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Numerical approximation of a nonlinear, unsteady
PDE

Exact and approximate solution

let u be the weak solution of A(u) = f , A nonlinear,
unsteady, posed on Ω× (0,T )

let uhτ be its approximate numerical solution,
Ahτ (uhτ ) = fhτ

Solution algorithm

introduce a temporal mesh of (0,T ) given by the time
steps tn, 0 ≤ n ≤ N
introduce a spatial mesh T n

h of Ω on each tn

on each tn, solve a nonlinear algebraic problem
An

h(un
h) = f n

h
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Regularization, linearization, and algebraic solution

Regularization

regularize the nonlinear operator An
h by An,ε

h
choice of ε?

Iterative linearization
An,ε,k−1

h un,ε,k
h = f n,k−1

h : An,ε,k−1
h linear, linearization step k

when do we stop?

Iterative algebraic solution
iterative algebraic solver employed: step i approximation
un,ε,k ,i

h
when do we stop?

Approximate solution
the approximate solution un,ε,k ,i

h that we have as an
outcome does not solve An

h(un
h) = f n

h

how big is the overall error ‖u − uε,k ,ihτ ‖Ω×(0,T )?
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Aims and benefits of this work
Aims of this work

give a guaranteed, robust, and tight upper bound on the
overall error ‖u − uε,k ,ihτ ‖Ω×(0,T )

distinguish the different error components (algebraic,
linearization, regularization, spatial, temporal)
stop the iterative solvers whenever algebraic/linearization
errors do not affect the overall error significantly
adjust the regularization parameter so that it does not to
affect the overall error significantly
equilibrate the space and time error components

Benefits
optimal computable overall error bound
improvement of approximation precision
important computational savings
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Previous results

Stopping criteria

engineering literature, since 1950’s
Becker, Johnson, and Rannacher (1995), multigrid solver
Maday and Patera (2000), linear functional errors
Arioli (2000’s), general algebraic solvers

Inexact Newton method

Eisenstat and Walker (1990’s)
Moret (1989)

Modeling error

Ladevèze (since 1980’s)
Braack and Ern (2000’s)
Babuška and Oden (2000’s)
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Previous results – a posteriori error estimates

Nonlinear steady problems

Ladevèze (since 1990’s), guaranteed upper bound
Han (1994), general framework
Verfürth (1994), residual estimates
Carstensen and Klose (2003), guaranteed estimates
Chaillou and Suri (2006, 2007), linearization errors
Kim (2007), guaranteed estimates, loc. cons. methods

Linear unsteady problems

Bieterman and Babuška (1982), introduction
Verfürth (2003), efficiency, robustness wrt the final time

Nonlinear unsteady problems

Verfürth (1998), framework for energy norm control
Nochetto, Schmidt, Verdi (2000), degenerate problems
Ohlberger (2001), non energy-norm estimates
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Quasi-linear elliptic problem
Quasi-linear elliptic problem

−∇·σ(u,∇u) = f in Ω,
u = 0 on ∂Ω

quasi-linear diffusion problem
σ(v , ξ) = A(v)ξ ∀(v , ξ) ∈ R× Rd

Leray–Lions problem
σ(v , ξ) = A(ξ)ξ ∀ξ ∈ Rd

p > 1, q := p
p−1 , f ∈ Lq(Ω)

Example
p-Laplacian: Leray–Lions setting with A(ξ) = |ξ|p−2I
Nonlinear operator A : V := W 1,p

0 (Ω)→ V ′

〈A(u), v〉V ′,V := (σ(u,∇u),∇v)

Weak formulation
Find u ∈ V such that

A(u) = f in V ′

M. Vohralík Adaptive regularization, linearization, and numerical solution
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Approximate solution and error measure
Approximate solution

uk ,i
h ∈ V (Th) 6⊂ V , uk ,i

h not necessarily in V
V (Th) := {v ∈ Lp(Ω), v |K ∈W 1,p(K ) ∀K ∈ Th}

Error measure

Ju(uk ,i
h ) := sup

ϕ∈V ; ‖∇ϕ‖p=1
(σ(u,∇u)−σ(uk ,i

h ,∇uk ,i
h ),∇ϕ)+Ju,NC(uk ,i

h )

Ju,NC(uk ,i
h ) :=

∑
K∈Th

∑
e∈EK

h1−q
e ‖[[u − uk ,i

h ]]‖qq,e


1/q

weak difference of the fluxes (dual norm of the residual) +
nonconformity (computable jump term)
there holds Ju(uk ,i

h ) = 0 if and only if u = uk ,i
h

physical relevance: strong difference of the fluxes +
nonconformity

Ju(uk ,i
h ) ≤ J up

u (uk ,i
h ) := ‖σ(u,∇u)− σ(uk ,i

h ,∇uk ,i
h )‖q + Ju,NC(uk ,i

h )

M. Vohralík Adaptive regularization, linearization, and numerical solution
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A posteriori error estimate
Assumption A (Total flux reconstruction)

There exists a flux reconstruction tk ,i
h ∈ Hq(div,Ω) and an

algebraic remainder ρk ,i
h ∈ Lq(Ω) such that

∇·tk ,i
h = fh − ρk ,i

h ,
with the data approximation fh s.t. (fh,1)K = (f ,1)K ∀K ∈ Th.

