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Helmholtz equation and Trefftz methods

Let u be a solution of the Helmholtz equation (wavenumber x > 0):

—Au — K*u =0, in a bounded domain Q C RY, d € {2,3}

Goal: Computing approximation of u using Trefftz methods

N
U~ Z &, where  — A¢, — k%p, =0 (locally)
n=1
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n=1

Strengths:
> Spectral accuracy » Many formulations (LS, TDG, UWVF)

Weaknesses:
» Limited to piecewise-constant coefficients & homogeneous PDEs

» High numerical instability from redundancy in approximation sets,
e.g. propagative plane waves, convergence stalls in finite precision



Outline

> Propagative plane waves (PPWs)
» Evanescent plane waves (EPWs)

» EPW-Trefftz Continuous Galerkin Methods
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Propagative plane waves (PPWs)

Propagative plane wave (defined in R?)

X 5 erdx where deR? d-d=1

» Exact solution of (—A — k?)u =0, since d -d =1
» Single parameter family: d € S¥~! propagation direction
» Simple parametrization of d(0) € S¥~!, where:
> 0e€®:=0,27) in 2D » 0 e ®:=[0,2m) x [0,7] in 3D
» Easy to manipulate: closed-form integration on flat submanifold
» Simple discretization: evenly-distributed d(8,) € S¢~!

N

u(x) ~ Z fnei“d(gn)'x

n=1



Discrete approximation by PPWs

Can we construct accurate approximations u(x) ~ > £petrd(@n)x 9

In theory, yes: better rates w.r.t #DOFs than polynomial spaces:

» h-estimates [CESSENAT, DESPRES 1998]
» hp-estimates [MELENK 1995], [MoroLA HIPTMAIR PERUGIA 2011]
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Can we construct accurate approximations u(x) ~ > £petrd(@n)x 9

In theory, yes: better rates w.r.t #DOFs than polynomial spaces:

» h-estimates [CESSENAT, DESPRES 1998]

» hp-estimates [MELENK 1995], [MoroLa HIPTMAIR PERUGIA 2011]

In pratice (finite-precision arithmetic), not always:
The issue is “instability”

Increasing #PPWs, at some point convergence stagnates

» Instability, commonly observed in PPW-based Trefftz methods,
is usually described as an issue of linear system ill-conditioning
» Redundant approximation set if d(0,) - d(0,,) =~ 1 for n #m

» Requires regularization [Barucq, Bendali, Diaz, Tordeux 2021]



Motivating numerical experiment (PPWs)

-

Approximation in the unit ball 2 of
the 3D fundamental solution, i.e.

1 ein|xfs\ o
X = Em, s € R3\Q

with k = 10 and dist (s,Q) /A =1
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Stability condition

For some x € Q, consider approximations of u(x) of the form

N
Ulp](x) =D e >, where pi:= (jin)n
n=1

Ill-conditioning can be solved, provided that accurate
approximations u[p] with bounded coefficients ||p| exist

[Apcock, HUYBRECHS 2020] An approximate solution vector
£ to an ill-conditioned linear system, computed using an e-
regularized backward stable algorithm, satisfies:

llu = alg]ll < inf (lu =@l + )




Continuous superposition of PPWs

For a bounded Lipschitz domain Q, let Tp : L?(®) — H'(Q) such that

(Tpv) (x) := /@ v(0)er @) *dq5(0), x €N

» Tp is bounded, and u = Tpv is an Helmholtz solution in €2 called
Herglotz function [Colton, Kress 2013]

» o = Tpv is an entire function independent of €2

» Tp has H'-dense image in the Helmholtz solution space in
[Weck 2004]

» Tp is a Hilbert—Schmidt operator = not boundedly invertible



Continuous superposition of PPWs

For a bounded Lipschitz domain Q, let Tp : L?(®) — H'(Q) such that

(Tpv) (x) := /@ v(0)er @) *dq5(0), x €N

» Tp is bounded, and u = Tpv is an Helmholtz solution in €2 called
Herglotz function [Colton, Kress 2013]

» o = Tpv is an entire function independent of €2

» Tp has H'-dense image in the Helmholtz solution space in
[Weck 2004]

» Tp is a Hilbert—Schmidt operator = not boundedly invertible

[Parolin, Huybrechs, Moiola 2023] Any Helmholtz solution in
not in the range of Tp can be arbitrarily well approximated by
PPWs, but with unbounded coefficients (asymptotically)
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In presence of redundant approximation sets:

