On a Generalisation of Dillon's APN Permutation

Anne Canteaut

Sébastien Duval

Léo Perrin leo.perrin@uni.lu

June 7, 2017

Table of Ocustouste							
Introduction	Generalisation o	Properties	Walsh Spectrum and Differential Spectrum	Conclusion			

Table of Contents

- 2 Generalisation of Butterflies
- Properties of Generalised Butterflies
 - 4 Walsh Spectrum and Differential Spectrum

5 Conclusion

Introduction ●○○○○○○○	Generalisation o	Properties	Walsh Spectrum and Differential Spectrum	Conclusion	
S-Box					

Definition 1 (S-Box)

We will call *Substitution-Box* or *S-Box* any mapping from \mathbb{F}_2^m into \mathbb{F}_2^n , $n, m \ge 0$.

Main Desirable Properties

- Permutation ($\Rightarrow n = m$)
- Resistant to differential attacks
- Resistant to linear attacks
- High algebraic degree

Differential Properties

Definition 2 (Differential Uniformity [Nyberg 93])

Let *F* be a function over \mathbb{F}_2^n . The difference distribution table of *F* is:

$$\delta_{\mathsf{F}}(\mathbf{a}, \mathbf{b}) = \#\{x \in \mathbb{F}_2^n | \, \mathsf{F}(x \oplus \mathbf{a}) = \mathsf{F}(x) \oplus \mathbf{b}\}.$$

Moreover, the differential uniformity of F is

$$\delta(F) = \max_{a \neq 0, b} \delta_F(a, b).$$

F is resistant against differential attacks if $\delta(F)$ is small

F is called APN if $\delta(F) = 2$

Introduction	Generalisation	Properties	Walsh Spectrum and Differential Spectrum	Conclusion
00000000				

The Big APN Problem [Dillon 2009]

The Big APN Problem

We know how to get:

- APN functions on \mathbb{F}_2^n ,
- APN permutations on \mathbb{F}_2^n , *n* odd,
- permutations with $\delta = 4$ on \mathbb{F}_2^n .

Are there any APN permutations on \mathbb{F}_2^n , *n* even ?

Dillon S-Box [Browning, Dillon, McQuistan, Wolfe 2009]

APN permutation on \mathbb{F}_2^6 .

The Still Big APN Problem

Are there any other APN permutations on \mathbb{F}_2^n , *n* even ?

A. Canteaut, S. Duval and L. Perrin ()

On a Generalisation of Dillon's APN Permutation

Introduction	Generalisation o	Properties	Walsh Spectrum and Differential Spectrum	Conclusion

Linear Properties

Definition 3 (Linearity)

Let *F* be a function over \mathbb{F}_2^n . The Walsh transform of *F* is:

$$\lambda_F(a,b) = \sum_{x \in \mathbb{F}_2^n} (-1)^{a \cdot x \oplus b \cdot F(x)}.$$

Moreover, the linearity of F is

$$\mathcal{L}(F) = \max_{a,b\neq 0} |\lambda_F(a,b)|.$$

F is resistant to linear attacks if $\mathcal{L}(F)$ is small

A. Canteaut, S. Duval and L. Perrin ()

On a Generalisation of Dillon's APN Permutation

	o	0000	Walsh Spectrum and Differential Spectrum	Conclusion		
Algebraic Degree						

Definition 4 (Univariate degree vs algebraic degree)

Let *F* be a function from \mathbb{F}_2^n into \mathbb{F}_2^n .

The *algebraic degree* (aka multivariate degree) of *F* is the maximal degree of the algebraic normal forms of its coordinates.

The *univariate degree* of *F* is the degree of the univariate polynomial in $\mathbb{F}_{2^n}[X]$ representing *F* when it is identified with a function from \mathbb{F}_{2^n} into itself.

The algebraic degree of the univariate polynomial $x \mapsto x^e$ of \mathbb{F}_{2^n} is the Hamming weight of the binary expansion of *e*.

000000000	0	0000	00	
Du	ttarfligar	Definitione	(1) [Derrip at al 001	<u>c1</u>

Butterflies: Definitions (1) [Perrin et al. 2016]

H_R: Open Butterfly

V_R: Closed Butterfly

 R_k : $x \mapsto R(x, k)$ permutation $\forall k$.

