Related-Key Attack on Full-Round PICARO SAC 2015

Anne Canteaut, Virginie Lallemand, María Naya-Plasencia

Inria, France

August 12th, 2015

Outline

(1) PICARO
 (2) Keys Leading to Colliding Ciphertexts
 (3) Related-Key Attack
 (4) Conclusion

PICARO

围
Gilles Piret, Thomas Roche and Claude Carlet PICARO - A Block Cipher Allowing Efficient Higher-Order Side-Channel Resistance, ACNS 2012.

Background

Objective

Build a cipher that would be easy to protect against side-channel attacks

All countermeasures have a high performance overhead
\rightarrow Start from the masking scheme, determine the parts that are hard to mask and then design the cipher accordingly

Background

Objective

Build a cipher that would be easy to protect against side-channel attacks

All countermeasures have a high performance overhead
\rightarrow Start from the masking scheme, determine the parts that are hard to mask and then design the cipher accordingly

PICARO is more efficient than AES when masked using Rivain-Prouff's scheme

PICARO

Focus on the Sbox, with special care to:

- non-linearity
- maximal differential probability
- algebraic degree
- ease to mask

PICARO

Focus on the Sbox, with special care to:

- non-linearity
- maximal differential probability
- algebraic degree
- ease to mask

$$
\begin{aligned}
S: G F\left(2^{4}\right) \times G F\left(2^{4}\right) & \rightarrow G F\left(2^{4}\right) \times G F\left(2^{4}\right) \\
(x, y) & \mapsto\left(x y,\left(x^{3}+0 x 02\right)\left(y^{3}+0 \mathrm{x} 04\right)\right)
\end{aligned}
$$

是
Claude Carlet
Relating Three Nonlinearity Parameters of Vectorial Functions and Building APN functions from Bent Functions,

```
Designs, Codes and Cryptography }2011
```


PICARO

Focus on the Sbox, with special care to:

- non-linearity $n l=94$
- maximal differential probability $\delta=4 / 2^{8}$
- algebraic degree $d=4$
- ease to mask 4 non-linear operations in $G F\left(2^{4}\right)$

$$
\begin{aligned}
S: G F\left(2^{4}\right) \times G F\left(2^{4}\right) & \rightarrow G F\left(2^{4}\right) \times G F\left(2^{4}\right) \\
(x, y) & \mapsto\left(x y,\left(x^{3}+0 \mathrm{x} 02\right)\left(y^{3}+0 \mathrm{x} 04\right)\right)
\end{aligned}
$$

- Claude Carlet

Relating Three Nonlinearity Parameters of Vectorial Functions and Building APN functions from Bent Functions,

```
Designs, Codes and Cryptography }2011
```


PICARO

Focus on the Sbox, with special care to:

- non-linearity $n l=94$
- maximal differential probability $\delta=4 / 2^{8}$
- algebraic degree $d=4$
- ease to mask 4 non-linear operations in $G F\left(2^{4}\right)$

$$
\begin{aligned}
S: G F\left(2^{4}\right) \times G F\left(2^{4}\right) & \rightarrow G F\left(2^{4}\right) \times G F\left(2^{4}\right) \\
(x, y) & \mapsto\left(x y,\left(x^{3}+0 \mathrm{x} 02\right)\left(y^{3}+0 \mathrm{x} 04\right)\right)
\end{aligned}
$$

- Claude Carlet

Relating Three Nonlinearity Parameters of Vectorial Functions and Building APN functions from Bent Functions,
Designs, Codes and Cryptography 2011.

Non-Bijective

Round Function: Possible Threat

Round Function: Possible Threat

- Possible to have only 1 round active out of 2 with only 1 active Sbox
- Need to ensure a minimum number of active Sboxes per round

Round Function

Solution Proposed: Expansion and Compression layers

12 rounds

- expansion from 8 bytes to $8+6$ bytes
- key addition
- Sbox layer
- compression from $8+6$ bytes back to 8 bytes

MDS code [8+6, 8, 7] of generator matrix:

$$
G=\left(\begin{array}{ll}
1 d_{8} & \mathscr{G}
\end{array}\right)
$$

$$
\text { With } \mathscr{G}=\left(\begin{array}{cccccc}
01 & 01 & 0 A & 01 & 09 & 0 C \\
05 & 01 & 01 & 0 A & 01 & 09 \\
06 & 05 & 01 & 01 & 0 A & 01 \\
0 \mathrm{C} & 06 & 05 & 01 & 01 & 0 \mathrm{~A} \\
09 & 0 C & 06 & 05 & 01 & 01 \\
01 & 09 & 0 \mathrm{C} & 06 & 05 & 01 \\
0 \mathrm{~A} & 01 & 09 & 0 \mathrm{C} & 06 & 05 \\
01 & 0 \mathrm{~A} & 01 & 09 & 0 \mathrm{C} & 06
\end{array}\right)
$$

