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A posteriori analysis has become the basic tool for automatic mesh

adaptivity in finite elements and finite volumes. However many other

applications have recently appeared.



• About multi-step discretizations

• Optimization of the penalty parameter for the Stokes equations

with V. Girault, and F. Hecht

• Other applications of the penalty method



About multi-step discretizations

Let X be a Banach space, and assume that A is a continuous mapping
from X into X. For a given element f of X, we are interested in the
discretization of the equation :

Find u in X such that

A(u) = f.

δ : positive parameter

We consider the problem :

Find uδ in Xδ such that

Aδ(uδ) = fδ,

where Xδ is a finite-dimensional subspace of X, Aδ denotes an approxi-
mation of A defined on Xδ and fδ an approximation of f in Xδ.



A priori estimates

‖u− uδ‖X ≤ F (δ, u) +H(δ, f).

The quantity F (δ, u) is usually equal to some power of δ times some

norm of u, so it involves the regularity of u (which is most often

unknown).

=⇒ proves the convergence of the method.

=⇒ useful for the choice of the discretization.

A posteriori estimates

‖u− uδ‖X ≤ G(δ, fδ, uδ) +K(δ, f).

The quantity G(δ, fδ, uδ) can be computed explicitly once the discrete

solution uδ is known.

First application : mesh adaptivity



A new application : multi-step discretizations

In a large number of cases, the discretization of partial differential equa-

tions involves one or several intermediate (non discrete) problems before

the final discrete problem. However error indicators only depending on

the discrete solution can be constructed for each step of the discreti-

zation.

Initial problem : Find u in X such that A(u) = f.

Intermediate problem : Find uε in X such that Aε(uε) = f.

Discrete problem : Find uεδ in Xδ such that Aεδ(uεδ) = fδ.

Several parameters ε and δ are involved in the discretization. The aim

of a posteriori analysis is to optimize simultaneously the choice of both

ε and δ.



• Parabolic equation

Intermediate problem : Time semi-discrete problem

Discretization parameters : Time step and mesh size

A. Bergam, C.B., Z. Mghazli

• Penalization (or regularization) methods

C.B., V. Girault, F. Hecht

Intermediate problem : Continuous penalized problem

Discretization parameters : Penalty parameter and mesh size

• Automatic coupling of models

M. Braack, A. Ern



Several independent parameters appear in the discretization. This leads

to use several families of error indicators.

The aim is to uncouple as much as possible the errors linked to the

different parameters. But each indicator only requires the knowledge of

the fully discrete solution (in order that it can be computed explicitly).

So this is not completely possible for the estimates.

The idea of local representation of the error must be given up (or at

least modified) for some families of indicators. But the optimization of

the other parameters must remain compatible with mesh adaptivity.

An optimization criterion : The error due to ε must be of the same

order as the discretization error due to δ.



Optimization of the penalty parameter for the Stokes equations

Let Ω be a bounded open domain in IRd, d = 2 or 3, with a Lipschitz–
continuous boundary.

−∆u + grad p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω.

The unknowns are the velocity u and the pressure p.

Variational formulation
Find (u, p) in H1

0(Ω)d × L2
0(Ω) satisfying

∀v ∈ H1
0(Ω)d,

∫
Ω

gradu : gradv dx−
∫

Ω
(div v)(x) p(x) dx =

∫
Ω

f(x) · v(x) dx,

∀q ∈ L2
0(Ω), −

∫
Ω

(div u)(x) q(x) dx = 0.

For any data f in H−1(Ω)d, this problem has a unique solution.



The penalized problem

Let ε be the penalty parameter, 0 < ε ≤ 1.

Find (uε, pε) in H1
0(Ω)d × L2

0(Ω) satisfying

∀v ∈ H1
0(Ω)d,

∫
Ω

graduε : gradv dx−
∫

Ω
(div v)(x) pε(x) dx =

∫
Ω

f(x) · v(x) dx,

∀q ∈ L2
0(Ω), −

∫
Ω

(div uε)(x) q(x) dx−ε
∫

Ω
pε(x)q(x) dx = 0.

The second equation is equivalent to

pε = −ε−1 div uε.



