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Helmholtz equation and Trefftz methods

Let u be a solution of the homogeneous
Helmholtz equation (n = 2, 3):

∆u+ κ2u = 0, in Ω ⊂ Rn.

The wavenumber is κ = ω/c > 0 and the wavelength is λ = 2π
κ .

u(x) represents the space dependence of time-harmonic solutions

U(x, t) = ℜ{e−iωtu(x)} of the wave equation 1
c2

∂2U
∂t2 −∆U = 0.

▶ ‘Easy’ PDE for small κ: perturbation of Laplace,

▶ ‘Difficult’ PDE for large κ: high-frequency problem.
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Helmholtz equation and Trefftz methods

Trefftz method: computing the approximation ũ of the form:

ũ :=

P∑
p=1

ξp ϕp,

where each element of the Trefftz space span{ϕp}Pp=1 satisfies

∆ϕp + κ2ϕp = 0.

In the setting of this presentation:

▶ Single-cell mesh, i.e. no h-refinement, and

Ω ≡ B1 ⊂ Rn is the unit ball,

▶ ϕp are plane waves.
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Propagative plane waves (PPWs)

Propagative plane waves have the form:

x 7→ eiκd·x, where d ∈ Rn and d·d = 1.

PPWs are complex exponentials, thus easy and
cheap to evaluate, differentiate, integrate...

For isotropic approximations, one can use (al-
most) evenly-spaced propagation direction {dp}p:

ϕp = eiκdp·x.

If n = 3, e.g. extremal point systems [Sloan,
Womersley 2004].
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Instability of PPWs

Can we construct accurate approximations u(x) ≈
∑P

p=1 ξp e
iκdp·x?

In theory, yes: better rates w.r.t#DOFs than polynomial spaces:

▶ [Cessenat, Després 1998],

▶ [Melenk 1995], [Moiola, Hiptmair, Perugia 2011].

In pratice (finite-precision arithmetic), not always:

The issue is ‘instability’.

Increasing #PPWs, at some point convergence stagnates.

▶ Numerical phenomenon due to computer arithmetic and
cancellation,

▶ PPW instability already observed in all PPW-based Trefftz
methods and usually described as ill-conditioning issue.
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Adcock–Huybrechs theory

Regardless of the reconstruction strategy, the linear system matrix
A ∈ CS×P is ill-conditioned [Moiola, Hiptmair, Perugia 2011].

Oversampling (S ≫ P ) & SVD ϵ-regularization:

A = UΣV ∗ → A ≈ UΣϵV
∗ → ξS,ϵ := V Σ†

ϵU
∗b,

where the singular values below ϵ have been trimmed in Σϵ.

Consider approximations ũ[µ](x) :=
∑P

p=1 µp e
iκdp·x, with µ := (µp) p

Theorem: [Parolin, Huybrechs, Moiola 2022]

Given ϵ ∈ (0, 1], ∀µ ∈ CP we have that, if S is large enough,∥∥u− ũ [ξS,ϵ]
∥∥ ≲

∥∥u− ũ [µ]
∥∥+ ϵ∥µ∥.
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Outline

Outline of the presentation:

▶ Instability of propagative plane waves (PPWs)

▶ Stability of evanescent plane waves (EPWs)

▶ Recipe for choosing the EPWs

▶ Numerical results

2D setting

[Parolin, Huybrechs,

Moiola 2022]

3D setting

This work
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Instability of propagative plane waves (PPWs)
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Spherical waves — Fourier–Bessel functions

Spherical waves are separable solutions in spherical coordinates:

bmℓ (x) := βℓ jℓ(κ|x|)Y m
ℓ (x/|x|), 0 ≤ |m| ≤ ℓ, ∀x ∈ B1,

where βℓ
ℓ→∞∼ 2

√
2κ

(
2
eκ

)ℓ
ℓℓ+

1
2 is a H1-normalization constant.

Propagative mode
ℓ = 2m = κ/2 = 8

Grazing mode
ℓ = 2m = κ = 16

Evanescent mode
ℓ = 2m = 3κ = 48

Orthonormal basis for B := {u ∈ H1(B1) : ∆u+ κ2u = 0}.
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Modal analysis — PPW instability

The Jacobi–Anger identity relates PPWs to spherical waves bmℓ :

eiκd·x =
∞∑
ℓ=0

ℓ∑
m=−ℓ

(
4πiℓY m

ℓ (d)β−1
ℓ

)
bmℓ (x).

