The current landscape of energy a posteriori error estimators

Martin Vohralík

INRIA Paris

28th Chemnitz FEM symposium, September 29, 2015

Outline

- Introduction and the current landscape
 - Optimal properties
 - Various energy a posteriori error estimators
- 2 Equilibrated fluxes in the Laplace case
 - Guaranteed upper bound
 - Polynomial-degree-robust local efficiency
 - Applications
 - Numerical results
- 3 Adaptive inexact Newton method
 - Guaranteed a posteriori error estimate
 - Stopping criteria, efficiency, and robustness
 - Numerical results
- 4 Full adaptivity for unsteady nonlinear problems
- 5 Guaranteed bounds for Laplace eigen-values and -vectors
 - References and bibliography

Outline

- Introduction and the current landscape
 - Optimal properties
 - Various energy a posteriori error estimators
- 2 Equilibrated fluxes in the Laplace case
 - Guaranteed upper bound
 - Polynomial-degree-robust local efficiency
 - Applications
 - Numerical results
- 3 Adaptive inexact Newton method
 - Guaranteed a posteriori error estimate
 - Stopping criteria, efficiency, and robustness
 - Numerical results
- 4 Full adaptivity for unsteady nonlinear problems
- Guaranteed bounds for Laplace eigen-values and -vectors
- 6 References and bibliography

A posteriori error estimate

- Let *u* be a weak solution of a PDE.
- Let *u_h* be its approximate numerical solution.
- A priori error estimate: ||∇(u u_h)|| ≤ C(u)h^k. Dependent on u, not computable. Useful in theoretical assessment of convergence.
- A posteriori error estimate: ||∇(u − u_h)|| ≤ Cη(u_h). Only uses u_h, computable. Great in practical calculation.

- Element indicators $\eta_K(u_h)$, $K \in \mathcal{T}_h$.
- Can be used to determine mesh elements with large error.
- We can then refine these elements: mesh adaptivity.

A posteriori error estimate

- Let *u* be a weak solution of a PDE.
- Let *u_h* be its approximate numerical solution.
- A priori error estimate: ||∇(u u_h)|| ≤ C(u)h^k. Dependent on u, not computable. Useful in theoretical assessment of convergence.
- A posteriori error estimate: ||∇(u − u_h)|| ≤ Cη(u_h). Only uses u_h, computable. Great in practical calculation.

- Element indicators $\eta_K(u_h)$, $K \in \mathcal{T}_h$.
- Can be used to determine mesh elements with large error.
- We can then refine these elements: mesh adaptivity.

A posteriori error estimate

- Let *u* be a weak solution of a PDE.
- Let *u_h* be its approximate numerical solution.
- A priori error estimate: ||∇(u u_h)|| ≤ C(u)h^k. Dependent on u, not computable. Useful in theoretical assessment of convergence.
- A posteriori error estimate: ||∇(u − u_h)|| ≤ Cη(u_h). Only uses u_h, computable. Great in practical calculation.

- Element indicators $\eta_K(u_h)$, $K \in \mathcal{T}_h$.
- Can be used to determine mesh elements with large error.
- We can then refine these elements: mesh adaptivity.

A posteriori error estimate

- Let *u* be a weak solution of a PDE.
- Let *u_h* be its approximate numerical solution.
- A priori error estimate: ||∇(u u_h)|| ≤ C(u)h^k. Dependent on u, not computable. Useful in theoretical assessment of convergence.
- A posteriori error estimate: ||∇(u − u_h)|| ≤ Cη(u_h). Only uses u_h, computable. Great in practical calculation.

- Element indicators $\eta_K(u_h)$, $K \in \mathcal{T}_h$.
- Can be used to determine mesh elements with large error.
- We can then refine these elements: mesh adaptivity.

A posteriori error estimate

- Let *u* be a weak solution of a PDE.
- Let *u_h* be its approximate numerical solution.
- A priori error estimate: ||∇(u u_h)|| ≤ C(u)h^k. Dependent on u, not computable. Useful in theoretical assessment of convergence.
- A posteriori error estimate: ||∇(u − u_h)|| ≤ Cη(u_h). Only uses u_h, computable. Great in practical calculation.

- Element indicators $\eta_{\mathcal{K}}(u_h), \, \mathcal{K} \in \mathcal{T}_h$.
- Can be used to determine mesh elements with large error.
- We can then refine these elements: mesh adaptivity.

Outline

- Introduction and the current landscape
 - Optimal properties
 - Various energy a posteriori error estimators
- Equilibrated fluxes in the Laplace case
 - Guaranteed upper bound
 - Polynomial-degree-robust local efficiency
 - Applications
 - Numerical results
- 3 Adaptive inexact Newton method
 - Guaranteed a posteriori error estimate
 - Stopping criteria, efficiency, and robustness
 - Numerical results
- 4 Full adaptivity for unsteady nonlinear problems
- Guaranteed bounds for Laplace eigen-values and -vectors
- 6 References and bibliography

Model problem

Model problem

$$-\Delta u = f$$
 in Ω ,
 $u = 0$ on $\partial \Omega$

Ω ⊂ ℝ^d, d = 2,3 polygon/polyhedron
f ∈ L²(Ω)

Weak formulation Find $u \in H_0^1(\Omega)$ such that

$$(\nabla u, \nabla v) = (f, v) \qquad \forall v \in H_0^1(\Omega)$$

Finite element solution Find $u_h \in V_h := \mathbb{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \ge 1$, such that

 $(\nabla u_h, \nabla v_h) = (f, v_h) \quad \forall v_h \in V_h$

Model problem

Model problem

$$-\Delta u = f$$
 in Ω ,
 $u = 0$ on $\partial \Omega$

Ω ⊂ ℝ^d, d = 2,3 polygon/polyhedron
 f ∈ L²(Ω)

Weak formulation

Find $u \in H_0^1(\Omega)$ such that

$$(\nabla u, \nabla v) = (f, v) \qquad \forall v \in H^1_0(\Omega)$$

Finite element solution Find $u_h \in V_h := \mathbb{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \ge 1$, such that

 $(\nabla u_h, \nabla v_h) = (f, v_h) \quad \forall v_h \in V_h$

Model problem

Model problem

$$-\Delta u = f$$
 in Ω ,
 $u = 0$ on $\partial \Omega$

Ω ⊂ ℝ^d, d = 2,3 polygon/polyhedron
 f ∈ L²(Ω)