Theorem (A posteriori error estimate)
Let

u ∈ V be the weak solution,
uk ,i

h ∈ V (Th) be arbitrary,
Assumption A hold.

Then there holds
Ju(uk ,i

h ) ≤ ηk ,i ,

where ηk ,i is fully computable from uk ,i
h , tk ,i

h , and ρk ,i
h .

M. Vohralík Adaptive regularization, linearization, and numerical solution



I Nonlinear diffusion Stefan problem Two-phase flow C Problem Estimate Stop. crit. & eff. Applications Num. res.

A posteriori error estimate
Assumption A (Total flux reconstruction)

There exists a flux reconstruction tk ,i
h ∈ Hq(div,Ω) and an

algebraic remainder ρk ,i
h ∈ Lq(Ω) such that

∇·tk ,i
h = fh − ρk ,i

h ,
with the data approximation fh s.t. (fh,1)K = (f ,1)K ∀K ∈ Th.

Theorem (A posteriori error estimate)
Let

u ∈ V be the weak solution,
uk ,i

h ∈ V (Th) be arbitrary,
Assumption A hold.

Then there holds
Ju(uk ,i

h ) ≤ ηk ,i ,

where ηk ,i is fully computable from uk ,i
h , tk ,i

h , and ρk ,i
h .

M. Vohralík Adaptive regularization, linearization, and numerical solution



I Nonlinear diffusion Stefan problem Two-phase flow C Problem Estimate Stop. crit. & eff. Applications Num. res.

A posteriori error estimate
Assumption A (Total flux reconstruction)

There exists a flux reconstruction tk ,i
h ∈ Hq(div,Ω) and an

algebraic remainder ρk ,i
h ∈ Lq(Ω) such that

∇·tk ,i
h = fh − ρk ,i

h ,
with the data approximation fh s.t. (fh,1)K = (f ,1)K ∀K ∈ Th.

Theorem (A posteriori error estimate)
Let

u ∈ V be the weak solution,
uk ,i

h ∈ V (Th) be arbitrary,
Assumption A hold.

Then there holds
Ju(uk ,i

h ) ≤ ηk ,i ,

where ηk ,i is fully computable from uk ,i
h , tk ,i

h , and ρk ,i
h .

M. Vohralík Adaptive regularization, linearization, and numerical solution



I Nonlinear diffusion Stefan problem Two-phase flow C Problem Estimate Stop. crit. & eff. Applications Num. res.

Distinguishing error components

Assumption B (Discretization, linearization, and algebraic
errors)

There exist fluxes dk ,i
h , lk ,ih ,ak ,i

h ∈ [Lq(Ω)]d such that

(i) dk ,i
h + lk ,ih + ak ,i

h = tk ,i
h ;

(ii) as the linear solver converges, ‖ak ,i
h ‖q → 0;

(iii) as the nonlinear solver converges, ‖lk ,ih ‖q → 0.

Comments

dk ,i
h : discretization flux reconstruction

lk ,ih : linearization error flux reconstruction

ak ,i
h : algebraic error flux reconstruction
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Estimate distinguishing different error components

Theorem (Estimate distinguishing different error components)
Let

u ∈ V be the weak solution,
uk ,i

h ∈ V (Th) be arbitrary,
Assumptions A and B hold.

Then there holds

Ju(uk ,i
h ) ≤ ηk ,i := ηk ,i

disc + ηk ,i
lin + ηk ,i

alg + ηk ,i
rem + ηk ,i

quad + ηk ,i
osc.
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Estimators
discretization estimator

ηk ,i
disc,K := 21/p

(
‖σk ,i

h + dk ,i
h ‖q,K +

{∑
e∈EK

h1−q
e ‖[[uk ,i

h ]]‖qq,e

} 1
q
)

linearization estimator
ηk ,i

lin,K := ‖lk ,ih ‖q,K
algebraic estimator

ηk ,i
alg,K := ‖ak ,i

h ‖q,K
algebraic remainder estimator

ηk ,i
rem,K := hΩ‖ρk ,i

h ‖q,K
quadrature estimator

ηk ,i
quad,K := ‖σ(uk ,i

h ,∇uk ,i
h )− σk ,i

h ‖q,K
data oscillation estimator

ηk ,i
osc,K := CP,phK‖f − fh‖q,K

ηk ,i
· :=

{∑
K∈Th

(
ηk ,i
·,K
)q

}1/q
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Stopping criteria

Global stopping criteria
stop whenever:

ηk ,i
rem ≤ γrem max

{
ηk ,i

disc, η
k ,i
lin , η

k ,i
alg

}
,

ηk ,i
alg ≤ γalg max

{
ηk ,i

disc, η
k ,i
lin

}
,

ηk ,i
lin ≤ γlinη

k ,i
disc

γrem, γalg, γlin ≈ 0.1

Local stopping criteria
stop whenever:

ηk ,i
rem,K ≤ γrem,K max

{
ηk ,i

disc,K , η
k ,i
lin,K , η

k ,i
alg,K

}
∀K ∈ Th,

ηk ,i
alg,K ≤ γalg,K max

{
ηk ,i

disc,K , η
k ,i
lin,K

}
∀K ∈ Th,

ηk ,i
lin,K ≤ γlin,Kη

k ,i
disc,K ∀K ∈ Th

γrem,K , γalg,K , γlin,K ≈ 0.1
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Assumption for efficiency

