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A posteriori analysis has become the basic tool for automatic mesh
adaptivity in finite elements and finite volumes. However many other
applications have recently appeared.



e About multi-step discretizations

e Optimization of the penalty parameter for the Stokes equations
with V. Girault, and F. Hecht

e Other applications of the penalty method



About multi-step discretizations

Let X be a Banach space, and assume that A is a continuous mapping
from X into X. For a given element f of X, we are interested in the
discretization of the equation

Find v in X such that
A(u) = f.

d : positive parameter
We consider the problem :

Find us In X5 such that

As(us) = fs,
where X; is a finite-dimensional subspace of X, A;s; denotes an approxi-
mation of A defined on X5 and fs an approximation of f in Xj.



A priori estimates

lu —usllx < F(6,u) + H(S, f).

The quantity F'(6,u) is usually equal to some power of § times some
norm of u, so it involves the regularity of u (which is most often
unknown).

— proves the convergence of the method.
— useful for the choice of the discretization.

A posteriori estimates

v —usllx < G(9, fs,us) + K(9, f).

The quantity G(9, fs,us) can be computed explicitly once the discrete
solution us iIs known.
First application : mesh adaptivity



A new application : multi-step discretizations

In a large number of cases, the discretization of partial differential equa-
tions involves one or several intermediate (non discrete) problems before
the final discrete problem. However error indicators only depending on
the discrete solution can be constructed for each step of the discreti-
zation.

Initial problem : Find « in X such that A(u) = f.
Intermediate problem : Find u: in X such that A:(u:) = f.
Discrete problem : Find u.5 in X5 such that A_s(u.s) = fs.

Several parameters = and ¢ are involved in the discretization. The aim
of a posteriori analysis is to optimize simultaneously the choice of both
e and 6.



e Parabolic equation

Intermediate problem : Time semi-discrete problem
Discretization parameters : Time step and mesh size
A. Bergam, C.B., Z. Mdghazli

e Penalization (or regularization) methods
C.B., V. Girault, F. Hecht

Intermediate problem : Continuous penalized problem
Discretization parameters : Penalty parameter and mesh size

e Automatic coupling of models
M. Braack, A. Ern



Several independent parameters appear in the discretization. This leads
to use several families of error indicators.

The aim is to uncouple as much as possible the errors linked to the
different parameters. But each indicator only requires the knowledge of
the fully discrete solution (in order that it can be computed explicitly).
So this is not completely possible for the estimates.

The idea of local representation of the error must be given up (or at
least modified) for some families of indicators. But the optimization of
the other parameters must remain compatible with mesh adaptivity.

An optimization criterion : The error due to ¢ must be of the same
order as the discretization error due to /.



Optimization of the penalty parameter for the Stokes equations

Let 2 be a bounded open domain in IR?, d = 2 or 3, with a Lipschitz—
continuous boundary.

—Au—+gradp =1 in €,
divu =20 in €2,
u=20 on 0f2.

The unknowns are the velocity u and the pressure p.

Variational formulation
Find (u,p) in H3(2)4 x L3(Q) satisfying

You € Hol(Q)d, /Q gradu : grad vdx — /Q(div v)(x) p(x) dx = /Q f(x) - v(x) dx,

Vg € L3(Q), - /Q(div u)(x) ¢(x) dx = 0.

For any data f in H~1(Q)9, this problem has a unique solution.



T he penalized problem

Let ¢ be the penalty parameter, 0 < e < 1.

Find (ue,pe) in H5(Q2)4 x L3(2) satisfying

Vv € H(-l)(Q)d, /Q grad u: : gradvdx—/Q(div V) (X) pe(x) dx = /Q f(x)-v(x)dx,

Vg e L3(2), — [ (divue)(x)q(x)dx—e | p-(x)q(x)dx = 0.
P Q

The second equation is equivalent to

Pe = _e Ldiv Ue.