Weak formulation

Find $u \in H_0^1(\Omega)$ such that

$$(\nabla u, \nabla v) = (f, v) \qquad \forall v \in H^1_0(\Omega)$$

Finite element solution

Find $u_h \in V_h := \mathbb{P}_p(\mathcal{T}_h) \cap H^1_0(\Omega)$, $p \ge 1$, such that

$$(\nabla u_h, \nabla v_h) = (f, v_h) \qquad \forall v_h \in V_h$$

Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B

I&B Optimal properties

operties The landscape

1

What an a posteriori error estimate should fulfill

Optimal estimate

• guaranteed upper bound:

$$\|\nabla(u-u_h)\| \leq \left\{\sum_{K\in\mathcal{T}_h}\eta_K(u_h)^2\right\}^{\frac{1}{2}}$$

• local efficiency:

 $\mathcal{L}_{K}(u_{h}) \leq C_{\mathrm{eff}} \| \nabla (u - u_{h}) \|_{\omega_{K}} \qquad \forall K \in \mathcal{T}_{h}$

• asymptotic exactness:

$$\frac{\left\{\sum_{K\in\mathcal{T}_h}\eta_K(u_h)^2\right\}^{\frac{1}{2}}}{\|\nabla(u-u_h)\|}\searrow 1$$

- robustness: C_{eff} independent of the parameters (size and shape of Ω, regularity of *u*, refinement of *T_h*, polynomial degree of *u_h*) (final time, singular perturbation ...)
- small evaluation cost of $\eta_{\mathcal{K}}(u_h)$
- error components identification: discretization, algebraic (linearization, time stepping ...)

M. Vohralík

The landscape

1

What an a posteriori error estimate should fulfill

Optimal estimate

• quaranteed upper bound:

$$\|\nabla(u-u_h)\| \leq \left\{\sum_{K\in\mathcal{T}_h}\eta_K(u_h)^2\right\}^{\frac{1}{2}}$$

Iocal efficiency:

$$\eta_{\mathcal{K}}(u_h) \leq C_{\mathrm{eff}} \|
abla(u-u_h) \|_{\omega_{\mathcal{K}}} \qquad \forall \mathcal{K} \in \mathcal{T}_h$$

• asymptotic exactness:

$$\frac{\left\{\sum_{K\in\mathcal{T}_h}\eta_K(u_h)^2\right\}^{\frac{1}{2}}}{\|\nabla(u-u_h)\|}\searrow 1$$

- robustness: C_{eff} independent of the parameters (size and
- small evaluation cost of $\eta_K(u_h)$
- error components identification: discretization, algebraic

M Vohralík

The landscape

1

What an a posteriori error estimate should fulfill

Optimal estimate

• quaranteed upper bound:

$$\|\nabla(u-u_h)\| \leq \left\{\sum_{K\in\mathcal{T}_h}\eta_K(u_h)^2\right\}^{\frac{1}{2}}$$

Iocal efficiency:

$$\eta_{\mathcal{K}}(u_h) \leq C_{\text{eff}} \| \nabla (u - u_h) \|_{\omega_{\mathcal{K}}} \qquad \forall \mathcal{K} \in \mathcal{T}_h$$

• asymptotic exactness:

$$\frac{\left\{\sum_{K\in\mathcal{T}_h}\eta_K(u_h)^2\right\}^{\frac{1}{2}}}{\|\nabla(u-u_h)\|}\searrow 1$$

- robustness: C_{eff} independent of the parameters (size and
- small evaluation cost of $\eta_K(u_h)$
- error components identification: discretization, algebraic

M Vohralík

The landscape

1

What an a posteriori error estimate should fulfill

Optimal estimate

• guaranteed upper bound:

$$\|\nabla(u-u_h)\| \leq \left\{\sum_{\kappa\in\mathcal{T}_h}\eta_{\kappa}(u_h)^2\right\}^{\frac{1}{2}}$$

Iocal efficiency:

$$\eta_{\mathcal{K}}(u_h) \leq C_{\mathrm{eff}} \| \nabla (u - u_h) \|_{\omega_{\mathcal{K}}} \qquad \forall \mathcal{K} \in \mathcal{T}_h$$

$$\frac{\left\{\sum_{K\in\mathcal{T}_h}\eta_K(u_h)^2\right\}^{\frac{1}{2}}}{\|\nabla(u-u_h)\|}\searrow 1$$

- robustness: C_{eff} independent of the parameters (size and shape of Ω , regularity of *u*, refinement of \mathcal{T}_h , polynomial degree of u_h (final time, singular perturbation ...)
- small evaluation cost of $\eta_{\kappa}(u_{h})$
- error components identification: discretization, algebraic

1

The landscape

What an a posteriori error estimate should fulfill

Optimal estimate

• guaranteed upper bound:

$$\|\nabla(u-u_h)\| \leq \left\{\sum_{K\in\mathcal{T}_h}\eta_K(u_h)^2\right\}^{\frac{1}{2}}$$

Iocal efficiency:

$$\eta_{\mathcal{K}}(u_h) \leq C_{\text{eff}} \| \nabla (u - u_h) \|_{\omega_{\mathcal{K}}} \qquad \forall \mathcal{K} \in \mathcal{T}_h$$

$$\frac{\left\{\sum_{K\in\mathcal{T}_h}\eta_K(u_h)^2\right\}^{\frac{1}{2}}}{\|\nabla(u-u_h)\|}\searrow 1$$

- robustness: C_{eff} independent of the parameters (size and shape of Ω , regularity of *u*, refinement of \mathcal{T}_h , polynomial degree of u_h (final time, singular perturbation ...)
- small evaluation cost of $\eta_{\kappa}(u_{h})$
- error components identification: discretization, algebraic

The landscape

1

What an a posteriori error estimate should fulfill

Optimal estimate

• guaranteed upper bound:

$$\|\nabla(u-u_h)\| \leq \left\{\sum_{\kappa\in\mathcal{T}_h}\eta_{\kappa}(u_h)^2\right\}^{\frac{1}{2}}$$

