_{\ell}^{m}\right\}_{\ell \leq L}$. The $P \in \mathbb{N}$ cubature nodes $\left\{\left(\theta_{p}, \zeta_{p}\right)\right\}_{p=1}^{P}$ distribute according to the probability density

$$
\rho_{L}:=\frac{w \mu_{L}}{(L+1)^{2}}, \quad \text { where } \mu_{L}:=\sum_{\ell=0}^{L} \sum_{m=-\ell}^{\ell}\left|a_{\ell}^{m}\right|^{2} .
$$

Sampling in the parametric domain

We seek suitable discretizations of the previous integral representation $u(\mathbf{x}) \approx \sum_{p=1}^{P} \xi_{p} e^{i \kappa \mathrm{~d}\left(\theta_{p}, \zeta_{p}\right) \cdot \mathbf{x}} \omega_{p}$ with bounded coefficients $\boldsymbol{\xi}_{S, \epsilon}:=\left(\xi_{p}\right)_{p}$.

- [Cohen, Migliorati 2017] and [Migliorati, Nobile 2022].

We approximate $u=T v$ by $u_{L}=T v_{L}$, where v_{L} is the orthogonal projection in $\mathcal{A}_{L}:=\operatorname{span}\left\{a_{\ell}^{m}\right\}_{\ell \leq L}$. The $P \in \mathbb{N}$ cubature nodes $\left\{\left(\theta_{p}, \zeta_{p}\right)\right\}_{p=1}^{P}$ distribute according to the probability density

$$
\rho_{L}:=\frac{w \mu_{L}}{(L+1)^{2}}, \quad \text { where } \mu_{L}:=\sum_{\ell=0}^{L} \sum_{m=-\ell}^{\ell}\left|a_{\ell}^{m}\right|^{2} .
$$

We expect $u_{L} \in \mathcal{B}_{L}:=\operatorname{span}\left\{b_{\ell}^{m}\right\}_{\ell \leq L}$ to be approximated by

$$
\left\{\mathbf{x} \mapsto \frac{1}{\sqrt{P \mu_{L}\left(\theta_{p}, \zeta_{p}\right)}} e^{i \kappa \mathrm{~d}\left(\theta_{p}, \zeta_{p}\right) \cdot \mathbf{x}}\right\}_{p=1}^{P} \subset \mathcal{B},
$$

with bounded coefficients.

Numerical results

Approximation of spherical waves by EPWs

$$
\begin{aligned}
& \text { Find } \boldsymbol{\xi}_{S, \epsilon}:=\left(\xi_{p}\right)_{p} \text { such that } \\
& b_{\ell}^{m}(\mathbf{x}) \approx \sum_{p=1}^{P} \xi_{p} e^{i \kappa \mathrm{~d}\left(\theta_{p}, \zeta_{p}\right) \cdot \mathbf{x}} \omega_{p}
\end{aligned}
$$

Approximation of spherical waves by EPWs

$$
\begin{aligned}
& \text { Find } \xi_{S, \epsilon}:=\left(\xi_{p}\right)_{p} \text { such that } \\
& b_{\ell}^{m}(\mathbf{x}) \approx \sum_{p=1}^{P} \xi_{p} e^{i \kappa \mathrm{~d}\left(\theta_{p}, \zeta_{p}\right) \cdot \mathbf{x}} \omega_{p}
\end{aligned}
$$

Evanescent mode

$$
\ell=2 m=3 \kappa=48
$$

Solution and error plots

Approximation of $u=\sum_{\ell=0}^{L} \sum_{m=-\ell}^{\ell} \hat{u}_{\ell}^{m} b_{\ell}^{m} \in \mathcal{B}_{L}$ with random $\left(\hat{u}_{\ell}^{m}\right)_{(\ell, m)}$,

$$
\kappa=5, \quad L=25, \quad \operatorname{dim} \mathcal{B}_{L}=676, \quad P=6084 .
$$