Asymptotics of Fourier coefficients:∣∣∣4πiℓY m
ℓ (d)β−1

ℓ

∣∣∣ ℓ→∞∼ O
(
ℓ−ℓ

)
Approximating u =

∑
ℓ

∑
m ûm

ℓ bmℓ ∈ B
needs exponentially large coefficients:

u ∈ Hs(B1), s ≥ 1 ⇐⇒ |ûm
ℓ | ℓ→∞∼ o(ℓ−s)

Theorem: For every 0 ≤ |m| ≤ ℓ,P ∈ N,µ ∈ CP, and 0 < η ≤ 1∥∥bmℓ − ũ [µ]
∥∥ ≤ η =⇒ ∥µ∥ ≥ (1− η)βℓ/2

√
π(2ℓ+ 1).
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Approximation of spherical waves by PPWs

Find ξS,ϵ :=(ξp)
P
p=1 s.t.

bmℓ (x) ≈
P∑

p=1

ξp e
iκdp·x

Propagative mode
ℓ = 2m = κ/2 = 8
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Stability of evanescent plane waves (EPWs)



11/18

Evanescent plane waves (EPWs)

Evanescent plane waves have the form:

x 7→ eiκd·x, where d ∈ C3 and d ·d = 1.

EPWs are exponential Helmholtz solutions again.

Let θ := (θ1, θ2, θ3) ∈ Θ := [0, π]× [0, 2π)× [0, 2π) be the Euler angles
and Rθ the associated rotation matrix. The wave direction is given by

d = d(θ, ζ) := Rθ d↑ (ζ/2κ+ 1) ∈ C3, ∀ (θ, ζ) ∈ Θ× [0,+∞),

where d↑ is the reference upward complex direction vector defined by

d↑(z) := (i
√
z2 − 1, 0, z), ∀ z ≥ 1.

Influence of the evanescence parameters θ3 and ζ:

eiκd·x = ei(
ζ
2+κ)dprop(θ1,θ2)·x e−(ζ(

ζ
4+κ))1/2d⊥

decay(θ)·x,

where the directions dprop(θ1, θ2) and d⊥
decay(θ) are real and orthogonal.
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Modal analysis — EPW stability

The Jacobi–Anger identity holds also for EPWs:

eiκd·x =

∞∑
ℓ=0

ℓ∑
m=−ℓ

[
4πiℓβ−1

ℓ Dm
ℓ (θ) ·Pℓ(ζ)

]
bmℓ (x).

▶ Dm
ℓ (θ) ∈ C2ℓ+1 is the (ℓ+m+1)-column of the Wigner D-matrix,

▶ Pℓ(ζ) :=
(√

2ℓ+1
4π

(ℓ−n)!
(ℓ+n)!

inPn
ℓ

(
ζ
2κ

+ 1
))ℓ

n=−ℓ
∈ C2ℓ+1

where Pn
ℓ are the associated Legendre polynomials defined in [1,+∞).
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It looks promising! But
how to choose the

evanescence parameters?
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Recipe for choosing the EPWs
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Integral representation via EPWs

We want to represent u ∈ B as continuous superposition of EPWs:

u(x) =

∫ +∞

0

∫
Θ

v(θ, ζ) eiκd(θ,ζ)·x w(θ1, ζ) dθdζ, ∀x ∈ B1,

with density v ∈ A=span{amℓ }(ℓ,m)⊊L2(Θ×[0,+∞);w) and weight w.

Theorem: The operator T : A → B is bounded and invertible,

Tamℓ = τℓb
m
ℓ , τ−∥v∥A ≤ ∥Tv∥B ≤ τ+∥v∥A, ∀v ∈ A,

where τℓ ∈ C and 0 < τ− ≤ |τℓ| ≤ τ+ < +∞ for every ℓ ≥ 0.