Iocal efficiency:

$$\eta_{\mathcal{K}}(u_h) \leq C_{\mathrm{eff}} \| \nabla (u - u_h) \|_{\omega_{\mathcal{K}}} \qquad \forall \mathcal{K} \in \mathcal{T}_h$$

$$\frac{\left\{\sum_{K\in\mathcal{T}_h}\eta_K(u_h)^2\right\}^{\frac{1}{2}}}{\|\nabla(u-u_h)\|}\searrow 1$$

- robustness: C_{eff} independent of the parameters (size and shape of Ω , regularity of *u*, refinement of \mathcal{T}_h , polynomial degree of u_h (final time, singular perturbation ...)
- small evaluation cost of $\eta_{\mathcal{K}}(u_h)$
- error components identification: discretization, algebraic

The landscape

1

What an a posteriori error estimate should fulfill

Optimal estimate

• guaranteed upper bound:

$$\|\nabla(u-u_h)\| \leq \left\{\sum_{K\in\mathcal{T}_h}\eta_K(u_h)^2\right\}^{\frac{1}{2}}$$

Iocal efficiency:

$$\eta_{\mathcal{K}}(u_h) \leq C_{\mathrm{eff}} \| \nabla (u - u_h) \|_{\omega_{\mathcal{K}}} \qquad \forall \mathcal{K} \in \mathcal{T}_h$$

$$\frac{\left\{\sum_{K\in\mathcal{T}_h}\eta_K(u_h)^2\right\}^{\frac{1}{2}}}{\|\nabla(u-u_h)\|}\searrow 1$$

- robustness: C_{eff} independent of the parameters (size and shape of Ω , regularity of *u*, refinement of \mathcal{T}_h , polynomial degree of u_h (final time, singular perturbation ...)
- small evaluation cost of $\eta_{\mathcal{K}}(u_h)$
- error components identification: discretization, algebraic

The landscape

1

What an a posteriori error estimate should fulfill

Optimal estimate

• guaranteed upper bound:

$$\|\nabla(u-u_h)\| \leq \left\{\sum_{K\in\mathcal{T}_h}\eta_K(u_h)^2\right\}^{\frac{1}{2}}$$

Iocal efficiency:

$$\eta_{\mathcal{K}}(u_h) \leq C_{\mathrm{eff}} \| \nabla (u - u_h) \|_{\omega_{\mathcal{K}}} \qquad \forall \mathcal{K} \in \mathcal{T}_h$$

$$\frac{\left\{\sum_{K\in\mathcal{T}_h}\eta_K(u_h)^2\right\}^{\frac{1}{2}}}{\|\nabla(u-u_h)\|}\searrow 1$$

- robustness: C_{eff} independent of the parameters (size and shape of Ω , regularity of *u*, refinement of \mathcal{T}_h , polynomial degree of u_h (final time, singular perturbation ...)
- small evaluation cost of $\eta_{\mathcal{K}}(u_h)$
- error components identification: discretization, algebraic (linearization, time stepping ...)

Outline

- Introduction and the current landscape
 - Optimal properties
 - Various energy a posteriori error estimators
- 2 Equilibrated fluxes in the Laplace case
 - Guaranteed upper bound
 - Polynomial-degree-robust local efficiency
 - Applications
 - Numerical results
- 3 Adaptive inexact Newton method
 - Guaranteed a posteriori error estimate
 - Stopping criteria, efficiency, and robustness
 - Numerical results
- 4 Full adaptivity for unsteady nonlinear problems
- Guaranteed bounds for Laplace eigen-values and -vectors
- 6 References and bibliography

Residual-based estimates

Theorem (Residual-based estimate, Verfürth (1989))

Let $u \in H_0^1(\Omega)$ be the weak solution and let $u_h \in V_h$ be its FE approximation. Then there exists $C_{up} > 0$ only depending on *d* (space dimension) and $\kappa_{\mathcal{T}_h}$ (shape-regularity of \mathcal{T}_h) such that

$$\|\nabla(u-u_h)\| \leq C_{up} \left\{ \sum_{K \in \mathcal{T}_h} (\underbrace{h_K \|f + \Delta u_h\|_K + h_K^{\frac{1}{2}} \|\llbracket \nabla u_h \rrbracket \cdot \mathbf{n}_K \|_{\partial K}}_{\eta_{\text{res},K}})^2 \right\}^{\frac{1}{2}}.$$

For C_{low} additionally depending p (polynomial degree),

 $\eta_{\mathrm{res},K} \leq C_{\mathrm{low}}(\|\nabla(u-u_h)\|_{\omega_K} + \|f-\Pi_{\rho}f\|_{\omega_K}) \quad \forall K \in \mathcal{T}_h.$

Properties

- \oplus rigorous
- ⊕ cheap (explicit)
- \ominus what is C_{up} ?
- \ominus C_{low} depends on p

6/52

Energy a posteriori error estimators

4

M. Vohralík

Residual-based estimates

Theorem (Residual-based estimate, Verfürth (1989))

Let $u \in H_0^1(\Omega)$ be the weak solution and let $u_h \in V_h$ be its FE approximation. Then there exists $C_{up} > 0$ only depending on d (space dimension) and $\kappa_{\mathcal{T}_h}$ (shape-regularity of \mathcal{T}_h) such that

For C_{low} additionally depending p (polynomial degree),

$$\eta_{\mathrm{res},K} \leq C_{\mathrm{low}}(\|\nabla(u-u_h)\|_{\omega_K} + \|f-\Pi_{\rho}f\|_{\omega_K}) \quad \forall K \in \mathcal{T}_h.$$

Properties

- ⊕ rigorous
- ⊕ cheap (explicit)
- \ominus what is C_{up} ?
- \ominus C_{low} depends on p

6/52

Energy a posteriori error estimators

M. Vohralík

Residual-based estimates

Theorem (Residual-based estimate, Verfürth (1989))

Let $u \in H_0^1(\Omega)$ be the weak solution and let $u_h \in V_h$ be its FE approximation. Then there exists $C_{up} > 0$ only depending on d (space dimension) and $\kappa_{\mathcal{T}_h}$ (shape-regularity of \mathcal{T}_h) such that

For C_{low} additionally depending p (polynomial degree),

$$\eta_{\mathrm{res},\mathcal{K}} \leq \mathcal{C}_{\mathrm{low}}(\|\nabla(u-u_h)\|_{\omega_{\mathcal{K}}} + \|f-\Pi_{\mathcal{P}}f\|_{\omega_{\mathcal{K}}}) \quad \forall \mathcal{K} \in \mathcal{T}_h.$$

Properties

- \oplus rigorous
- cheap (explicit)
- \ominus what is C_{up} ?
- \ominus **C**_{low} depends on **p**

M. Vohralík

6/52

Energy a posteriori error estimators

Averaging estimates

Theorem (Averaging estimate, Zienkiewicz and Zhu (1987))

Let $u \in H_0^1(\Omega)$ and let $u_h \in V_h$ be the FE approximation. Then

 $\|\nabla(u-u_h)\| \lesssim \|\nabla u_h + \sigma_h\|,$

where $\sigma_h \in [\mathbb{P}_{p'}(\mathcal{T}_h) \cap H^1(\Omega)]^d$ is obtained by local averaging (smoothing) of $-\nabla u_h$.