AS a consequence, the penalized problem can equivalently be written

Find u. dans H}(2)¢ satisfying
Vv € Hé(Q)d, /Q gradue : gradvdx 4+ 71 /Q(div u:)(x) (divv)(x) dx
= [ f(x) - v(x)dx,
|60 - V() dx

Find p. dans L3(S2) satisfying

Vg€ L3(Q), = | pe(a(x) dx = — [ (divue)(x) q(x) dx

For any data f in H—l(Q)d, this problem has a unique solution.
This does not require any inf-sup condition'!

A priori error estimates can be proven between the solutions (u,p) and
(ug,pe). The error behaves like «¢.
V. Girault, P.-A. Raviart



The discrete problem
(7)) : regular family of triangulations of 2 by triangles or tetrahedra.

Xy C H(%(Q)d, M;, C L%(Q)

The spaces X; et M,; are mede of piecewise polynomial functions on
the triangulation 7;,.

Find (ugh,pgh) in Xh X Mh satisfying

Vv, € Xy, /Q gradu.;, : gradvy dX—/Q(div vy,)(X) pep(X) dx = /Q f(x)-vy(x)dx,

Van € My, — [ (dvug)() ap () dx — ¢ [ po()an(x) dx = 0.

Let I, denote the orthogonal projection operator from L%(Q) onto M;,.
The second equation is equivalent to

pep, = — L Mp(divugy,).



The discrete problem can equivalently be written

Find u,;, in X; satisfying
Y, € Xy, /Q gradu.;, : gradv,dx -+ 8_1/Q My, (divu,y,)(x) My (divvy)(x) dx
= [ f : dx,
|60 - vi(x) dx
Find p.p, in My, satisfying
Vgn € Mp, € /Q Pen(X)qp(x) dx = — /Q(diV u.p,)(x) gp(x) dx.

For any f in H~1(Q)4, this problem has a unique solution.
This does not require any inf-sup condition!

Provides an efficient algorithm for solving the discrete problem, since
the two unknowns are now uncoupled!

If an inf-sup condition exists between the spaces X; and M;, a priori
error estimates can be proven between the solutions (u,p) and (u.y, p.p)-



Two families of error indicators

e Error indicator related to the penalty term

Ne = € ”peh“LQ(Q)'

e Error indicators related to the finite elements
E ¢ set of edges or faces of K which are not contained in 0f2.

For any element K of 7,
Nk = hi ||t + Aug, — grad pepll 2 gy

1 1 .
+ 5 2 ke llPnvcn = pennlll2¢eya + 1V Ul 2y,
ecli

where f; denotes a piecewise polynomial approximation of f.

C.B., B. Mé¢tivet, R. Verfurth



An a posteriori error estimate

The aim is to bound the error between (u,p) and (u., p.;,) as a function
of n:, the nix and the data.

u — u6h|H1(Q)d < |u-— u€|[—]1(§2)d + |ue — u6h|[—]1(g‘2)d7

1P = penll2¢q) < 1P — pell L2(q) + IPe — Penll L2(0)-

Idea : A residual equation to bound each term.



Residual equation for the first term :

Vv € H&(Q)d, grad (u—u:) : gradvdx — | (divv)(x) (p —p:)(x)dx = 0,
Q2 Y

Vg e L3(2), — (div (u— ug))(x) ¢(x)dx = ¢ | pe(x)q(x)dx.
Q Q

The estimate results from the stability properties of the Stokes ope-
rator and a triangle inequality.

Proposition : The following a posteriori estimate holds

lu — u8|H1(Q)d + |lp — pe||L2(Q) <c (776 + ¢ |lpe — pz—:hHLQ(Q))'



Residual equation for the second term :
Vv € H&(Q)d, /Q grad (us —u.y) : gradvdx + ...

The estimate is derived via the standard arguments for the Stokes
problem (and requires the introduction of an approximation v; of the
function v in X3;).

Proposition : Let us assume that the space X; contains

Y, = {Vh < Hcl)(Q)d; VK €71, Vi |K S Pl(K)d}.

T he following a posteriori estimate holds

N~
~_

lus — ueh|H1(Q)d + ||pe — Psh||L2(Q) <c (776 + ( Z (77%( + h%{ £ — fh”%Q(K)d)
KeT,



An upper bound for the indicators

Idea : In the first residual equation,

Vg € L§(Q),

e | pen(a(x) dx = —¢ [ (pe = pen)(x)q(x) dx — [ (div (u—ue)) (x) g(x) dx.
we take g equal to p_y.

