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Optimization for Machine Learning
Existence of minimizers / Convex sets

The exercises indicated with a star (?) are regarded as part of the syllabus. The stated results should be known, and
it is highly recommended to practice by trying to solve them. Last revised on October, 16th, 2019.
The blue text denotes the addition of a question.
The red text denotes the correction of a typo.

Existence of minimizers

(?) Exercise 1 (Limit inferior).

1. Let (un)n∈N ⊂ R be a sequence, and assume that

Å
lim inf
n→+∞

un

ã
> −∞.

Prove that (un)n∈N is lower bounded, i.e. there is a constant m ∈ R such that ∀n ∈ N, un ≥ m.

2. Let (un)n∈N ⊂ R be a sequence.

a) Assume that lim
n→+∞

un = ` for some ` ∈ R ∪ {±∞}. Prove that lim inf
n→+∞

un = `.

b) Assume that there is a subsequence such that lim
n→+∞

uϕ(n) = ` for some ` ∈ R ∪ {±∞}. Prove that

` ≥ lim inf
n→+∞

un.

c) Prove that there exists a subsequence (uϕ(n))n∈N such that lim
n→+∞

uϕ(n) = lim inf
n→+∞

un.

3. Let (un)n∈N and (vn)n∈N be two sequences in R ∪ {+∞}. Prove thatÅ
lim inf
n→+∞

un

ã
+

Å
lim inf
n→+∞

vn

ã
≤ lim inf (un + vn) .

provided the left hand side is not +∞−∞. Give an example where the inequality is strict.

Hint: Consider for instance the sequence (−1)n, n ∈ N.

(?) Exercise 2 (Lower semi-continuous functions).
Let f : RN → R ∪ {+∞}.

1. Let x ∈ RN . Show that the following properties are equivalenta):

a) f is lower semi-continuous at x,

b) For all t < f(x), there exists r > 0 such that for all y ∈ B(x, r), f(y) > t.

2. Show that the following properties are equivalent:

a) f is lower semi-continuous on RN ,

b) For all t ∈ R, the level set
{
x ∈ RN | f(x) ≤ t

}
is closed.

c) The epigraph
{

(x, t) ∈ RN × R | f(x) ≤ t
}

is closed.

3. Prove that any continuous function f : RN → R is lower semi-continuous.

(?) Exercise 3 (Stability of l.s.c. functions).

1. Let f1, f2 : RN → R∪{+∞} be two lower semi-continuous functions. Show that f1+f2 is lower semi-continuous.

2. Let {fi}i∈I be a (finite or infinite) family of lower semi-continuous functions from RN to R∪{+∞}. Show that

the function f defined by f(x)
def
= sup

i∈I
(fi(x)) is lower semi-continuous.

3. Let {fi}1≤i≤k be a finite family of lower semi-continuous functions from RN to R ∪ {+∞}. Show that the

function f defined by f(x)
def
= inf

i∈I
(fi(x)) is lower semi-continuous.

a)If f(x) < +∞ the second assertion may be reformulated as: For all ε > 0, there exists r > 0 such that for all y ∈ B(x, r),
f(y) > f(x)− ε.
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Exercise 4.
Do the following functionals have minimizers? Is it unique?

1. f(x) =
N∑
i=1

xi log(xi) on the domain C =

{
x ∈ RN | xi ≥ 0,

N∑
i=1

xi = 1

}
.

2. f(x) = exp(x21 − x22) for x = (x1, x2) ∈ R2.

3. f(x) = x21 + x22 + exp(x21 − x22) for x = (x1, x2) ∈ R2.

4. f(x) = ‖Ax− y‖2 for A ∈ Rm×n, y ∈ Rm.

5. f(M) = Tr(N>M) on S+
n (R)

def
=
{
M ∈ Rn×n |M> = M, M � 0

}
for N ∈ S+

n (R)?

6. f(M) = λn(M) (maximal eigenvalue of M) on the domain C =

ß
M ∈ S+

n (R) | max
1≤i,j≤n

(|Mi,j |) = 1

™
.

Convex sets

(?) Exercise 5 (Minkowski sum).
Given two convex sets C1, C2 ⊂ RN , their sum (or Minkowski sum) is defined as

C1 + C2
def
= {x1 + x2 | x1 ∈ C1, x2 ∈ C2 } .

1. What is C1 + C2 for C1 = {a} with a ∈ Rn and C2 ⊂ Rn an arbitrary convex set?

In the general case, observe that C1 + C2 =
⋃

x1∈C1

({x1}+ C2).

2. Draw the Minkowski sum C1 + C2 for the following sets

a) C1 = [0, 1]× {0}, C2 =
{

(x, y) ∈ R2 | 0 ≤ x ≤ 1, |y| ≤ x
}

.

b) C1 = [0, 1]2, C2 = B̄(0, r) (closed Euclidean ball with radius r) with r < 1/2.

