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Helmholtz equation and Trefftz methods

Let u be a solution of the Helmholtz equation (wavenumber x > 0):

—Au — K*u =0, in a bounded domain Q C RY, d € {2,3}

Goal: Computing approximation of u using Trefftz methods

N
U~ Z &, where  — A¢, — k%p, =0 (locally)
n=1
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Strengths:
> Spectral accuracy » Many formulations (LS, TDG, UWVF)

Weaknesses:
» Limited to piecewise-constant coefficients & homogeneous PDEs

» High numerical instability from redundancy in approximation sets,
e.g. propagative plane waves, convergence stalls in finite precision



Outline

> Propagative plane waves (PPWs)
» Evanescent plane waves (EPWs)

» EPW-Trefftz Continuous Galerkin Methods
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Propagative plane waves (PPWs)

Propagative plane wave (defined in R%)

X 5 erdx where deR? d-d=1

» Exact solution of (—A — k?)u =0, sinced-d =1
» Simple parametrization of propagation direction d(8) € S41:
> 0 €®:=[0,27) in 2D > 0 €O :=[0,2m) x [0,7] in 3D
> Easy to manipulate: closed-form integration on flat submanifold
» Simple discretization: evenly-distributed d(6,,) € S¢~1

u(x) ~ nyzl Enend(On)x
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Approximation results: better rates than polynomial w.r.t # DOFs
» h-estimates: Taylor expansions [Cessenat, Després 1998]
P> hp-estimates: Vekua theory, wavenumber-explicit

[Melenk 1995], [Moiola, Hiptmair, Perugia 2011]




Propagative plane waves (PPWs)

Propagative plane wave (defined in R%)
X 5 erdx where deR? d-d=1

» Exact solution of (—A — k?)u =0, sinced-d =1
» Simple parametrization of propagation direction d(8) € S41:

> 0e€®:=0,27) in 2D > 0ec®:=0,2m) x [0, 7] in 3D
» Easy to manipulate: closed-form integration on flat submanifold
» Simple discretization: evenly-distributed d(6,) € S¢1

u(x) ~ ZnN:1 £nemd(9n)~x

In practice (finite-precision arithmetic) — convergence stagnates:
» Redundant approximation set if d(6,,) - d(0,,) ~ 1 for n # m

» Ill-conditioned linear system [Hiptmair, Moiola, Perugia 2016]
» Requires regularization [Barucq, Bendali, Diaz, Tordeux 2021]




Motivating numerical experiment (PPWs)

-

Approximation in the unit ball 2 of
the 3D fundamental solution, i.e.

1 ein|xfs\ o
X = Em, s € R3\Q

with k = 10 and dist (s,Q) /A =1
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Continuous superposition of PPWs

For a bounded Lipschitz domain Q, let Tp : L?(®) — H'(Q) such that

(Tpv) (x) := /@ v(0)e* 19 *d5(0), x €Q

» Tp is bounded, and u = Tpv is an Helmholtz solution in € called
Herglotz function [Colton, Kress 2013]

» Tp has H'-dense image in the Helmholtz space in Q [Weck 2004]
» Tp is a Hilbert—Schmidt operator = not boundedly invertible
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For a bounded Lipschitz domain Q, let Tp : L?(®) — H'(Q) such that

(Tpv) (x) := /@ v(0)e* 19 *d5(0), x €Q

» Tp is bounded, and u = Tpv is an Helmholtz solution in € called

Herglotz function [Colton, Kress 2013]
» Tp has H'-dense image in the Helmholtz space in Q [Weck 2004]
» Tp is a Hilbert—Schmidt operator = not boundedly invertible

[Parolin, Huybrechs, Moiola 2023] Any Helmholtz solution in 2
not in the range of Tp can be arbitrarily well approximated by
PPWs, but with unbounded coefficients (asymptotically)

N

[Adcock, Huybrechs 2020] Ill-conditioning can be solved, provid-
ed accurate approximations with bounded coefficients exist
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Evanescent plane waves (EPWs)

\ Evanescent plane wave (defined in R?)
\\ x 5 erdx where deC? d-d=1

» Complex-valued direction vector d € C%:
> Propagation direction = R (d)
> Evanescence direction = S (d)
> Still exact solution of (—A — k?)u =0, sinced -d =1
> Still easy and cheap to evaluate, differentiate, integrate, etc.