Proposition : The following estimate holds

Ne < C |Ul - us|H1(Q)d + € ||ps — psh”LQ(Q)'



Idea : In the second residual equation, we take v successively equal to
v = (f, + Au,, —gradp.) v on K, O elsewhere,
Ve = L([c‘?yugh —ppm]e) on KUK/, O elsewhere,
next ¢ equal to

qrg = divu,, on K, 0O elsewhere.

Proposition : The following estimate holds, for any element K of 7;,

NK < ¢ <|u - U8|H1(K)d + |ue - U—sh|H1(wK)d
HlIpe = penll 1200y + B IE = Bl 2 y0);

where wy stands for the union of elements of 7; that share at least an
edge or a face with K.

Optimal estimates, the second one is local in space!



Some numerical experiments
realized with the code FreeFem-+

F. Hecht, O. Pironneau

Taylor—Hood finite element, uniform mesh

Given smooth solution in a square

e INnfluence of the penalty parameter

e Influence of the mesh

N

m= > nx)
KeTy,









Extensions

e Local penalization

We have tried to replace ¢ [, p(x)q(x) dx by

> exc [ p(x)q(x) dx.

KET}L

-+ two types of local error indicators.
Some restrictions on the discretization, no special interest.

e Navier—Stokes equations
J. Pousin, J. Rappaz
R. Verfurth
No further difficulty.



Data : viscosity »r = 1072 and non zero tangential velocity on the left
boundary.
e=0.14 x 1072




Other applications of the penalty method

e Spectral element discretization of the Stokes problem
with A. Blouza, N. Chorfi, and N. Kharrat

Let €2 be a bounded open domain in ]Rd, d =2 or 3, with a Lipschitz—
continuous boundary.

—Au—+gradp =1 in <2,
divu=20 in <,
u=20 on 0X2.

The unknowns are the velocity u and the pressure p.



The penalized problem

Let ¢ be the penalty parameter, 0 < e < 1.

Find (u,p) in H3(2)4 x L3(2) such that

Vv € Hé(Q)d, /Q gradu : grad vdx — /Q(div v)(x) p(x) dx = /Q f(x) - v(x) dx,

Vg e L3(), — | (divu)(x)q(x)dx—e | pe(x)q(x)dx = 0.
Y Y



We assume that 2 admits a decomposition without overlap

Q= Ut Q et N =0, 1<k<k <K,

where .

e Each 2, is a rectangle (d = 2) or a rectangular parallelepiped(d = 3),
e The intersection of two different 2, is either empty or a vertex or a
whole edge or a whole face of booth subdomains.

The discrete spaces

P, (€2;) : space of restrictions to 2, of polynomials with degree < n with
respect to each variable.

Let )\ be a fixed parameter, O < A < 1. For any integer N > 2, we define
the spaces

Xy = {VN € H5(D)% vy, € Pn(2)% 1 <k < K},

My = {QN € L5(Q); anja, € PN—2(2%) NPAn(2;), 1 <k < K}



Numerical integrationn

o = —1, &y = 1.
Gauss-Lobatto quadrature formula : there exis nodes ¢§;, 1 <j < N — 1,
and weights p;, 0 <j < N, such that
1 N

Vo € Poy_1(—1,1), /1<1><<) d¢ =

() pj-
j=0

If ;. denotes one of the affine mappings that maps the reference domain
]—1,1[¢ onto ©;, we define a discrete product, for instance in dimension
d =2 by

K

(w, V)N = )

k=1

meas($2)
4

N N
> ) uwo Fr(&,&5)v o Fi(&,€5) pipjs -

i=0 ;=0



The discrete problem

Find (u€N7p6N) in Xpn X Mp such that

Vv € Xy, (gradugN,grava)N - (diVVN,pgN)N = (f,on)nN,

Vay € My, —(divugy, CIN>N — & (Pen,aN)N = 0.