- ⊕ cheap (explicit)
- ⊕ often asymptotically exact
- problem-independent
- upper bound (may be severely violated on coarse meshes), efficiency (under certain conditions, however, equivalence with residual-based estimates can be shown

Averaging estimates

Theorem (Averaging estimate, Zienkiewicz and Zhu (1987))

Let $u \in H_0^1(\Omega)$ and let $u_h \in V_h$ be the FE approximation. Then

 $\|\nabla(u-u_h)\| \leq \|\nabla u_h + \sigma_h\|,$

where $\sigma_h \in [\mathbb{P}_{p'}(\mathcal{T}_h) \cap H^1(\Omega)]^d$ is obtained by local averaging (smoothing) of $-\nabla u_h$.

- cheap (explicit) Æ
- often asymptotically exact \oplus
- problem-independent
- upper bound (may be severely violated on coarse meshes), efficiency (under certain conditions, however, equivalence with residual-based estimates can be shown)

Functional estimates

Theorem (Functional estimate, ≈ Prager and Synge (1947), Hlaváček, Haslinger, Nečas, and Lovíšek (1979), Repin (1997))

Let $u \in H_0^1(\Omega)$ be the weak solution and let $u_h \in H_0^1(\Omega)$ be arbitrary. Let $\sigma_h \in \mathbf{H}(\operatorname{div}, \Omega)$ be arbitrary. Then

 $\|\nabla(u-u_h)\| \leq \|\nabla u_h + \boldsymbol{\sigma}_h\| + h_{\Omega}\|f - \nabla \cdot \boldsymbol{\sigma}_h\|.$

- \oplus general (no requirement on u_h)
- ⊕ guaranteed upper bound
- \ominus h_{Ω} may be large
- ⊖ no local efficiency
- \ominus potentially expensive (global solve for σ_h)

Functional estimates

Theorem (Functional estimate, ≈ Prager and Synge (1947), Hlaváček, Haslinger, Nečas, and Lovíšek (1979), Repin (1997))

Let $u \in H_0^1(\Omega)$ be the weak solution and let $u_h \in H_0^1(\Omega)$ be arbitrary. Let $\sigma_h \in \mathbf{H}(\operatorname{div}, \Omega)$ be arbitrary. Then

 $\|\nabla(u-u_h)\| \leq \|\nabla u_h + \boldsymbol{\sigma}_h\| + h_{\Omega}\|f - \nabla \cdot \boldsymbol{\sigma}_h\|.$

- \oplus general (no requirement on u_h)
- ⊕ guaranteed upper bound
- $\ominus h_{\Omega}$ may be large
- \ominus no local efficiency
- \ominus potentially expensive (global solve for σ_h)

The current landscape

Estimator	Guar. bound	Loc. eff.	Asymp. exact.	Rob. data	Rob. <i>p</i>	Cost	Maximal overest.	Err. comps.
Residual	X	1	×	1	×	explicit	×	×
Averaging	×	×	1	×	×	explicit	×	1
Hierarchical	×	1	1	1	1	global	×	X
Functional	1	×	1	×	×	global	×	1
Equil. res.	X	1	1	1	×	implicit	×	1
Geometric	×	×	1	×	×	explicit	×	1
Equil. flux	1	1	1	1	1	implicit	1	1

informatics mathematics

Outline

- Introduction and the current landscape
 - Optimal properties
 - Various energy a posteriori error estimators
- 2 Equilibrated fluxes in the Laplace case
 - Guaranteed upper bound
 - Polynomial-degree-robust local efficiency
 - Applications
 - Numerical results
- 3 Adaptive inexact Newton method
 - Guaranteed a posteriori error estimate
 - Stopping criteria, efficiency, and robustness
 - Numerical results
- 4 Full adaptivity for unsteady nonlinear problems
- Guaranteed bounds for Laplace eigen-values and -vectors
- 6 References and bibliography

Outline

- Introduction and the current landscape
 - Optimal properties
 - Various energy a posteriori error estimators
- 2 Equilibrated fluxes in the Laplace case
 - Guaranteed upper bound
 - Polynomial-degree-robust local efficiency
 - Applications
 - Numerical results
- 3 Adaptive inexact Newton method
 - Guaranteed a posteriori error estimate
 - Stopping criteria, efficiency, and robustness
 - Numerical results
- 4 Full adaptivity for unsteady nonlinear problems
- Guaranteed bounds for Laplace eigen-values and -vectors
- 6 References and bibliography

Equilibrated flux a posteriori estimate

Properties of the weak solution

- $u \in H_0^1(\Omega)$ (constraint)
- $\sigma := -\nabla u$ (constitutive relation)
- $\nabla \cdot \boldsymbol{\sigma} = f$ (equilibrium)
- $\sigma \in H(\operatorname{div}, \Omega)$ (constraint)

Theorem (Equilibrated flux estimate, ~ Prager and Synge (1947))

- Let $u \in H_0^1(\Omega)$ be the weak solution;
- $u_h \in H^1(\mathcal{T}_h)$ (piecewise $H^1(K)$) be arbitrary;
- $\boldsymbol{s}_h \in H^1_0(\Omega), \, \boldsymbol{\sigma}_h \in \boldsymbol{\mathsf{H}}(\operatorname{div}, \Omega), \, (\nabla \cdot \boldsymbol{\sigma}_h, 1)_{\mathcal{K}} = (f, 1)_{\mathcal{K}} \, \forall \mathcal{K} \in \mathcal{T}_h.$

