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Optimization for Machine Learning
Convex sets and convex functions

The exercises indicated with a star (?) are regarded as part of the syllabus. The stated results should be known, and
it is highly recommended to practice by trying to solve them.
Last revised on December, 9th, 2019.
The blue text denotes the addition of a question or indication.
The red text denotes the correction of a typo.

Convex functions

(?) Exercise 1 (Convexity of the level sets).
Give an example of function f : RN → R which is not convex but such that for all t ∈ R, the level set

{f ≤ t} def
=
{
x ∈ RN | f(x) ≤ t

}
is convex.

Exercise 2 (Convex functions which take the value −∞ are not very interesting).
Let f : RN → R ∪ {±∞} be convex. Assume that there is some x0 such that f(x0) = −∞.
Prove that for all direction v ∈ RN \{0}, there is at most one value of t ∈ R such that the function t 7→ f(x0+tv) takes
a value in R (it can only take the value +∞ or −∞ for the other values of t). If, moreover, f is lower semi-continuous
it can only take the values ±∞.

Exercise 3 (Smooth convex functions).
Let U ⊂ RN be an open convex set, and f : RN → R a differentiable function and denote by ∇f(x) its gradient at x.

1. Prove that the following properties are equivalent.

a) for all x, y ∈ U , for all θ ∈ [0 , 1], f((1− θ)x+ θ)y) ≤ (1− θ)f(x) + θf(y).

b) for all x, y ∈ U , f(y) ≥ f(x) + 〈∇f(x), y − x〉.
c) for all x, y ∈ U , 〈∇f(y)−∇f(x), y − x〉 ≥ 0.

Hint: Observe that it is sufficient to study the univariate function g : t 7→ f(x + t(x − y)) on [0 , 1]. What is
g′(t) ? g′(0) ? g′(1) ?

2. Assume that f is twice differentiable and denote by ∇2f(x) its Hessian matrix at x. Show that the conditions
a), b), c) are equivalent to

∀x ∈ RN , ∇2f(x) � 0 (1)

Hint: Observe that it is equivalent to g′ being increasing (“croissante” en français)

3. We assume now that there is a continuous function f̄ defined on U such that f̄(x) = f(x) for all x ∈ U . We

define ¯̄f : RN → R ∪ {+∞},

∀x ∈ RN , ¯̄f(x)
def
=

®
f̄(x) if x ∈ U ,

+∞ otherwise.

Prove that ¯̄f is convex if and only if f satisfies any of the equivalent properties a), b), c) in U .

(?) Exercise 4 (Stability of convex functions).
Prove the following assertions.

1. If α > 0, and f : RN → R ∪ {+∞} is convex, then αf is convex.

2. If f1, f2 : RN → R ∪ {+∞} are convex, then f1 + f2 is convex.

3. If {fi}i∈I is a (finite or infinite) collection of convex functions, then sup
i∈I

fi is convex.

4. If f : RN1 × RN2 → R ∪ {+∞} is convex, then g : x 7→ inf
y∈RN2

f(x, y) is convex.

5. If f : Rm → R ∪ {+∞} is convex and A ∈ Rm×n, then g : x 7→ f(Ax) is convex.

Hint: For the points 3 to 5, provide two proofs : direct verification or argument on the epigraph.
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Exercise 5.
Are the following functions convex ?

1. f(x) = ‖Ax− b‖, for x ∈ RN , where A ∈ Rm×N , b ∈ Rm.

2. (ReLU) f(x) = max{x, 0}, for all x ∈ R.

3. (Quadratic over linear function) f(x, y) = x2/y for all x, y ∈ R such that y > 0.

4. (Log-sum-exp) f(x) = log (ex1 + · · ·+ exN ), for all x = (x1, . . . , xN ) ∈ RN .

5. (Maximal eigenvalue) f(M) = λn(M) for all M ∈ S+
n (R). Hint: λn(M) = sup

{
y>My | y ∈ Rn, ‖y‖ = 1

}
.

6. (Sum of the k largest components) f(x) = x[1] + · · · + x[k] where 1 ≤ k ≤ N and x[1] ≥ · · · ≥ x[N ] are the

ordered components of x ∈ RN . Hint: Write f as the supremum of affine functions.

(?) Exercise 6 (Continuity of convex functions).
Let f : RN → R∪ {+∞} be a convex function such that Int(dom f) 6= ∅, and let x0 ∈ Int(dom f). We want to prove
that f is continuous at x0.

1. Assume that there is some δ > 0 such that B(x0, 2δ) ⊂ Int(dom f) and that there exists m,M ∈ R such that
m ≤ f(x) ≤M for all x ∈ B(x0, 2δ). Prove that f is Lipschitz in B(x0, δ), more precisely

∀y, y′ ∈ B(x0, δ), |f(y)− f(y′)| ≤ M −m
δ
‖y − y′‖.