Let )y be the orthogonal projection operator from L%(Q) onto My.
The second equation reads

pen = —e I Mn(divugy).



The discrete problem can equivalently be written as

Find u.n in X such that
Vony € Xy, (grad ustgradVN)N + 8_1<|_|N(diV ugN), M (div VN))N
= (f,on) N,

Find p.n in My such that

Van € My, & (pen,an)n = —(divuy, CIN)N-

For any continuous data f on €, this problem has a unique solution.
This does not require any inf-sup condition'!

Provides an efficient algorithm for solving the discrete problem, since
the two unknowns are now uncoupled!

If an inf-sup condition exists between the spaces X, and Mjy;, a priori
error estimates can be proven between the solutions (u,p) and (u.y, p-y)-



Two families of error indicators

e Error indicator related to the penalty term

TNe — & ||psN||L2(Q)-

e Error indicators related to the spectral discretization
& 1 set of edges or faces of 2, which are not contained in 0f2.

For 1 <k <K,

m = N"H|INf+ Augy — grad pe vl 12y
1 |
+ Z N2 ||[Ovucny — pen n]||L2(e)d + [[div U—aNHLQ(K)a
eégk

where 7, stands for the interpolation operator at all nodes Fi(¢;,&;) or

Fk(£fw ‘S]) Ep)



A posteriori error estimate

Proposition : The following a posteriori error estimate holds

[u—ue|y1gya + P = pellp2(q) < ¢ (776 +ellpe - p€N||L2(Q))'

Proposition : The following a posteriori error estimate homds

N

),

1
where po is equal to 1 in dimension d = 2 or if 2 is convex, to N 2

otherwise.

K 1
[ue — vyl g1yt + lIpe = penllp2ea) < e (ne 4+ pa( X n2)? +IE = Infl 72 ky0)
k=1



An upper bound for the indicators

Proposition : The following estimate holds

Ne < |u — us|H1(Q)d + e ||p€ — psNHL?(Q)'

We do not state an upper bound for the n;, (which would be nonoptimal)
since we do not intend to adapt the N.



Some numerical experiments

Adaptivity strategy : Let us choose ¢° < 1 and a parameter p, 0 < 1 < 1.
Next, assuming that " is known,

(i) we compute the solution (u.y,p.y) forr e = ™, t he indicator n° and
1

the Hilbertian sum n(N) = (S5, 72)2.

(i) if

m 1
pun(N) <n° < ;n(N),

we stop the process.
(iii) otherwise, we take ¢™11 equal to ¢ n(N)/n°" and we go back to
step (i).

For a given solution in a L-shaped domain divided into three squares,

N
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e Domain decomposition methods
with T. Chacon Rebollo, E. Chacon Vera, and D. Franco Coronil

When a decomposition of the domain without overlap is cosidered, the
matching conditions on the interfaces are most often handled via the
introduction of a Lagrange multiplier. And of course it is possible to
use a penalty method for the corresponding mixed problem.

Let €2 be a bounded open domain in Rd, d =2 or 3, with a Lipschitz—
continuous boundary.

—Au=f in Q,
u=2~0 on 0S2.

We assume that 2 admits a decomposition without overlap

Q=Q1US2H and QlﬂQQZ(Z),

and also that, if [ denotes the interface 021 N 0S25, I iIs Lipschitz—
continuous and tol is contained in 0f2.




Variational formulation
1 N 1 N oo ,
HI(Q,) = {v e HY(;); v=0 on d%; \ r}.

1
Findr (u1,up,\) in HX(21) x H}(22) x HZ,(I") such that

V(v1,v2) € HE (1) x HE (),

2 2
Z; /Qi grad u; - grad v; dx + [[v] — vo, A]]F = Z; /Qi f(x) - v;(x) dx,

1
Vu € H5o(M),  [[ur —u2, p]lr =0,
1
where [[-,-]]r denotes the scalar product of H5 ().

The equivalence of this formulation with the initial problem is readily
checked.