As a consequence, the penalized problem can equivalently be written

Find uε dans H1
0(Ω)d satisfying

∀v ∈ H1
0(Ω)d,

∫
Ω

graduε : gradv dx + ε−1
∫

Ω
(div uε)(x) (div v)(x) dx

=
∫

Ω
f(x) · v(x) dx,

Find pε dans L2
0(Ω) satisfying

∀q ∈ L2
0(Ω), ε

∫
Ω
pε(x)q(x) dx = −

∫
Ω

(div uε)(x) q(x) dx.

For any data f in H−1(Ω)d, this problem has a unique solution.

This does not require any inf-sup condition !

A priori error estimates can be proven between the solutions (u, p) and

(uε, pε). The error behaves like ε.

V. Girault, P.-A. Raviart



The discrete problem
(Th)h : regular family of triangulations of Ω by triangles or tetrahedra.

Xh ⊂ H1
0(Ω)d, Mh ⊂ L2

0(Ω).

The spaces Xh et Mh are mede of piecewise polynomial functions on
the triangulation Th.

Find (uεh, pεh) in Xh ×Mh satisfying

∀vh ∈ Xh,
∫

Ω
graduεh : gradvh dx−

∫
Ω

(div vh)(x) pεh(x) dx =
∫

Ω
f(x) ·vh(x) dx,

∀qh ∈Mh, −
∫

Ω
(div uεh)(x) qh(x) dx− ε

∫
Ω
pεh(x)qh(x) dx = 0.

Let Πh denote the orthogonal projection operator from L2
0(Ω) onto Mh.

The second equation is equivalent to

pεh = −ε−1 Πh(div uεh).



The discrete problem can equivalently be written

Find uεh in Xh satisfying

∀vh ∈ Xh,
∫

Ω
graduεh : gradvh dx + ε−1

∫
Ω

Πh(div uεh)(x) Πh(div vh)(x) dx

=
∫

Ω
f(x) · vh(x) dx,

Find pεh in Mh satisfying

∀qh ∈Mh, ε
∫

Ω
pεh(x)qh(x) dx = −

∫
Ω

(div uεh)(x) qh(x) dx.

For any f in H−1(Ω)d, this problem has a unique solution.

This does not require any inf-sup condition !

Provides an efficient algorithm for solving the discrete problem, since

the two unknowns are now uncoupled !

If an inf-sup condition exists between the spaces Xh and Mh, a priori

error estimates can be proven between the solutions (u, p) and (uεh, pεh).



Two families of error indicators

• Error indicator related to the penalty term

ηε = ε ‖pεh‖L2(Ω).

• Error indicators related to the finite elements

EK : set of edges or faces of K which are not contained in ∂Ω.

For any element K of Th,

ηK = hK ‖fh + ∆uεh − grad pεh‖L2(K)d

+
1

2

∑
e∈EK

h
1
2
e ‖[∂nuεh − pεh n]‖L2(e)d + ‖div uεh‖L2(K),

where fh denotes a piecewise polynomial approximation of f.

C.B., B. Métivet, R. Verfürth



An a posteriori error estimate

The aim is to bound the error between (u, p) and (uεh, pεh) as a function

of ηε, the ηK and the data.

|u− uεh|H1(Ω)d ≤ |u− uε|H1(Ω)d + |uε − uεh|H1(Ω)d,

‖p− pεh‖L2(Ω) ≤ ‖p− pε‖L2(Ω) + ‖pε − pεh‖L2(Ω).

Idea : A residual equation to bound each term.



Residual equation for the first term :

∀v ∈ H1
0(Ω)d,

∫
Ω

grad (u− uε) : gradv dx−
∫

Ω
(div v)(x) (p− pε)(x) dx = 0,

∀q ∈ L2
0(Ω), −

∫
Ω

(
div (u− uε)

)
(x) q(x) dx = ε

∫
Ω
pε(x)q(x) dx.

The estimate results from the stability properties of the Stokes ope-

rator and a triangle inequality.

Proposition : The following a posteriori estimate holds

|u− uε|H1(Ω)d + ‖p− pε‖L2(Ω) ≤ c
(
ηε + ε ‖pε − pεh‖L2(Ω)

)
.