Real part solution $\Re u$

Solution and error plots

Approximation of $u=\sum_{\ell=0}^{L} \sum_{m=-\ell}^{\ell} \hat{u}_{\ell}^{m} b_{\ell}^{m} \in \mathcal{B}_{L}$ with random $\left(\hat{u}_{\ell}^{m}\right)_{(\ell, m)}$,

$$
\kappa=5, \quad L=25, \quad \operatorname{dim} \mathcal{B}_{L}=676, \quad P=6084 .
$$

Real part solution $\Re u$

Error $|u-\tilde{u}|$ PPWs

3×10^{-14}
10^{-13}

Error $|u-\tilde{u}|$ EPWs

Conclusions

Summary

Ill-conditioning can be overcome (via regularization) if there exist accurate and stable approximations (bounded coefficients).

To approximate Helmholtz solutions with Trefftz methods

- PPWs give accurate but unstable results,
- EPWs give accurate and stable results.
\rightarrow Key result is the stable integral representation.

EPWs parameters are chosen by sampling the parametric domain according to some explicit probability density.

Next steps:

- Prove the EPW stability conjecture
- Extend to general geometries
- Time-harmonic Maxwell/Elasticity
- Tailor to Trefftz-DG schemes

Thank you for your attention!

\rightarrow GitHub repository (code written in MATLAB):
https://github.com/Nicola-Galante/evanescent-plane-wave-approximation

Reconstruction from Dirichlet sampling data

How to construct $\tilde{u}[\xi](\mathbf{x}):=\sum_{p=1}^{P} \xi_{p} e^{i \kappa \mathrm{~d}_{p} \cdot \mathbf{x}}$ approximation of u ?
Collocation method with $S \in \mathbb{N}$ Dirichlet data:

$$
\tilde{u}\left[\xi_{S}\right]\left(\mathbf{x}_{s}\right)=u\left(\mathbf{x}_{s}\right), \quad \forall s=1, \ldots, S \quad \rightarrow \quad A \xi_{S}=\mathbf{b}
$$

where $\left\{\mathbf{x}_{s}\right\}_{s=1}^{S}$ are (almost) evenly-spaced points on ∂B_{1}.

- A is ill-conditioned [Moiola, Hiptmair, Perugia 2011].

Oversampling $(S \gg P) \&$ SVD ϵ-regularization:

$$
A=U \Sigma V^{*} \quad \rightarrow \quad A \approx U \Sigma_{\epsilon} V^{*} \quad \rightarrow \quad \xi_{S, \epsilon}:=V \Sigma_{\epsilon}^{\dagger} U^{*} \mathbf{b}
$$

where the singular values below ϵ have been trimmed in Σ_{ϵ}.

- Well-defined if $u \in C^{0}\left(\overline{B_{1}}\right)$ and $\kappa^{2} \neq \Delta$-Dirichlet eigenvalue.

Definition: Ferrers functions and Legendre polynomials

For every $(\ell, m) \in \mathcal{I}$, the Ferrers functions are defined as:

$$
\mathrm{P}_{\ell}^{m}(x):=\frac{(-1)^{m}}{2^{\ell} \ell!}\left(1-x^{2}\right)^{m / 2} \frac{\mathrm{~d}^{\ell+m}}{\mathrm{~d} x^{\ell+m}}\left(x^{2}-1\right)^{\ell}, \quad|x| \leq 1
$$

so that

$$
\mathrm{P}_{\ell}^{-m}(x)=(-1)^{m} \frac{(\ell-m)!}{(\ell+m)!} \mathrm{P}_{\ell}^{m}(x), \quad|x| \leq 1
$$

