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Helmholtz equation and Trefftz methods

Let u be a solution of the Helmholtz equation (wavenumber κ > 0):

−∆u− κ2u = 0, in a bounded domain Ω ⊂ Rd, d ∈ {2, 3}

Goal: Computing approximation of u using Trefftz methods

u ≈
N∑

n=1

ξnϕn, where −∆ϕn − κ2ϕn = 0 (locally)

Strengths:

▶ Spectral accuracy ▶ Many formulations (LS, TDG, UWVF)

Weaknesses:

▶ Limited to piecewise-constant coefficients & homogeneous PDEs

▶ High numerical instability from redundancy in approximation sets,
e.g. propagative plane waves, convergence stalls in finite precision
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Outline

▶ Propagative plane waves (PPWs)

▶ Evanescent plane waves (EPWs)

▶ EPW-Trefftz Continuous Galerkin Methods
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Propagative plane waves (PPWs)

Propagative plane wave (defined in Rd)

x 7→ eiκd·x, where d ∈ Rd, d · d = 1

▶ Exact solution of (−∆− κ2)u = 0, since d · d = 1

▶ Simple parametrization of propagation direction d(θ) ∈ Sd−1:

▶ θ ∈ Θ := [0, 2π) in 2D ▶ θ ∈ Θ := [0, 2π)× [0, π] in 3D

▶ Easy to manipulate: closed-form integration on flat submanifold

▶ Simple discretization: evenly-distributed d(θn) ∈ Sd−1

u(x) ≈ ∑N
n=1 ξne

iκd(θn)·x

Approximation results: better rates than polynomial w.r.t # DOFs

▶ h-estimates: Taylor expansions [Cessenat, Després 1998]

▶ hp-estimates: Vekua theory, wavenumber-explicit

[Melenk 1995], [Moiola, Hiptmair, Perugia 2011]
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Propagative plane waves (PPWs)

Propagative plane wave (defined in Rd)

x 7→ eiκd·x, where d ∈ Rd, d · d = 1

▶ Exact solution of (−∆− κ2)u = 0, since d · d = 1

▶ Simple parametrization of propagation direction d(θ) ∈ Sd−1:

▶ θ ∈ Θ := [0, 2π) in 2D ▶ θ ∈ Θ := [0, 2π)× [0, π] in 3D

▶ Easy to manipulate: closed-form integration on flat submanifold

▶ Simple discretization: evenly-distributed d(θn) ∈ Sd−1

u(x) ≈ ∑N
n=1 ξne

iκd(θn)·x

In practice (finite-precision arithmetic) → convergence stagnates:

▶ Redundant approximation set if d(θn) · d(θm) ≈ 1 for n ̸= m

▶ Ill-conditioned linear system [Hiptmair, Moiola, Perugia 2016]

▶ Requires regularization [Barucq, Bendali, Diaz, Tordeux 2021]
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Motivating numerical experiment (PPWs)

Approximation in the unit ball Ω of
the 3D fundamental solution, i.e.

x 7→ 1

4π

eiκ|x−s|

|x− s| , s ∈ R3\Ω

with κ = 10 and dist (s,Ω) /λ = 1

101 102 103 104
10−10

10−7

10−4

10−1

102

Number of PPWs

Relative residual with PPWs
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Continuous superposition of PPWs

For a bounded Lipschitz domain Ω, let TP : L2(Θ) → H1(Ω) such that

(TPv) (x) :=

∫

Θ

v(θ)eiκd(θ)·xdσ(θ), x ∈ Ω

▶ TP is bounded, and u = TPv is an Helmholtz solution in Ω called
Herglotz function [Colton, Kress 2013]

▶ TP has H1-dense image in the Helmholtz space in Ω [Weck 2004]

▶ TP is a Hilbert–Schmidt operator =⇒ not boundedly invertible

[Parolin, Huybrechs, Moiola 2023] Any Helmholtz solution in Ω
not in the range of TP can be arbitrarily well approximated by
PPWs, but with unbounded coefficients (asymptotically)