Then

$$\begin{aligned} \|\nabla(u-u_h)\|^2 &\leq \sum_{K\in\mathcal{T}_h} \underbrace{\left(\|\nabla u_h + \sigma_h\|_K}_{\text{constitutive relation}} + \underbrace{\frac{h_K}{\pi} \|f - \nabla \cdot \sigma_h\|_K}_{\text{equilibrium}} \right)^2 \\ &+ \sum_{K\in\mathcal{T}_h} \underbrace{\|\nabla(u_h - s_h)\|_K^2}_{\text{constraint}}. \end{aligned}$$

Equilibrated flux a posteriori estimate

Properties of the weak solution

- $u \in H_0^1(\Omega)$ (constraint)
- $\sigma := -\nabla u$ (constitutive relation)
- $\nabla \cdot \boldsymbol{\sigma} = \boldsymbol{f}$ (equilibrium)
- $\sigma \in \mathbf{H}(\operatorname{div}, \Omega)$ (constraint)

Theorem (Equilibrated flux estimate, ~ Prager and Synge (1947))

- Let $u \in H_0^1(\Omega)$ be the weak solution;
- $u_h \in H^1(\mathcal{T}_h)$ (piecewise $H^1(K)$) be arbitrary;
- $s_h \in H_0^1(\Omega)$, $\sigma_h \in \mathbf{H}(\operatorname{div}, \Omega)$, $(\nabla \cdot \sigma_h, 1)_{\mathcal{K}} = (f, 1)_{\mathcal{K}} \forall \mathcal{K} \in \mathcal{T}_h$.

Then

$$\|\nabla(u - u_h)\|^2 \leq \sum_{K \in \mathcal{T}_h} \left(\underbrace{\|\nabla u_h + \sigma_h\|_K}_{\text{constitutive relation}} + \underbrace{\frac{h_K}{\pi} \|f - \nabla \cdot \sigma_h\|_K}_{\text{equilibrium}} \right)^2 + \sum_{K \in \mathcal{T}_h} \underbrace{\|\nabla(u_h - s_h)\|_K^2}_{\text{constraint}}.$$

ematic

Equilibrated flux a posteriori estimate

Properties of the weak solution

- $u \in H_0^1(\Omega)$ (constraint)
- $\sigma := -\nabla u$ (constitutive relation)
- $\nabla \cdot \boldsymbol{\sigma} = \boldsymbol{f}$ (equilibrium)
- $\sigma \in \mathbf{H}(\operatorname{div}, \Omega)$ (constraint)

Theorem (Equilibrated flux estimate, ≈ Prager and Synge (1947))

- Let $u \in H_0^1(\Omega)$ be the weak solution;
- $u_h \in H^1(\mathcal{T}_h)$ (piecewise $H^1(K)$) be arbitrary;
- $s_h \in H_0^1(\Omega), \sigma_h \in \mathbf{H}(\operatorname{div}, \Omega), (\nabla \cdot \sigma_h, 1)_{\mathcal{K}} = (f, 1)_{\mathcal{K}} \forall \mathcal{K} \in \mathcal{T}_h.$

Then

$$\begin{aligned} \|\nabla(u-u_h)\|^2 &\leq \sum_{K\in\mathcal{T}_h} \left(\underbrace{\|\nabla u_h + \sigma_h\|_K}_{\text{constitutive relation}} + \underbrace{\frac{h_K}{\pi} \|f - \nabla \cdot \sigma_h\|_K}_{\text{equilibrium}} \right)^2 \\ &+ \sum_{K\in\mathcal{T}_h} \underbrace{\|\nabla(u_h - s_h)\|_K^2}_{\text{constraint}}. \end{aligned}$$

Global potential and flux reconstructions

Ideally

$$\sigma_h := \arg \min_{\mathbf{v}_h \in \mathbf{V}_h, \, \nabla \cdot \mathbf{v}_h = \Pi_{Q_h} f} \| \nabla u_h + \mathbf{v}_h \|$$
$$s_h := \arg \min_{\mathbf{v}_h \in V_h} \| \nabla (u_h - v_h) \|$$

- $\mathbf{V}_h \subset \mathbf{H}(\operatorname{div}, \Omega), \ \mathbf{Q}_h \subset L^2(\Omega), \ \mathbf{V}_h \subset H^1_0(\Omega)$
- too expensive, global minimization problems (the hypercircle method)

Local potential and flux reconstructions

Partition of unity localization

$$\sigma_h^{\mathbf{a}} := \arg \min_{\mathbf{v}_h \in \mathbf{V}_h^{\mathbf{a}}, \, \nabla \cdot \mathbf{v}_h = ?} \|\psi_{\mathbf{a}} \nabla u_h + \mathbf{v}_h\|_{\omega_{\mathbf{a}}}$$
$$s_h^{\mathbf{a}} := \arg \min_{\mathbf{v}_h \in \mathbf{V}_h^{\mathbf{a}}} \|\nabla (\psi_{\mathbf{a}} u_h - v_h)\|_{\omega_{\mathbf{a}}}$$

• cut-off by hat basis functions $\psi_{\mathbf{a}} \in \mathbb{P}_1(\mathcal{T}_h) \cap H^1(\Omega)$ • $\sigma_h := \sum \sigma_h^a$, $s_h := \sum s_h^a$ $\mathbf{a} \in \mathcal{V}_h$ $\mathbf{a} \in \mathcal{V}_h$ local minimizations $\mathbf{a} \in \mathcal{V}_h$ patch ω_a $\psi_{a}(\mathbf{a}) = 1, \ \psi_{a}(\mathbf{a}_{*}) = 0$
Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B Reliability Efficiency Applications Numerics

Local potential and flux reconstructions

Partition of unity localization

$$\sigma_{h}^{\mathbf{a}} := \arg \min_{\mathbf{v}_{h} \in \mathbf{V}_{h}^{\mathbf{a}}, \nabla \cdot \mathbf{v}_{h} = ?} \|\psi_{\mathbf{a}} \nabla u_{h} + \mathbf{v}_{h}\|_{\omega_{\mathbf{a}}}$$
$$s_{h}^{\mathbf{a}} := \arg \min_{\mathbf{v}_{h} \in \mathbf{V}_{h}^{\mathbf{a}}} \|\nabla (\psi_{\mathbf{a}} u_{h} - v_{h})\|_{\omega_{\mathbf{a}}}$$