2. Show that there exist v0, . . . , vN ∈ Int(dom f), affinely independent (i.e. v1 − v0, . . . , vN − v0 are linearly
independent), such that x0 is in the interior of conv{v0, . . . , vN}, the convex hull of {v0, . . . , vN}.

3. Let δ > 0 small enough so that B(x0, 2δ) ⊂ conv{v0, . . . , vN}. Prove that there exists M ∈ R (which depends
only on f(v0), . . . , f(vN )) such that f(x) ≤M for all x ∈ B(x0,2δ).

4. Prove that there exists m ∈ R such that for all x ∈ B(x0, 2δ), f(y) ≥ m (for instance one may choose
m = 2f(x0)−M ).

5. Conclude.

Note : it is possible to prove that f is locally Lipschitz on Int(dom f), i.e. it is Lipschitz on every compact subset of
Int(dom f).

Subdifferential

(?) Exercise 7 (The subgradient of smooth functions).
Let f : RN → R be a convex differentiable function. Prove that the subdifferential is single-valued everywhere,
namely ∂f(x) = {∇f(x)}.
Hint: Evaluate the subgradient inequality at y = x+ h, with h “small”.

(?) Exercise 8 (Projection onto a convex set (revisited)).

Let C ⊂ RN be a nonempty closed convex set, and χC(x)
def
= 0 if x ∈ C, +∞ otherwise. Let x0 ∈ RN and consider

the problem

min
x∈RN

1

2
‖x− x0‖2 + χC(x).

1. Prove that there is a unique minimizer to that problem.

2. Let p ∈ RN , what does p ∈ ∂χC(x) mean ?

3. Using the subdifferential, recover the characterization of the projection onto C.

Exercise 9 (`1 regularization).

1. Let f1, . . . , fN : R→ {+∞} be convex proper lower semi-continuous functions. Consider the function f : RN →

R ∪ {+∞} defined by f(x) =
N∑
i=1

fi(xi) for all x = (x1, . . . , xN ) ∈ RN . Prove that

∀x = (x1, . . . , xN ) ∈ RN , ∂f(x) = (∂f1(x1))× . . .× (∂fN (xN ))
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2. Consider the function f defined by f(x) = ‖x‖1
def
=

N∑
i=1

|xi| and let p ∈ RN . Prove that p ∈ ∂f(x) if and only ifß
pi = sign(xi) for all i ∈ {1, . . . , N} such that xi 6= 0,
pi ∈ [−1, 1] for all i ∈ {1, . . . , N} such that xi = 0

3. Consider the minimization problem, for fixed y ∈ RN , and λ > 0,

min
x∈RN

λ ‖x‖1 +
1

2
‖x− y‖22 .

Prove that there is a unique solution, and that it is given by the soft thresholding of y,

∀i ∈ {1, . . . , N}, xi =


yi + λ if yi < −λ,
0 if −λ ≤ yi ≤ λ,
yi − λ if yi > λ.

(2)

Exercise 10 (The Moreau-Yosida regularization and the proximal point).
Let f be a proper convex lower semi-continuous function, and λ > 0. Define the Moreau-Yosida regularization of f ,

∀x ∈ RN , fλ(x)
def
= inf
y∈RN

Å
f(y) +

1

2λ
‖x− y‖2

ã
(3)

1. Draw fλ for f(x) = χ[−1,1](x), x ∈ R.

2. Prove that there is a unique minimizer y in (3). It is called the proximal point of f at x. It is often denoted by
proxλf (x).

3. Prove that fλ is convex proper, and that dom fλ = RN (hence fλ is continuous on RN ).

4. Prove the following properties

a) fλ(x) ≤ f(x) for all x ∈ RN , λ > 0.

b) lim
λ→0+

proxλf (x) = x for all x ∈ dom f .

c) lim
λ→0+

fλ(x) = f(x) for all x ∈ RN .

Conjugate function

(?) Exercise 11.
Compute the conjugate function of the `p norm : x 7→ ‖x‖p.
Hint: Remember the Hölder inequality : |〈x, y〉| ≤ ‖x‖p‖y‖q for p, q ∈ [1,+∞] such that 1/p+ 1/q = 1. What is the
equality case ?

Exercise 12 (Support function of a convex set).
Let C ⊂ RN be a closed convex set. We define the support function of C by

∀x ∈ RN , σC(x)
def
= sup
q∈C
〈q, x〉 .

0. Compute σC when C is the unit ball of the `p norm, 1 ≤ p ≤ +∞.

1. Show that σC is positively homogeneous, i.e. σC(tx) = tσC(x) for all x ∈ RN , t > 0.

2. a) Let C1, C2 be two nonempty closed convex sets. Prove that C1 ⊂ C2 if and only if σC1
(x) ≤ σC2

(x) for
all x ∈ RN .

b) Prove that |σC(x)| ≤ R‖x‖ for all x if and only if C ⊂ B(0, R).

c) Prove that |σC(x)| ≥ r‖x‖ for all x if and only if B(0, r) ⊂ C.