Assumption C (Approximation property)
For all K ∈ Th, there holds

‖σk ,i
h + dk ,i

h ‖q,K . ηk ,i
],TK

+ ηk ,i
osc,TK

,

where

ηk ,i
],TK

:=

{ ∑
K ′∈TK

hq
K ′‖fh +∇·σk ,i

h ‖
q
q,K ′ +

∑
e∈Eint

K

he‖[[σk ,i
h ·ne]]‖qq,e

+
∑
e∈EK

h1−q
e ‖[[uk ,i

h ]]‖qq,e

} 1
q

.
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Global efficiency

Theorem (Global efficiency)
Let the mesh Th be shape-regular and let the global stopping
criteria hold. Recall that Ju(uk ,i

h ) ≤ ηk ,i . Then, under
Assumption C,

ηk ,i . Ju(uk ,i
h ) + ηk ,i

quad + ηk ,i
osc,

where . means up to a constant independent of σ and q.

robustness with respect to the nonlinearity thanks to the
choice of the dual norm as error measure
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Algebraic error flux reconstruction and algebraic
remainder

Construction of ak ,i
h and ρk ,i

h

On linearization step k and algebraic step i , we have

AkUk ,i = F k − Rk ,i .

Do ν additional steps of the algebraic solver, yielding

AkUk ,i+ν = F k − Rk ,i+ν .

Construct the function ρk ,i
h from the algebraic residual

vector Rk ,i+ν (lifting into appropriate discrete space).
Suppose we can obtain discretization and linearization flux
reconstructions dk ,i

h , lk ,ih on each algebraic step. Then set

ak ,i
h := (dk ,i+ν

h + lk ,i+νh )− (dk ,i
h + lk ,ih ).

Independent of the algebraic solver.
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Example: nonconforming finite elements for the
p-Laplacian

Discretization
Find uh ∈ Vh such that

(σ(∇uh),∇vh) = (fh, vh) ∀vh ∈ Vh.

σ(∇uh) = |∇uh|p−2∇uh

Vh the Crouzeix–Raviart space
fh := Π0f
leads to the system of nonlinear algebraic equations

A(U) = F
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Linearization

Linearization
Find uk

h ∈ Vh such that

(σk−1(∇uk
h ),∇ψe) = (fh, ψe) ∀e ∈ E int

h .

u0
h ∈ Vh yields the initial vector U0

fixed-point linearization

σk−1(ξ) := |∇uk−1
h |p−2ξ

Newton linearization

σk−1(ξ) := |∇uk−1
h |p−2ξ + (p − 2)|∇uk−1

h |p−4

(∇uk−1
h ⊗∇uk−1

h )(ξ −∇uk−1
h )

leads to the system of linear algebraic equations

AkUk = F k
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Algebraic solution

Algebraic solution
Find uk ,i

h ∈ Vh such that

(σk−1(∇uk ,i
h ),∇ψe) = (fh, ψe)− Rk ,i

e ∀e ∈ E int
h .

algebraic residual vector Rk ,i = {Rk ,i
e }e∈E int

h

discrete system
AkUk = F k − Rk ,i
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Flux reconstructions

Definition (Construction of dk ,i
h )

For all K ∈ Th,

dk ,i
h |K := −σ(∇uk ,i

h )|K +
fh|K
d

(x− xK )−
∑
e∈EK

R̄k ,i
e

d |De|
(x− xK )|Ke ,

where R̄k ,i
e := (fh, ψe)− (σ(∇uk ,i

h ),∇ψe) ∀e ∈ E int
h .

Definition (Construction of (dk ,i
h + lk ,ih ))

For all K ∈ Th,

(dk ,i
h +lk ,ih )|K :=−σk−1(∇uk ,i

h )|K +
fh|K
d

(x−xK )−
∑
e∈EK

Rk ,i
e

d |De|
(x−xK )|Ke .

Definition (Construction of σk ,i
h )

Set σk ,i
h := σ(∇uk ,i

h ). Consequently, ηk ,i
quad,K = 0 for all K ∈ Th.
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Verification of the assumptions – upper bound

Lemma (Assumptions A and B)
Assumptions A and B hold.

Comments

‖ak ,i
h ‖q,K→0 as the linear solver converges by definition.

‖lk ,ih ‖q,K→0 as the nonlinear solver converges by the
construction of lk ,ih .

Both (dk ,i
h + lk ,ih ) and dk ,i

h belong to RTN0(Sh)⇒
ak ,i

h ∈ RTN0(Sh) and tk ,i
h ∈ RTN0(Sh).

M. Vohralík Adaptive regularization, linearization, and numerical solution



I Nonlinear diffusion Stefan problem Two-phase flow C Problem Estimate Stop. crit. & eff. Applications Num. res.

Verification of the assumptions – upper bound

Lemma (Assumptions A and B)
Assumptions A and B hold.

Comments

‖ak ,i
h ‖q,K→0 as the linear solver converges by definition.