• cut-off by hat basis functions $\psi_{\mathbf{a}} \in \mathbb{P}_1(\mathcal{T}_h) \cap H^1(\Omega)$

Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B Reliability Efficiency Applications Numerics

Local potential and flux reconstructions

Partition of unity localization

$$\sigma_{h}^{\mathbf{a}} := \arg \min_{\mathbf{v}_{h} \in \mathbf{V}_{h}^{\mathbf{a}}, \nabla \cdot \mathbf{v}_{h} = ?} \|\psi_{\mathbf{a}} \nabla u_{h} + \mathbf{v}_{h}\|_{\omega_{\mathbf{a}}}$$
$$s_{h}^{\mathbf{a}} := \arg \min_{\mathbf{v}_{h} \in \mathbf{V}_{h}^{\mathbf{a}}} \|\nabla (\psi_{\mathbf{a}} u_{h} - v_{h})\|_{\omega_{\mathbf{a}}}$$

• cut-off by hat basis functions $\psi_{\mathbf{a}} \in \mathbb{P}_1(\mathcal{T}_h) \cap H^1(\Omega)$

Assumption A (Galerkin orthogonality wrt hat functions)

There holds $u_h \in H^1(\mathcal{T}_h)$ and

$$(\nabla u_h, \nabla \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} = (f, \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} \qquad \forall \mathbf{a} \in \mathcal{V}_h^{\mathrm{int}}.$$

 $V_{b}^{a} \times Q_{b}^{a}$: MFE spaces (hom. Neumann BC for $a \in \mathcal{V}_{b}^{int}$, homogeneous Dirichlet BC on $\partial \omega_{\mathbf{a}} \cap \partial \Omega$ for $\mathbf{a} \in \mathcal{V}_{\mathbf{b}}^{\text{ext}}$

Let Assumption A be satisfied. For each $\mathbf{a} \in \mathcal{V}_h$, prescribe $\sigma_{h}^{a} \in \mathbf{V}_{h}^{a}$ and $\bar{r}_{h}^{a} \in Q_{h}^{a}$ by solving the **local mixed FE problem**

Assumption A (Galerkin orthogonality wrt hat functions)

There holds $u_h \in H^1(\mathcal{T}_h)$ and

$$(\nabla u_h, \nabla \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} = (f, \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} \quad \forall \mathbf{a} \in \mathcal{V}_h^{\mathrm{int}}.$$

 $V_{b}^{a} \times Q_{b}^{a}$: MFE spaces (hom. Neumann BC for $a \in \mathcal{V}_{b}^{int}$, homogeneous Dirichlet BC on $\partial \omega_{\mathbf{a}} \cap \partial \Omega$ for $\mathbf{a} \in \mathcal{V}_{h}^{\text{ext}}$)

Let Assumption A be satisfied. For each $\mathbf{a} \in \mathcal{V}_h$, prescribe $\sigma_{b}^{a} \in \mathbf{V}_{b}^{a}$ and $\bar{r}_{b}^{a} \in Q_{b}^{a}$ by solving the **local mixed FE problem**

Assumption A (Galerkin orthogonality wrt hat functions)

There holds $u_h \in H^1(\mathcal{T}_h)$ and

$$(\nabla u_h, \nabla \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} = (f, \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} \qquad \forall \mathbf{a} \in \mathcal{V}_h^{\text{int}}.$$

 $V_{b}^{a} \times Q_{b}^{a}$: MFE spaces (hom. Neumann BC for $a \in \mathcal{V}_{b}^{int}$, homogeneous Dirichlet BC on $\partial \omega_{\mathbf{a}} \cap \partial \Omega$ for $\mathbf{a} \in \mathcal{V}_{h}^{\text{ext}}$)

Definition (Constr. of σ_h , Destuynder and Métivet (1999) & Braess and Schöberl (2008))

Let Assumption A be satisfied. For each $\mathbf{a} \in \mathcal{V}_h$, prescribe $\sigma_{b}^{a} \in \mathbf{V}_{b}^{a}$ and $\bar{r}_{b}^{a} \in Q_{b}^{a}$ by solving the local mixed FE problem

$$\sigma_{h}^{\mathbf{a}} := \arg \min_{\mathbf{v}_{h} \in \mathbf{V}_{h}^{\mathbf{a}}, \nabla \cdot \mathbf{v}_{h} = \prod_{\mathcal{O}_{h}^{\mathbf{a}}} (\psi_{\mathbf{a}} f - \nabla \psi_{\mathbf{a}} \cdot \nabla u_{h})} \|\psi_{\mathbf{a}} \nabla u_{h} + \mathbf{v}_{h}\|_{\omega_{\mathbf{a}}}$$

$$(\uparrow)$$

$$(\downarrow)$$

$$(\downarrow)$$

$$(\downarrow)$$

$$(\uparrow)$$

$$(\downarrow)$$

$$(\uparrow)$$

$$(\uparrow)$$

$$(\downarrow)$$

$$(\uparrow)$$

$$(\downarrow)$$

$$(\uparrow)$$

$$(\uparrow)$$

$$(\uparrow)$$

$$(\downarrow)$$

$$(\downarrow$$

Assumption A (Galerkin orthogonality wrt hat functions)

There holds $u_h \in H^1(\mathcal{T}_h)$ and

$$(\nabla u_h, \nabla \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} = (f, \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} \qquad \forall \mathbf{a} \in \mathcal{V}_h^{\text{int}}.$$

 $V_{b}^{a} \times Q_{b}^{a}$: MFE spaces (hom. Neumann BC for $a \in \mathcal{V}_{b}^{int}$, homogeneous Dirichlet BC on $\partial \omega_{\mathbf{a}} \cap \partial \Omega$ for $\mathbf{a} \in \mathcal{V}_{h}^{\text{ext}}$)

Definition (Constr. of σ_h , Destuynder and Métivet (1999) & Braess and Schöberl (2008))

Let Assumption A be satisfied. For each $\mathbf{a} \in \mathcal{V}_h$, prescribe $\sigma_{b}^{a} \in \mathbf{V}_{b}^{a}$ and $\bar{r}_{b}^{a} \in Q_{b}^{a}$ by solving the local mixed FE problem

Local potential reconstruction

$V_h^{\mathbf{a}}$: FE space (hom. Dirichlet BC on $\partial \omega_{\mathbf{a}}$ for all $\mathbf{a} \in \mathcal{V}_h$)