[Adcock,Huybrechs 2020] Ill-conditioning can be solved, provid-
ed accurate approximations with bounded coefficients exist
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Evanescent plane waves (EPWs)
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Evanescent plane waves (EPWs)

Evanescent plane wave (defined in Rd)

x 7→ eiκd·x, where d ∈ Cd, d · d = 1

▶ Complex-valued direction vector d ∈ Cd:

▶ Propagation direction = ℜ (d)

▶ Evanescence direction = ℑ (d)

▶ Still exact solution of (−∆− κ2)u = 0, since d · d = 1

▶ Still easy and cheap to evaluate, differentiate, integrate, etc.

▶ Localization effect in a bounded domain: requires normalization
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EPW direction parametrization

Evanescent plane wave directions d ∈ Cd can be parametrized as

d(y)=cosh(ζ)d∥(θ) + i sinh(ζ)d⊥
θ (φ), y :=(ζ,θ, φ) ∈ R+×Θ× Φ

▶ Decay strength |ℑ(d)|
parametrized by ζ ∈ R+

▶ Propagation direction d∥

parametrized by θ ∈ Θ

▶ Evanescence direction d⊥
θ

parametrized by φ ∈ Φ,

Φ :=

{
{±1} in 2D

[0, 2π) in 3D

▶ PPWs recovered for ζ = 0

Unit ball
|<(d)| ≥ 1

|=(d)| =
√

|<(d)|2 − 1

=(d) · <(d) = 0

<(d)

=(d)

x

y

z
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Continuous superposition of EPWs

If Ω is a disk in 2D or a ball in 3D, let TE : L2
w2(R+×Θ×Φ)→H1(Ω)

(TEv) (x) :=

∫

R+

∫

Θ

∫

Φ

v(ζ,θ, φ) eiκd(ζ,θ,φ)·x w2(ζ)dσ(φ)dσ(θ)dζ

[Parolin, Huybrechs, Moiola 2023] and [G., Moiola, Parolin 2024]
provide a weight w such that TE is boundedly invertible, namely

∀u Helmholtz solution, v = T−1
E u, ∥v∥L2

w2
≲ ∥u∥H1

In PPW setting, the operator TP : L2(Θ) → H1(Ω) is compact
with H1-dense image in the Helmholtz solution space in Ω, thus

∀u /∈ rangeTP ∃ (vn)n⊂L2(Θ) :

{
∥u− TPvn∥H1 → 0

∥vn∥L2 → +∞
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Motivating numerical experiment (EPWs)

Approximation in the unit ball Ω of
the 3D fundamental solution, i.e.

x 7→ 1

4π

eiκ|x−s|
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with κ = 10 and dist (s,Ω) /λ = 1
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EPW approximation sets and Trefftz methods

▶ In general, it is difficult to construct EPW discrete approximation sets

{
x 7→ eiκd(yn)·x

}N

n=1
, where yn = (ζn,θn, φn)

▶ Exact integral representation available for disk/ball

▶ [Parolin, Huybrechs,Moiola 2023] use a cubature rule
based on optimal sampling in [Cohen,Migliorati 2017]

▶ Apply the recipe to the circumscribed disk/ball of each
cell in Trefftz Discontinuous Galerkin methods

▶ Different recipe can be built for rectangular geometry

▶ The approximation set is explicit and easy to construct

▶ Applying the recipe to each rectangle enables the con-
struction of Trefftz Continuous Galerkin methods
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EPW-Trefftz Continuous Galerkin Methods
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Rectangular cell symmetries

▶ Let K be a rectangle and ϕ(y) a normalized EPW centered in K

Goal: Construct a family of (linear combinations
of) EPWs whose trace forms a L2(∂K) Hilbert
basis. To achieve this, we exploit K’s symmetries

