On a Generalisation of Dillon's APN Permutation

Anne Canteaut
Anne.Canteaut@inria.fr

Sébastien Duval

Sebastien.Duval@inria.fr

Léo Perrin
leo.perrin@uni.lu

May 11, 2017

Table of Contents

(1) Introduction
2) Butterflies

3 Generalisation of Butterflies
4) Properties of Generalised Butterflies
(5) Walsh Spectrum and Table of Differences

6 Conclusion

SPN Ciphers

Rijndael/AES (J. Daemen, V. Rijmen, 1988)

Succession of
confusion/diffusion layers
Good for parallelism and easy to implement

S-Box

Definition 1 (S-Box)

We will call Substitution-Box or S-Box any mapping from \mathbb{F}_{2}^{m} into \mathbb{F}_{2}^{n}, $n, m \geq 0$.

Main Desirable Properties

Permutation ($\Rightarrow n=m$)
Non-linear ($\Rightarrow n$ small)
Resistant to differential attacks
Resistant to linear attacks
High algebraic degree

Differential Properties

Definition 2 (Differential Uniformity)

Let F be a function over \mathbb{F}_{2}^{n}. The table of differences of F is:

$$
\delta_{F}(a, b)=\#\left\{x \in \mathbb{F}_{2}^{n} \mid F(x \oplus a)=F(x) \oplus b\right\} .
$$

Moreover, the differential uniformity of F is

$$
\delta(\boldsymbol{F})=\max _{a \neq 0, b} \delta_{F}(a, b) .
$$

F is resistant against differential attacks if $\delta(F)$ is small
F is called APN if $\delta(F)=2$

The Big APN Problem

The Big APN Problem

We know how to get:
APN functions on \mathbb{F}_{2}^{n},
APN permutations on \mathbb{F}_{2}^{n}, n odd,
permutations with $\delta=4$ on \mathbb{F}_{2}^{n}.
Are there any APN permutations on \mathbb{F}_{2}^{n}, n even ?

2009: Dillon S-Box

Browning, Dillon, McQuistan, Wolfe: APN permutation on \mathbb{F}_{2}^{6}.

The Still Big APN Problem

Are there any other APN permutations on \mathbb{F}_{2}^{n}, n even ?

Linear Properties

Definition 3 (Linearity)
Let F be a function over \mathbb{F}_{2}^{n}. The table of linear biases of F is:

$$
\lambda_{F}(a, b)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{a \cdot x \oplus b \cdot F(x)}
$$

Moreover, the linearity of F is

$$
\mathcal{L}(F)=\max _{a, b \neq 0}\left|\lambda_{F}(a, b)\right| .
$$

F is resistant to linear attacks if $\mathcal{L}(F)$ is small

Algebraic Degree

Definition 4 (Univariate degree vs algebraic degree)

Let F be a function from \mathbb{F}_{2}^{n} into \mathbb{F}_{2}^{n}.
The algebraic degree (aka multivariate degree) of F is the maximal degree of the algebraic normal forms of its coordinates.

The univariate degree of F is the degree of the univariate polynomial in $\mathbb{F}_{2^{n}}[X]$ representing F when it is identified with a function from $\mathbb{F}_{2^{n}}$ into itself.

The algebraic degree of the univariate polynomial $x \mapsto x^{e}$ of $\mathbb{F}_{2^{n}}$ is the Hamming weight of the binary expansion of e.

Butterflies: Definitions (1) [Perrin et al.]

H_{R} : Open Butterfly

V_{R} : Closed Butterfly
$R_{k}: x \mapsto R(x, k)$ permutation $\forall k$.
Open Butterfly and Closed Butterfly are CCZ-equivalent \Rightarrow share the same sets

$$
\begin{aligned}
\left\{\delta_{H_{R}}(a, b)\right\}_{a, b} & =\left\{\delta_{v_{R}}(a, b)\right\}_{a, b}, \\
\left\{\mathcal{L}_{H_{R}}(a, b)\right\}_{a, b} & =\left\{\mathcal{L}_{v_{R}}(a, b)\right\}_{a, b} .
\end{aligned}
$$

In particular, $\delta\left(\mathrm{H}_{R}\right)=\delta\left(\mathrm{V}_{R}\right)$ and $\mathcal{L}\left(\mathrm{H}_{R}\right)=\mathcal{L}\left(\mathrm{V}_{R}\right)$.