Residual equation for the second term :

∀v ∈ H1
0(Ω)d,

∫
Ω

grad (uε − uεh) : gradv dx + . . .

The estimate is derived via the standard arguments for the Stokes

problem (and requires the introduction of an approximation vh of the

function v in Xh).

Proposition : Let us assume that the space Xh contains

Yh =
{
vh ∈ H1

0(Ω)d; ∀K ∈ Th, vh |K ∈ P1(K)d
}
.

The following a posteriori estimate holds

|uε − uεh|H1(Ω)d + ‖pε − pεh‖L2(Ω) ≤ c
(
ηε +

( ∑
K∈Th

(η2
K + h2

K ‖f − fh‖2L2(K)d

)1
2
)
.



An upper bound for the indicators

Idea : In the first residual equation,

∀q ∈ L2
0(Ω),

ε
∫

Ω
pεh(x)q(x) dx = −ε

∫
Ω

(pε − pεh)(x)q(x) dx−
∫

Ω

(
div (u− uε)

)
(x) q(x) dx,

we take q equal to pεh.

Proposition : The following estimate holds

ηε ≤ c |u− uε|H1(Ω)d + ε ‖pε − pεh‖L2(Ω).



Idea : In the second residual equation, we take v successively equal to

vK = (fh + ∆ uεh − grad pεh)ψK on K, 0 elsewhere,

ve = L
(
[∂νuεh − pεh n]ψe) on K ∪K′, 0 elsewhere,

next q equal to

qK = div uεh on K, 0 elsewhere.

Proposition : The following estimate holds, for any element K of Th,

ηK ≤ c
(
|u− uε|H1(K)d + |uε − uεh|H1(ωK)d

+‖pε − pεh‖L2(ωK) + hK ‖f − fh‖L2(ωK)d

)
,

where ωK stands for the union of elements of Th that share at least an

edge or a face with K.

Optimal estimates, the second one is local in space !



Some numerical experiments

realized with the code FreeFem++

F. Hecht, O. Pironneau

Taylor–Hood finite element, uniform mesh

Given smooth solution in a square

• Influence of the penalty parameter

• Influence of the mesh

ηh =
( ∑
K∈Th

η2
K

)1
2.
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Extensions

• Local penalization

We have tried to replace ε
∫
Ω p(x)q(x) dx by∑

K∈Th
εK

∫
K
p(x)q(x) dx.

+ two types of local error indicators.

Some restrictions on the discretization, no special interest.

• Navier–Stokes equations

J. Pousin, J. Rappaz

R. Verfürth

No further difficulty.



Data : viscosity ν = 10−2 and non zero tangential velocity on the left

boundary.

ε = 0.14× 10−2

 [uh,vh],ph  -- Navier-Stokes



Other applications of the penalty method

• Spectral element discretization of the Stokes problem

with A. Blouza, N. Chorfi, and N. Kharrat

Let Ω be a bounded open domain in IRd, d = 2 or 3, with a Lipschitz–

continuous boundary.

−∆u + grad p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω.

The unknowns are the velocity u and the pressure p.



The penalized problem

Let ε be the penalty parameter, 0 < ε ≤ 1.

Find (u, p) in H1
0(Ω)d × L2

0(Ω) such that

∀v ∈ H1
0(Ω)d,

∫
Ω

gradu : gradv dx−
∫

Ω
(div v)(x) p(x) dx =

∫
Ω

f(x) · v(x) dx,

∀q ∈ L2
0(Ω), −

∫
Ω

(div u)(x) q(x) dx−ε
∫

Ω
pε(x)q(x) dx = 0.



We assume that Ω admits a decomposition without overlap

Ω = ∪Kk=1Ωk et Ωk ∩Ωk′ = ∅, 1 ≤ k < k′ ≤ K,

where :
• Each Ωk is a rectangle (d = 2) or a rectangular parallelepiped(d = 3),
• The intersection of two different Ωk is either empty or a vertex or a
whole edge or a whole face of booth subdomains.

The discrete spaces

Pn(Ωk) : space of restrictions to Ωk of polynomials with degree ≤ n with
respect to each variable.