Open Butterfly and Closed Butterfly are CCZ-equivalent \Rightarrow share the same sets

$$\{\delta_{\mathsf{H}_{\mathsf{R}}}(\boldsymbol{a},\,\boldsymbol{b})\}_{\boldsymbol{a},\boldsymbol{b}} = \{\delta_{\mathsf{V}_{\mathsf{R}}}(\boldsymbol{a},\,\boldsymbol{b})\}_{\boldsymbol{a},\boldsymbol{b}},$$

$$\{\mathcal{L}_{\mathsf{H}_{R}}(a, b)\}_{a,b} = \{\mathcal{L}_{\mathsf{V}_{R}}(a, b)\}_{a,b}.$$

In particular, $\delta(H_R) = \delta(V_R)$ and $\mathcal{L}(H_R) = \mathcal{L}(V_R)$.

Introduction	Generalisation o	Properties	Walsh Spectrum and Differential Spectrum	Conclusion
	5			

Butterflies: Definitions (2)

$$R_k[\alpha] = (\mathbf{X} \oplus \alpha \mathbf{k})^3 \oplus \mathbf{k}^3.$$

H_R: Open Butterfly

V_R: Closed Butterfly

R is quadratic, V_R is quadratic.

Introduction	Generalisation o	Properties	Walsh Spectrum and Differential Spectrum	Conclusion

Butterflies: Properties

Theorem 1 (Properties of Butterflies [Perrin et al. 2016])

Let $R_k[\alpha] = (x \oplus \alpha k)^3 \oplus k^3$, $\alpha \notin \{0, 1\}$, n odd.

- $\delta(\mathsf{H}_R) \leq 4, \, \delta(\mathsf{V}_R) \leq 4,$
- V_R is quadratic,
- H_R has algebraic degree n + 1.

Theorem 2 (APN Butterflies [Perrin et al. 2016])

If n = 3 and $\alpha \notin \{0, 1\}$, then H_R is an APN permutation (affine equivalent to the Dillon permutation).

Introduction	Generalisation o	Properties	Walsh Spectrum and Differential Spectrum	Conclusion
	Open Qu	estions o	of [Perrin et al. 2016]	

Open Questions of [Perrin et al. 2016]

- Linearity of H_R (and V_R) ?
- Can we find α such that H_R is APN for some n > 6 ?

Introduction	Generalisation •	Properties	Walsh Spectrum and Differential Spectrum	Conclusior

Generalised Butteflies: Definitions

 $H_{\alpha,\beta}$: Open Butterfly

 $V_{\alpha,\beta}$: Closed Butterfly

Degree restriction:

- $R_y: x \mapsto R(x, y) \text{ permutation } \forall y.$
- Degree of R is at most 3:
- Then R can be written:

$$\mathsf{P}(x,y) = (x \oplus \alpha y)^3 \oplus \beta y^3$$

with $\alpha, \beta \in \mathbb{F}_2^n$.

Introduction	Generalisation o	Properties ●○○○	Walsh Spectrum and Differential Spectrum	Conclusion
	Prope	rty of Qu	adratic Functions	

Property 1 (Linearity of Quadratic Functions)

Let f be a quadratic Boolean function of n variables.

$$\mathsf{LS}(f) = \{ a \in \mathbb{F}_2^n : D_a f \text{ is constant} \}$$

Then $\mathcal{L}(f) = 2^{\frac{n+s}{2}}$, with $s = \dim LS(f)$.

Moreover, the Walsh coefficients of f only take the values $\pm 2^{\frac{n+s}{2}}$ and 0.

Introduction	Generalisation o	Properties ○●○○	Walsh Spectrum and Differential Spectrum	Conclusion		
Linear Properties						

Theorem 3

Let n > 1 be an odd integer and (α, β) be a pair of nonzero elements in \mathbb{F}_{2^n} .

Introduction	Generalisation o	Properties	Walsh Spectrum and Differential Spectrum	Conclusion

Differential Properties

Theorem 4 (Differential uniformity)

Let n > 1 odd, $\alpha, \beta \in \mathbb{F}_{2^n} \setminus \{0\}$. Then:

• If
$$\beta \neq (1 + \alpha)^3$$
, $\delta(\mathsf{H}_{\alpha,\beta}) \leq 4$.