Butterflies: Definitions (2)

$$
R_{k}[e, \alpha]=(x \oplus \alpha k)^{e} \oplus k^{e}, \text { with } \operatorname{gcd}\left(e, 2^{n}-1\right)=1 .
$$

H_{R} : Open Butterfly

V_{R} : Closed Butterfly

Most interesting case for study: $e=3 \times 2^{t}$. Then R is quadratic, and V_{R} is quadratic.

Butterflies: Properties

Theorem 1 (Properties of Butterflies)

Let $\boldsymbol{e}=3 \times 2^{t}, \alpha \notin\{0,1\}, n$ odd.
$\delta\left(\mathrm{H}_{R}\right) \leq 4, \delta\left(\mathrm{~V}_{R}\right) \leq 4$,
V_{R} is quadratic, H_{R} has algebraic degree $n+1$.

Theorem 2 (APN Butterflies)

If $n=3$ and $x \mapsto x^{e}$ is $A P N$, then H_{R} is an APN permutation (affine equivalent to the Dillon permutation).

Open Questions of [Perrin et al.]

Open Questions of [Perrin et al.]

Nonlinearity/Linearity of H_{R} (and V_{R}),
Can we find α such that H_{R} is APN for some $n>6$?

Objective of this Work

Deeper study of butterflies:

- Linearity
- Are there other APN butterflies ?

Generalise butterflies: from the structure

Results

Generalisation of butterflies (quadratic case)
Study of generalised butterflies
Computed linearity of (generalised) butterflies
Condition for APN \Rightarrow No other APN butterflies

Generalised Butteflies: Definitions

$\mathrm{H}_{\alpha, \beta}$: Open Butterfly

$\mathrm{V}_{\alpha, \beta}$: Closed Butterfly

Degree restriction:

$R_{y}: x \mapsto R(x, y)$ permutation $\forall y$.
Degree of R is at most 3:
Then R can be written:

$$
R(x, y)=(x \oplus \alpha y)^{3} \oplus \beta y^{3}
$$

with $\alpha, \beta \in \mathbb{F}_{2}^{n}$.

Generalised Butterflies: Definitions (2)

$\mathrm{H}_{\alpha, \beta}$: Open Butterfly

$\mathrm{V}_{\alpha, \beta}$: Closed Butterfly

Equivalences

$\mathrm{H}_{\alpha, \beta}$ and $\mathrm{V}_{\alpha, \beta}$ are CCZ-equivalent.
When $\alpha=1, \mathrm{H}_{\alpha, \beta}$ is equivalent to a 3-round Feistel network.
Butterfly with $e=3 \times 2^{t}$ is affine-equivalent to Butterfly with $e=3$.
$\mathrm{V}_{\alpha, \beta}$ and $\mathrm{V}_{\alpha^{2}, \beta^{2}}$ are affine-equivalent.
If $\alpha \neq 1, \mathrm{~V}_{\alpha, \beta}$ and $\mathrm{V}_{\alpha, \beta^{-1}(1+\alpha)^{6}}$ are affine-equivalent.

Property of Quadratic Functions

Property 1 (Linearity of Quadratic Functions)

Let f be a quadratic Boolean function of n variables.

$$
\begin{gathered}
\operatorname{LS}(f)=\left\{a \in \mathbb{F}_{2}^{n}: D_{a} f \text { is constant }\right\} \\
\text { Then } \mathcal{L}(f)=2^{\frac{n+s}{2}}, \text { with } s=\operatorname{dim} \operatorname{LS}(f) .
\end{gathered}
$$

Moreover, the Walsh coefficients of f only the values $\pm 2^{\frac{n+s}{2}}$ and 0 .

Linear Properties

Theorem 3

Let $n>1$ be an odd integer and (α, β) be a pair of nonzero elements in $\mathbb{F}_{2^{n}}$.

$$
\text { If } \beta \neq(1+\alpha)^{3}, \quad \mathcal{L}\left(\mathrm{~V}_{\alpha, \beta}\right)=2^{n+1}
$$

and the Walsh coefficients of $\mathrm{V}_{\alpha, \beta}$ belong to $\left\{0, \pm 2^{n}, \pm 2^{n+1}\right\}$. If $\beta=(1+\alpha)^{3}$,

$$
\mathcal{L}\left(\mathrm{V}_{\alpha, \beta}\right)=2^{\frac{3 n+1}{2}} .
$$

Differential Properties

Theorem 4 (Differential uniformity)
Let $n>1$ odd, $\alpha, \beta \in \mathbb{F}_{2^{n}} \backslash\{0\}$. Then:

$$
\begin{aligned}
& \text { If } \beta \neq(1+\alpha)^{3}, \delta\left(\mathrm{H}_{\alpha, \beta}\right) \leq 4 . \\
& \text { If } \beta=(1+\alpha)^{3}, \delta\left(\mathrm{H}_{\alpha, \beta}\right)=2^{n+1} .
\end{aligned}
$$