» Numerical instability:

— ill-conditioning does not imply inaccurate approximations

— large coefficients imply inaccurate approximations in the
computation and evaluation of the approximation
[Barnett, Betcke 2008] (MF'S)
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Some considerations

In presence of redundant approximation sets:

» Numerical instability:
— ill-conditioning does not imply inaccurate approximations
— large coefficients imply inaccurate approximations in the

computation and evaluation of the approximation
[Barnett, Betcke 2008] (MF'S)

» Requires regularization, e.g. [Adcock, Huybrechs 2019-2020)]

» Some available remedies by modifying the approximation set:
[Antunes 2018] (change of basis)
[Congreve, Gedicke, Perugia 2019] (basis orthogonalization)
[Imbert-Gerard, Sylvand 2023] (quasi-Trefftz polynomials)

—> We propose to enrich the approximation set
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Evanescent plane waves (EPWs)

\ Evanescent plane wave (defined in R?)
\\ X 5 endx where deC? d-d=1

» Complex direction d € C%:

» Propagation direction f (d) » Evanescence direction & (d)

> Still exact solution of (—A — k?)u =0, since d -d =1
> Still easy and cheap to evaluate, differentiate, integrate, etc.
» Localization effect in a bounded domain: requires normalization

» Scarcer use in the literature: Wave-Based Method (W. Desmet)
[Deckers et al 2014]



EPW direction parametrization

Evanescent plane wave directions d € C? can be parametrized as

d(y)=cosh(O)d! (B)+isinh(()dZ (), y=((,8,0) € Vi= RTxOxd

» Decay strength |3(d)]

parametrized by ¢ € RT . S(d) - R(d) = 0
[S(d)| = /[R(d)|> <1 .

» Propagation direction dll
parametrized by 6 € ©

» Evanescence direction dg
parametrized by ¢ € @,

{{il} in 2D

_ Unit ball
= R@)] =1

[0,27) in 3D
» PPWs recovered for ( =0



Continuous superposition of EPWs

For a bounded Lipshitz domain €, let T : L2, (Y) — H'(Q) s.t.
Q

(Ti) (x) = /Yv<y>e“ﬂd<y>'x 2(y)do(y),  x€Q

» Ty is a bounded operator for a suitable weight wgq
» u = Tgv is a Helmholtz solution in €2 that can be singular on 02

» T has H'-dense image in the Helmholtz solution space in



Continuous superposition of EPWs

For a bounded Lipshitz domain €, let T : L2, (Y) — H'(Q) s.t.
Q

(Tev) (x) = /yv<y)el"ﬂd<y>'x 2(y)do(y),  x€Q

» Ty is a bounded operator for a suitable weight wgq
» u = Tgv is a Helmholtz solution in €2 that can be singular on 02

» T has H'-dense image in the Helmholtz solution space in

If Q is a disk in 2D or a ball in 3D, [Parolin, Huybrechs, Moiola
2023] and [G., Moiola, Parolin 2024] provide a weight wgq, only
dependent on (, such that Tg is boundedly invertible, namely

Vu Helmholtz solution, v =Tg u, |[v|

L2, (Y) ™ HU”Hl(Q)
Q
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EPW approximation sets and Trefftz methods

» How to construct EPW discrete approximation sets

. N
{x — emd(y")'x} ?

n=1
If Q is a disk in 2D or a ball in 3D:

Idea: build a cubature rule to discretize the integral representation:
[Parolin, Huybrechs, Moiola 2023] and [G., Moiola, Parolin 2024]
propose a discretization strategy that relies on optimal sampling
techniques in [Hampton, Doostan 2015], [Cohen, Migliorati 2017]
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EPW approximation sets and Trefftz methods

» How to construct EPW discrete approximation sets

. N
{x — emd(y”)'x} ?

n=1

If Q is a disk in 2D or a ball in 3D:

Idea: build a cubature rule to discretize the integral representation:
[Parolin, Huybrechs, Moiola 2023] and [G., Moiola, Parolin 2024]
propose a discretization strategy that relies on optimal sampling
techniques in [Hampton, Doostan 2015], [Cohen, Migliorati 2017]

» How to develop EPW Trefftz methods?