Keys Leading to Colliding Ciphertexts

Preliminary Remarks

Sbox Property

Any entering difference has a probability of 2^{-7} of being cancelled

Preliminary Remarks

Sbox Property

Any entering difference has a probability of 2^{-7} of being cancelled

Round Function Property

Key addition is realised after the expansion and just before the Sbox layer

Preliminary Remarks

Sbox Property

Any entering difference has a probability of 2^{-7} of being cancelled

Round Function Property

Key addition is realised after the expansion and just before the Sbox layer

\rightarrow Main Idea: Introduce a difference in the key and cancel it immediately

Preliminary Remarks

Sbox Property

Any entering difference has a probability of 2^{-7} of being cancelled

Round Function Property

Key addition is realised after the expansion and just before the Sbox layer

\rightarrow Main Idea: Introduce a difference in the key and cancel it immediately

Preliminary Remarks

Sbox Property

Any entering difference has a probability of 2^{-7} of being cancelled

Round Function Property

Key addition is realised after the expansion and just before the Sbox layer

\rightarrow Main Idea: Introduce a difference in the key and cancel it immediately

Preliminary Remarks

Sbox Property

Any entering difference has a probability of 2^{-7} of being cancelled

Round Function Property

Key addition is realised after the expansion and just before the Sbox layer

\rightarrow Main Idea: Introduce a difference in the key and cancel it immediately

Preliminary Remarks

Sbox Property

Any entering difference has a probability of 2^{-7} of being cancelled

Round Function Property

Key addition is realised after the expansion and just before the Sbox layer

\rightarrow Main Idea: Introduce a difference in the key and cancel it immediately

How far can we go?

Keys Leading to Colliding Ciphertexts

Question:

Can we find a master key difference Δ such that for random (P, K) we have with high probability $E_{K}(P)=E_{K \oplus \Delta}(P)$?

To cancel all the key differences, we can afford a maximum of s Sbox cancellations, with s satisfying:

$$
2^{-7 s}>2^{-128}
$$

Keys Leading to Colliding Ciphertexts

Question:

Can we find a master key difference Δ such that for random (P, K) we have with high probability $E_{K}(P)=E_{K \oplus \Delta}(P)$?

To cancel all the key differences, we can afford a maximum of s Sbox cancellations, with s satisfying:

$$
2^{-7 s}>2^{-128}
$$

\rightarrow Find a Master Key difference that activates less than 18 bytes in the subkeys

Key Schedule

- Master key K of 128 bits
- 12 round-keys k^{i} of 112 bits

$$
\begin{aligned}
& \left\{\begin{array}{l}
\kappa^{1}=K \\
\kappa^{i}= \\
\\
\\
\quad\left(\begin{array}{l}
T\left(\kappa^{i-1}\right) \ggg \theta(i) \quad \text { for } i=2, \cdots, 12 \\
T(K)^{(1)} \\
T(K)^{(3)} \\
T(K)^{(4)}
\end{array}\right)=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \times\left(\begin{array}{l}
K^{(1)} \\
K^{(2)} \\
K^{(3)} \\
K^{(4)}
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

where θ is defined by:

i	2	3	4	5	6	7	8	9	10	11	12
$\theta(i)$	1	15	1	15	1	52	1	15	1	15	1

$k^{i}=$ first 112 bits of κ^{i}

Key Schedule

$$
\kappa^{i}=T\left(\kappa^{i-1}\right) \gg \theta(i)
$$

$$
\kappa^{\imath-1}
$$

Key Schedule

$$
\kappa^{i}=T\left(\kappa^{i-1}\right) \gg \theta(i)
$$

Key Schedule

$$
\kappa^{i}=T\left(\kappa^{i-1}\right) \gg \theta(i)
$$

Key Schedule

$$
\kappa^{i}=T\left(\kappa^{i-1}\right) \gg \theta(i)
$$

Key Schedule

$$
\kappa^{i}=T\left(\kappa^{i-1}\right) \gg \theta(i)
$$

Key Schedule

$$
\kappa^{i}=T\left(\kappa^{i-1}\right) \gg \theta(i)
$$

Key Schedule

$$
\kappa^{i}=T\left(\kappa^{i-1}\right) \gg \theta(i)
$$

$\ggg \theta(i)$

Key Schedule

$$
\kappa^{i}=T\left(\kappa^{i-1}\right) \gg \theta(i)
$$

Keys Leading to Colliding Ciphertexts

Key Schedule totally linear over $G F(2) \Leftrightarrow$ linear code

First approximation: look for low-weight codewords (in bits)

