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S-Box

Definition 1 (S-Box)

We will call Substitution-Box or S-Box any mapping from Fm
2 into Fn

2,
n,m ≥ 0.

Main Desirable Properties
I Permutation (⇒ n = m)
I Resistant to differential attacks
I Resistant to linear attacks
I High algebraic degree
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Differential Properties

Definition 2 (Differential Uniformity [Nyberg 93])

Let F be a function over Fn
2. The difference distribution table of F is:

δF (a, b) = #{x ∈ Fn
2 |F (x ⊕ a) = F (x)⊕ b}.

Moreover, the differential uniformity of F is

δ(F ) = max
a 6=0,b

δF (a, b).

x x⊕ a

F F

y y ⊕ b

I F is resistant against differential attacks if δ(F ) is small
I F is called APN if δ(F ) = 2
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The Big APN Problem [Dillon 2009]

The Big APN Problem
We know how to get:

I APN functions on Fn
2,

I APN permutations on Fn
2, n odd,

I permutations with δ = 4 on Fn
2.

Are there any APN permutations on Fn
2, n even ?

Dillon S-Box [Browning, Dillon, McQuistan, Wolfe 2009]

APN permutation on F6
2.

The Still Big APN Problem

Are there any other APN permutations on Fn
2, n even ?
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Linear Properties

Definition 3 (Linearity)

Let F be a function over Fn
2. The Walsh transform of F is:

λF (a,b) =
∑
x∈Fn

2

(−1)a·x⊕b·F (x).

Moreover, the linearity of F is

L(F ) = max
a,b 6=0

|λF (a,b)|.

I F is resistant to linear attacks if L(F ) is small
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Algebraic Degree

Definition 4 (Univariate degree vs algebraic degree)

Let F be a function from Fn
2 into Fn

2.

The algebraic degree (aka multivariate degree) of F is the maximal
degree of the algebraic normal forms of its coordinates.

The univariate degree of F is the degree of the univariate polynomial in
F2n [X ] representing F when it is identified with a function from F2n into
itself.

The algebraic degree of the univariate polynomial x 7→ xe of F2n is the
Hamming weight of the binary expansion of e.
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Butterflies: Definitions (1) [Perrin et al. 2016]

R−1

R

HR : Open Butterfly

R R

VR : Closed Butterfly

Rk : x 7→ R(x , k) permutation ∀k .

Open Butterfly and Closed Butterfly are
CCZ-equivalent⇒ share the same sets

{δHR (a, b)}a,b = {δVR (a, b)}a,b,

{LHR (a, b)}a,b = {LVR (a, b)}a,b.
In particular,
δ(HR) = δ(VR) and L(HR) = L(VR).
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Butterflies: Definitions (2)

R−1

R

HR : Open Butterfly

R R

VR : Closed Butterfly

Rk [α] = (x ⊕ αk)3 ⊕ k3.

R is quadratic, VR is quadratic.
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Butterflies: Properties

Theorem 1 (Properties of Butterflies [Perrin et al. 2016])

Let Rk [α] = (x ⊕ αk)3 ⊕ k3, α /∈ {0,1}, n odd.
I δ(HR) ≤ 4, δ(VR) ≤ 4,
I VR is quadratic,
I HR has algebraic degree n + 1.

Theorem 2 (APN Butterflies [Perrin et al. 2016])

If n = 3 and α /∈ {0,1}, then HR is an APN permutation (affine
equivalent to the Dillon permutation).
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Open Questions of [Perrin et al. 2016]

Open Questions of [Perrin et al. 2016]
I Linearity of HR (and VR) ?
I Can we find α such that HR is APN for some n > 6 ?
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Generalised Butteflies: Definitions

R−1

R

Hα,β : Open Butterfly

R R

Vα,β : Closed Butterfly

Degree restriction:
I Ry : x 7→ R(x , y) permutation ∀y .
I Degree of R is at most 3:
I Then R can be written:

R(x , y) = (x ⊕ αy)3 ⊕ βy3

with α, β ∈ Fn
2.
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Property of Quadratic Functions

Property 1 (Linearity of Quadratic Functions)
Let f be a quadratic Boolean function of n variables.

LS(f ) = {a ∈ Fn
2 : Daf is constant}

Then L(f ) = 2
n+s

2 , with s = dim LS(f ).

Moreover, the Walsh coefficients of f only take the values ±2
n+s

2 and 0.
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Linear Properties

Theorem 3
Let n > 1 be an odd integer and (α, β) be a pair of nonzero elements
in F2n .

I If β 6= (1 + α)3,
L(Vα,β) = 2n+1

and the Walsh coefficients of Vα,β belong to {0,±2n,±2n+1}.
I If β = (1 + α)3,

L(Vα,β) = 2
3n+1

2 .
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Differential Properties

Theorem 4 (Differential uniformity)

Let n > 1 odd, α, β ∈ F2n \ {0}. Then:
I If β 6= (1 + α)3, δ(Hα,β) ≤ 4.
I If β = (1 + α)3, δ(Hα,β) = 2n+1.

Theorem 5 (APN Condition)

Let α 6= 0,1. Hα,β is APN if and only if:

β ∈ {(α+ α3), (α−1 + α3)} and Tr (Aα(e))=1,∀ e 6∈ {0, α, 1/α},

where Aα(e) = eα(1+α)2

(1+αe)(α+e)2 .

This condition implies that n = 3.
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Algebraic Degree

Theorem 6
Let α and β be two nonzero elements in F2n .

Hα,β has an algebraic degree equal to n or n + 1.

It is equal to n if and only if

(1 + αβ + α4)3 = β(β + α+ α3)3.
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Generalised Butterflies

Corollary 7 (Walsh and differential spectra of generalised butterflies)

Let α and β be two nonzero elements in F2n such that β 6= (1 + α)3.
I Walsh spectrum:

∣∣∣Ĥα,β(u, v)
∣∣∣ =


0, 3× 22n−2(2n − 1)(2n + 1− C) times
2n, 22n(2n − 1)C times
2n+1, 22n−2(2n − 1)(2n + 1− C) times.

where (2n − 1)C is the number of bent components of Vα,β.

I Difference distribution:

δHα,β (a,b) =
{

2, 22n−2(2n − 1)× 3C times
4, 22n−3(2n − 1)(2n+2 + 4− 3C) times
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New Permutations

Value of C for a butterfly on 6 bits (where a3 + a + 1 = 0).
α\β 1 a a2 a3 a4 a5 a6

1 0 4 4 4 4 4 4
a 6 2 0 2 6 0 0
a3 2 4 2 0 2 4 2

These permutations are new:
I The case β = 1 does not include all possible values for C
⇒ the generalisation gives new permutations,

I Differential/linear spectra are different from any other studied
permutations, for example:

I For n = 3, the number of 4 in the differential spectrum is in
{0,336,672,1008},

I Gold and Kasami permutations: number of 4 = 1008,
I Inverse mapping: number of 4 = 63,
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Conclusion

This work in brief:
I We answered the 2 open questions from Perrin et al.,
I We identified a new family of 2n bit-functions, n ≥ 3 odd with:

I differential uniformity 4,
I linearity 2n+1,
I a simple representation (easier implementation and analysis),
I the permutation from Dillon et al. included.

I We proved that this natural generalisation does not contain any
new APN permutation. :-(
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