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Helmholtz equation and Trefftz methods

Let u be a solution of the Helmholtz equation (wavenumber κ > 0):

−∆u− κ2u = 0, in a bounded domain Ω ⊂ Rd, d ∈ {2, 3}

Goal: Computing approximation of u using Trefftz methods

u ≈
N∑

n=1

ξnϕn, where −∆ϕn − κ2ϕn = 0 (locally)

Strengths:

▶ Spectral accuracy ▶ Many formulations (LS, TDG, UWVF)

Weaknesses:

▶ Limited to piecewise-constant coefficients & homogeneous PDEs

▶ High numerical instability from redundancy in approximation sets,
e.g. propagative plane waves, convergence stalls in finite precision
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Outline

▶ Propagative plane waves (PPWs)

▶ Evanescent plane waves (EPWs)

▶ EPW-Trefftz Continuous Galerkin Methods
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Propagative plane waves (PPWs)

Propagative plane wave (defined in Rd)

x 7→ eiκd·x, where d ∈ Rd, d · d = 1

▶ Exact solution of (−∆− κ2)u = 0, since d · d = 1

▶ Single parameter family: d ∈ Sd−1 propagation direction

▶ Simple parametrization of d(θ) ∈ Sd−1, where:

▶ θ ∈ Θ := [0, 2π) in 2D ▶ θ ∈ Θ := [0, 2π)× [0, π] in 3D

▶ Easy to manipulate: closed-form integration on flat submanifold

▶ Simple discretization: evenly-distributed d(θn) ∈ Sd−1

u(x) ≈
N∑

n=1

ξne
iκd(θn)·x
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Discrete approximation by PPWs

Can we construct accurate approximations u(x) ≈ ∑
n ξne

iκd(θn)·x ?

In theory, yes: better rates w.r.t #DOFs than polynomial spaces:

▶ h-estimates [Cessenat, Després 1998]

▶ hp-estimates [Melenk 1995], [Moiola Hiptmair Perugia 2011]

In pratice (finite-precision arithmetic), not always:

The issue is “instability”

Increasing #PPWs, at some point convergence stagnates

▶ Instability, commonly observed in PPW-based Trefftz methods,
is usually described as an issue of linear system ill-conditioning

▶ Redundant approximation set if d(θn) · d(θm) ≈ 1 for n ̸= m

▶ Requires regularization [Barucq, Bendali, Diaz, Tordeux 2021]
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Motivating numerical experiment (PPWs)

Approximation in the unit ball Ω of
the 3D fundamental solution, i.e.

x 7→ 1

4π

eiκ|x−s|

|x− s| , s ∈ R3\Ω

with κ = 10 and dist (s,Ω) /λ = 1
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Stability condition

For some x ∈ Ω, consider approximations of u(x) of the form

ũ[µ](x) :=

N∑

n=1

µne
iκdn·x, where µ := (µn)n

Ill-conditioning can be solved, provided that accurate
approximations ũ[µ] with bounded coefficients ∥µ∥ exist

[Adcock, Huybrechs 2020] An approximate solution vector
ξ to an ill-conditioned linear system, computed using an ϵ-
regularized backward stable algorithm, satisfies:

∥u− ũ[ξ]∥ ≲ inf
µ

(∥u− ũ[µ]∥+ ϵ ∥µ∥)
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Continuous superposition of PPWs

For a bounded Lipschitz domain Ω, let TP : L2(Θ) → H1(Ω) such that

(TPv) (x) :=

∫

Θ

v(θ)eiκd(θ)·xdσ(θ), x ∈ Ω

▶ TP is bounded, and u = TPv is an Helmholtz solution in Ω called
Herglotz function [Colton, Kress 2013]

▶ u = TPv is an entire function independent of Ω

▶ TP has H1-dense image in the Helmholtz solution space in Ω
[Weck 2004]

▶ TP is a Hilbert–Schmidt operator =⇒ not boundedly invertible

[Parolin, Huybrechs, Moiola 2023] Any Helmholtz solution in Ω
not in the range of TP can be arbitrarily well approximated by
PPWs, but with unbounded coefficients (asymptotically)
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Some considerations