Trefftz Discontinuous Galerkin

» Polytopal cell mesh

» Discrete recipe tailored for
each circumscribed ball

» Sampling strategy

Trefftz Continuous Galerkin

» Rectangular cell mesh

» Discrete recipe tailored for
each rectangular cell

» Deterministic strategy




EPW-Trefftz Continuous Galerkin Methods




Rectangular cell symmetries

Ly

» We focus on the 2D case (3D is similar)

» Consider a rectangle K with side lengths
L1 and Lo, label its sides as L{E and L2i
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Rectangular cell symmetries

+
L » We focus on the 2D case (3D is similar)

— +
L, Ly » Consider a rectangle K with side lengths
Ly Ly and Lo, label its sides as LljE and L;t

» Let S; denote the reflection operator that flips the i-th coordinate
» For any j = (j1,72) € {0,1}? we define the orthogonal projections

1 o
I = 5 > (-1pksisiz,  HY(K) = @D range (1Tj)
ke{0,1}2 je{0,1}?
» Consider a normalized EPW centered in K, denoted by ¢(y)
H0,0)8(y) 1,0)0(y) o, 1y0(y) M, 0(y)

» IL¢(y) is a linear combination of EPWs = solves Helmholtz



An orthogonal EPW basis

» Assume that 2 is not in the eigenvalue set
ox(—A) = {772 (nQ/Lf + mQ/Lg) :n,m € N}

» Consider the parameters {y, ;}nen,i=1,2CY

Vi = (|S(n,)], R(Vn,i), sign $(va.4)) 05

_1f nm . _1f nm -1
Vn,1 =COS E 5 Vp,2 =5SIN E
1 2 -1.5

0

s
4 2

sin”!/cos™! are the principal branches of the complex inverse sin/cos



An orthogonal EPW basis

» Assume that 2 is not in the eigenvalue set

ox(—=A) = {r* (n®/L} + m®/L3) : n,m € N}

» Consider the parameters {y, ;}nen,i=1,2CY

Yn,i = (|%(7/n,i)|7 §R(Vn,i)» Sign %(l/n,i)) -0.5

_1f nm . _1f nm -1
Vn,1 =COS E 5 Vp,2 =5SIN E
1 2 -1.5
i 2

sin”!/cos™! are the principal branches of the complex inverse sin/cos

0

The family {I1;¢(yn.i)}j.n.: is @ complete orthogonal basis for L?(9K).
Moreover, denoting with {1, ;},, the A-Dirichlet eigenfunctions on L7,

Hj(b(ymi”[,ii X Yni, Hj¢<Yn,i)|aK\(L;ruL;) =0




Example

Plots of TI(1,1)¢(yn,1) with Ly = Lo = 1 and x = 16

Propagative Wave (n=2) Evanescent Wave (n=10)




One-edge basis

» Goal: Compactly supported H'-conforming basis for sparsity



One-edge basis

» Goal: Compactly supported H'-conforming basis for sparsity

If k2 & o (—A), there exist cji € C such that, defining

\I]i:ﬂ' = ZC.?:Hj¢(yn,i)a ||‘1]r:‘z:,i”[/oo(aK) =1
we have ’
‘I’iih} = Vnyi; ‘I’iibK\L} =0

Hence, {\Ilri”}nZ is a complete orthogonal basis for L?(9K)

» The functions \I/f ;, are Helmholtz solutions with two main regimes
» Their trace is zero on 3 edges and equal to 1, ; on the remaining one
» The trace of ®, on L] coincides with the trace of ®, , on L;



Example

Plots of U, with Ly = Ly =1 and = 16

Propagative Wave (n=2) Evanescent Wave (n=10)
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A single mesh method

> Let Q be a bounded domain discretized by a mesh 7, := {K}
composed of rectangular cells. Moreover, assume that

k¢ | ox(-4)

KeTy,

This is not restrictive up to a (local) rescaling of the mesh T,



A single mesh method

> Let Q be a bounded domain discretized by a mesh 7, := {K}
composed of rectangular cells. Moreover, assume that

K ¢ U ok (—A)
KeTy,
This is not restrictive up to a (local) rescaling of the mesh T,

» Glue two functions along the non-zero
interface to ensure C°-continuity

» The resulting function has compact 0
support, solves Helmholtz in each cell

-2

2 15

» The generated Trefftz space Vy(Tp,) is conforming

1 0.5 0 ?