The associated Legendre polynomials are defined as:

$$
P_{\ell}^{m}(z):=\frac{1}{2^{\ell} \ell!}\left(z^{2}-1\right)^{m / 2} \frac{\mathrm{~d}^{\ell+m}}{\mathrm{~d} z^{\ell+m}}\left(z^{2}-1\right)^{\ell}, \quad \forall z \in \mathbb{C}
$$

so that

$$
P_{\ell}^{-m}(z)=\frac{(\ell-m)!}{(\ell+m)!} P_{\ell}^{m}(z), \quad \forall z \in \mathbb{C}
$$

Definition: associated Legendre polynomials

We use the convention

$$
\left(z^{2}-1\right)^{m / 2}:=\mathcal{P}\left[(z+1)^{m / 2}\right] \mathcal{P}\left[(z-1)^{m / 2}\right], \quad \forall z \in \mathbb{C}
$$

where $\mathcal{P}[\cdot]$ indicates that the principal branch is chosen.

Definition: Wigner matrices

Let $\theta:=\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ be the Euler angles. The Wigner D-matrix is the unitary matrix $D_{\ell}(\theta)=\left(D_{\ell}^{m, m^{\prime}}(\theta)\right)_{m, m^{\prime}} \in \mathbb{C}^{(2 \ell+1) \times(2 \ell+1)}$, where $|m|,\left|m^{\prime}\right| \leq \ell$, whose elements are defined by

$$
D_{\ell}^{m, m^{\prime}}(\theta):=e^{i m^{\prime} \theta_{2}} d_{\ell}^{m, m^{\prime}}\left(\theta_{1}\right) e^{i m \theta_{3}} .
$$

In turn, the matrix $d_{\ell}(\theta):=\left(d_{\ell}^{m, m^{\prime}}(\theta)\right)_{m, m^{\prime}} \in \mathbb{R}^{(2 \ell+1) \times(2 \ell+1)}$, where $|m|,\left|m^{\prime}\right| \leq \ell$, is called Wigner d-matrix, its elements are

$$
d_{\ell}^{m, m^{\prime}}(\theta):=\sum_{k=k_{\min }}^{k_{\max }} w_{\ell, k}^{m, m^{\prime}}\left(\cos \frac{\theta}{2}\right)^{2(\ell-k)+m^{\prime}-m}\left(\sin \frac{\theta}{2}\right)^{2 k+m-m^{\prime}}
$$

where

$$
w_{\ell, k}^{m, m^{\prime}}:=\frac{(-1)^{k}\left[(\ell+m)!(\ell-m)!\left(\ell+m^{\prime}\right)!\left(\ell-m^{\prime}\right)!\right]^{1 / 2}}{(\ell-m-k)!\left(\ell+m^{\prime}-k\right)!\left(k+m-m^{\prime}\right)!k!}
$$

with $k_{\min }:=\max \left\{0, m^{\prime}-m\right\}$ and $k_{\max }:=\max \left\{\ell-m, \ell+m^{\prime}\right\}$.

Modal analysis-PPWs

For any $\mathrm{d}=\mathrm{d}\left(\theta_{1}, \theta_{2}\right) \in \mathbb{S}^{2}$, if $\phi_{\mathrm{d}}(\mathbf{x}):=e^{i \kappa \mathrm{~d} \cdot \mathbf{x}}$, we have

$$
\hat{\phi}_{\ell}^{m}\left(\theta_{1}\right):=\left|\left(\phi_{\mathrm{d}}, b_{\ell}^{m}\right)_{\mathcal{B}}\right|=\frac{4 \pi}{\beta_{\ell}} \gamma_{\ell}^{m}\left|\mathrm{P}_{\ell}^{m}\left(\cos \theta_{1}\right)\right|
$$