The penalized problem

1
Find (ug,u5, A°) in H}(S21) x HY(Q5) x HZ,(I) such that
V(v1,v2) € Hy (21) x H (Q22),

2 2
) /Q grad u; - gradv; dx + [[vy — v2, A¥]]r = ) /Q f(x) - v(x) dx,
(=177 i=1"%%

1
Ve Hgo(M),  [[ui —us, pllr = e [N, plr

A priori error estimates of order = between the solutions (uy,u>,A) and
(u§,u5, %) are easily derived.



But when replacing the scalar product [[-,:]]r by the scalar product of
L?(I), the convergence is only of order ./z.
T. Chacon Rebollo, E. Chacon Vera

From now on, we only consider the reduced problem

Find (uj,u$) in H (1) x H(Q2) such that

V(v1,v2) € HE(21) x HE (),

1=

.

1=

2 2
Z /Q grad u§ - gradv; dx 4+ &1 [[u] — u5,v1 — Vo]l = Z /Q f(x) - v;(x) dx,
17°% 1734



The discrete problem

(7)) : regular family of trianngulations of 2 by triangles or tetrahedra
such that I is contained in edges (d = 2) or faces (d = 3) of elements
of Th

We consider discrete spaces built from triangulation 7; such that

X, C Hi ().
Find (u3;,u5;,) in X1y x Xop, such that

V(v1ip, vop) € X1p X Xop,

1= 1=

2 2
> [ graduf, - gradvy, dxte ! {[uf—usy vin—vapllr = X [ FG0-vin(x) dx
1 i =1 ¢

This problem has a unique solution.



Two families of error indicators

e Error indicator related to the penalty term

ne =¢€|luy —ugpll 1
H5, ()

e Error indicators related to the finite element discretization
For each element K of 7; contained in €2;, : =1, 2,

1 1
nx = hi | fo + Dugpll 2y + 5 Zg: he [|[Onuip]ll L2(ey,
ECCK

where f;, is a piecewise polynomial approximation of f.



A posteriori error estimate

hm = mMin hi.
" Kmr#(ZJK

Proposition : Assume that each space X,; contains
Yin = {Vh € Hy(); VK € Ty, vk € 7’1(K)}-
T he following a posteriori error estimate holds

2 1
Z u — uffh'Hl(Q[) Sc <775 + ( Z M%d??%( + |[f - fh”%Q(K)))Q)y
1=1 KeT,

where uy is equal to 1 iIf KNl =10, a h,* otherwise.

N|—

The loss of optimality is local. It is due to the nonconformity of the
discretization.



An upper bound for the indicators

Proposition : The following estimate holds

2

e < ¢ ) Ju— Ul
1=1

and, for any element K of 7;,
i < e (Ju—uil gy + hic IlF = fall 200,0));

where wi is the union of elements of 7,,thta share at least and edge
(d =2) or a face (d = 3) with K.



Key numerical difficulty :

Computing the scalar product [[-, ]| is very expensive, even when using
an extension of

E. Casas, J.-P. Raymond

So the method is not so efficient as it could be thought frm the esti-
mates.



Some numerical experiments

Smooth solution in a square divided into two rectangles.
Influence of the penaty parameter (left part), of the mesh (right part)

h =3.1072 e=10"7

Square test: Influence of the Hé{)z penalty parameter (h=1/32) Square test: Influence Hégz of the mesh size (eps=0.01)
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Smooth solution in a L-shaped domain divided into two trapezia.
Influence of the penaty parameter (left part), of the mesh (right part)

h=3.10"2 e =102

. 1/2 : _
LShape test: Influence of the Hé’oz penalty parameter (h=1/64) LShape test: Influence Hoo of the mesh size (eps=0.01)
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The adaptivity algorithm in the L-shaped domain

1
Comparison of the methods with HZ,()- and L?(I)-matching

Eopt Iterations | CPU time

mtl? | 0.0503| 165 126.3s
L? | 0.0029 157 99.0s

h=1/64



e Finite element discretization of a shell model
with A. Blouza, F. Hecht, and H. Le Dret

The Naghdi model and its variational formulations

w : polygon in R2,
The midsurface of the shell is given by S = ¢(w) where ¢ is a one-to-one
mapping in W2>(w)3 such that the two vectors

aa(x) = (Oap)(x)

are linearly independent at each point x of w. The thickness of the shell
IS denoted by e.