Let λ be a fixed parameter, 0 < λ ≤ 1. For any integer N ≥ 2, we define
the spaces

XN =
{
vN ∈ H1

0(Ω)d; vN |Ωk
∈ PN(Ωk)d, 1 ≤ k ≤ K

}
,

MN =
{
qN ∈ L2

0(Ω); qN |Ωk
∈ PN−2(Ωk) ∩ PλN(Ωk), 1 ≤ k ≤ K

}
.



Numerical integrationn

ξ0 = −1, ξN = 1.

Gauss-Lobatto quadrature formula : there exis nodes ξj, 1 ≤ j ≤ N − 1,

and weights ρj, 0 ≤ j ≤ N, such that

∀Φ ∈ P2N−1(−1,1),
∫ 1

−1
Φ(ζ) dζ =

N∑
j=0

Φ(ξj) ρj.

If Fk denotes one of the affine mappings that maps the reference domain

]−1,1[d onto Ωk, we define a discrete product, for instance in dimension

d = 2 by

(u, v)N =
K∑
k=1

meas(Ωk)

4

N∑
i=0

N∑
j=0

u ◦ Fk(ξi, ξj)v ◦ Fk(ξi, ξj) ρiρj, .



The discrete problem

Find (uεN , pεN) in XN ×MN such that

∀vN ∈ XN ,
(
graduεN , gradvN

)
N
−
(
div vN , pεN

)
N

= (f , vN)N ,

∀qN ∈MN , −
(
div uεN , qN

)
N
− ε (pεN , qN)N = 0.

Let ΠN be the orthogonal projection operator from L2
0(Ω) onto MN.

The second equation reads

pεN = −ε−1 ΠN(div uεN).



The discrete problem can equivalently be written as

Find uεN in XN such that

∀vN ∈ XN ,
(
graduεN , gradvN

)
N

+ ε−1
(
ΠN(div uεN),ΠN(div vN)

)
N

= (f , vN)N ,

Find pεN in MN such that

∀qN ∈MN , ε (pεN , qN)N = −
(
div uεN , qN

)
N
.

For any continuous data f on Ω, this problem has a unique solution.

This does not require any inf-sup condition !

Provides an efficient algorithm for solving the discrete problem, since

the two unknowns are now uncoupled !

If an inf-sup condition exists between the spaces XN and MN, a priori

error estimates can be proven between the solutions (u, p) and (uεN , pεN).



Two families of error indicators

• Error indicator related to the penalty term

ηε = ε ‖pεN‖L2(Ω).

• Error indicators related to the spectral discretization

Ek : set of edges or faces of Ωk which are not contained in ∂Ω.

For 1 ≤ k ≤ K,

ηk = N−1 ‖IN f + ∆uεN − grad pεN‖L2(K)d

+
∑
e∈Ek

N−
1
2 ‖[∂νuεN − pεN n]‖L2(e)d + ‖div uεN‖L2(K),

where IN stands for the interpolation operator at all nodes Fk(ξi, ξj) or

Fk(ξi, ξj, ξp).



A posteriori error estimate

Proposition : The following a posteriori error estimate holds

|u− uε|H1(Ω)d + ‖p− pε‖L2(Ω) ≤ c
(
ηε + ε ‖pε − pεN‖L2(Ω)

)
.

Proposition : The following a posteriori error estimate homds

|uε − uεN |H1(Ω)d + ‖pε − pεN‖L2(Ω) ≤ c
(
ηε + ρΩ

( K∑
k=1

η2
k

)1
2 + ‖f − INf‖2L2(K)d

)1
2
)
,

where ρΩ is equal to 1 in dimension d = 2 or if Ω is convex, to N−
1
2

otherwise.



An upper bound for the indicators

Proposition : The following estimate holds

ηε ≤ |u− uε|H1(Ω)d + ε ‖pε − pεN‖L2(Ω).

We do not state an upper bound for the ηk (which would be nonoptimal)

since we do not intend to adapt the N.



Some numerical experiments

Adaptivity strategy : Let us choose ε0 ≤ 1 and a parameter µ, 0 < µ < 1.

Next, assuming that εm is known,

(i) we compute the solution (uεN , pεN) forr ε = εm,t he indicator ηε
m

and

the Hilbertian sum η(N) =
(∑K

k=1 η
2
k

)1
2.