Hence, every Helmholtz solution u ∈ B is a (continuous) linear
combination of EPWs with bounded coefficients: ∥v∥A ≤ τ−1

− ∥u∥B.
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Sampling in the parametric domain

We seek suitable discretizations of the previous integral representation
u(x) ≈

∑P
p=1ξpe

iκd(θp,ζp)·xωp with bounded coefficients ξS,ϵ := (ξp) p.

▶ [Cohen, Migliorati 2017] and [Migliorati, Nobile 2022].

We approximate u = Tv by uL = TvL, where vL is the orthogo-
nal projection in AL :=span{amℓ }ℓ≤L. The P ∈ N cubature no-
des {(θp, ζp)}Pp=1 distribute according to the probability density

ρL :=
wµL

(L+ 1)2
, where µL :=

L∑
ℓ=0

ℓ∑
m=−ℓ

|amℓ | 2.

↓

We expect uL ∈ BL := span{bmℓ }ℓ≤L to be approximated by{
x 7→ 1√

PµL(θp, ζp)
eiκd(θp,ζp)·x

}P

p=1

⊂ B,

with bounded coefficients.
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Numerical results
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Approximation of spherical waves by EPWs

Find ξS,ϵ := (ξp) p such that

bmℓ (x)≈
P∑

p=1

ξpe
iκd(θp,ζp)·xωp

Propagative mode
ℓ = 2m = κ/2 = 8
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Solution and error plots

Approximation of u=
∑L

ℓ=0

∑ℓ
m=−ℓû

m
ℓ bmℓ ∈BL with random (ûm

ℓ )(ℓ,m),

κ = 5, L = 25, dimBL = 676, P = 6084.

Real part solution ℜu

Error |u− ũ| PPWs Error |u− ũ| EPWs
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Conclusions
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Summary

Ill-conditioning can be overcome (via regularization) if there exist
accurate and stable approximations (bounded coefficients).

To approximate Helmholtz solutions with Trefftz methods

▶ PPWs give accurate but unstable results,

▶ EPWs give accurate and stable results.

→ Key result is the stable integral representation.

EPWs parameters are chosen by sampling the parametric domain
according to some explicit probability density.

Next steps:

▶ Prove the EPW stability conjecture ▶ Extend to general geometries

▶ Time-harmonic Maxwell/Elasticity ▶ Tailor to Trefftz–DG schemes
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Thank you for your attention!

▶ GitHub repository (code written in MATLAB):
https://github.com/Nicola-Galante/evanescent-plane-wave-approximation

https://github.com/Nicola-Galante/evanescent-plane-wave-approximation
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Reconstruction from Dirichlet sampling data

How to construct ũ[ξ](x) :=
∑P

p=1 ξp e
iκdp·x approximation of u?

Collocation method with S ∈ N Dirichlet data:

ũ[ξS ](xs) = u(xs), ∀s = 1, ..., S → AξS = b,

where {xs}Ss=1 are (almost) evenly-spaced points on ∂B1.

▶ A is ill-conditioned [Moiola, Hiptmair, Perugia 2011].

Oversampling (S ≫ P ) & SVD ϵ-regularization:

A = UΣV ∗ → A ≈ UΣϵV
∗ → ξS,ϵ := V Σ†

ϵU
∗b,

where the singular values below ϵ have been trimmed in Σϵ.

▶ Well-defined if u ∈ C0(B1) and κ2 ̸= ∆-Dirichlet eigenvalue.
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Definition: Ferrers functions and Legendre polynomials

For every (ℓ,m) ∈ I, the Ferrers functions are defined as:

Pm
ℓ (x) :=

(−1)m

2ℓℓ!
(1− x2)m/2 dℓ+m

dxℓ+m
(x2 − 1)ℓ, |x| ≤ 1,

so that

P−m
ℓ (x) = (−1)m (ℓ−m)!

(ℓ+m)!
Pm
ℓ (x), |x| ≤ 1.