▶ Let Si denote the reflection operator that flips the i-th coordinate

▶ For any j = (j1, j2)∈{0, 1}2 we define the orthogonal projections Πj

Π00=
Id+S1+S2+S1S2

4
Π10=

Id−S1+S2−S1S2

4

Π01=
Id+S1−S2−S1S2

4
Π11=

Id−S1−S2+S1S2

4

▶ Πjϕ(y) is a linear combination of EPWs =⇒ solves Helmholtz
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An orthogonal EPW basis

▶ Let y = (ζ = |ℑ(ν)|, θ = ℜ(ν), φ = signℑ(ν)) ∈ R+ ×Θ× Φ

Π00ϕ(y)
∥Π00ϕ(y)∥∂K

0 π
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π
2

−1.5

−1

−0.5

0

0.5

1

1.5
ν

νn,1=cos−1

(
nπ

κL1

)
νn,2=sin−1

(
nπ

κL2

)
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An orthogonal EPW basis
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▶ On 2 opposite sides:

Πjϕ(yn,i)|∂K ∝ ∆-Dirichlet eigenfunctions

▶ On the other 2 sides: Πjϕ(yn,i)|∂K = 0

=⇒{Πjϕ(yn,i)|∂K}j,n,i is a L2(∂K) Hilbert basis
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An orthogonal EPW basis
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▶ On 2 opposite sides:

∂nΠ1−jϕ(yn,i) ∝ ∆-Neumann eigenfunctions

▶ On the other 2 sides: ∂nΠ1−jϕ(yn,i) = 0

=⇒{∂nΠ1−jϕ(yn,i)}j,n,i is L
2(∂K) Hilbert basis
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An orthogonal EPW basis
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Some resemblances to the Wave-Based method
[Deckers et al 2014], whose trace families:

▶ Still form a complete basis for L2(∂K)

▶ But lack the orthogonality property
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nπ
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An orthogonal EPW basis
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We need to assume that κ is not an exceptional
frequency, i.e. κ2 is not in the eigenvalue set

σK(−∆) :=

{
π2

(
n2

L2
1

+
m2

L2
2

)
: n,m ∈ N

} νn,1=cos−1

(
nπ

κL1

)
νn,2=sin−1

(
nπ

κL2

)



14/22

One-edge Dirichlet basis

Goal: Compactly supported H1-conforming basis

Ψ±
n,1 :=

1

2

(
Π00ϕ(yn,1)

∥Π00ϕ(yn,1)∥∂K
± Π01ϕ(yn,1)

∥Π01ϕ(yn,1)∥∂K

)
n odd

Ψ±
n,2 :=

1

2

(
Π00ϕ(yn,2)

∥Π00ϕ(yn,2)∥∂K
± Π10ϕ(yn,2)

∥Π10ϕ(yn,2)∥∂K

)
n odd

Ψ±
n,1 :=

1

2

(
Π10ϕ(yn,1)

∥Π10ϕ(yn,1)∥∂K
± Π11ϕ(yn,1)

∥Π11ϕ(yn,1)∥∂K

)
n even

Ψ±
n,2 :=

1

2

(
Π01ϕ(yn,2)

∥Π01ϕ(yn,2)∥∂K
± Π11ϕ(yn,2)

∥Π11ϕ(yn,2)∥∂K

)
n even

▶ On 2 opposite sides:

Ψ±
n,i|∂K = ∆-Dirichlet eigenfunctions

▶ On the other 2 sides: Ψ±
n,i|∂K = 0

=⇒ {Ψ±
n,i|∂K}n,i is a Hilbert basis for L2(∂K)
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Example

▶ Plots of Ψ−
n,1 with L1 = L2 = 1 and κ = 16

νn,1 = cos−1

(
nπ

κL1

)
∈ R νn,1 = cos−1

(
nπ

κL1

)
∈ iR

▶ κdiam(K) → 0: {Ψ±
n,i}n,i contains only evanescent waves

▶ κdiam(K) → +∞: {Ψ±
n,i}n,i contains more propagative waves
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A single-mesh method
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A single-mesh method