$$
\hat{\phi}_{\ell}^{m}(\pi / 2)
$$

$$
\hat{\phi}_{\ell}^{m}(\pi / 4)
$$

$$
\hat{\phi}_{\ell}^{m}(\pi / 64)
$$

$$
\hat{\phi}_{\ell}^{m}(0)
$$

10^{-16}
10^{-12}
10^{-8}
10^{-4}
10^{0}

Modal analysis-EPWs

For any $\mathrm{d}=\mathrm{d}\left(\theta_{1}, \theta_{2}, \theta_{3}, \zeta\right) \in \mathbb{S}^{2}$, if $\phi_{\mathrm{d}}(\mathbf{x}):=e^{i \kappa \mathrm{~d} \cdot \mathbf{x}}$, we have $\hat{\phi}_{\ell}^{m}\left(\theta_{1}, \theta_{3}, \zeta\right):=\left|\left(\phi_{\mathrm{d}}, b_{\ell}^{m}\right) \mathcal{B}\right|=\frac{4 \pi}{\beta_{\ell}}\left|\sum_{m^{\prime}=-\ell}^{\ell} \gamma_{\ell}^{m^{\prime}} i^{-m^{\prime}} d_{\ell}^{m^{\prime}, m}\left(\theta_{1}\right) e^{-i m^{\prime} \theta_{3}} P_{\ell}^{m^{\prime}}\left(\frac{\zeta}{2 \kappa}+1\right)\right|$

$$
\hat{\phi}_{\ell}^{m}\left(\frac{\pi}{4}, \frac{\pi}{4}, 30\right) \quad \hat{\phi}_{\ell}^{m}\left(\frac{\pi}{2}, \frac{7 \pi}{4}, 60\right) \quad \hat{\phi}_{\ell}^{m}\left(\frac{\pi}{4}, \frac{\pi}{2}, 120\right) \quad \hat{\phi}_{\ell}^{m}(0,0,180)
$$

Singular values $\left\{\sigma_{p}\right\}_{p}$ of the matrix A

- If P is large enough, the condition number of the matrix A is comparable for both PPWs and EPWs
- The improved accuracy for evanescent modes is not due to a better conditioning of the linear system, but rather to an increase of the ϵ-rank
- Raising the truncation parameter L allows to increase the ϵ-rank

Approximation of spherical waves by PPWs

Approximation of spherical waves b_{ℓ}^{0} by PPWs.

$$
\kappa=6, \quad \epsilon=10^{-14}, \quad S=2 P, \quad \text { Residual } \mathcal{E}:=\frac{\left\|A \xi_{S, \epsilon}-\mathbf{b}\right\|}{\|\mathbf{b}\|} .
$$

- Propagative modes $\ell \lesssim \kappa$:
- Evanescent modes $\ell \gtrsim 4 \kappa$:
$\mathcal{O}(\epsilon)$ error, $\mathcal{O}(1)$ coefficients $\forall P$,
$\mathcal{O}(1)$ error, large coefficients $\forall P$.

Approximation of spherical waves by EPWs

Approximation of spherical waves b_{ℓ}^{0} by EPWs (Sobol sampling).

$$
\kappa=6, \quad \epsilon=10^{-14}, \quad S=2 P, \quad L=4 \kappa .
$$

Stability $\left\|\boldsymbol{\xi}_{S, \epsilon}\right\|_{\ell^{2}}$

- If $P \in \mathbb{N}$ is large enough, the discrete EPW space approximates all b_{ℓ}^{m} for $0 \leq|m| \leq \ell \leq L=4 \kappa$. The accuracy and stability properties do not differ significantly varying the order $|m| \leq \ell$.

Weighted L^{2} space \mathcal{A}

The weight function is:

$$
w\left(\theta_{1}, \zeta\right):=\sin \left(\theta_{1}\right) \zeta^{1 / 2} e^{-\zeta}, \quad \forall(\theta, \zeta) \in \Theta \times[0,+\infty)
$$

The w-weighted L^{2} Hermitian product and the associated norm are:
$(u, v)_{\mathcal{A}}:=\int_{0}^{+\infty} \int_{\Theta} u(\theta, \zeta) \overline{v(\theta, \zeta)} w\left(\theta_{1}, \zeta\right) \mathrm{d} \theta \mathrm{d} \zeta, \quad\|u\|_{\mathcal{A}}^{2}:=(u, u)_{\mathcal{A}}$, where $u, v \in L^{2}(\Theta \times[0,+\infty) ; w)$.