‖lk ,ih ‖q,K→0 as the nonlinear solver converges by the
construction of lk ,ih .

Both (dk ,i
h + lk ,ih ) and dk ,i

h belong to RTN0(Sh)⇒
ak ,i

h ∈ RTN0(Sh) and tk ,i
h ∈ RTN0(Sh).

M. Vohralík Adaptive regularization, linearization, and numerical solution



I Nonlinear diffusion Stefan problem Two-phase flow C Problem Estimate Stop. crit. & eff. Applications Num. res.

Verification of the assumptions – efficiency

Lemma (Assumption C)
Assumption C holds.

Comments

dk ,i
h close to σ(∇uk ,i

h )

approximation properties of Raviart–Thomas–Nédélec
spaces
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Summary

Discretization methods

nonconforming finite elements
discontinuous Galerkin
finite elements
various finite volumes
mixed finite elements

Linearizations

fixed point
Newton

Linear solvers

independent of the linear solver

. . . all Assumptions A to C verified
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Numerical experiment I

Model problem

p-Laplacian

∇·(|∇u|p−2∇u) = f in Ω,

u = u0 on ∂Ω

weak solution (used to impose the Dirichlet BC)

u(x , y) = −p−1
p

(
(x − 1

2)2 + (y − 1
2)2
) p

2(p−1)
+ p−1

p

(
1
2

) p
p−1

tested values p = 1.5 and 10
nonconforming finite elements
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Analytical and approximate solutions
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Error and estimators as a function of CG iterations,
p = 10, 6th level mesh, 6th Newton step.
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Error and estimators as a function of Newton
iterations, p = 10, 6th level mesh
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Error and estimators, p = 10
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Newton and algebraic iterations, p = 10
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Newton and algebraic iterations, p = 1.5
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Numerical experiment II

Model problem

p-Laplacian

∇·(|∇u|p−2∇u) = f in Ω,

u = u0 on ∂Ω

weak solution (used to impose the Dirichlet BC)

u(r , θ) = r
7
8 sin(θ 7

8)

p = 4, L-shape domain, singularity in the origin
(Carstensen and Klose (2003))
nonconforming finite elements
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Error distribution on an adaptively refined mesh
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Estimated and actual errors and the effectivity index
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Energy error and overall performance
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The Stefan problem

The Stefan problem

∂tu −∆β(u) = f in Ω× (0,T ),

u(·,0) = u0 in Ω,

β(u) = 0 on ∂Ω× (0,T )

Nomenclature

u enthalpy, β(u) temperature
β: Lβ-Lipschitz continuous, β(s) = 0 in (0,1), strictly
increasing otherwise
phase change, degenerate parabolic problem
u0 ∈ L2(Ω), f ∈ L2(0,T ; L2(Ω))
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Residual and its dual norm

Functional spaces
X := L2(0,T ; H1

0 (Ω)), Z := H1(0,T ; H−1(Ω))

Weak formulation
u ∈ Z with β(u) ∈ X
u(·,0) = u0 in Ω

〈∂tu, ϕ〉(t) + (∇β(u),∇ϕ)(t) = (f , ϕ)(t) ∀ϕ ∈ H1
0 (Ω) a.e. t ∈ (0,T )

Residual for uhτ ∈ Z such that β(uhτ ) ∈ X

〈R(uhτ ), ϕ〉X ′,X =

∫ T

0
{〈∂t (u−uhτ ), ϕ〉+(∇β(u)−∇β(uhτ ),∇ϕ)} (t) dt ,

ϕ ∈ X

Dual norm of the residual

‖R(uhτ )‖X ′ := sup
ϕ∈X , ‖ϕ‖X =1

〈R(uhτ ), ϕ〉X ′,X
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u ∈ Z with β(u) ∈ X
u(·,0) = u0 in Ω

〈∂tu, ϕ〉(t) + (∇β(u),∇ϕ)(t) = (f , ϕ)(t) ∀ϕ ∈ H1
0 (Ω) a.e. t ∈ (0,T )

Residual for uhτ ∈ Z such that β(uhτ ) ∈ X

〈R(uhτ ), ϕ〉X ′,X =

∫ T

0
{〈∂t (u−uhτ ), ϕ〉+(∇β(u)−∇β(uhτ ),∇ϕ)} (t) dt ,

ϕ ∈ X

Dual norm of the residual

‖R(uhτ )‖X ′ := sup
ϕ∈X , ‖ϕ‖X =1

〈R(uhτ ), ϕ〉X ′,X
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Time-localization of the dual norm of the residual

Time interval In

Xn :=L2(In; H1
0 (Ω))

‖R(uhτ )‖X ′n := sup
ϕ∈Xn, ‖ϕ‖Xn =1

∫
In
{〈∂t (u − uhτ ), ϕ〉

+ (∇β(u)−∇β(uhτ ),∇ϕ)}(t) dt

L2 in time . . .

‖R(uhτ )‖2X ′ =
∑

1≤n≤N

‖R(uhτ )‖2X ′n
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Practice: regularization

Regularization with a parameter ε
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Practice: questions
Discretization

. . .
Question (Stopping and balancing criteria)

What is a good choice of the
regularization parameter ε?
time step?
space mesh?

What is a good stopping criterion for the
nonlinear solver?
linear solver?