Unit normal vector to S at point ¢(x) : az(x) = Eg%ﬁggg%

Local contravariant basis : a;(x) - al(x) = 55
Area element of the midsurface : /a(x) = |a;(x) A as(x)|.
First fundamental form of the surface : ¢®® = a® - af.



In the case of homogeneous, isotropic material with Young modulus
E > 0 and Poisson coefficient v, 0 < v < % the coefficients of the
elasticity tensor are given by

E Ev
2(1 4+ v) 1 — 02
This tensor is symmetric and uniformly strictly positive.

aaﬁpa - aaﬁapa.

(aapaﬁa + awaﬁp) +

Covariant components of the change of metric tensor :

1
Yop() = 5((’9au -ag + dgu - aq).

Covariant components of the change of transverse shear tensor :

1
d,3(u,r) = 5(8au -az +r-ag).

Covariant components of the change of curvature tensor

1
onﬁ(ua r) = 5(80511 : 853.3 + 8511 - Oqaz + Oar - ag c%r caq).



Boundary conditions :

The boundary Ow is divided into two parts : g on which the shell is
clamped and its complementary part v; = 0w \ g

H%O(w) = {,u e HY(w); p=0o0n 'yo}.

The unknowns are the midsurface displacement u of the shell and its
rotation r (so that r is tangential to the midsurface).

V(w) = {(v,s) € Hy (w)? x H} (w)*; s-a3=0inw}.



First variational problem

Find (u,r) in V(w) such that
V(v,s) €V(w), a((ur);(v,s)) =L((v,s)),

where the bilinear form a(-;-) is defined by

e2
1€a®7 76,6(1)700 (V) + 5 Xap( 1)Xp0 (v, 5)]

05,500,153 (v,8) }Va dx,

a((u,0); (v,9)) = [

w

2
+ €7
and the linear form L(-) is given by

L((V,s))szf-v\/adx—l—/ (M-v+ N-s)dr.

71
The data f, M and N represent a given resultant force density, an
applied moment density and an applied traction density, respectively.



A. Blouza, H. Le Dret

1 1
For any data (f,M,N) in Hi (w) x HZy(y1)> x HZ,(v1)¥, this problem
admits a unique solution (u,r) in V(w).

But, in view of the discretization, a Lagrange multiplier must be intro-
duced to handle the tangency constraint r-az = 0.

Second (mixed) variational problem
A. Blouza, H. Le Dret

X(w) = Hy (w)> x Hy (w)3, M(w) = H (w).

From now on, we set : U = (u,r),V = (v, s).



Find (U,v) in X(w) x M(w) such that
YV e X(w), a(U;V)+b(V;y) =L(V),
Vx € M(w), b(U;x) =0,

where the new bilinear form b(-;-) is defined by

b(V:x) = /w Bo(s - 23)Bax dx.

The penalized problem
Find (U,v) in X(w) x M(w) such that
VV € X(w), a(U;V)+b(V;y)=L(V),

Vx € M(w), b(U;x) = ¢ec(y,x),
where the new bilinear form c(-;-) is defined by

c(y; x) = /w(‘?aw@oéx dx.

All these problems are well-posed.



The discrete problem

(7;,)5 - regular family of trianngulations of w by triangles such that ~g is
the union of whole edges of elements of 7;,.

We thus define the basic discrete space

My, = {x;, € H'(w); VK € T, xpx € P1(K)},

next the spaces that are involved in the discrete problem

M7 =M, NHL W), X, = (M}°)7 x (M0,

Find (Up,vyp) in X, x M0 such that
VWi, € Xp,  a(Up, Vi) + 0(Vi, vp) = L(V}),

Vxn € M°,  b(Up, xp) = e c(¥p, Xn).

This problem has a unique solution.



Approximation of the data : We consider an approximation {;, of f in Z,,
and approximations N, and M, of N and M in Z}L, where the spaces 7
and Zi are defined by

Lp, = {gh € L*(w)? VK €Ty, Sh|K € PO(K)S},

Z}L = {Ph € L2(71)3; Ve € 8}}, Ph|e < 730(6)3}.