For every $(\ell, m) \in \mathcal{I}$, the Herglotz densities are defined as:

$$
a_{\ell}^{m}(\theta, \zeta):=\alpha_{\ell} \mathbf{D}_{\ell}^{m}(\theta) \cdot \mathbf{P}_{\ell}(\zeta), \quad \forall(\theta, \zeta) \in \Theta \times[0,+\infty),
$$

where α_{ℓ} is a L_{w}^{2}-normalization constant. Furthermore:

$$
\mathcal{A}:=\overline{\operatorname{span}\left\{a_{\ell}^{m}\right\}_{(\ell, m) \in \mathcal{I}}}\|\cdot\|_{\mathcal{A}} \subsetneq L^{2}(\Theta \times[0,+\infty) ; w) .
$$

The reproducing kernel property

We seek suitable discretizations of the previous integral representation $u(\mathbf{x}) \approx \sum_{p=1}^{P} \xi_{p} e^{i \kappa \mathrm{~d}\left(\theta_{p}, \zeta_{p}\right) \cdot \mathbf{x}} \omega_{p}$, with bounded coefficients $\xi_{S, \epsilon}:=\left(\xi_{p}\right)_{p}$.

Corollary: The space \mathcal{A} has the reproducing kernel property

$$
|v(\theta, \zeta)| \leq C(\theta, \zeta)\|v\|_{\mathcal{A}}, \quad \forall v \in \mathcal{A},
$$

$\stackrel{\text { Riesz Th. }}{\Longrightarrow} \quad \exists!K_{\theta, \zeta} \in \mathcal{A}: v(\theta, \zeta)=\left(v, K_{\theta, \zeta}\right) \mathcal{A}, \quad \forall v \in \mathcal{A}$.
Moreover, the EPWs are the images under T of $K_{\theta, \zeta}$, namely

$$
K_{\theta, \zeta} \quad \underset{T^{-1}}{\stackrel{T}{\overleftrightarrow{ }}} \quad \mathbf{x} \mapsto e^{i \kappa \mathrm{~d}(\theta, \zeta) \cdot \mathbf{x}}
$$

\Longrightarrow Equivalence between two approximation problems:
in the parametric space \mathcal{A}

$$
\begin{array}{ll}
\text { a the parametric space } \mathcal{A} & \text { in the physical space } \mathcal{B} \\
\qquad v \approx \sum_{p=1}^{P} \xi_{p} K_{\theta_{p}, \zeta_{p}} \omega_{p} \quad \underset{T^{-1}}{\stackrel{T}{\leftrightarrows}} \quad u(\mathbf{x}) \approx \sum_{p=1}^{P} \xi_{p} e^{i \kappa \mathrm{~d}\left(\theta_{p}, \zeta_{p}\right) \cdot \mathbf{x}} \omega_{p}
\end{array}
$$

Sampling in the parametric domain

- [Cohen, Migliorati 2017] and [Migliorati, Nobile 2022].

Fix $L \geq 0$, set $\mathcal{A}_{L}:=\operatorname{span}\left\{a_{\ell}^{m}\right\}_{\ell \leq L}$, define the probability density

$$
\rho_{L}:=\frac{w \mu_{L}}{(L+1)^{2}}, \quad \text { where } \mu_{L}:=\sum_{\ell=0}^{L} \sum_{m=-\ell}^{\ell}\left|a_{\ell}^{m}\right|^{2},
$$

generate $P \in \mathbb{N}$ nodes $\left\{\left(\theta_{p}, \zeta_{p}\right)\right\}_{p=1}^{P}$ distributed according to ρ_{L}.
\downarrow

We expect that $v \in \mathcal{A}_{L}:=\operatorname{span}\left\{a_{\ell}^{m}\right\}_{\ell \leq L}$ can be approximated by

$$
\left\{(\boldsymbol{\theta}, \zeta) \mapsto \frac{1}{\sqrt{P \mu_{L}\left(\theta_{p}, \zeta_{p}\right)}} K_{\left(\theta_{p}, \zeta_{p}\right)}(\boldsymbol{\theta}, \zeta)\right\}_{p=1}^{P} \subset \mathcal{A}
$$

with bounded coefficients.