• If
$$\beta = (1 + \alpha)^3$$
, $\delta(\mathsf{H}_{\alpha,\beta}) = 2^{n+1}$.

Theorem 5 (APN Condition)

Let $\alpha \neq 0, 1$. $H_{\alpha,\beta}$ is APN if and only if:

$$\beta \in \{(\alpha + \alpha^3), (\alpha^{-1} + \alpha^3)\}$$
 and $\operatorname{Tr}(\mathcal{A}_{\alpha}(e)) = 1, \forall e \notin \{0, \alpha, 1/\alpha\}\}$

where $\mathcal{A}_{lpha}(oldsymbol{e})=rac{oldsymbol{e}lpha(1+lpha)^2}{(1+lphaoldsymbol{e})(lpha+oldsymbol{e})^2}.$

This condition implies that n = 3.

Introduction	Generalisation o	Properties	Walsh Spectrum and Differential Spectrum	Conclusion			
Algebraic Degree							

Theorem 6

Let α and β be two nonzero elements in \mathbb{F}_{2^n} .

 $H_{\alpha,\beta}$ has an algebraic degree equal to n or n + 1.

It is equal to n if and only if

$$(1 + \alpha\beta + \alpha^4)^3 = \beta(\beta + \alpha + \alpha^3)^3.$$

Introduction	Generalisation 0	Properties	Walsh Spectrum and Differential Spectrum ●○	Conclusio

Generalised Butterflies

Corollary 7 (Walsh and differential spectra of generalised butterflies)

Let α and β be two nonzero elements in \mathbb{F}_{2^n} such that $\beta \neq (1 + \alpha)^3$. • Walsh spectrum:

$$\left|\widehat{\mathsf{H}_{\alpha,\beta}}(u,v)\right| = \begin{cases} 0, & 3 \times 2^{2n-2}(2^n-1)(2^n+1-\mathcal{C}) \text{ times} \\ 2^n, & 2^{2n}(2^n-1)\mathcal{C} \text{ times} \\ 2^{n+1}, & 2^{2n-2}(2^n-1)(2^n+1-\mathcal{C}) \text{ times}. \end{cases}$$

where $(2^n - 1)C$ is the number of bent components of $V_{\alpha,\beta}$.

Difference distribution:

$$\delta_{\mathsf{H}_{\alpha,\beta}}(a,b) = \begin{cases} 2, & 2^{2n-2}(2^n-1) \times 3\mathbf{C} \text{ times} \\ 4, & 2^{2n-3}(2^n-1)(2^{n+2}+4-3\mathbf{C}) \text{ times} \end{cases}$$

A. Canteaut, S. Duval and L. Perrin ()

Introduction	Generalisation o	Properties	Walsh Spectrum and Differential Spectrum ○●	Conclusion

New Permutations

Value of *C* for a butterfly on 6 bits (where $a^3 + a + 1 = 0$).

$\alpha \backslash \beta$	1	а	a ²	a ³	a^4	a ⁵	а ⁶
1	0	4	4	4	4	4	4
а	6	2	0	2	6	0	0
a^3	2	4	2	0	2	4	2

These permutations are new:

- The case β = 1 does not include all possible values for C ⇒ the generalisation gives new permutations,
- Differential/linear spectra are different from any other studied permutations, for example:
 - For n = 3, the number of 4 in the differential spectrum is in $\{0, 336, 672, 1008\},\$
 - Gold and Kasami permutations: number of 4 = 1008,
 - Inverse mapping: number of 4 = 63,

Introduction	Generalisation o	Properties	Walsh Spectrum and Differential Spectrum	Conclusion			
Conclusion							

This work in brief:

- We answered the 2 open questions from Perrin et al.,
- We identified a new family of 2n bit-functions, $n \ge 3$ odd with:
 - differential uniformity 4,
 - linearity 2ⁿ⁺¹,
 - a simple representation (easier implementation and analysis),
 - the permutation from Dillon et al. included.
- We proved that this natural generalisation does not contain any new APN permutation. :-(

Questions ?