Question (Error)

How big is the error ‖u|In − un,ε,k ,i
hτ ‖ on time step n, space

mesh T n
h , for the regularization parameter ε, Newton step

k, and algebraic solver step i? How big are the individual
components? How is error distributed in time and space?
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A posteriori estimate and its efficiency

Theorem (Estimate and its efficiency)
There holds

‖R(uhτ )‖X ′ + ‖u0 − uhτ (0)‖H−1(Ω)

≤


N∑

n=1

∫
In

∑
K∈T n

h

(
ηn

R,K + ηn
F,K
)2


1
2

+ ηIC

.‖R(uhτ )‖X ′ + ‖u0 − uhτ (0)‖H−1(Ω),

with

ηn
R,K := CP,K hK‖f n − ∂tuhτ −∇·tn

h‖K ,
ηn

F,K (t) := ‖∇β(uhτ (t)) + tn
h‖K ,

ηIC := ‖u0 − uhτ (0)‖H−1(Ω).
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Distinguishing the different error components
Theorem (An estimate distinguishing the error components)
For time n, linearization k, and regularization ε, there holds

‖R(un,ε,k
hτ )‖X ′,In ≤ ηn,ε,k

sp + ηn,ε,k
tm + ηn,ε,k

lin + ηn,ε,k
reg .

σn,ε,k a scheme linearized flux (not H(div,Ω)), tn,ε,k

reconstructed H(div,Ω) flux, Πn interpolation

(ηn,ε,k
sp )2 := τn

∑
K∈T n

h

(
ηn,ε,k

R,K + ‖σn,ε,k + tn,ε,k‖K
)2
,

(ηn,ε,k
tm )2 :=

∫
In

∑
K∈T n

h

‖∇Πnβ(uε,khτ )(t)−∇Πnβ(uε,khτ )(tn)‖2K dt ,

(ηn,ε,k
lin )2 := τn

∑
K∈T n

h

‖∇Πnβε(u
ε,k
hτ )(tn)− σn,ε,k‖2K ,

(ηn,ε,k
reg )2 := τn

∑
K∈T n

h

‖∇Πnβ(uε,khτ )(tn)−∇Πnβε(u
ε,k
hτ )(tn))‖2K
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Relation residual–energy norm
Energy estimate (by the Gronwall lemma)

Lβ
2
‖u − uhτ‖2X ′ + ‖β(u)− β(uhτ )‖2QT

≤
Lβ
2

(2eT − 1)
(
‖R(uhτ )‖2X ′ + ‖(u − uhτ )(0)‖2H−1(Ω)

)
Theorem (Temperature and enthalpy errors, tight Gronwall)

Let uhτ ∈ Z be such that β(uhτ ) ∈ X be arbitrary. There holds
Lβ
2
‖u − uhτ‖2X ′ +

Lβ
2
‖(u − uhτ )(T )‖2H−1(Ω)+ ‖β(u)− β(uhτ )‖2QT

+ 2
∫ T

0

(
‖β(u)− β(uhτ )‖2Qt

+

∫ t

0
‖β(u)− β(uhτ )‖2Qs

et−s ds
)

dt

≤
Lβ
2

{
(2eT − 1)‖(u − uhτ )(0)‖2H−1(Ω) + ‖R(uhτ )‖2X ′

+ 2
∫ T

0

(
‖R(uhτ )‖2X ′t +

∫ t

0
‖R(uhτ )‖2X ′s e

t−s ds
)

dt

}
.
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Linearization stopping criterion

Linearization stopping criterion

ηn,ε,k
lin ≤ γlin

(
ηn,ε,k

sp + ηn,ε,k
tm + ηn,ε,k

reg
)
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Regularization stopping criterion

Regularization stopping criterion

ηn,ε,k
reg ≤ γreg

(
ηn,ε,k

sp + ηn,ε,k
tm

)
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Equilibrating time and space errors

Equilibrating time and space errors

γminη
ε,n,k
sp ≤ ηε,n,ktm ≤ γmaxη

ε,n,k
sp

104 105

10−1.2

10−1

10−0.8

Total number of space-time unknowns

Space error
Time error
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Error and estimate (dual norm)
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Effectivity indices (dual norm)
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Error and estimate (energy norm)
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Actual and estimated error distribution
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Computational efficiency

0 100 200 300 400 500 600
0

2

4

6
·10−2

Cumulated Newton iterations

E
rr

or
es

tim
at

e
Fixed threshold 10−8

γlin = 0.01
γlin = 0.1

Figure: Number of cumulated Newton iterations vs. error estimate
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Two-phase flow

The model

∂tsα +∇·uα = qα(sα), α ∈ {n,w},
uα = −Kηα(sα)∇pα, α ∈ {n,w},

sn + sw = 1,
pn − pw = π(sn)

two immiscible, incompressible fluids
pn, pw: unknown nonwetting and wetting phase pressures
sn, sw: unknown nonwetting and wetting phase saturations
π(·): the nonlinear capillary pressure function
ηn(·), ηw(·): the nonlinear phase mobilities functions
K permeability tensor, qn(·), qw(·) sources
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Notation and transformations

Notation and transformations
s := sn

f (s) :=
ηn(s)