» Localization effect in a bounded domain: requires normalization



EPW direction parametrization

Evanescent plane wave directions d € C? can be parametrized as

d(y)=cosh(Q)d|(0) + isinh(O)d} (1), vi=(,6,2) ERTx © x @

» Decay strength |3(d)]

parametrized by ¢ € RT . S(d) - R(d) = 0
[S(d)| = /[R(d)|> <1 .

» Propagation direction dll
parametrized by 6 € ©

» Evanescence direction dg
parametrized by ¢ € @,

{{il} in 2D

_ Unit ball
= R@)] =1

[0,27) in 3D
» PPWs recovered for ( =0



Continuous superposition of EPWs

If Q is a disk in 2D or a ball in 3D, let T : L?,(RT™x © x ®)— H(Q)

(Tew) / / / (¢, 8, ) €00 2(¢)dar(p)da (9)dC

[Parolin, Huybrechs, Moiola 2023] and [G., Moiola, Parolin 2024]
provide a weight w such that Tg is boundedly invertible, namely

Vu Helmholtz solution, v = T u, [vllzz, < llull
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If Q is a disk in 2D or a ball in 3D, let T : L?,(RT™x © x ®)— H(Q)

(Tew) / / / (¢, 8, ) €00 2(¢)dar(p)da (9)dC

[Parolin, Huybrechs, Moiola 2023] and [G., Moiola, Parolin 2024]
provide a weight w such that Tg is boundedly invertible, namely

Vu Helmholtz solution, v = T u, [vllzz, < llull

In PPW setting, the operator Tp : L?(@) — H'(Q) is compact
with H'-dense image in the Helmholtz solution space in €2, thus

||”LL — TP'Un”Hl —0

Vi ¢ rangeTp 3 (1), CLA(O) : {uzv 12 = +oc
‘n||L
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EPW approximation sets and Trefftz methods

P In general, it is difficult to construct EPW discrete approximation sets
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> Exact integral representation available for disk/ball

» [Parolin, Huybrechs, Moiola 2023] use a cubature rule
based on optimal sampling in [Cohen, Migliorati 2017]

»> Apply the recipe to the circumscribed disk/ball of each
cell in Trefftz Discontinuous Galerkin methods




EPW approximation sets and Trefftz methods

P In general, it is difficult to construct EPW discrete approximation sets

i N
{X — el”d(y")'x} , where Y5, = (Cn, On, ©n)

n=1

> Exact integral representation available for disk/ball

» [Parolin, Huybrechs, Moiola 2023] use a cubature rule
based on optimal sampling in [Cohen, Migliorati 2017]

»> Apply the recipe to the circumscribed disk/ball of each
cell in Trefftz Discontinuous Galerkin methods

» Applying the recipe to each rectangle enables the con-
struction of Trefftz Continuous Galerkin methods

» Different recipe can be built for rectangular geometry \W
» The approximation set is explicit and easy to construct




EPW-Trefftz Continuous Galerkin Methods




Rectangular cell symmetries

> Let K be a rectangle and ¢(y) a normalized EPW centered in K

Goal: Construct a family of (linear combinations
of) EPWs whose trace forms a L?(9K) Hilbert
basis. To achieve this, we exploit K’s symmetries
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> Let K be a rectangle and ¢(y) a normalized EPW centered in K

Goal: Construct a family of (linear combinations
of) EPWs whose trace forms a L?(9K) Hilbert
basis. To achieve this, we exploit K’s symmetries

» Let S; denote the reflection operator that flips the i-th coordinate
» For any j = (j1, j2) €{0,1}? we define the orthogonal projections II;
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» II;¢(y) is a linear combination of EPWs = solves Helmholtz