Definition (Construction of $s_h,\,pprox$ Carstensen and Merdon (2013)

Let $u_h \in H^1(\mathcal{T}_h)$. For each $\mathbf{a} \in \mathcal{V}_h$, prescribe $s_h^{\mathbf{a}} \in V_h^{\mathbf{a}}$ by solving the **local conforming finite element problem**

$$m{s}^{f a}_h := rg\min_{m{v}_h \in m{V}^{f a}_h} \|
abla(\psi_{f a}m{u}_h - m{v}_h)\|_{\omega_{f a}}$$

$$(\nabla s_h^{\mathbf{a}}, \nabla v_h)_{\omega_{\mathbf{a}}} = (\nabla (\psi_{\mathbf{a}} u_h), \nabla v_h)_{\omega_{\mathbf{a}}} \quad \forall v_h \in V_h^{\mathbf{a}}.$$

Energy a posteriori error estimators 14 / 52

Local potential reconstruction

 $V_h^{\mathbf{a}}$: FE space (hom. Dirichlet BC on $\partial \omega_{\mathbf{a}}$ for all $\mathbf{a} \in \mathcal{V}_h$)

Definition (Construction of s_h , \approx Carstensen and Merdon (2013))

Let $u_h \in H^1(\mathcal{T}_h)$. For each $\mathbf{a} \in \mathcal{V}_h$, prescribe $s_h^{\mathbf{a}} \in V_h^{\mathbf{a}}$ by solving the **local conforming finite element problem**

$$s^{\mathsf{a}}_h := rg\min_{oldsymbol{v}_h \in oldsymbol{V}_h^{\mathsf{a}}} \|
abla(\psi_{\mathsf{a}} u_h - oldsymbol{v}_h) \|_{\omega_{\mathsf{a}}}$$

$$(\nabla s_h^{\mathbf{a}}, \nabla v_h)_{\omega_{\mathbf{a}}} = (\nabla (\psi_{\mathbf{a}} u_h), \nabla v_h)_{\omega_{\mathbf{a}}} \quad \forall v_h \in V_h^{\mathbf{a}}.$$

Energy a posteriori error estimators 14 / 52

Local potential reconstruction

 $V_h^{\mathbf{a}}$: FE space (hom. Dirichlet BC on $\partial \omega_{\mathbf{a}}$ for all $\mathbf{a} \in \mathcal{V}_h$)

Definition (Construction of s_h , \approx Carstensen and Merdon (2013))

Let $u_h \in H^1(\mathcal{T}_h)$. For each $\mathbf{a} \in \mathcal{V}_h$, prescribe $s_h^{\mathbf{a}} \in V_h^{\mathbf{a}}$ by solving the **local conforming finite element problem**

$$(\nabla S_h^{\mathbf{a}}, \nabla v_h)_{\omega_{\mathbf{a}}} = (\nabla (\psi_{\mathbf{a}} u_h), \nabla v_h)_{\omega_{\mathbf{a}}} \quad \forall v_h \in V_h^{\mathbf{a}}.$$

Energy a posteriori error estimators 14 / 52

Outline

- Introduction and the current landscape
 - Optimal properties
 - Various energy a posteriori error estimators
- 2 Equilibrated fluxes in the Laplace case
 - Guaranteed upper bound
 - Polynomial-degree-robust local efficiency
 - Applications
 - Numerical results
- 3 Adaptive inexact Newton method
 - Guaranteed a posteriori error estimate
 - Stopping criteria, efficiency, and robustness
 - Numerical results
- 4 Full adaptivity for unsteady nonlinear problems
- Guaranteed bounds for Laplace eigen-values and -vectors
- 6 References and bibliography

Assumptions

Assumption B (Weak continuity)

There holds

$\langle \llbracket u_h \rrbracket, 1 \rangle_e = 0 \qquad \forall e \in \mathcal{E}_h.$

Assumption C (Piecewise polynomials, data, and meshes)

The approximation u_h and the datum f are piecewise polynomial. The **degrees** of the MFE reconstructions σ_h and s_h are chosen correspondingly. The meshes T_h are shape-regular.

Assumptions

Assumption B (Weak continuity)

There holds

$$\llbracket u_h \rrbracket, 1 \rangle_e = 0 \qquad \forall e \in \mathcal{E}_h.$$

Assumption C (Piecewise polynomials, data, and meshes)

The approximation u_h and the datum f are piecewise polynomial. The **degrees** of the MFE reconstructions σ_h and s_h are chosen correspondingly. The meshes \mathcal{T}_h are shape-regular.

Polynomial-degree-robust efficiency

Theorem (Polynomial-degree-robust efficiency)

Let u be the weak solution. Under Assumptions A, B, and C,

$$\begin{split} \|\nabla u_h + \sigma_h\|_{\mathcal{K}} &\leq C_{\text{st}} C_{\text{cont,PF}} \sum_{\mathbf{a} \in \mathcal{V}_{\mathcal{K}}} \|\nabla (u - u_h)\|_{\omega_{\mathbf{a}}}, \\ \|\nabla (u_h - s_h)\|_{\mathcal{K}} &\leq C_{\text{st}} C_{\text{cont,bPF}} \sum_{\mathbf{a} \in \mathcal{V}_{\mathcal{K}}} \|\nabla (u - u_h)\|_{\omega_{\mathbf{a}}}. \end{split}$$

Remarks

- $C_{\rm cont,PF}$: $\approx 1 + 2/\pi$ on convex patches ω_a
- C_{st} can be bounded by solving the local Neumann problems by conforming FEs: find r^a_h ∈ V^a_h ⊂ H¹_{*}(ω_a) s.t.