ηn(s) + ηw(1− s)
, λ(s) := ηw(1− s)f (s)

Kirchhoff transform
ϕ(s) :=

∫ s

0
λ(a)π′(a) da

global pressure

P := P(s,pn) := pn−
∫ π(s)

0

ηw(1− π−1(a))

ηn(π−1(a)) + ηw(1− π−1(a))
da

M(s) := ηw(1− s) + ηn(s)
qt(s) := qn(s) + qw(1− s)
f , λ, ϕ, P, M, qt only needed for the theoretical analysis,
not in the scheme
s0: initial condition
s,P: Dirichlet boundary conditions
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Weak formulation

Functional space for the weak solution

E :=
{

(s,P) | s ∈ C([0,T ]; L2(Ω)), ∂ts ∈ L2((0,T ); H−1(Ω)),

ϕ(s)− ϕ(s) ∈ L2((0,T ); H1
0 (Ω)), P − P ∈ L2((0,T ); H1

0 (Ω))
}

Definition (Weak solution)

A weak solution is a pair (s,P) ∈ E such that s(·,0) = s0 and
for all ψ ∈ L2((0,T ); H1

0 (Ω)),∫ T

0
〈∂ts(·, θ);ψ(·, θ)〉H−1,H1

0
dθ +

∫∫
QT

K(ηn(s)∇P +∇ϕ(s))·∇ψ dxdθ

=

∫∫
QT

qn(s)ψ dxdθ,∫∫
QT

KM(s)∇P·∇ψ dxdθ =

∫∫
QT

qt(s)ψ dxdθ.
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A posteriori error estimate

Functional space for the approximate solution

Eτ :=
{

(s,P) | s ∈ Vτ , pw affine-in-time subspace of C([0,T ]; L2(Ω)),

ϕ(s)− ϕ(s) ∈ L2((0,T ); H1
0 (Ω)), P − P ∈ L2((0,T ); H1

0 (Ω))
}

Theorem (A posteriori error estimate)

Let (s,P) be the weak solution. Let (shτ ,Phτ ) ∈ Eτ be arbitrary.
Then there exists C > 0 such that

‖shτ−s‖2L2(0,T ;H−1(Ω))+‖Phτ−P‖2L2(0,T ;H1
0 (Ω))

+‖ϕ(shτ)−ϕ(s)‖2L2(QT )

≤C‖shτ (·,0)−s0‖2H−1(Ω)

+ C(|||Rn
n(shτ ,Phτ )|||2 + |||Rn

t (shτ ,Phτ )|||2).
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Distinguishing different error components
Theorem (Distinguishing different error components)

Consider
time step n
linearization step k
iterative algebraic solver step i

& approximations (sk ,i
hτ ,P

k ,i
hτ ). Let there exist equilibrated fluxes

reconstructions un,k ,i
α,h for each phase α ∈ n,w. Split them as

un,k ,i
α,h := dn,k ,i

α,h + ln,k ,iα,h + an,k ,i
α,h , α ∈ {n,w}.

Then
(|||Rn

n(sn,k ,i
hτ ,Pn,k ,i

hτ )|||2 + |||Rn
t (sn,k ,i

hτ ,Pn,k ,i
hτ )|||2)

1
2

≤ ηn,k ,i
sp + ηn,k ,i

tm + ηn,k ,i
lin + ηn,k ,i

alg .

Moreover, if ηn,k ,i
tm , ηn,k ,i

lin , and ηn,k ,i
alg do not dominate, then

ηn,k ,i
sp + ηn,k ,i

tm + ηn,k ,i
lin + ηn,k ,i

alg

≤ C(|||Rn
n(sn,k ,i

hτ ,Pn,k ,i
hτ )|||2 + |||Rn

t (sn,k ,i
hτ ,Pn,k ,i

hτ )|||2)
1
2 .
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Estimators
spatial estimators
ηn,k ,i

sp,n,D :=‖dn,k ,i
n,h − K

(
η(sn,k ,i

hτ )∇Pn,k ,i
hτ +∇ϕ(sn,k ,i

hτ )
)
(tn)‖

K−
1
2 ;L2(D)

,

ηn,k ,i
sp,t,D :=‖dn,k ,i

t,h − KM(sn,k ,i
hτ )∇Pn,k ,i

hτ (tn)‖
K−

1
2 ;L2(D)

temporal estimators
ηn,k ,i

tm,n,D(t) :=‖K
(
η(sn,k ,i

hτ )∇Pn,k ,i
hτ +∇ϕ(sn,k ,i

hτ )
)
(t − tn)‖

K−
1
2 ;L2(D)

,

ηn,k ,i
tm,t,D(t) :=‖KM(sn,k ,i

hτ )∇Pn,k ,i
hτ (t − tn)‖

K−
1
2 ;L2(D)

linearization estimators
ηn,k ,i

lin,n,D := ‖ln,k ,in,h ‖K− 1
2 ;L2(D)