Theorem 5 (APN Condition)
Let $\alpha \neq 0,1 . \mathrm{H}_{\alpha, \beta}$ is APN if and only if:

$$
\beta \in\left\{\left(\alpha+\alpha^{3}\right),\left(\alpha^{-1}+\alpha^{3}\right)\right\} \text { and } \operatorname{Tr}\left(\mathcal{A}_{\alpha}(e)\right)=1, \forall e \notin\{0, \alpha, 1 / \alpha\},
$$

where $\mathcal{A}_{\alpha}(e)=\frac{e \alpha(1+\alpha)^{2}}{(1+\alpha e)(\alpha+e)^{2}}$.
This condition implies that $n=3$.

Differential Properties

Theorem 4 (Differential uniformity)
Let $n>1$ odd, $\alpha, \beta \in \mathbb{F}_{2^{n}} \backslash\{0\}$. Then:

$$
\begin{aligned}
& \text { If } \beta \neq(1+\alpha)^{3}, \delta\left(\mathrm{H}_{\alpha, \beta}\right) \leq 4 . \\
& \text { If } \beta=(1+\alpha)^{3}, \delta\left(\mathrm{H}_{\alpha, \beta}\right)=2^{n+1} .
\end{aligned}
$$

Theorem 5 (APN Condition)
Let $\alpha \neq 0,1 . \mathrm{H}_{\alpha, \beta}$ is APN if and only if:

$$
\beta \in\left\{\left(\alpha+\alpha^{3}\right),\left(\alpha^{-1}+\alpha^{3}\right)\right\} \text { and } \operatorname{Tr}\left(\mathcal{A}_{\alpha}(e)\right)=1, \forall e \notin\{0, \alpha, 1 / \alpha\},
$$

where $\mathcal{A}_{\alpha}(e)=\frac{e \alpha(1+\alpha)^{2}}{(1+\alpha e)(\alpha+e)^{2}}$.
This condition implies that $n=3$.

Overview of the proof of $\mathrm{APN} \Rightarrow n=3$

Theorem 6 (APN Condition)

Let $\alpha \neq 0,1 . \mathrm{H}_{\alpha, \beta}$ is APN if and only if:

$$
\beta \in\left\{\left(\alpha+\alpha^{3}\right),\left(\alpha^{-1}+\alpha^{3}\right)\right\} \text { and } \operatorname{Tr}\left(\mathcal{A}_{\alpha}(e)\right)=1, \forall \boldsymbol{e} \notin\{0, \alpha, 1 / \alpha\},
$$

where $\mathcal{A}_{\alpha}(e)=\frac{e \alpha(1+\alpha)^{2}}{(1+\alpha e)(\alpha+e)^{2}}$.

Steps:

Simplify to $\operatorname{Tr}\left(\mathcal{C}_{\alpha}(v)\right)=1, \forall u \notin\left\{0,1,1 /\left(1+\alpha^{-2}\right)\right\}$ with

$$
\mathcal{C}_{\alpha}(v)=\left(\frac{1}{1+\alpha^{-1}}\right)^{4} \frac{1}{u+u^{3}} .
$$

Prove that APN $\Rightarrow n=3$.

Simplification (1)

APN Conditions

$$
\operatorname{Tr}\left(\mathcal{A}_{\alpha}(e)\right)=1
$$

$$
\begin{gathered}
\mathcal{A}_{\alpha}(e)=\frac{e \alpha(1+\alpha)^{2}}{(1+\alpha e)(\alpha+e)^{2}} \\
\beta \in\left\{\beta_{0}, \beta_{1}\right\}=\left\{\alpha+\alpha^{3},(\alpha+1)^{4} / \alpha\right\} \\
e \notin\left\{0, \alpha, \alpha^{-1}\right\} \\
\alpha \neq 1
\end{gathered}
$$

$$
\ell=(\boldsymbol{e}+\alpha)(1+\alpha)^{2}
$$

$$
e(1+\alpha)^{2}=\ell+\alpha+\alpha^{3}
$$

$$
\begin{gathered}
(1+\alpha e)(1+\alpha)^{2}=\alpha\left(\ell+\frac{(1+\alpha)^{4}}{\alpha}\right) \\
\Downarrow \\
\mathcal{A}_{\alpha}(\ell)=\frac{\beta_{0} \beta_{1} \ell^{2} \frac{\ell+\beta_{0}}{\ell+\beta_{1}}}{} .
\end{gathered}
$$