(ii) if

µ η(N) ≤ ηε
m
≤

1

µ
η(N),

we stop the process.

(iii) otherwise, we take εm+1 equal to εm η(N)/ηε
m

and we go back to

step (i).

For a given solution in a L-shaped domain divided into three squares,

N 5 10 15 20 30

εopt 0.0375 0.0069 0.0024 0.0007 0.0006



N = 20

10
−5

10
−4

10
−3

10
−2

10
−1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

ηε

ηN

error



• Domain decomposition methods
with T. Chacón Rebollo, E. Chacón Vera, and D. Franco Coronil

When a decomposition of the domain without overlap is cosidered, the
matching conditions on the interfaces are most often handled via the
introduction of a Lagrange multiplier. And of course it is possible to
use a penalty method for the corresponding mixed problem.

Let Ω be a bounded open domain in IRd, d = 2 or 3, with a Lipschitz–
continuous boundary.

−∆u = f in Ω,

u = 0 on ∂Ω.

We assume that Ω admits a decomposition without overlap

Ω = Ω1 ∪Ω2 and Ω1 ∩Ω2 = ∅,
and also that, if Γ denotes the interface ∂Ω1 ∩ ∂Ω2, Γ is Lipschitz–
continuous and t∂Γ is contained in ∂Ω.



Variational formulation

H1
∗ (Ωi) =

{
v ∈ H1(Ωi); v = 0 on ∂Ωi \ Γ

}
.

Findr (u1, u2, λ) in H1
∗ (Ω1)×H1

∗ (Ω2)×H
1
2
00(Γ) such that

∀(v1, v2) ∈ H1
∗ (Ω1)×H1

∗ (Ω2),
2∑
i=1

∫
Ωi

gradui · grad vi dx + [[v1 − v2, λ]]Γ =
2∑
i=1

∫
Ωi

f(x) · vi(x) dx,

∀µ ∈ H
1
2
00(Γ), [[u1 − u2, µ]]Γ = 0,

where [[·, ·]]Γ denotes the scalar product of H
1
2
00(Γ).

The equivalence of this formulation with the initial problem is readily

checked.



The penalized problem

Find (uε1, u
ε
2, λ

ε) in H1
∗ (Ω1)×H1

∗ (Ω2)×H
1
2
00(Γ) such that

∀(v1, v2) ∈ H1
∗ (Ω1)×H1

∗ (Ω2),
2∑
i=1

∫
Ωi

graduεi · grad vi dx + [[v1 − v2, λ
ε]]Γ =

2∑
i=1

∫
Ωi

f(x) · vi(x) dx,

∀µ ∈ H
1
2
00(Γ), [[uε1 − u

ε
2, µ]]Γ = ε [[λε, µ]]Γ.

A priori error estimates of order ε between the solutions (u1, u2, λ) and

(uε1, u
ε
2, λ

ε) are easily derived.



But when replacing the scalar product [[·, ·]]Γ by the scalar product of

L2(Γ), the convergence is only of order
√
ε.

T. Chacón Rebollo, E. Chacón Vera

From now on, we only consider the reduced problem

Find (uε1, u
ε
2) in H1

∗ (Ω1)×H1
∗ (Ω2) such that

∀(v1, v2) ∈ H1
∗ (Ω1)×H1

∗ (Ω2),
2∑
i=1

∫
Ωi

graduεi · grad vi dx + ε−1 [[uε1 − u
ε
2, v1 − v2]]Γ =

2∑
i=1

∫
Ωi

f(x) · vi(x) dx,



The discrete problem

(Th)h : regular family of trianngulations of Ω by triangles or tetrahedra

such that Γ is contained in edges (d = 2) or faces (d = 3) of elements

of Th.

We consider discrete spaces built from triangulation Th such that

Xih ⊂ H1
∗ (Ωi).

Find (uε1h, u
ε
2h) in X1h ×X2h such that

∀(v1h, v2h) ∈ X1h ×X2h,
2∑
i=1

∫
Ωi

graduεih · grad vih dx+ε−1 [[uε1h−u
ε
2h, v1h−v2h]]Γ =

2∑
i=1

∫
Ωi

f(x) · vih(x) dx.