,

ηn,k ,i
lin,t,D := ‖ln,k ,it,h ‖K− 1

2 ;L2(D)

algebraic estimators
ηn,k ,i

alg,n,D := ‖an,k ,i
n,h ‖K− 1

2 ;L2(D)
,

ηn,k ,i
alg,t,D := ‖an,k ,i

t,h ‖K− 1
2 ;L2(D)
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Cell-centered finite volume scheme
Cell-centered finite volume scheme
For all 1 ≤ n ≤ N, look for sn

w,h, p̄
n
w,h such that

φ
sn

w,K − sn−1
w,K

τn |K |+
∑

eK K ′∈E int
K

Fw,eK K ′ (s
n
w,h, p̄

n
w,h) = 0,

−φ
sn

w,K − sn−1
w,K

τn |K |+
∑

eK K ′∈E int
K

Fn,eK K ′ (s
n
w,h, p̄

n
w,h) = 0,

where the fluxes are given by

Fw,eK K ′ (s
n
w,h, p̄

n
w,h) := −

ηr,w(sn
w,K ) + ηr,w(sn

w,K ′)

2
|K|

p̄n
w,K ′ − p̄n

w,K

|xK − xK ′ |
|eK K ′ |,

Fn,eK K ′ (s
n
w,h, p̄

n
w,h) := −

ηr,n(sn
w,K ) + ηr,n(sn

w,K ′)

2
|K|

×
p̄n

w,K ′ + π(sn
w,K ′)− (p̄n

n,K + π(sn
n,K ))

|xK − xK ′ |
|eK K ′ |.
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Linearization and algebraic solution
Linearization step k and algebraic step i
Couple sn,k ,i

w,h , p̄
n,k ,i
w,h such that

φ
sn,k ,i

w,K − sn−1
w,K

τn |K |+
∑

eK K ′∈E int
K

F k−1
w,eK K ′

(sn,k ,i
w,h , p̄

n,k ,i
w,h ) = −Rn,k ,i

w,K ,

−φ
sn,k ,i

w,K − sn−1
w,K

τn |K |+
∑

eK K ′∈E int
K

F k−1
n,eK K ′

(sn,k ,i
w,h , p̄

n,k ,i
w,h ) = −Rn,k ,i

n,K ,

where the linearized fluxes are given by

F k−1
α,eK K ′

(sn,k ,i
w,h , p̄

n,k ,i
w,h ) :=Fα,eK K ′ (s

n,k−1
w,h , p̄n,k−1

w,h )

+
∑

M∈{K ,K ′}

∂Fα,eK K ′

∂sw,M
(sn,k−1

w,h , p̄n,k−1
w,h )·(sn,k ,i

w,M − sn,k−1
w,M )

+
∑

M∈{K ,K ′}

∂Fα,eK K ′

∂p̄w,M
(sn,k−1

w,h , p̄n,k−1
w,h )·(p̄n,k ,i

w,M − p̄n,k−1
w,M ).
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Fluxes reconstructions and pressure postprocessing

Fluxes reconstructions

(dn,k ,i
α,h ·nK ,1)eK K ′ :=Fα,eK K ′ (s

n,k ,i
w,h , p̄

n,k ,i
w,h ),

((dn,k ,i
α,h + ln,k ,iα,h )·nK ,1)eK K ′ :=F k−1

α,eK K ′
(sn,k ,i

w,h , p̄
n,k ,i
w,h ),

an,k ,i
α,h :=dn,k ,i+ν

α,h + ln,k ,i+να,h − (dn,k ,i
α,h + ln,k ,iα,h )

Phase pressures postprocessing
Piecewise constant p̄n,k ,i

α,h postprocessed to piecewise

quadratic pn,k ,i
α,h :

−ηr,w(sn,k ,i
w,K )K∇(pn,k ,i

w,h |K ) = dn,k ,i
w,h |K ,

pn,k ,i
w,h (xK ) = p̄n,k ,i

w,K ,

−ηr,n(sn,k ,i
w,K )K∇(pn,k ,i

n,h |K ) = dn,k ,i
n,h |K ,

pn,k ,i
n,h (xK ) = π(sn,k ,i

w,K ) + p̄n,k ,i
w,K
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Piecewise constant p̄n,k ,i

α,h postprocessed to piecewise

quadratic pn,k ,i
α,h :

−ηr,w(sn,k ,i
w,K )K∇(pn,k ,i

w,h |K ) = dn,k ,i
w,h |K ,

pn,k ,i
w,h (xK ) = p̄n,k ,i

w,K ,

−ηr,n(sn,k ,i
w,K )K∇(pn,k ,i

n,h |K ) = dn,k ,i
n,h |K ,

pn,k ,i
n,h (xK ) = π(sn,k ,i

w,K ) + p̄n,k ,i
w,K
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Water saturation/estimators evolution
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Estimators and stopping criteria
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GMRes relative residual/Newton iterations
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GMRes iterations
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Vertex-centered finite volumes

Implicit pressure equation on step k

−
((
ηr,w(sn,k−1

w,h ) + ηr,n(sn,k−1
w,h )

)
K∇pn,k

w,h·nD

+ηr,n(sn,k−1
w,h )K∇π(sn,k−1

w,h )·nD,1
)
∂D\∂Ω

= 0 ∀D ∈ Dint,n
h

Explicit saturation equation on step k

sn,k
w,D :=

τn

φ|D|
(
ηr,w(sn,k−1

w,h )K∇pn,k
w,h·nD,1

)
∂D\∂Ω

+ sn−1
w,D ∀D ∈ Dint,n

h
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Vertex-centered finite volumes

