## On a Generalisation of Dillon's APN Permutation

## Anne Canteaut

Anne.Canteaut@inria.fr

Sébastien Duval
Sebastien.Duval@inria.fr

Léo Perrin
leo.perrin@uni.lu

June 7, 2017

## Table of Contents

(1) Introduction

2 Generalisation of Butterflies
(3) Properties of Generalised Butterflies

4 Walsh Spectrum and Differential Spectrum

(5) Conclusion

## S-Box

## Definition 1 (S-Box)

We will call Substitution-Box or $S$-Box any mapping from $\mathbb{F}_{2}^{m}$ into $\mathbb{F}_{2}^{n}$, $n, m \geq 0$.

## Main Desirable Properties

Permutation ( $\Rightarrow n=m$ )
Resistant to differential attacks
Resistant to linear attacks
High algebraic degree

## Differential Properties

## Definition 2 (Differential Uniformity [Nyberg 93])

Let $F$ be a function over $\mathbb{F}_{2}^{n}$. The difference distribution table of $F$ is:

$$
\delta_{F}(a, b)=\#\left\{x \in \mathbb{F}_{2}^{n} \mid F(x \oplus a)=F(x) \oplus b\right\} .
$$

Moreover, the differential uniformity of $F$ is

$$
\delta(\boldsymbol{F})=\max _{a \neq 0, b} \delta_{F}(a, b) .
$$


$F$ is resistant against differential attacks if $\delta(F)$ is small
$F$ is called APN if $\delta(F)=2$

## The Big APN Problem [Dillon 2009]

The Big APN Problem
We know how to get:
APN functions on $\mathbb{F}_{2}^{n}$,
APN permutations on $\mathbb{F}_{2}^{n}$, $n$ odd,
permutations with $\delta=4$ on $\mathbb{F}_{2}^{n}$.
Are there any APN permutations on $\mathbb{F}_{2}^{n}, n$ even ?
Dillon S-Box [Browning, Dillon, McQuistan, Wolfe 2009]
APN permutation on $\mathbb{F}_{2}^{6}$.
The Still Big APN Problem
Are there any other APN permutations on $\mathbb{F}_{2}^{n}$, $n$ even ?

## Linear Properties

Definition 3 (Linearity)
Let $F$ be a function over $\mathbb{F}_{2}^{n}$. The Walsh transform of $F$ is:

$$
\lambda_{F}(a, b)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{a \cdot x \oplus b \cdot F(x)} .
$$

Moreover, the linearity of $F$ is

$$
\mathcal{L}(F)=\max _{a, b \neq 0}\left|\lambda_{F}(a, b)\right| .
$$

$F$ is resistant to linear attacks if $\mathcal{L}(F)$ is small

## Algebraic Degree

## Definition 4 (Univariate degree vs algebraic degree)

Let $F$ be a function from $\mathbb{F}_{2}^{n}$ into $\mathbb{F}_{2}^{n}$.
The algebraic degree (aka multivariate degree) of $F$ is the maximal degree of the algebraic normal forms of its coordinates.

The univariate degree of $F$ is the degree of the univariate polynomial in $\mathbb{F}_{2^{n}}[X]$ representing $F$ when it is identified with a function from $\mathbb{F}_{2^{n}}$ into itself.

The algebraic degree of the univariate polynomial $x \mapsto x^{e}$ of $\mathbb{F}_{2^{n}}$ is the Hamming weight of the binary expansion of $e$.

## Butterflies: Definitions (1) [Perrin et al. 2016]


$\mathrm{H}_{\mathrm{R}}$ : Open Butterfly

$\mathrm{V}_{\mathrm{R}}$ : Closed Butterfly
$R_{k}: x \mapsto R(x, k)$ permutation $\forall k$.
Open Butterfly and Closed Butterfly are CCZ-equivalent $\Rightarrow$ share the same sets

$$
\begin{aligned}
\left\{\delta_{H_{R}}(a, b)\right\}_{a, b} & =\left\{\delta_{v_{R}}(a, b)\right\}_{a, b}, \\
\left\{\mathcal{L}_{H_{R}}(a, b)\right\}_{a, b} & =\left\{\mathcal{L}_{V_{R}}(a, b)\right\}_{a, b} .
\end{aligned}
$$

In particular,
$\delta\left(\mathrm{H}_{R}\right)=\delta\left(\mathrm{V}_{R}\right)$ and $\mathcal{L}\left(\mathrm{H}_{R}\right)=\mathcal{L}\left(\mathrm{V}_{R}\right)$.