This problem has a unique solution.



Two families of error indicators

• Error indicator related to the penalty term

ηε = ε ‖uε1h − u
ε
2h‖

H
1
2
00(Γ)

.

• Error indicators related to the finite element discretization

For each element K of Th contained in Ωi, i = 1, 2,

ηK = hK ‖fh + ∆uεih‖L2(K) +
1

2

∑
e∈EK

h
1
2
e ‖[∂nuεih]‖L2(e),

where fh is a piecewise polynomial approximation of f.



A posteriori error estimate

hm = min
K∩Γ 6=∅

hK.

Proposition : Assume that each space Xih contains

Yih =
{
vh ∈ H1

∗ (Ωi); ∀K ∈ Th, vh |K ∈ P1(K)
}
.

The following a posteriori error estimate holds

2∑
i=1

|u− uεih|H1(ΩI)
≤ c

(
ηε +

( ∑
K∈Th

µ2
K(η2

K + ‖f − fh‖2L2(K))
)1

2
)
,

where µK is equal to 1 if K ∩ Γ = ∅, à h
−1

2
m otherwise.

The loss of optimality is local. It is due to the nonconformity of the

discretization.



An upper bound for the indicators

Proposition : The following estimate holds

ηε ≤ c
2∑
i=1

|u− uεih|H1(ωi)
,

and, for any element K of Th,

ηK ≤ c
(
|u− uεh|H1(ωK) + hK ‖f − fh‖L2(ωK)

)
,

where ωK is the union of elements of Tnhthta share at least and edge

(d = 2) or a face (d = 3) with K.



Key numerical difficulty :

Computing the scalar product [[·, ·]]Γ is very expensive, even when using

an extension of

E. Casas, J.-P. Raymond

So the method is not so efficient as it could be thought frm the esti-

mates.



Some numerical experiments

Smooth solution in a square divided into two rectangles.

Influence of the penaty parameter (left part), of the mesh (right part)
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Smooth solution in a L-shaped domain divided into two trapezia.

Influence of the penaty parameter (left part), of the mesh (right part)

h = 3.10−2 ε = 10−2
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The adaptivity algorithm in the L-shaped domain

Comparison of the methods with H
1
2
00(Γ)- and L2(Γ)-matching

εopt Iterations CPU time

H
1/2
00 0.0503 165 126.3s

L2 0.0029 157 99.0s

h = 1/64



• Finite element discretization of a shell model

with A. Blouza, F. Hecht, and H. Le Dret

The Naghdi model and its variational formulations

ω : polygon in R2.

The midsurface of the shell is given by S = ϕ(ω̄) where ϕ is a one-to-one

mapping in W2,∞(ω)3 such that the two vectors

aα(x) = (∂αϕ)(x)

are linearly independent at each point x of ω. The thickness of the shell

is denoted by e.

Unit normal vector to S at point ϕ(x) : a3(x) = a1(x)∧a2(x)
|a1(x)∧a2(x)|.

Local contravariant basis : ai(x) · aj(x) = δ
j
i .

Area element of the midsurface :
√
a(x) = |a1(x) ∧ a2(x)|.

First fundamental form of the surface : aαβ = aα · aβ.



In the case of homogeneous, isotropic material with Young modulus

E > 0 and Poisson coefficient ν, 0 ≤ ν < 1
2, the coefficients of the

elasticity tensor are given by

aαβρσ =
E

2(1 + ν)
(aαρaβσ + aασaβρ) +

Eν

1− ν2
aαβaρσ.

This tensor is symmetric and uniformly strictly positive.

Covariant components of the change of metric tensor :

γαβ(u) =
1

2
(∂αu · aβ + ∂βu · aα).

Covariant components of the change of transverse shear tensor :

δα3(u, r) =
1

2
(∂αu · a3 + r · aα).

Covariant components of the change of curvature tensor :

χαβ(u, r) =
1

2
(∂αu · ∂βa3 + ∂βu · ∂αa3 + ∂αr · aβ + ∂βr · aα).