Implicit pressure equation on step k

−
((
ηr,w(sn,k−1

w,h ) + ηr,n(sn,k−1
w,h )

)
K∇pn,k

w,h·nD

+ηr,n(sn,k−1
w,h )K∇π(sn,k−1

w,h )·nD,1
)
∂D\∂Ω

= 0 ∀D ∈ Dint,n
h

Explicit saturation equation on step k

sn,k
w,D :=

τn

φ|D|
(
ηr,w(sn,k−1

w,h )K∇pn,k
w,h·nD,1

)
∂D\∂Ω

+ sn−1
w,D ∀D ∈ Dint,n

h
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Linearization and algebraic solution

Iterative coupling step k and algebraic step i

−
((
ηr,w(sn,k−1

w,h ) + ηr,n(sn,k−1
w,h )

)
K∇pn,k ,i

w,h ·nD

+ηr,n(sn,k−1
w,h )K∇π(sn,k−1

w,h )·nD,1
)
∂D\∂Ω

= −Rn,k ,i
t,D ∀D ∈ Dint,n

h

sn,k ,i
w,D :=

τn

φ|D|
(
ηr,w(sn,k−1

w,h )K∇pn,k ,i
w,h ·nD,1

)
∂D\∂Ω

+ sn−1
w,D
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Linearization and algebraic solution

Iterative coupling step k and algebraic step i

−
((
ηr,w(sn,k−1

w,h ) + ηr,n(sn,k−1
w,h )

)
K∇pn,k ,i

w,h ·nD

+ηr,n(sn,k−1
w,h )K∇π(sn,k−1

w,h )·nD,1
)
∂D\∂Ω

= −Rn,k ,i
t,D ∀D ∈ Dint,n

h

sn,k ,i
w,D :=

τn

φ|D|
(
ηr,w(sn,k−1

w,h )K∇pn,k ,i
w,h ·nD,1

)
∂D\∂Ω

+ sn−1
w,D
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Fluxes reconstructions

Total fluxes

(dn,k ,i
t,h ·nD,1)e := −

((
ηr,w(sn,k ,i

w,h ) + ηr,n(sn,k ,i
w,h )

)
K∇pn,k ,i

w,h ·nD

+ ηr,n(sn,k ,i
w,h )K∇π(sn,k ,i

w,h )·nD,1
)

e,

((dn,k ,i
t,h + ln,k ,it,h )·nD,1)e := −

((
ηr,w(sn,k−1

w,h ) + ηr,n(sn,k−1
w,h )

)
K∇pn,k ,i

w,h ·nD

+ ηr,n(sn,k−1
w,h )K∇π(sn,k−1

w,h )·nD,1
)

e,

an,k ,i
t,h := dn,k ,i+ν

t,h + ln,k ,i+νt,h − (dn,k ,i
t,h + ln,k ,it,h )

Wetting fluxes

(dn,k ,i
w,h ·nD,1)e := −

(
ηr,w(sn,k ,i

w,h )K∇pn,k ,i
w,h ·nD,1

)
e,

((dn,k ,i
w,h + ln,k ,iw,h )·nD,1)e := −

(
ηr,w(sn,k−1

w,h )K∇pn,k ,i
w,h ·nD,1

)
e,

an,k ,i
w,h := 0
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Fluxes reconstructions

Total fluxes

(dn,k ,i
t,h ·nD,1)e := −

((
ηr,w(sn,k ,i

w,h ) + ηr,n(sn,k ,i
w,h )

)
K∇pn,k ,i

w,h ·nD

+ ηr,n(sn,k ,i
w,h )K∇π(sn,k ,i

w,h )·nD,1
)

e,

((dn,k ,i
t,h + ln,k ,it,h )·nD,1)e := −

((
ηr,w(sn,k−1

w,h ) + ηr,n(sn,k−1
w,h )

)
K∇pn,k ,i

w,h ·nD

+ ηr,n(sn,k−1
w,h )K∇π(sn,k−1

w,h )·nD,1
)

e,

an,k ,i
t,h := dn,k ,i+ν

t,h + ln,k ,i+νt,h − (dn,k ,i
t,h + ln,k ,it,h )

Wetting fluxes

(dn,k ,i
w,h ·nD,1)e := −

(
ηr,w(sn,k ,i

w,h )K∇pn,k ,i
w,h ·nD,1

)
e,

((dn,k ,i
w,h + ln,k ,iw,h )·nD,1)e := −

(
ηr,w(sn,k−1

w,h )K∇pn,k ,i
w,h ·nD,1

)
e,

an,k ,i
w,h := 0
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Estimators and stopping criteria
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GMRes relative residual/iterative coupling iterations
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GMRes iterations
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Conclusions

Complete adaptivity
only a necessary number of algebraic solver iterations
on each linearization step
only a necessary number of linearization iterations
optimal choice of the regularization parameter
space-time mesh adaptivity
“smart online decisions”: algebraic step / linearization
step / regularization / time step refinement / space mesh
refinement
important computational savings
guaranteed and robust upper bound via a posteriori error
estimates

Future directions
other coupled nonlinear systems
convergence and optimality
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Thank you for your attention!
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