3. Show that (σC)∗ is the indicator of some closed convex set,

∀p ∈ RN , (σC)∗(p) = χB(p)
def
=

®
0 if p ∈ B,

+∞ otherwise.

and characterize the convex set B.

Hint: Observe that σC is already the convex conjugate of some function.
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4. Prove that ∂σC(0) = B, and characterize ∂σC(x) for all x ∈ RN .

Exercise 13.
Using the results of Exercise 12. Characterize the subdifferential of

a)f(x) = ‖x‖p for 1 ≤ p ≤ ∞ b)f(M) = λn(M) for all M ∈ S+
n (R)

Exercise 14 (Infimal convolution).
Let f , g : RN → R∪{+∞}, be two proper convex lower semi-continuous functions. We define the infimal convolution
of f and g by

h(x)
def
= inf

{
f(y) + g(x− y) | y ∈ RN

}
.

We assume that (dom f∗) ∩ (dom g∗) 6= ∅.

1. Prove that there is an affine function ` such that for all x ∈ RN , `(x) ≤ f(x) and `(x) ≤ g(x). Deduce that h
is convex proper.

2. Prove that h∗(p) = f∗(p) + g∗(p) for all p ∈ RN .

3. We want to prove that h is lower semi-continuous under the additional assumption that ri(dom f∗) ∩
ri(dom g∗) 6= ∅.

a) Let x ∈ domh, and let {xk}k∈N be a sequence such that lim
k→+∞

xk = x. Prove that there is a sequence

{yk}k∈N such that

∀k ∈ N, f(yk) + g(xk − yk) ≤ h(xk) +
1

k + 1
.

b) Assume that {yk}k∈N is bounded. Prove that lim inf
k→+∞

h(xk) ≥ h(x).

c) In fact, we cannot assume that {yk}k∈N is bounded. However, let us define {qk}k∈N in the following way.

Let V
def
= Span(dom f∗ − dom g∗), i.e. the vector space spanned by the set (dom f∗ − dom g∗), and let qk

be the orthogonal projection of yk onto V .

Prove that for all k ∈ N,

f(qk) + g(xk − qk) = f(yk) + g(xk − yk).

Hint: Write f(qk) + g(xk − qk) = f∗∗(qk) + g∗∗(xk − qk) = sup
p,s

(· · · ) and use the fact that 〈qk, p− s〉 =

〈yk, p− s〉 for all p ∈ dom f∗, s ∈ dom g∗.

d) Prove that for all ε > 0 small enough, (B(0, ε) ∩ V ) ⊂ (dom f∗ − dom g∗), where (dom f∗ − dom g∗) =
{ p− s | p ∈ dom f∗, s ∈ dom g∗ }. Hint: Prove that ri(dom f∗) ∩ ri(dom g∗) 6= ∅ is equivalent to 0 ∈
ri(dom f∗ − dom g∗).

e) We fix such an ε > 0. Prove that for all z ∈ B(0, ε) ∩ Span(dom f∗ − dom g∗), there exists p ∈ dom f∗,
s ∈ dom g∗ such that z = p− s, and moreover,

∀k ∈ N, 〈qk, z〉 ≤ h(xk) +
1

k + 1
+ f∗(p) + g∗(s)− 〈xk, s〉.

f) Deduce that the sequence {qk}k∈N is bounded and conclude.

Incidentally, note that this also proves that the infimum is attained, i.e. there is some y such that
h(x) = f(y) + g(x− y).

(?) Exercise 15 (Subdifferential of a sum).
Let f , g : RN → R∪ {+∞} be two proper convex functions. We consider the function h = f + g and we assume that
dom f ∩ dom g 6= ∅

1. Prove that h is convex proper.

2. Prove that for all x ∈ RN , (∂f(x) + ∂g(x)) ⊂ ∂(f + g)(x).

3. We want to prove the converse inclusion, under the additional hypothesis that ri(dom f) ∩ ri(dom g) 6= ∅.
To simplify the proof, we also assume that f and g are lower semi-continuous (though the result
still holds without that assumption).
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a) Prove that

∀p ∈ RN , h∗(p) = inf
q∈RN

(f∗(q) + g∗(p− q)) .

Hint: Use the results of Exercise 14.

b) Using the equality case in the Fenchel inequality, prove that p ∈ ∂h(x) if and only if there is some q ∈ RN
such that q ∈ ∂f(x) and p− q ∈ ∂g(x). Conclude.

Hint: Remember that the infimum in the definition of h∗(p) is attained.
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