An orthogonal EPW basis

> Let
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An orthogonal EPW basis
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An orthogonal EPW basis
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An orthogonal EPW basis
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An orthogonal EPW basis
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An orthogonal EPW basis
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Some resemblances to the Wave-Based method o nw
[Deckers et al 2014], whose trace families: Vn,1 =COS <KL1>

» Still form a complete basis for L?(9K)
» But lack the orthogonality property




An orthogonal EPW basis
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We need to assume that « is not an exceptional
frequency, i.e. k2 is not in the eigenvalue set
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One-edge Dirichlet basis

Goal: Compactly supported H'-conforming basis
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One-edge Dirichlet basis

‘ Goal: Compactly supported H'-conforming basis }

1 II n 11 n,
Vii=y ( ||n00°2?§f,1’>1||)8,< ”Hm(’;fy(fl 1||)ax) n odd
= %<||H20;?§f2>2n)w = ||H1301<Z¢yiz 2||5K) » odd

1 11 n II n,
=3 ( ||Hml;?y(f,1’>l||)m< ||nnla1>¢yfl 1||aK> even
via=; < ||n1;[f;fy(ﬁ’f||)w = ||n11]11¢1>¢yiz 2||aK) neven

» On 2 opposite sides:

\I!ff ;lax = A-Dirichlet eigenfunctions
»> On the other 2 sides: \I/iilax =0
= {‘I’iib}(}n,i is a Hilbert basis for L?(9K)




Example

» Plots of v with L1 =Ly =1and k =16

Propagative Wave (n=2)  Evanescent Wave (n=10)

» rdiam(K) — 0: {WE .}, contains only evanescent waves

» rdiam(K) — +o0: {\Ilfz}m contains more propagative waves



A single-mesh method




A single-mesh method

» Let 2 be a bounded domain discretized by a mesh 7, := {K}
composed of rectangular cells. Moreover, assume that

¢ | ox(-A)
KeTy

This is not restrictive up to a (local) resizing of the mesh cells




A single-mesh method

» Glue two functions along the non-zero interface to ensure C°-continuity
» The glued function has compact support, solves Helmholtz in each cell
» The Trefftz space generated by these functions is conforming

»> We can rely on the Galerkin projection onto the conforming Trefftz
space to approximate any Helmholtz BVP

—




Example — PPW approximation

Consider Q = [0,1]? and k = 32. We want to approximate the PPW
Q

Gy« x s RO where 0= g Mesh =

We take N = 32, and a 12-edge mesh — #DOFs= 32 x 12 = 384




Example — PPW approximation

Consider Q = [0,1]? and k = 32. We want to approximate the PPW

Q
. 7r
by : x > PO where 0= 1 Mesh =
We take N = 32, and a 12-edge mesh — #DOFs= 32 x 12 = 384
Exact Solution Approximated Solution Absolute Error
1 1 1
0 0 0.5
3 ? |
1
; 1
0.5 - 0.5 ! 0.5 ] 05 ! 0.5 . 0.5
00 00 00

The approximation is poor: all functions in the discrete Trefftz space
vanish at the mesh nodes. For a fixed mesh size h > 0 and any 0 € ©,

i — > N—1/2
vali [P0 UN,hHHl(Q) = A ) NeN




An interlaced-mesh method




An interlaced-mesh method

» We take a shifted second grid to patch the nodes of the first mesh

» The new interlaced-mesh Trefftz space remains conforming
» Its functions solve the Helmholtz equation in each cell intersection

> Let us try to approximate the propagative plane wave ¢4,
using the Galerkin projection onto this new Trefftz space



Example — PPW approximation

Consider again the previous test, namely the approximation of

ind(0)-x where 0= il
’ 4

For N = 16, a 4-edge mesh + a 12-edge shifted mesh — #DOFs= 256

Xt e

Exact Solution Approximated Solution Absolute Error
10713
1 1 1
0.5
0 0 0.5
0.5
1 0
1 1 1
1 : 1
0.5 - 0.5 0.5 . 05 ! 0.5 . 0.5
00 00 00

The approximation is really good !