## Butterflies: Definitions (2)


$\mathrm{H}_{R}$ : Open Butterfly

## $R$ is quadratic, $V_{R}$ is quadratic.


$\mathrm{V}_{\mathrm{R}}$ : Closed Butterfly

## Butterflies: Properties

Theorem 1 (Properties of Butterflies [Perrin et al. 2016])
Let $R_{k}[\alpha]=(x \oplus \alpha k)^{3} \oplus k^{3}, \alpha \notin\{0,1\}, n$ odd.
$\delta\left(\mathrm{H}_{R}\right) \leq 4, \delta\left(\mathrm{~V}_{R}\right) \leq 4$,
$\mathrm{V}_{R}$ is quadratic,
$H_{R}$ has algebraic degree $n+1$.
Theorem 2 (APN Butterflies [Perrin et al. 2016])
If $n=3$ and $\alpha \notin\{0,1\}$, then $\mathrm{H}_{R}$ is an APN permutation (affine equivalent to the Dillon permutation).

## Open Questions of [Perrin et al. 2016]

## Open Questions of [Perrin et al. 2016]

Linearity of $\mathrm{H}_{R}\left(\right.$ and $\left.\mathrm{V}_{R}\right)$ ?
Can we find $\alpha$ such that $\mathrm{H}_{R}$ is APN for some $n>6$ ?

## Generalised Butteflies: Definitions


$\mathrm{H}_{\alpha, \beta}$ : Open Butterfly

$\mathrm{V}_{\alpha, \beta}$ : Closed Butterfly

## Degree restriction:

$R_{y}: x \mapsto R(x, y)$ permutation $\forall y$.
Degree of $R$ is at most 3:
Then $R$ can be written:

$$
R(x, y)=(x \oplus \alpha y)^{3} \oplus \beta y^{3}
$$

with $\alpha, \beta \in \mathbb{F}_{2}^{n}$.

## Property of Quadratic Functions

## Property 1 (Linearity of Quadratic Functions)

Let $f$ be a quadratic Boolean function of $n$ variables.

$$
\begin{gathered}
\operatorname{LS}(f)=\left\{a \in \mathbb{F}_{2}^{n}: D_{\mathrm{a}} f \text { is constant }\right\} \\
\text { Then } \mathcal{L}(f)=2^{\frac{n+s}{2}}, \text { with } s=\operatorname{dim} \operatorname{LS}(f) .
\end{gathered}
$$

Moreover, the Walsh coefficients of $f$ only take the values $\pm 2^{\frac{n+s}{2}}$ and 0 .

## Linear Properties

## Theorem 3

Let $n>1$ be an odd integer and $(\alpha, \beta)$ be a pair of nonzero elements in $\mathbb{F}_{2^{n}}$.

$$
\text { If } \beta \neq(1+\alpha)^{3}, \quad \mathcal{L}\left(\mathrm{~V}_{\alpha, \beta}\right)=2^{n+1}
$$

and the Walsh coefficients of $\mathrm{V}_{\alpha, \beta}$ belong to $\left\{0, \pm 2^{n}, \pm 2^{n+1}\right\}$. If $\beta=(1+\alpha)^{3}$,

$$
\mathcal{L}\left(\mathrm{V}_{\alpha, \beta}\right)=2^{\frac{3 n+1}{2}} .
$$

## Differential Properties

Theorem 4 (Differential uniformity)
Let $n>1$ odd, $\alpha, \beta \in \mathbb{F}_{2^{n}} \backslash\{0\}$. Then:

$$
\begin{aligned}
& \text { If } \beta \neq(1+\alpha)^{3}, \delta\left(\mathrm{H}_{\alpha, \beta}\right) \leq 4 . \\
& \text { If } \beta=(1+\alpha)^{3}, \delta\left(\mathrm{H}_{\alpha, \beta}\right)=2^{n+1} .
\end{aligned}
$$