The associated Legendre polynomials are defined as:

Pm
ℓ (z) :=

1

2ℓℓ!
(z2 − 1)m/2 dℓ+m

dzℓ+m
(z2 − 1)ℓ, ∀z ∈ C,

so that

P−m
ℓ (z) =

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (z), ∀z ∈ C.
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Definition: associated Legendre polynomials

We use the convention

(z2 − 1)m/2 := P
[
(z + 1)m/2

]
P
[
(z − 1)m/2

]
, ∀z ∈ C,

where P[ · ] indicates that the principal branch is chosen.
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Definition: Wigner matrices

Let θ := (θ1, θ2, θ3) be the Euler angles. The Wigner D-matrix

is the unitary matrixDℓ(θ) = (Dm,m′

ℓ (θ))m,m′ ∈ C(2ℓ+1)×(2ℓ+1),
where |m|, |m′| ≤ ℓ, whose elements are defined by

Dm,m′

ℓ (θ) := eim
′θ2dm,m′

ℓ (θ1)e
imθ3 .

In turn, the matrix dℓ(θ) := (dm,m′

ℓ (θ))m,m′ ∈ R(2ℓ+1)×(2ℓ+1),
where |m|, |m′| ≤ ℓ, is called Wigner d-matrix , its elements are

dm,m′

ℓ (θ) :=

kmax∑
k=kmin

wm,m′

ℓ,k

(
cos

θ

2

)2(ℓ−k)+m′−m(
sin

θ

2

)2k+m−m′

where

wm,m′

ℓ,k :=
(−1)k [(ℓ+m)!(ℓ−m)!(ℓ+m′)!(ℓ−m′)!]

1/2

(ℓ−m− k)!(ℓ+m′ − k)!(k +m−m′)! k!

with kmin := max{0,m′−m} and kmax := max{ℓ−m, ℓ+m′}.
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Modal analysis—PPWs

For any d = d(θ1, θ2) ∈ S2, if ϕd(x) := eiκd·x, we have

ϕ̂m
ℓ (θ1) := |(ϕd, b

m
ℓ ) B| =

4π

βℓ
γm
ℓ |Pm

ℓ (cos θ1)|

ϕ̂m
ℓ (π/2) ϕ̂m

ℓ (π/4) ϕ̂m
ℓ (π/64) ϕ̂m

ℓ (0)
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Modal analysis—EPWs

For any d = d(θ1, θ2, θ3, ζ) ∈ S2, if ϕd(x) := eiκd·x, we have

ϕ̂m
ℓ (θ1, θ3, ζ) := |(ϕd, b

m
ℓ )B|=

4π

βℓ

∣∣∣∣∣∣
ℓ∑

m′=−ℓ

γm′
ℓ i−m′

dm′,m
ℓ (θ1)e

−im′θ3Pm′
ℓ

(
ζ

2κ
+ 1

)∣∣∣∣∣∣
ϕ̂m
ℓ (π4 ,

π
4 , 30) ϕ̂m

ℓ (π2 ,
7π
4 , 60) ϕ̂m

ℓ (π4 ,
π
2 , 120) ϕ̂m

ℓ (0, 0, 180)
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Singular values {σp}p of the matrix A

iiii

PPWs

iiii

EPWs (Sobol, L = 4κ)

▶ If P is large enough, the condition number of the matrix A is
comparable for both PPWs and EPWs

▶ The improved accuracy for evanescent modes is not due to a
better conditioning of the linear system, but rather to an increase
of the ϵ-rank

▶ Raising the truncation parameter L allows to increase the ϵ-rank
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Approximation of spherical waves by PPWs

Approximation of spherical waves b0ℓ by PPWs.

κ = 6, ϵ = 10−14, S = 2P, Residual E :=
∥AξS,ϵ − b∥
∥b∥

.

▶ Propagative modes ℓ ≲ κ : O(ϵ) error, O(1) coefficients ∀P ,

▶ Evanescent modes ℓ ≳ 4κ : O(1) error, large coefficients ∀P .
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Approximation of spherical waves by EPWs

Approximation of spherical waves b0ℓ by EPWs (Sobol sampling).

κ = 6, ϵ = 10−14, S = 2P, L = 4κ.

▶ If P ∈ N is large enough, the discrete EPW space approximates
all bmℓ for 0 ≤ |m| ≤ ℓ ≤ L = 4κ. The accuracy and stability
properties do not differ significantly varying the order |m| ≤ ℓ.
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Weighted L2 space A

The weight function is:

w(θ1, ζ) := sin (θ1) ζ
1/2e−ζ , ∀(θ, ζ) ∈ Θ× [0,+∞).