3. Prove that C1 + C2 is convex.

4. Show that C1 + C2 is not necessarily closed, even if both C1 and C2 are closed.

Hint: Consider for instance C1 =
{

(x, y) ∈ R2 | x ≥ 0, y ≥ 0, xy ≥ 1
}

and C2 = {0} × R.

5. Prove that C1 + C2 is closed if C1 is compact and C2 is closed.

Exercise 6 (Topological properties of convex sets).
Let C ⊂ RN be a convex set.

1. Prove that C, the closure of C, is convex (reminder: C is the set of all the limits of the converging sequences
of elements of C).

2. Prove that Int(C), the interior of C, is convex (reminder: Int(C)
def
= {x ∈ C | ∃r > 0, B(x, r) ⊂ C }).

Exercise 7 (Projection onto an affine subspace).

1. What is the characterization of the projection onto C when C is an affine (or linear) subspace of RN?

2. Let C =
{
x ∈ RN | Ax = y

}
where A ∈ RP×N , y ∈ RP . We assume that AA> is invertible. Compute the

projection of x0 ∈ RN onto C.

(?) Exercise 8 (Relative interior of a convex set).
The relative interior of a convex set is the interior of C when it is regarded as a subset of its affine hull Aff(C). In
other words, x ∈ ri(C) if and only if

x ∈ Aff(C) and ∃r > 0, B(x, r) ∩Aff(C) ⊂ C.

1. Find the relative interior of the following convex sets of R3:

C1 = [0, 1]3, C2 =
{

(x, y, z) ∈ R3 | x2 + y2 ≤ 1, z = 1
}
, C3 = R× {0} × {0}.
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2. If the topological interior satisfies int(C) 6= ∅, what is the the relative interior ri(C)?

3. We want to prove that, if C 6= ∅, then ri(C) 6= ∅.
a) Examine the case where C is a singleton, C = {x0}.
b) If C is not reduced to a singleton, show that there exists m ≥ 1 and a family {c0, . . . , cm} ⊂ C such that

Aff(C) = Aff{c0, . . . , cm} and c1 − c0, . . . , cm − c0 are linearly independent.

c) Prove that

(
1

m+ 1

m∑
i=0

ci

)
∈ ri(C).

4. If x1 ∈ ri(C) and x2 ∈ C, prove that [x1 , x2[ ⊂ ri(C). Hint: You may assume that Rn = Aff(C) and consider
that int(C) 6= ∅

Exercise 9 (Carathéodory’s theorem).
Let S ⊂ RN , and let conv(S) be its convex hull. Prove that any element of conv(S) can be represented as a convex
combination of (at most) N + 1 elements of S.

Hint: If x is a convex combination of
k∑

i=1

αisi with k > N + 1, then the family {si}1≤i≤k is affinely dependent, i.e.

there exists coefficients β1, . . . βk not all zero such that
k∑

i=1

βisi = 0 and
k∑

i=1

βi = 0. Show that one can modify the

αi’s so that one of them is zero.

Exercise 10 (The Krein-Milman theorem (weak formulation)).
Let C ⊂ RN be a convex set and x0 ∈ C. We say that x0 is an extreme point of C if there are no points x1, x2 ∈ C
such that x0 ∈ ]x1 , x2[. We denote by extr(C) the set of extreme points of C. We assume that C is nonempty
compact convex.

1. Prove that C has at least one extreme point. Hint: What can you say about the maximizers of the function
x 7→ ‖x‖2 on C?

2. Let y ∈ RN \ {0} and consider the set F = argmaxx∈C 〈y, x〉. Prove that F is nonempty compact convex, and
that any extreme point of F is an extreme point of C.

3. Prove that conv(extr(C)) = C, where conv denotes the closed convex hull.

Hint: What can you say if there is some x ∈ C \ conv(extr(C))?

Note: That result is known as the Krein-Milman theorem. In fact, in finite dimension (which is our case
here), the closed convex hull conv can be replaced with the convex hull conv. In particular, any point of C is a
convex combination of (at most) N + 1 extreme points of C.

4. Give a counter-example when C is not compact.

Exercise 11 (Projections onto convex sets).
Let x ∈ RN . Compute the projection of x onto

1. C =
{
y ∈ RN | ‖y‖2 ≤ 1

}
(unit ball).

2. C =
{
y ∈ RN | ‖y‖∞ ≤ 1

}
(unit cube).

3. C =

{
(y, t) ∈ RN−1 × R |

N−1∑
i=1

(yi)
2 ≤ 1 and 0 ≤ t ≤ 1

}
, for N ≥ 2 (cylinder).
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