Theorem 5 (APN Condition)
Let $\alpha \neq 0,1 . \mathrm{H}_{\alpha, \beta}$ is APN if and only if:

$$
\beta \in\left\{\left(\alpha+\alpha^{3}\right),\left(\alpha^{-1}+\alpha^{3}\right)\right\} \text { and } \operatorname{Tr}\left(\mathcal{A}_{\alpha}(e)\right)=1, \forall e \notin\{0, \alpha, 1 / \alpha\},
$$

where $\mathcal{A}_{\alpha}(e)=\frac{e \alpha(1+\alpha)^{2}}{(1+\alpha e)(\alpha+e)^{2}}$.
This condition implies that $n=3$.

## Algebraic Degree

## Theorem 6

Let $\alpha$ and $\beta$ be two nonzero elements in $\mathbb{F}_{2^{n}}$.
$\mathrm{H}_{\alpha, \beta}$ has an algebraic degree equal to $n$ or $n+1$.
It is equal to $n$ if and only if

$$
\left(1+\alpha \beta+\alpha^{4}\right)^{3}=\beta\left(\beta+\alpha+\alpha^{3}\right)^{3} .
$$

## Generalised Butterflies

Corollary 7 (Walsh and differential spectra of generalised butterflies)
Let $\alpha$ and $\beta$ be two nonzero elements in $\mathbb{F}_{2^{n}}$ such that $\beta \neq(1+\alpha)^{3}$.
Walsh spectrum:

$$
\left|\widehat{\hat{H}_{\alpha, \beta}}(u, v)\right|= \begin{cases}0, & 3 \times 2^{2 n-2}\left(2^{n}-1\right)\left(2^{n}+1-C\right) \text { times } \\ 2^{n}, & 2^{2 n}\left(2^{n}-1\right) C \text { times } \\ 2^{n+1}, & 2^{2 n-2}\left(2^{n}-1\right)\left(2^{n}+1-C\right) \text { times }\end{cases}
$$

where $\left(2^{n}-1\right) C$ is the number of bent components of $\mathrm{V}_{\alpha, \beta}$.
Difference distribution:

$$
\delta_{H_{\alpha, \beta}}(a, b)= \begin{cases}2, & 2^{2 n-2}\left(2^{n}-1\right) \times 3 C \text { times } \\ 4, & 2^{2 n-3}\left(2^{n}-1\right)\left(2^{n+2}+4-3 C\right) \text { times }\end{cases}
$$

## New Permutations

Value of $C$ for a butterfly on 6 bits (where $a^{3}+a+1=0$ ).

| $\alpha \backslash \beta$ | 1 | $a$ | $a^{2}$ | $a^{3}$ | $a^{4}$ | $a^{5}$ | $a^{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 4 | 4 | 4 | 4 | 4 | 4 |
| $a$ | 6 | 2 | 0 | 2 | 6 | 0 | 0 |
| $a^{3}$ | 2 | 4 | 2 | 0 | 2 | 4 | 2 |

These permutations are new:
The case $\beta=1$ does not include all possible values for $C$ $\Rightarrow$ the generalisation gives new permutations,
Differential/linear spectra are different from any other studied permutations, for example:

- For $n=3$, the number of 4 in the differential spectrum is in $\{0,336,672,1008\}$,
- Gold and Kasami permutations: number of $4=1008$,
- Inverse mapping: number of $4=63$,


## Conclusion

This work in brief:
We answered the 2 open questions from Perrin et al.,
We identified a new family of $2 n$ bit-functions, $n \geq 3$ odd with:

- differential uniformity 4,
- linearity $2^{n+1}$,
- a simple representation (easier implementation and analysis),
- the permutation from Dillon et al. included.

We proved that this natural generalisation does not contain any new APN permutation. :-(

## Questions?