Example — PPW approximation

Consider again the previous test, namely the approximation of

ikd(0)-x
b

X e where 0=

T
4
Given a 4-edge mesh + a 12-edge shifted mesh (wavenumber x = 32)

Relative error
10! 5

10741
The convergence seems spectral !
1079 ¢
—— [2(Q)
- H(Q)
10~ * >
10! 102 103

DOF count



A first error estimate

that cuts through the domain 2

1
! !
! !
L___ 5|2 ____1! » Consider any vertical/horizontal segment
1 1
i i
1 1

For any m € N and u € H™(1'), there exists Cy, 5, > 0 such that

inf ||u —vnpllary) < Cmon NS/Z?mH””Hm( )
ONh




A first error estimate

R R |
i E i
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i i
i i i
N .

For any m € N and u € H™(), there exists Cy, p, > 0 such that

inf ||u —vnpllary) < Cmon N3/2_m||“||Hm( )
UN,h

» The trace Trefftz space contains functions vanishing on [ except on
one cell restriction, where they match the A-Dirichlet eigenfunctions
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A first error estimate

For any m € N and v € H™('), there exists Cy, 5, > 0 such that

inf ||u — v pllar ey < Cmgh N327™ | gom 1y
UN,h

» The trace Trefftz space contains functions vanishing on [ except on
one cell restriction, where they match the A-Dirichlet eigenfunctions



A first error estimate

For any m € N and v € H™('), there exists Cy, 5, > 0 such that

inf flu— v allm ) < Comn N2l gy

» The trace Trefftz space contains functions vanishing on [ except on
one cell restriction, where they match the A-Dirichlet eigenfunctions

In particular:

» EPWs needed for p-convergence — only PPWs gives #modes < 400
> EPWs needed for h-convergence — no PPW-conforming Trefftz as h—0



More numerical experiments

> If Q) is a general Lipshitz domain, consider the space spanned
by basis functions on a mesh of rectangular cells covering €2

> For polygonal domain Q, the basis ¥, (EPW combinations)
enable exact matrix assembly via closed form integration

Approximation of the 2D fundamental solution with x = 30, namely

X iHél)(/qx—SI), scR*\Q
For N = 32, a 4-edge mesh + a 12-edge shifted mesh — #DOFs=512

Exact Solution Approximated Solution Absolute Error
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> If Q) is a general Lipshitz domain, consider the space spanned
by basis functions on a mesh of rectangular cells covering €2

> For polygonal domain Q, the basis ¥, (EPW combinations)
enable exact matrix assembly via closed form integration

Approximation of the 2D fundamental solution with x = 30, namely

X iHél)(/qx—SI), scR*\Q
For N = 32, a 4-edge mesh + a 12-edge shifted mesh — #DOFs=512

Exact Solution Approximated Solution Absolute Error
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Conclusions




Summary

Ill-conditioning can be overcome (via regularization) if there exist
accurate and stable approximations (bounded coefficients)

. » PPW: v — u has dense image but is compact
! / v > EPW: u+ v is bounded (for the disk/ball)

» PPW: numerical instability

» EPW: much better approximation results

.
qu Epettin®
n

We developed a Trefftz scheme that numerically exhibits spectral
accuracy, preserves the conformity of classical FEM methods, and
ensures stability in high-resolution Trefftz spaces using EPWs




Summary

Ill-conditioning can be overcome (via regularization) if there exist
accurate and stable approximations (bounded coefficients)

. » PPW: v — u has dense image but is compact
‘= / e > EPW: u s o is bounded (for the disk/ball)

» PPW: numerical instability

.
qu Epettin®
n

» EPW: much better approximation results

We developed a Trefftz scheme that numerically exhibits spectral
accuracy, preserves the conformity of classical FEM methods, and
ensures stability in high-resolution Trefftz spaces using EPWs

C

Next steps:
» Extend the bounded invertibility of T : Li% (Y) = H*(Q) from the
disk/ball to a broader class of domains (WIP for convex domains)

» Derive error estimates in 2D & 3D for the EPW-Trefftz scheme
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