Sampling in the parametric domain

- [Cohen, Migliorati 2017] and [Migliorati, Nobile 2022].

Fix $L \geq 0$, set $\mathcal{A}_{L}:=\operatorname{span}\left\{a_{\ell}^{m}\right\}_{\ell \leq L}$, define the probability density

$$
\rho_{L}:=\frac{w \mu_{L}}{(L+1)^{2}}, \quad \text { where } \mu_{L}:=\sum_{\ell=0}^{L} \sum_{m=-\ell}^{\ell}\left|a_{\ell}^{m}\right|^{2},
$$

generate $P \in \mathbb{N}$ nodes $\left\{\left(\theta_{p}, \zeta_{p}\right)\right\}_{p=1}^{P}$ distributed according to ρ_{L}.
\downarrow

We expect that $u \in \mathcal{B}_{L}:=\operatorname{span}\left\{b_{\ell}^{m}\right\}_{\ell \leq L}$ can be approximated by

$$
\left\{\mathrm{x} \mapsto \frac{1}{\sqrt{P \mu_{L}\left(\theta_{p}, \zeta_{p}\right)}} e^{i \kappa \mathrm{~d}\left(\theta_{p}, \zeta_{p}\right) \cdot \mathrm{x}}\right\}_{p=1}^{P} \subset \mathcal{B}
$$

with bounded coefficients.

Probability measures

Probability density ρ_{N} and cumulative density Υ_{N} as functions of ζ :

They depend on L : target functions in $\mathcal{B}_{L}:=\operatorname{span}\left\{b_{\ell}^{m}\right\}_{\ell \leq L}$.

Sampling nodes in the parametric domain

The initial samples in $[0,1]^{4}$, here corresponding to Sobol sequences (quasi-random low-discrepancy sequences), are generated according to the product of four uniform distributions $\mathcal{U}_{[0,1]}$ and then are mapped back to the parametric domain $\Theta \times[0,+\infty)$ by Υ_{N}^{-1}.

Fundamental solution and different geometries

Approximation of $u(\mathbf{x})=\frac{e^{i \kappa|\mathbf{x - s}|}}{4 \pi|\mathbf{x}-\mathrm{s}|}$ with $\mathrm{s} \in \mathbb{R}^{3} \backslash \bar{\Omega}$ so that $\operatorname{dist}(\mathrm{s}, \partial \Omega)=\frac{\lambda}{3}$,

Fundamental solution and different geometries

Approximation of $u(\mathbf{x})=\frac{e^{i \kappa|\mathbf{x}-\mathrm{s}|}}{4 \pi|\mathbf{x}-\mathrm{s}|}$ with $\mathrm{s} \in \mathbb{R}^{3} \backslash \bar{\Omega}$ so that $\operatorname{dist}(\mathrm{s}, \partial \Omega)=\frac{\lambda}{3}$,

$$
\kappa=5, \quad L=16, \quad P=2704
$$

$\begin{array}{llll}-0.13 & -0.06 & 0 & 0.06\end{array}$
Real part solution $\Re u$

10^{-8}	10^{-7}	10^{-6}	10^{-5}

Error $|u-\tilde{u}|$ PPWs

10^{-13}	5×10^{-11}	10^{-8}

10^{-10}
10^{-9}
Error $|u-\tilde{u}|$ EPWs

Enhanced accuracy near singularities