Boundary conditions :

The boundary ∂ω is divided into two parts : γ0 on which the shell is

clamped and its complementary part γ1 = ∂ω \ γ0

H1
γ0

(ω) =
{
µ ∈ H1(ω); µ = 0 on γ0

}
.

The unknowns are the midsurface displacement u of the shell and its

rotation r (so that r is tangential to the midsurface).

V(ω) =
{

(v, s) ∈ H1
γ0

(ω)3 ×H1
γ0

(ω)3; s · a3 = 0 in ω
}
.



First variational problem

Find (u, r) in V(ω) such that

∀(v, s) ∈ V(ω), a
(
(u, r); (v, s)

)
= L((v, s)),

where the bilinear form a(·; ·) is defined by

a
(
(u, r); (v, s)

)
=
∫
ω

{
eaαβρσ

[
γαβ(u)γρσ(v) +

e2

12
χαβ(u, r)χρσ(v, s)

]
+ 2e

E

1 + ν
aαβδα3(u, r)δβ3(v, s)

}√
a dx,

and the linear form L(·) is given by

L((v, s)) =
∫
ω

f · v
√
a dx +

∫
γ1

(M · v + N · s) dτ.

The data f, M and N represent a given resultant force density, an

applied moment density and an applied traction density, respectively.



A. Blouza, H. Le Dret

For any data (f ,M,N) in H1
γ0

(ω)3′ × H
1
2
00(γ1)3′ × H

1
2
00(γ1)3′, this problem

admits a unique solution (u, r) in V(ω).

But, in view of the discretization, a Lagrange multiplier must be intro-

duced to handle the tangency constraint r · a3 = 0.

Second (mixed) variational problem

A. Blouza, H. Le Dret

X(ω) = H1
γ0

(ω)3 ×H1
γ0

(ω)3, M(ω) = H1
γ0

(ω).

From now on, we set : U = (u, r), V = (v, s).



Find (U,ψ) in X(ω)×M(ω) such that

∀V ∈ X(ω), a(U ;V ) + b(V ;ψ) = L(V ),

∀χ ∈M(ω), b(U ;χ) = 0,

where the new bilinear form b(·; ·) is defined by

b(V ;χ) =
∫
ω
∂α(s · a3)∂αχdx.

The penalized problem

Find (U,ψ) in X(ω)×M(ω) such that

∀V ∈ X(ω), a(U ;V ) + b(V ;ψ) = L(V ),

∀χ ∈ M(ω), b(U ;χ) = ε c(ψ, χ),

where the new bilinear form c(·; ·) is defined by

c(ψ;χ) =
∫
ω
∂αψ∂αχdx.

All these problems are well-posed.



The discrete problem

(Th)h : regular family of trianngulations of ω by triangles such that γ0 is
the union of whole edges of elements of Th.

We thus define the basic discrete space

Mh =
{
χh ∈ H1(ω); ∀K ∈ Th, χh|K ∈ P1(K)

}
,

next the spaces that are involved in the discrete problem

Mγ0 = Mh ∩H1
γ0

(ω), Xh =
(
Mγ0
h

)3
×
(
Mγ0
h

)3
.

Find (Uh, ψh) in Xh ×Mγ0
h such that

∀Vh ∈ Xh, a(Uh, Vh) + b(Vh, ψh) = L(Vh),

∀χh ∈ Mγ0
h , b(Uh, χh) = ε c(ψh, χh).

This problem has a unique solution.



Approximation of the data : We consider an approximation fh of f in Zh
and approximations Nh and Mh of N and M in Z1

h, where the spaces Zh
and Z1

h are defined by

Zh =
{
gh ∈ L2(ω)3; ∀K ∈ Th, gh|K ∈ P0(K)3

}
,

Z1
h =

{
Ph ∈ L2(γ1)3; ∀e ∈ E1

h , Ph|e ∈ P0(e)3
}
.

E1
h ; set of edges of elements of Th which are contained in γ1.

Approximation of the coefficients : We introduce approximations a
αβ
h ,

a
αβρσ
h , (

√
a)h and `h of the scalar coefficients aαβ, aαβρσ,

√
a and ` in the

space Mh. Similarly, we consider approximations ahk of the vectors ak and

dhα of the ∂αa3 in the space
(
Mh

)3
.