» We can rely on the Galerkin projection onto the conforming
Trefftz space Viy(7r) to approximate any Helmholtz BVP



Example — PPW approximation
Consider Q = [0,1]? and k = 16. We want to approximate the PPW

ird(0)x where 0=

s
¢HZX'—>€ Z

We take N = 32, and a 12-edge mesh = #DOFs= 32 x 12 = 384



Example — PPW approximation

Consider Q = [0,1]? and k = 16. We want to approximate the PPW

by i X eird(®)x where 0= %
We take N = 32, and a 12-edge mesh = #DOFs= 32 x 12 = 384
Exact Solution Approximated Solution Absolute Error

The approximation is poor: all functions in the discrete space Vi (7p,)
vanish at the mesh nodes. In fact, for a fixed mesh 7; and any 0 € ©,

inf — >N"Y2 NeN
¥y 190 7 Pl 2




An interweaved mesh method




An interweaved mesh method

> We take a shifted second grid to patch the nodes of the first mesh
» The generated Trefftz space Wi (Tr) will still be conforming

» Functions in Wy (7},) solve Helmholtz in each cell intersection

(2
5=

> Let us try to approximate the propagative plane wave ¢z,
using the Galerkin projection onto the Trefftz space Wi (7r)



Example — PPW approximation

Consider again the previous test, namely the approximation of

h o=12
where 1

For N = 16, a 4-edge mesh, and a 12-edge shifted mesh, #DOFs= 256

ikd(0)-x ™
X e ) s

Exact Solution Approximated Solution Absolute Error

00 00 00

The approximation is really good !



Example — PPW approximation

Consider again the previous test, namely the approximation of

N

x s erd(0)x where 0=

Given a 4-edge mesh, and a 12-edge shifted mesh, we let x vary

Relative error (k = 32) Relative error (k = 64)

Relative error (k = 16)

10* 10 10*
1074 1074 1074
107 107 107°
—— L3(Q) —o— L2(Q) —o— L2(Q)
14 =) 14 Mai ) 14 ai )
10-14 10-14 10714
10! 10% 10® 10! 10? 103 10! 10? 103
DOF count DOF count DOF count

The convergence is spectral !



A first error estimate

& » Consider any vertical/horizontal segment
that cuts through the domain 2

Let s € [0,1] and m € N such that s < m. For any u € H™(I'),
there exists a constant Cy, , > 0 such that

inf U—v i < O NSTHL2) 00
uN,hEWN (Th) ” N’h”H( ) = e H ”H ()
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A first error estimate

Let s € [0,1] and m € N such that s < m. For any u € H™(I'),
there exists a constant Cy, , > 0 such that

inf U—v vy < Oy NS—mAL/2)00
uN,hEWN (Th) ” N’h”H( ) = e H ”H ()

» The space Wy (Tp)|r contains functions vanishing on I except on
one cell restriction, where they match the A-Dirichlet eigenfunctions

Eigenfunction interlacing = Spectral convergence J




More numerical experiments

» If Q is a general Lipshitz domain, consider the space spanned
by basis functions on a mesh of rectangular cells covering 2

» For polygonal domain €2, the basis \I’rim (EPW combinations)
enable exact matrix assembly via closed-form integration



More numerical experiments

> If Q) is a general Lipshitz domain, consider the space spanned
by basis functions on a mesh of rectangular cells covering )
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Approximation of the 2D fundamental solution with x = 30, namely
() 2\ 0
xn—)ZHO (klx —s]), seR*\Q

For N = 32, a 4-edge mesh, a 12-edge shifted mesh, #DOFs = 512

Exact Solution Approximated Solution Absolute Error

N\
X
|
-0.05 0 0.05

-0.05 0 0.05 107" 10°% 1077 107
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Summary

Ill-conditioning can be overcome (via regularization) if there exist
accurate and stable approximations (bounded coefficients)

. » PPW: v — u has dense image but is compact
! / v > EPW: u+ v is bounded (for the disk/ball)

» PPW: numerical instability

» EPW: much better approximation results

.
qu Epettin®
n

We developed a Trefftz scheme that numerically exhibits spectral
accuracy, preserves the conformity of classical FEM methods, and
ensures stability in high-resolution Trefftz spaces using EPWs
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We developed a Trefftz scheme that numerically exhibits spectral
accuracy, preserves the conformity of classical FEM methods, and
ensures stability in high-resolution Trefftz spaces using EPWs

C

Next steps:
» Extend the bounded invertibility of T : Li% (Y) = H*(Q) from the
disk/ball to a broader class of domains (WIP for convex domains)

» Derive error estimates in 2D & 3D for the EPW-Trefftz scheme
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