The w-weighted L2 Hermitian product and the associated norm are:

(u, v)A :=

∫ +∞

0

∫
Θ

u(θ, ζ)v(θ, ζ)w(θ1, ζ)dθ dζ, ∥u∥2A := (u, u)A,

where u, v ∈ L2(Θ× [0,+∞);w).

For every (ℓ,m) ∈ I, the Herglotz densities are defined as:

amℓ (θ, ζ) := αℓ D
m
ℓ (θ) ·Pℓ(ζ), ∀(θ, ζ) ∈ Θ× [0,+∞),

where αℓ is a L2
w-normalization constant. Furthermore:

A := span{amℓ }(ℓ,m)∈I
∥·∥A ⊊ L2(Θ× [0,+∞);w).
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The reproducing kernel property

We seek suitable discretizations of the previous integral representation
u(x) ≈

∑P
p=1ξpe

iκd(θp,ζp)·xωp, with bounded coefficients ξS,ϵ := (ξp) p.

Corollary: The space A has the reproducing kernel property

|v(θ, ζ)| ≤ C(θ, ζ)∥v∥A, ∀v ∈ A,
Riesz Th.
=⇒ ∃!Kθ,ζ ∈ A : v(θ, ζ) = (v,Kθ,ζ)A, ∀v ∈ A.

Moreover, the EPWs are the images under T of Kθ,ζ , namely

Kθ,ζ

T−−−→←−−−
T−1

x 7→ eiκd(θ,ζ)·x

=⇒ Equivalence between two approximation problems:

in the parametric space A in the physical space B

v ≈
P∑

p=1

ξp Kθp,ζp
ωp

T−−−→←−−−
T−1

u(x) ≈
P∑

p=1

ξp e
iκd(θp,ζp)·x ωp
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Sampling in the parametric domain

▶ [Cohen, Migliorati 2017] and [Migliorati, Nobile 2022].

Fix L≥ 0, setAL :=span{amℓ }ℓ≤L, define the probability density

ρL :=
wµL

(L+ 1)2
, where µL :=

L∑
ℓ=0

ℓ∑
m=−ℓ

|amℓ | 2,

generate P ∈N nodes {(θp, ζp)}Pp=1 distributed according to ρL.

↓

We expect that v∈AL :=span{amℓ }ℓ≤L can be approximated by{
(θ, ζ) 7→ 1√

PµL(θp, ζp)
K(θp,ζp)(θ, ζ)

}P

p=1

⊂ A,

with bounded coefficients.
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Sampling in the parametric domain

▶ [Cohen, Migliorati 2017] and [Migliorati, Nobile 2022].

Fix L≥ 0, setAL :=span{amℓ }ℓ≤L, define the probability density

ρL :=
wµL

(L+ 1)2
, where µL :=

L∑
ℓ=0

ℓ∑
m=−ℓ

|amℓ | 2,

generate P ∈N nodes {(θp, ζp)}Pp=1 distributed according to ρL.

↓

We expect that u∈BL :=span{bmℓ }ℓ≤L can be approximated by{
x 7→ 1√

PµL(θp, ζp)
eiκd(θp,ζp)·x

}P

p=1

⊂ B,

with bounded coefficients.
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Probability measures

Probability density ρN and cumulative density ΥN as functions of ζ:

They depend on L: target functions in BL := span{bmℓ }ℓ≤L.
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Sampling nodes in the parametric domain

Samples {(θ1,p, ζp)}Pp=1 in [0, π]× [0,+∞):

The initial samples in [0, 1]4, here corresponding to Sobol sequences
(quasi-random low-discrepancy sequences), are generated according to
the product of four uniform distributions U[0,1] and then are mapped

back to the parametric domain Θ× [0,+∞) by Υ−1
N .
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Fundamental solution and different geometries

Approximation of u(x)= eiκ|x−s|

4π|x−s| with s ∈ R3\Ω so that dist(s,∂Ω)= λ
3 ,

κ = 5, L = 16, P = 2704.

Real part solution ℜu Error |u− ũ| PPWs Error |u− ũ| EPWs
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Enhanced accuracy near singularities