We also agree to denote by γhαβ(·), δhα3(·) and χhαβ(·) the coefficients of

the tensors introduced above where all coefficients are replaced by their

approximations.

Some new notation : We define the contravariant components of the

stress resultant

n
ρσ
h (u) = ea

αβρσ
h γhαβ(u),

of the stress couple

mρσ(U) =
e3

12
aαβρσ χαβ(U),

and of the transverse shear force

tβ(U) = e
E

1 + ν
aαβ δα3(U).

We also observe that

χρσ(V ) = θρσ(v) + γρσ(s), with θρσ(v) =
1

2
(∂ρv · ∂σa3 + ∂σv · ∂ρa3).



Two families of error indicators

• Error indicator related to the penalty term

ηε = ε |ψph|H1(ω)

• Error indicators related to the finite element discretization

For each element K of Th,

ηK = ηK1 + ηK2 + ηK3,

with

ηK1 = hK ‖fh(
√
a)h + ∂ρ

(
(nρσh (uh)ahσ +m

ρσ
h (Uh)dhσ + t

ρ
h(Uh)ah3)(

√
a)h

)
‖L2(K)3

+
∑

e∈EK\E1
K

h
1
2
e ‖
[
νρ(n

ρσ
h (uh)ahσ +m

ρσ
h (Uh)dhσ + t

ρ
h(Uh)ah3)(

√
a)h

]
e
‖L2(e)3

+
∑
e∈E1

K

h
1
2
e ‖Nh `h − νρ(n

ρσ
h (uh)ahσ +m

ρσ
h (Uh)dhσ + t

ρ
h(Uh)ah3)(

√
a)h‖L2(e)3,



ηK2 = hK ‖∂ρ
(
m
ρσ
h (Uh)ahσ(

√
a)h

)
−tβh(Uh)ahβ (

√
a)h+∂ρ

(
ah3∂ρψh

)
−dhρ∂ρψh‖L2(K)3

+
∑

e∈EK\E1
K

h
1
2
e ‖
[
νρm

ρσ
h (Uh)ahσ(

√
a)h + νρ∂ρψha

h
3

]
e
‖L2(e)3

+
∑
e∈E1

K

h
1
2
e ‖Mh `h − νρm

ρσ
h (Uh)ahσ(

√
a)h − νρ∂ρψhah3‖L2(e)3,

and

ηK3 = hK ‖∂α(∂ar
p
h · a3h + rph · d

h
a − εp ∂αψ

p
h)‖L2(K)

+
∑

e∈EK\E1
K

h
1
2
e ‖[∂ν(rh · ah3 − εpψ

p
h)]e‖L2(e) +

∑
e∈E1

K

h
1
2
e ‖∂ν(rh · ah3 − εpψ

p
h)‖L2(e).

EK : set of edges of K not contained in γ0,

E1
K : set of edges of K contained in γ1.



A posteriori error estimates

Despite the slightly alarming aspect of the indicators, all a posteriori

error estimates and upper bounds for these indicators are fully optimal,

up to the terms involving the data

ε
(d)
K = hK ‖f − fh‖L2(K)3 +

∑
e∈E1

K

h
1
2
e (‖N−Nh‖L2(e)3 + ‖M−Mh‖L2(e)3),

and the coefficients

ε
(c)
h = ‖

√
a− (

√
a)h‖L∞(ω) + h

1
2 ‖`− `h‖L∞(γ1) + ...



Key numerical difficulty :

• The main part of the solution (uh, rh−(rh ·a3)a3) sems fully independent

of ε.

• The error indicator ηε is much smaller than the ηK.

So, no adaptivity procedure with respect to ε seems possible. We only

choose an initial ε such that

ηε ≤ 10−3
( ∑
K∈Th

η2
K

)1
2.



Case of a hyperbolic paraboloid shell clamped on the whole boundary

and subjected to a uniform pressure.

ω =
{

(x, y); |x|+ |y| ≤ b
√

2
}
, ϕ(x, y) =

(
x, y,

c

2b2
(x2 − y2)

)T
,

with b = 50 cm, c = 10 cm, and e = 0.8 cm.

The “over-deformed” shell ϕ(x) + 1000 u(x)



Thank you for your attention