In presence of redundant approximation sets:

▶ Numerical instability:

→ ill-conditioning does not imply inaccurate approximations
→ large coefficients imply inaccurate approximations in the

→

computation and evaluation of the approximation

→

[Barnett, Betcke 2008] (MFS)

▶ Requires regularization, e.g. [Adcock, Huybrechs 2019-2020]

▶ Some available remedies by modifying the approximation set:
[Antunes 2018] (change of basis)
[Congreve, Gedicke, Perugia 2019] (basis orthogonalization)
[Imbert-Gerard, Sylvand 2023] (quasi-Trefftz polynomials)

=⇒ We propose to enrich the approximation set
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Evanescent plane waves (EPWs)
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Evanescent plane waves (EPWs)

Evanescent plane wave (defined in Rd)

x 7→ eiκd·x, where d ∈ Cd, d · d = 1

▶ Complex direction d ∈ Cd:

▶ Propagation direction ℜ (d) ▶ Evanescence direction ℑ (d)

▶ Still exact solution of (−∆− κ2)u = 0, since d · d = 1

▶ Still easy and cheap to evaluate, differentiate, integrate, etc.

▶ Localization effect in a bounded domain: requires normalization

▶ Scarcer use in the literature: Wave-Based Method (W. Desmet)
[Deckers et al 2014]
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EPW direction parametrization

Evanescent plane wave directions d ∈ Cd can be parametrized as

d(y)=cosh(ζ)d∥(θ)+i sinh(ζ)d⊥
θ (φ), y=(ζ,θ, φ) ∈ Y := R+×Θ×Φ

▶ Decay strength |ℑ(d)|
parametrized by ζ ∈ R+

▶ Propagation direction d∥

parametrized by θ ∈ Θ

▶ Evanescence direction d⊥
θ

parametrized by φ ∈ Φ,

Φ :=

{
{±1} in 2D

[0, 2π) in 3D

▶ PPWs recovered for ζ = 0

Unit ball
|<(d)| ≥ 1

|=(d)| =
√

|<(d)|2 − 1

=(d) · <(d) = 0

<(d)

=(d)

x

y

z
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Continuous superposition of EPWs

For a bounded Lipshitz domain Ω, let TE : L2
w2

Ω
(Y ) → H1(Ω) s.t.

(TEv) (x) :=

∫

Y

v(y)eiκd(y)·xw2
Ω(y)dσ(y), x ∈ Ω

▶ TE is a bounded operator for a suitable weight wΩ

▶ u = TEv is a Helmholtz solution in Ω that can be singular on ∂Ω

▶ TE has H1-dense image in the Helmholtz solution space in Ω

If Ω is a disk in 2D or a ball in 3D, [Parolin, Huybrechs, Moiola
2023] and [G. , Moiola, Parolin 2024] provide a weight wΩ, only
dependent on ζ, such that TE is boundedly invertible, namely

∀u Helmholtz solution, v = T−1
E u, ∥v∥L2

w2
Ω

(Y ) ∼ ∥u∥H1(Ω)
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Motivating numerical experiment (EPWs)

Approximation in the unit ball Ω of
the 3D fundamental solution, i.e.
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EPW approximation sets and Trefftz methods

▶ How to construct EPW discrete approximation sets

{
x 7→ eiκd(yn)·x

}N

n=1
?

If Ω is a disk in 2D or a ball in 3D:

Idea: build a cubature rule to discretize the integral representation:

[Parolin, Huybrechs, Moiola 2023] and [G. , Moiola, Parolin 2024]
propose a discretization strategy that relies on optimal sampling
techniques in [Hampton, Doostan 2015], [Cohen, Migliorati 2017]

▶ How to develop EPW Trefftz methods?