▶ Let Ω be a bounded domain discretized by a mesh Th := {K}
composed of rectangular cells. Moreover, assume that

κ2 ̸∈
⋃

K∈Th

σK(−∆)

This is not restrictive up to a (local) resizing of the mesh cells
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A single-mesh method

▶ Glue two functions along the non-zero interface to ensure C0-continuity

▶ The glued function has compact support, solves Helmholtz in each cell

▶ The Trefftz space generated by these functions is conforming

▶ We can rely on the Galerkin projection onto the conforming Trefftz
space to approximate any Helmholtz BVP
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Example – PPW approximation

Consider Ω = [0, 1]2 and κ = 32. We want to approximate the PPW

ϕθ : x 7→ eiκd(θ)·x, where θ =
π

4
Mesh =

We take N = 32, and a 12-edge mesh → #DOFs= 32× 12 = 384

Exact Solution Approximated Solution Absolute Error

The approximation is poor: all functions in the discrete Trefftz space
vanish at the mesh nodes. For a fixed mesh size h > 0 and any θ ∈ Θ,

inf
vN,h

∥ϕθ − vN,h∥H1(Ω) ≳ N−1/2, N ∈ N
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An interlaced-mesh method
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An interlaced-mesh method

▶ We take a shifted second grid to patch the nodes of the first mesh

+ =

▶ The new interlaced-mesh Trefftz space remains conforming

▶ Its functions solve the Helmholtz equation in each cell intersection

▶ Let us try to approximate the propagative plane wave ϕπ/4,
using the Galerkin projection onto this new Trefftz space
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Example – PPW approximation

Consider again the previous test, namely the approximation of

x 7→ eiκd(θ)·x, where θ =
π

4

For N = 16, a 4-edge mesh + a 12-edge shifted mesh → #DOFs= 256

Exact Solution Approximated Solution Absolute Error

The approximation is really good !
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Example – PPW approximation

Consider again the previous test, namely the approximation of

x 7→ eiκd(θ)·x, where θ =
π

4

Given a 4-edge mesh + a 12-edge shifted mesh (wavenumber κ = 32)

101 102 103
10−14

10−9

10−4

101

DOF count

Relative error

L2(Ω)

H1(Ω)

The convergence seems spectral !
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A first error estimate

▶ Consider any vertical/horizontal segment
Γ that cuts through the domain Ω

For any m ∈ N and u ∈ Hm(Γ), there exists Cm,h > 0 such that

inf
vN,h

∥u− vN,h∥H1(Γ) ≤ Cm,h N
3/2−m∥u∥Hm(Γ)

▶ The trace Trefftz space contains functions vanishing on Γ except on
one cell restriction, where they match the ∆-Dirichlet eigenfunctions

In particular:

▶ EPWs needed for p-convergence → only PPWs gives #modes < +∞
▶ EPWs needed forh-convergence → no PPW-conforming Trefftz as h→0
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More numerical experiments

▶ If Ω is a general Lipshitz domain, consider the space spanned
by basis functions on a mesh of rectangular cells covering Ω

▶ For polygonal domain Ω, the basis Ψ±
n,i (EPW combinations)

enable exact matrix assembly via closed-form integration

Approximation of the 2D fundamental solution with κ = 30, namely

x 7→ i

4
H

(1)
0 (κ|x− s|), s ∈ R2 \ Ω

For N = 32, a 4-edge mesh + a 12-edge shifted mesh → #DOFs=512

Exact Solution Approximated Solution Absolute Error
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Conclusions
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Summary

Ill-conditioning can be overcome (via regularization) if there exist
accurate and stable approximations (bounded coefficients)

u =

∫
veiκd·x

▶ PPW: v 7→ u has dense image but is compact

▶ EPW: u 7→ v is bounded (for the disk/ball)

u ≈
∑
n

ξne
iκdn·x ▶ PPW: numerical instability

▶ EPW: much better approximation results

We developed a Trefftz scheme that numerically exhibits spectral
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