8,% , set of edges of elements of 7, which are contained in 7;.

Approximation of the coefficients : We introduce approximations ao‘ﬁ
O‘ﬁpa (v/a);, and ¢;, of the scalar coefficients a®®, a®%r9, /o and ¢ in the
space M. Similarly, we consider approximations ak of the vectors a; and

3
d? of the d,a3 in the space (Mh) :



We also agree to denote by ’yZﬁ(-), sh5(+) and ng(') the coefficients of
the tensors introduced above where all coefficients are replaced by their
approximations.

Some new notation : We define the contravariant components of the
stress resultant

nf? (u) = eap?7 415 (),

of the stress couple

3
(&
mf?(U) = a7 xap(U),
and of the transverse shear force
E

tﬁ(U) — 61—+Vaaﬁ 50{3(U)
We also observe that

] 1



Two families of error indicators

e Error indicator related to the penalty term

Ne = ¢ |¢£|H1(w)

e Error indicators related to the finite element discretization
For each element K of 7,

MK =NK1 + MK2 + MK3;
with

i1 = hic If,(Va)y + 9p((nf)7 (wp)al + mf7 (Uy,)dl: 4 th (Uy)a%) (Vadn ) | L2 k)3
1
+ Y 2 |pe(f (wp)al + mh? (Uy)dL + 1 (Uy)ak) (Va) h]e” 12(e)3
665[(\5}(

1
+ 3 h2INg b, — vp(nf)? (wy)ag + mp” (Up)dl + ) (Up)al) (Vadull 1203
e€€}<



N2 = hi ||8p(mZJ(Uh)ag(\/a)h> —tff(Uh)aZ-» (\/a)h+ap(a§6p¢h) —dp0ptnll L2 k)3

1
+ X R ||yl (Upal(Va), + vpdpnal] 1203
665}(\5}(

1
+ > hE Myl — vpmf? (Up)ag(Va)y — vpdptpalllp2(e)3,
665[1(—

and
nk3 = hi |0a(Bar], - ag, + 1}, - dl — &p BaVi) 1250y

1 1
+ > h2|ovCy-af —ep el oy + Y hE 10u(ry - & — ep ¥ 120
e€EK\EF- el

E : set of edges of K not contained in ~g,
8}< : set of edges of K contained in ~;.



A posteriori error estimates

Despite the slightly alarming aspect of the indicators, all a posteriori
error estimates and upper bounds for these indicators are fully optimal,

up to the terms involving the data

1
D = hic If — Bl 2i0y3 + X0 h2 (IN = Npll 12003 + IM = Myl 2(93),

1
eESK

and the coefficients

c 1
=) = ||Va — (V) poey + B2 1€ = all ooy + -



Key numerical difficulty :

e The main part of the solution (u;,r;,—(r;-az)az) sems fully independent

of .
e The error indicator n: iIs much smaller than the 7.

S0, no adaptivity procedure with respect to ¢ seems possible. We only
choose an initial £ such that

e <1073 ( Y n%)é-
KeT,,



Case of a hyperbolic paraboloid shell clamped on the whole boundary
and subjected to a uniform pressure.

T
C

xl + |y| S b\/§ ) CP(CC,y) — mayaﬁ(xz T y2) )

w = (z,9);

with b =50cm, ¢=10cm, and ¢ = 0.8 cm.

The “over-deformed” shell p(x) + 1000 u(x)

i
rrg et

(AT

P

s
RO ATI
5

KRR A AN
S ST
] T

A B PeSiet

e &%ﬁ\

5

WA ZAVAYAY A

! o

Ve A AT AT

‘v5‘5’%ﬂ'lﬁ""é‘iﬂ'ﬁuvmmwé‘“«%ﬁf‘
KA
T i B

s

i
) WA vITET, SIS IS
AT VA G ATA N ST e
i VAo
AV
<A KNS

R ARAES
VAVATASlp avava S

V“




Thank you for your attention