Trefftz Discontinuous Galerkin

▶ Polytopal cell mesh

▶ Discrete recipe tailored for
each circumscribed ball

▶ Sampling strategy

Trefftz Continuous Galerkin

▶ Rectangular cell mesh

▶ Discrete recipe tailored for
each rectangular cell

▶ Deterministic strategy
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EPW-Trefftz Continuous Galerkin Methods
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Rectangular cell symmetries

▶ We focus on the 2D case (3D is similar)

▶ Consider a rectangle K with side lengths
L1 and L2, label its sides as L

±
1 and L±

2

▶ Let Si denote the reflection operator that flips the i-th coordinate

▶ For any j = (j1, j2) ∈ {0, 1}2 we define the orthogonal projections

Πj :=
1

4

∑

k∈{0,1}2

(−1)j·kSk1
1 Sk2

2 , H1(K) =
⊕

j∈{0,1}2

range (Πj)

▶ Consider a normalized EPW centered in K, denoted by ϕ(y)

Π(0,0)ϕ(y) Π(1,0)ϕ(y) Π(0,1)ϕ(y) Π(1,1)ϕ(y)

▶ Πjϕ(y) is a linear combination of EPWs =⇒ solves Helmholtz
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An orthogonal EPW basis

▶ Assume that κ2 is not in the eigenvalue set

σK(−∆) := {π2 (n2/L2
1 +m2/L2

2

)
: n,m ∈ N}

▶ Consider the parameters {yn,i}n∈N,i=1,2⊂Y

yn,i := (|ℑ(νn,i)|,ℜ(νn,i), signℑ(νn,i))

νn,1=cos−1

(
nπ

κL1

)
, νn,2=sin−1

(
nπ

κL2

)

0 π
4

π
2

−1.5

−1

−0.5

0

0.5

1

1.5
νn,1
νn,2

sin−1/cos−1 are the principal branches of the complex inverse sin/cos

The family {Πjϕ(yn,i)}j,n,i is a complete orthogonal basis for L2(∂K).
Moreover, denoting with {ψn,i}n the ∆-Dirichlet eigenfunctions on L±

i ,

Πjϕ(yn,i)|L±
i
∝ ψn,i, Πjϕ(yn,i)|∂K\(L+

i ∪L−
i ) = 0
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i ,

Πjϕ(yn,i)|L±
i
∝ ψn,i, Πjϕ(yn,i)|∂K\(L+

i ∪L−
i ) = 0
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Example

Plots of Π(1,1)ϕ(yn,1) with L1 = L2 = 1 and κ = 16

νn,1 = cos−1

(
nπ

κL1

)
∈ R νn,1 = cos−1

(
nπ

κL1

)
∈ iR
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One-edge basis

▶ Goal: Compactly supported H1-conforming basis for sparsity

If κ2 ̸∈ σK(−∆), there exist c±j ∈ C such that, defining

Ψ±
n,i :=

∑

j

c±j Πjϕ(yn,i),
∥∥Ψ±

n,i

∥∥
L∞(∂K)

= 1

we have

Ψ±
n,i|L±

i
= ψn,i, Ψ±

n,i|∂K\L±
i
= 0

Hence, {Ψ±
n,i}n,i is a complete orthogonal basis for L2(∂K)

▶ The functions Ψ±
n,i are Helmholtz solutions with two main regimes

▶ Their trace is zero on 3 edges and equal to ψn,i on the remaining one

▶ The trace of Φ+
n,i on L

+
i coincides with the trace of Φ−

n,i on L
−
i
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Example

Plots of Ψ−
n,1 with L1 = L2 = 1 and κ = 16

νn,1 = cos−1

(
nπ

κL1

)
∈ R νn,1 = cos−1

(
nπ

κL1

)
∈ iR
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A single mesh method
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A single mesh method

▶ Let Ω be a bounded domain discretized by a mesh Th := {K}
composed of rectangular cells. Moreover, assume that

κ2 ̸∈
⋃

K∈Th

σK(−∆)

This is not restrictive up to a (local) rescaling of the mesh Th

▶ Glue two functions along the non-zero
interface to ensure C0-continuity

▶ The resulting function has compact
support, solves Helmholtz in each cell

▶ The generated Trefftz space VN (Th) is conforming

▶ We can rely on the Galerkin projection onto the conforming
Trefftz space VN (Th) to approximate any Helmholtz BVP
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Example – PPW approximation