Simplification (2)

APN Conditions

$$
\begin{gathered}
\operatorname{Tr}\left(\mathcal{A}_{\alpha}(\ell)\right)=1 \\
\mathcal{A}_{\alpha}(\ell)=\frac{\beta_{0} \beta_{1}}{\ell^{2}} \frac{\ell+\beta_{0}}{\ell+\beta_{1}} \\
\beta \in\left\{\beta_{0}, \beta_{1}\right\}=\left\{\alpha+\alpha^{3},(\alpha+1)^{4} / \alpha\right\} \\
\ell \notin\left\{\beta_{0}, 0, \beta_{1}\right\} \\
\alpha \neq 1
\end{gathered}
$$

Simplification (3)

APN Conditions

$\operatorname{Tr}\left(\mathcal{B}_{\alpha}(v)\right)=1$

$$
\mathcal{B}_{\alpha}(v)=\frac{v^{2}(v+1)}{\left(v+\beta_{0} / \beta_{1}\right)}
$$

$$
\beta \in\left\{\beta_{0}, \beta_{1}\right\}=\left\{\alpha+\alpha^{3},(\alpha+1)^{4} / \alpha\right\}
$$

$$
\begin{gathered}
v \notin\left\{0,1, \frac{\alpha^{2}}{1+\alpha^{2}}\right\} \\
\alpha \neq 1
\end{gathered}
$$

$$
\operatorname{Tr}\left(\mathcal{B}_{\alpha}(v)\right)=\operatorname{Tr}\left(\frac{v^{2}+v}{\gamma v+1}\right)
$$

where $\gamma=1+\alpha^{-2}$

$$
\begin{gathered}
\operatorname{Tr}\left(\mathcal{B}_{\alpha}\left(u^{-1} \gamma^{-1}\right)\right)=\operatorname{Tr}\left(\frac{\gamma^{-2}}{u+u^{3}}\right) \\
\text { with } u \notin\left\{0, \gamma^{-1}, 1\right\}
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{C}_{\alpha}(u)=\frac{\gamma^{-2}}{u+u^{3}} \\
\operatorname{Tr}\left(\mathcal{C}_{\alpha}(u)\right)=\operatorname{Tr}\left(\mathcal{B}_{\alpha}\left(u^{-1} \gamma^{-1}\right)\right)
\end{gathered}
$$

Proof that APN $\Rightarrow n=3$ (1)

Lemma 1 (BRS67)

The cubic equation $x^{3}+a x+b=0$, where $a \in \mathbb{F}_{2^{n}}$ and $b \in \mathbb{F}_{2^{n}}^{*}$ has a unique solution in $\mathbb{F}_{2^{n}}$ if and only if $\operatorname{Tr}\left(a^{3} / b^{2}\right) \neq \operatorname{Tr}(1)$.

Proposition 1 ($n=3$)
Let $n>1$ be an odd integer, $\lambda \in \mathbb{F}_{2^{n}}^{*}$. If

$$
\operatorname{Tr}\left(\frac{\lambda^{2}}{x+x^{3}}\right)=1, \forall x \notin\{0,1, \lambda\},
$$

then $n=3$.

Proof that APN $\Rightarrow n=3(2)$

The condition is $\operatorname{Tr}\left(\frac{\lambda^{2}}{x+x^{3}}\right)=1, \forall x \notin\{0,1, \lambda\}$.
Let $z \in \mathbb{F}_{2^{n}}^{*}, \operatorname{Tr}(z)=0$. There exists a unique $x \in \mathbb{F}_{2^{n}} \backslash \mathbb{F}_{2}$ s.t.

$$
\frac{1}{x^{3}+x}=z
$$

Indeed, since $z \neq 0$, we get:

$$
x^{3}+x+\frac{1}{z}=0
$$

Lemma \Rightarrow unique solution when $\operatorname{Tr}\left(z^{2}\right)=\operatorname{Tr}(z)=0$.