Keys Leading to Colliding Ciphertexts

Key Schedule totally linear over $G F(2) \Leftrightarrow$ linear code

First approximation: look for low-weight codewords (in bits)

Remark: Each master key bit flipped results in a minimum of 4 bits flipped in the odd round subkeys $\left(k_{1}, k_{3}, k_{5}, k_{7}, k_{9}, k_{11}\right)$
\rightarrow Codewords of weight ≤ 18 obtained by exhausting all master keys of weight ≤ 4

Keys Leading to Colliding Ciphertexts

Minimum distance 18
8 words/master key differences reaching that minimum:

| config. | k | k^{1} | k^{2} | k^{3} | k^{4} | k^{5} | k^{6} | k^{7} | k^{8} | k^{9} | k^{10} | k^{11} | k^{12} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 27,123 | 27 | 28 | 11,43 | 12,44 | 27,59 | 28,60 | 80 | 81 | 0,96 | 1,97 | 16 | 17 |
| 2 | 28,124 | 28 | 29 | 12,44 | 13,45 | 28,60 | 29,61 | 81 | 82 | 1,97 | 2,98 | 17 | 18 |
| 3 | 29,125 | 29 | 30 | 13,45 | 14,46 | 29,61 | 30,62 | 82 | 83 | 2,98 | 3,99 | 18 | 19 |
| 4 | 30,126 | 30 | 31 | 14,46 | 15,47 | 30,62 | 31,63 | 83 | 84 | 3,99 | 4,100 | 19 | 20 |
| 5 | 91,123 | 91 | 92 | 11,107 | 12,108 | 27 | 28 | 48,80 | 49,81 | 64,96 | 65,97 | 80 | 81 |
| 6 | 92,124 | 92 | 93 | 12,108 | 13,109 | 28 | 29 | 49,81 | 50,82 | 65,97 | 66,98 | 81 | 82 |
| 7 | 93,125 | 93 | 94 | 13,109 | 14,110 | 29 | 30 | 50,82 | 51,83 | 66,98 | 67,99 | 82 | 83 |
| 8 | 94,126 | 94 | 95 | 14,110 | 15,111 | 30 | 31 | 51,83 | 52,84 | 67,99 | 68,100 | 83 | 84 |

Byte distance: minimum of 18 active bytes
30 words/master key differences reaching that minimum
\rightarrow Ciphertexts collide with probability $2^{-18 \times 7}=2^{-126}$

Distinguisher

Related-Key Attack

Idea: Mounting a 2R-attack

Properties

Ciphertext Filter

For a plaintext and a pair of keys following the characteristic, only $2^{7 \times a_{11}}$ differences are possible out of 2^{64} for the right half of the ciphertext

Properties

Ciphertext Filter

For a plaintext and a pair of keys following the characteristic, only $2^{7 \times a_{11}}$ differences are possible out of 2^{64} for the right half of the ciphertext

Properties

Compression Function Property (for values and differences)

The knowledge of the output of the compression function and of any 6 bytes of the input is sufficient to uniquely determine all input bits

Properties

Compression Function Property (for values and differences)

The knowledge of the output of the compression function and of any 6 bytes of the input is sufficient to uniquely determine all input bits

Properties

Compression Function Property (for values and differences)

The knowledge of the output of the compression function and of any 6 bytes of the input is sufficient to uniquely determine all input bits

Properties

Compression Function Property (for values and differences)

The knowledge of the output of the compression function and of any 6 bytes of the input is sufficient to uniquely determine all input bits

Properties

Compression Function Property (for values and differences)

The knowledge of the output of the compression function and of any 6 bytes of the input is sufficient to uniquely determine all input bits

Basic Attack

(1) Ask for $2^{7 a_{1} \rightarrow a_{10}}$ messages encrypted with both K and $K \oplus \Delta$

Basic Attack

Basic Attack

(1) Ask for $2^{7 a_{1} \rightarrow a_{10}}$ messages encrypted with both K and $K \oplus \Delta$
(2) Filter out the pairs without the correct ciphertext difference
(3) Guess 6-byte differences and deduce whole Comp input difference

Basic Attack

(1) Ask for $2^{7 a_{1} \rightarrow a_{10}}$ messages encrypted with both K and $K \oplus \Delta$
(2) Filter out the pairs without the correct ciphertext difference
(3) Guess 6-byte differences and deduce whole Comp input difference