Consider Ω = [0, 1]2 and κ = 16. We want to approximate the PPW

ϕθ : x 7→ eiκd(θ)·x, where θ =
π

4

We take N = 32, and a 12-edge mesh =⇒ #DOFs= 32× 12 = 384

The approximation is poor: all functions in the discrete space VN (Th)
vanish at the mesh nodes. In fact, for a fixed mesh Th and any θ ∈ Θ,

inf
vN,h∈VN (Th)

∥ϕθ − vN,h∥H1(Ω) ≳ N−1/2, N ∈ N
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An interweaved mesh method
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An interweaved mesh method

▶ We take a shifted second grid to patch the nodes of the first mesh

▶ The generated Trefftz space WN (Th) will still be conforming

▶ Functions in WN (Th) solve Helmholtz in each cell intersection

▶ Let us try to approximate the propagative plane wave ϕπ
4
,

using the Galerkin projection onto the Trefftz space WN (Th)
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Example – PPW approximation

Consider again the previous test, namely the approximation of

x 7→ eiκd(θ)·x, where θ =
π

4

For N = 16, a 4-edge mesh, and a 12-edge shifted mesh, #DOFs= 256

The approximation is really good !
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Example – PPW approximation

Consider again the previous test, namely the approximation of

x 7→ eiκd(θ)·x, where θ =
π

4

Given a 4-edge mesh, and a 12-edge shifted mesh, we let κ vary

101 102 103
10−14

10−9

10−4

101

DOF count

Relative error (κ = 16)

L2(Ω)

H1(Ω)

101 102 103
10−14

10−9

10−4

101

DOF count

Relative error (κ = 32)

L2(Ω)

H1(Ω)

101 102 103
10−14

10−9

10−4

101

DOF count

Relative error (κ = 64)

L2(Ω)

H1(Ω)

The convergence is spectral !
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A first error estimate

▶ Consider any vertical/horizontal segment
Γ that cuts through the domain Ω

Let s ∈ [0, 1] and m ∈ N such that s < m. For any u ∈ Hm(Γ),
there exists a constant Cm,h > 0 such that

inf
vN,h∈WN (Th)

∥u− vN,h∥Hs(Γ) ≤ Cm,hN
s−m+1/2∥u∥Hm(Γ)

▶ The space WN (Th)|Γ contains functions vanishing on Γ except on
one cell restriction, where they match the ∆-Dirichlet eigenfunctions

Eigenfunction interlacing =⇒ Spectral convergence
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More numerical experiments

▶ If Ω is a general Lipshitz domain, consider the space spanned
by basis functions on a mesh of rectangular cells covering Ω

▶ For polygonal domain Ω, the basis Ψ±
n,i (EPW combinations)

enable exact matrix assembly via closed-form integration

Approximation of the 2D fundamental solution with κ = 30, namely

x 7→ i

4
H

(1)
0 (κ|x− s|), s ∈ R2 \ Ω

For N = 32, a 4-edge mesh, a 12-edge shifted mesh, #DOFs = 512
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Conclusions
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Summary

Ill-conditioning can be overcome (via regularization) if there exist
accurate and stable approximations (bounded coefficients)

u =

∫
veiκd·x

▶ PPW: v 7→ u has dense image but is compact

▶ EPW: u 7→ v is bounded (for the disk/ball)

u ≈
∑
n

ξne
iκdn·x ▶ PPW: numerical instability

▶ EPW: much better approximation results

We developed a Trefftz scheme that numerically exhibits spectral
accuracy, preserves the conformity of classical FEM methods, and
ensures stability in high-resolution Trefftz spaces using EPWs

Next steps:

▶ Extend the bounded invertibility of TE : L2
w2

Ω
(Y ) → H1(Ω) from the

disk/ball to a broader class of domains (WIP for convex domains)

▶ Derive error estimates in 2D & 3D for the EPW-Trefftz scheme
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