Proof that $\mathrm{APN} \Rightarrow n=3$ (3)

Define $z_{\lambda}=\frac{1}{\lambda^{3}+\lambda}$ and $\mathcal{Z}=\left\{z \in \mathbb{F}_{2^{n}}^{*} \backslash\left\{z_{\lambda}\right\}: \operatorname{Tr}(z)=0\right\}$.
Condition becomes: $\operatorname{Tr}\left(\lambda^{2} z\right)=1$.
If $n \geq 5, \mathcal{Z}$ contains $\left(2^{n-1}-2\right) \geq 14$ elements \Rightarrow there exist $z_{0}, z_{1} \in \mathcal{Z}$ s.t. $z_{0}+z_{1} \in \mathcal{Z}$. Thus,

$$
\operatorname{Tr}\left(\lambda^{2} z_{0}\right)=\operatorname{Tr}\left(\lambda^{2} z_{1}\right)=\operatorname{Tr}\left(\lambda^{2}\left(z_{0}+z_{1}\right)\right)=1
$$

Impossible since

$$
\operatorname{Tr}\left(\lambda^{2}\left(z_{0}+z_{1}\right)\right)=\operatorname{Tr}\left(\lambda^{2} z_{0}\right)+\operatorname{Tr}\left(\lambda^{2} z_{1}\right)
$$

When $n=3$ it is different: $2^{n-1}-2=2$, this argument cannot stand. \square

Algebraic Degree

Theorem 7

Let α and β be two nonzero elements in $\mathbb{F}_{2^{n}}$.
$\mathrm{H}_{\alpha, \beta}$ has an algebraic degree equal to n or $n+1$.
It is equal to n if and only if

$$
\left(1+\alpha \beta+\alpha^{4}\right)^{3}=\beta\left(\beta+\alpha+\alpha^{3}\right)^{3} .
$$

$\alpha=1$: 3-round Feistel Network

Proposition 2

For $\alpha=\beta=1$, the difference distribution tables of the butterflies $\mathrm{V}_{1,1}$ and $\mathrm{H}_{1,1}$ contain the values 0 and 4 only.

Generalised Butterflies

Corollary 8 (Walsh and differential spectra of generalised butterflies)

Let α and β be two nonzero elements in $\mathbb{F}_{2^{n}}$ such that $\beta \neq(1+\alpha)^{3}$.
Walsh spectrum:

$$
\left|\widehat{\mathrm{H}_{\alpha, \beta}}(u, v)\right|= \begin{cases}0, & 3 \times 2^{2 n-2}\left(2^{n}-1\right)\left(2^{n}+1-C\right) \text { times } \\ 2^{n}, & 2^{2 n}\left(2^{n}-1\right) C \text { times } \\ 2^{n+1}, & 2^{2 n-2}\left(2^{n}-1\right)\left(2^{n}+1-C\right) \text { times } .\end{cases}
$$

where $\left(2^{n}-1\right) C$ is the number of bent components of $\mathrm{V}_{\alpha, \beta}$.
Table of differences:

$$
\delta_{H_{\alpha, \beta}}(a, b)= \begin{cases}2, & 2^{2 n-2}\left(2^{n}-1\right) \times 3 C \text { times } \\ 4, & 2^{2 n-3}\left(2^{n}-1\right)\left(2^{n+2}+4-3 C\right) \text { times }\end{cases}
$$

New Permutations

Value of C for a Butterfly on 6 bits ($\mathbb{F}_{2^{3}}$ defined by the primitive element a such that $\left.a^{3}+a+1=0\right)$.

$\alpha \backslash \beta$	1	a	a^{2}	a^{3}	a^{4}	a^{5}	a^{6}
1	0	4	4	4	4	4	4
a	6	2	0	2	6	0	0
a^{3}	2	4	2	0	2	4	2

These permutations are new:
The value of C determines the differential and Walsh spectra,
The case $\beta=1$ does not include all possible values for C
\Rightarrow the generalisation gives new permutations,
Differential/Linear spectra are different from any other studied permutations, for example:

- For $n=3$, the number of 4 in the differential spectrum is in $\{0,336,672,1008\}$,
- Gold and Kasami permutations: number of $4=1008$,
- Inverse mapping: number of $4=63$,

Conclusion

This work in brief:
We answered the 2 open questions from Perrin et al.,
We identified a new family of $2 n$ bit-functions, $n \geq 3$ odd with:

- differential uniformity 4,
- linearity 2^{n+1},
- a simple representation (easier implementation and analysis),
- the permutation from Dillon et al. included.

We proved that this natural generalisation does not contain any new APN permutation. :-(

Questions?