Basic Attack

(1) Ask for $2^{7 a_{1} \rightarrow a_{10}}$ messages encrypted with both K and $K \oplus \Delta$
(2) Filter out the pairs without the correct ciphertext difference
(3) Guess 6-byte differences and deduce whole Comp input difference

Basic Attack

(1) Ask for $2^{7 a_{1} \rightarrow a_{10}}$ messages encrypted with both K and $K \oplus \Delta$
(2) Filter out the pairs without the correct ciphertext difference
(3) Guess 6-byte differences and deduce whole Comp input difference

Basic Attack

(1) Ask for $2^{7 a_{1} \rightarrow a_{10}}$ messages encrypted with both K and $K \oplus \Delta$
(2) Filter out the pairs without the correct ciphertext difference
(3) Guess 6-byte differences and deduce whole Comp input difference

Basic Attack

(1) Ask for $2^{7 a_{1} \rightarrow a_{10}}$ messages encrypted with both K and $K \oplus \Delta$
(2) Filter out the pairs without the correct ciphertext difference
(3) Guess 6-byte differences and deduce whole Comp input difference
(9) Compute expansion function in differences and add Δ

Basic Attack

(1) Ask for $2^{7 a_{1} \rightarrow a_{10}}$ messages encrypted with both K and $K \oplus \Delta$
(2) Filter out the pairs without the correct ciphertext difference
(3) Guess 6-byte differences and deduce whole Comp input difference
(1) Compute expansion function in differences and add Δ
(6) Check the DDT and deduce values

Basic Attack

(1) Ask for $2^{7 a_{1} \rightarrow a_{10}}$ messages encrypted with both K and $K \oplus \Delta$
(2) Filter out the pairs without the correct ciphertext difference
(3) Guess 6-byte differences and deduce whole Comp input difference
(1) Compute expansion function in differences and add Δ
(6) Check the DDT and deduce values

Basic Attack

(1) Ask for $2^{7 a_{1} \rightarrow a_{10}}$ messages encrypted with both K and $K \oplus \Delta$
(2) Filter out the pairs without the correct ciphertext difference
(3) Guess 6-byte differences and deduce whole Comp input difference
(9) Compute expansion function in differences and add Δ
(3) Check the DDT and deduce values
(0) With ciphertext value, deduce k^{12}

Basic Attack

(1) Ask for $2^{7 a_{1} \rightarrow a_{10}}$ messages encrypted with both K and $K \oplus \Delta$
(2) Filter out the pairs without the correct ciphertext difference
(3) Guess 6-byte differences and deduce whole Comp input difference
(9) Compute expansion function in differences and add Δ
(6) Check the DDT and deduce values
(0) With ciphertext value, deduce k^{12}
(- Use previous rounds to filter out keys

Basic Attack

Improvement: Structure-like Technique

Let the first round-key difference spreads freely and cancel it with a plaintext difference introduced in right hand plaintext half

Encrypt the $2^{8 a_{1}}$ messages $P \oplus \delta$ under the keys K and under $K \oplus \Delta$ where the δ covers all the possible differences at the output of the compression function

Improvement: Structure-like Technique

Let the first round-key difference spreads freely and cancel it with a plaintext difference introduced in right hand plaintext half

Encrypt the $2^{8 a_{1}}$ messages $P \oplus \delta$ under the keys K and under $K \oplus \Delta$ where the δ covers all the possible differences at the output of the compression function
$2^{8 a_{1}}+2^{8 a_{1}}=2^{8 a_{1}+1}$ encryptions
give $2^{8 a_{1}} \times 2^{8 a_{1}} \times 2^{-8 a_{1}}=2^{8 a_{1}}$ pairs that pass the first round conditions
$\rightarrow 2^{7 \times a_{2 \rightarrow 10}+1}$ encryptions in total (vs $2^{7 \times a_{1 \rightarrow 10}+1}$)

Choosing Parameters

Memory:

$$
2^{8 \times a_{1}+1}
$$

Data:

$$
2^{7 \times a_{2 \rightarrow 10}+1}
$$

Time:

$$
2^{7 \times a_{2} \rightarrow 10+1}+2^{7 \times a_{1} \rightarrow 11-18.58}
$$

$a_{2 \rightarrow 10}$	$a_{1 \rightarrow 11}$	Memory	Data	Time
14	18	2^{17}	2^{99}	$2^{107.4}$
15	17	2^{9}	2^{106}	2^{106}

Conclusion

Conclusion

- While the designers targeted resistance against related-key attacks, we have shown a full-round cryptanalysis of PICARO under this model
- The main weakness exploited here (and one that should be fixed) is the small diffusion of its key schedule, which turns out to be devastating when combined with the non-bijective Sboxes

Thank you for your attention