 $(\nabla r_h^{\mathbf{a}}, \nabla v_h)_{\omega_{\mathbf{a}}} = -(\psi_{\mathbf{a}} \nabla u_h, \nabla v_h)_{\omega_{\mathbf{a}}} + (\psi_{\mathbf{a}} f - \nabla \psi_{\mathbf{a}} \cdot \nabla u_h, v_h)_{\omega_{\mathbf{a}}} \,\forall v_h \in V_h^{\mathbf{a}};$

then the first $C_{\rm st} \leq \|\psi_{\mathbf{a}} \nabla u_h + \sigma_h^{\mathbf{a}}\|_{\omega_{\mathbf{a}}} / \|\nabla r_h^{\mathbf{a}}\|_{\omega}$

 $\bullet \Rightarrow$ maximal overestimation factor guaranteed

Reliability Efficiency Applications Numerics

Polynomial-degree-robust efficiency

Theorem (Polynomial-degree-robust efficiency)

Let u be the weak solution. Under Assumptions A, B, and C,

$$\begin{split} \|\nabla u_h + \sigma_h\|_{\mathcal{K}} &\leq C_{\mathrm{st}} C_{\mathrm{cont,PF}} \sum_{\mathbf{a} \in \mathcal{V}_{\mathcal{K}}} \|\nabla (u - u_h)\|_{\omega_{\mathbf{a}}}, \\ \|\nabla (u_h - s_h)\|_{\mathcal{K}} &\leq C_{\mathrm{st}} C_{\mathrm{cont,bPF}} \sum_{\mathbf{a} \in \mathcal{V}_{\mathcal{K}}} \|\nabla (u - u_h)\|_{\omega_{\mathbf{a}}}. \end{split}$$

Remarks

- $C_{\rm cont,PF}$: \approx 1 + 2/ π on convex patches $\omega_{\rm a}$
- C_{st} can be bounded by solving the local Neumann problems by conforming FEs: find r^a_h ∈ V^a_h ⊂ H¹_{*}(ω_a) s.t.

 $(\nabla r_h^{\mathbf{a}}, \nabla v_h)_{\omega_{\mathbf{a}}} = -(\psi_{\mathbf{a}} \nabla u_h, \nabla v_h)_{\omega_{\mathbf{a}}} + (\psi_{\mathbf{a}} f - \nabla \psi_{\mathbf{a}} \cdot \nabla u_h, v_h)_{\omega_{\mathbf{a}}} \,\forall v_h \in V_h^{\mathbf{a}};$

then the first $C_{\rm st} \leq \|\psi_{\mathbf{a}} \nabla u_h + \sigma_h^{\mathbf{a}}\|_{\omega_{\mathbf{a}}} / \|\nabla r_h^{\mathbf{a}}\|_{\omega_{\mathbf{a}}}$

 $\bullet \Rightarrow$ maximal overestimation factor guaranteed

Outline

- Introduction and the current landscape
 - Optimal properties
 - Various energy a posteriori error estimators
- 2 Equilibrated fluxes in the Laplace case
 - Guaranteed upper bound
 - Polynomial-degree-robust local efficiency
 - Applications
 - Numerical results
- 3 Adaptive inexact Newton method
 - Guaranteed a posteriori error estimate
 - Stopping criteria, efficiency, and robustness
 - Numerical results
- 4 Full adaptivity for unsteady nonlinear problems
- Guaranteed bounds for Laplace eigen-values and -vectors
- 6 References and bibliography

Conforming finite elements

Conforming finite elements

Find $u_h \in V_h$ such that

$$(\nabla u_h, \nabla v_h) = (f, v_h) \quad \forall v_h \in V_h.$$

- $V_h := \mathbb{P}_p(\mathcal{T}_h) \cap H^1_0(\Omega), p \ge 1$
- Assumption A: take $v_h = \psi_a$
- $V_h \subset H_0^1(\Omega)$: $s_h := u_h$, no need for Assumption B

Conforming finite elements

Conforming finite elements

Find $u_h \in V_h$ such that

$$(\nabla u_h, \nabla v_h) = (f, v_h) \quad \forall v_h \in V_h.$$

•
$$V_h := \mathbb{P}_p(\mathcal{T}_h) \cap H^1_0(\Omega), p \ge 1$$

- Assumption A: take $v_h = \psi_a$
- $V_h \subset H_0^1(\Omega)$: $s_h := u_h$, no need for Assumption B

Nonconforming finite elements

Nonconforming finite elements

Find $u_h \in V_h$ such that

$$(\nabla u_h, \nabla v_h) = (f, v_h) \qquad \forall v_h \in V_h.$$

•
$$V_h := \mathbb{P}_p(\mathcal{T}_h), p \ge 1, v_h \in V_h \text{ satisfy}$$

 $\langle \llbracket v_h \rrbracket, q_h \rangle_e = 0 \qquad \forall q_h \in \mathbb{P}_{p-1}(e), \forall e \in \mathcal{E}_h$

• Assumption A: take $v_h = \psi_a$

• Assumption B: building requirement for the space V_h

Nonconforming finite elements

Nonconforming finite elements

Find $u_h \in V_h$ such that

$$(\nabla u_h, \nabla v_h) = (f, v_h) \quad \forall v_h \in V_h.$$

•
$$V_h := \mathbb{P}_p(\mathcal{T}_h), p \ge 1, v_h \in V_h$$
 satisfy
 $\langle \llbracket v_h \rrbracket, q_h \rangle_e = 0 \qquad \forall q_h \in \mathbb{P}_{p-1}(e), \forall e \in \mathcal{E}_h$

- Assumption A: take $v_h = \psi_a$
- Assumption B: building requirement for the space V_h

Discontinuous Galerkin finite elements

Find $u_h \in V_h$ such that

 $\sum_{K\in\mathcal{T}_h} (\nabla u_h, \nabla v_h)_K - \sum_{e\in\mathcal{E}_h} \{\langle \{\!\!\{\nabla u_h\}\!\} \cdot \mathbf{n}_e, [\![v_h]\!]\rangle_e + \theta \langle \{\!\!\{\nabla v_h\}\!\} \cdot \mathbf{n}_e, [\![u_h]\!]\rangle_e \}$

Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B Reliability Efficiency Applications Numerics

$$+\sum_{\boldsymbol{e}\in\mathcal{E}_h}\langle \alpha h_{\boldsymbol{e}}^{-1}\llbracket u_h\rrbracket,\llbracket v_h\rrbracket\rangle_{\boldsymbol{e}}=(f,v_h)\qquad\forall v_h\in V_h.$$

•
$$V_h := \mathbb{P}_p(\mathcal{T}_h), p \ge 1$$

- Assumption A: take v_h = ψ_a for θ = 0, otherwise estimates for the discrete gradient 𝔅(u_h) := ∇u_h − θ Σ_{e∈E_h} 𝔅_e([[u_h]])
- NIPG, IIPG: broken Poincaré–Friedrichs inequality & jumps

• symmetric version:

$$\begin{split} \|\mathfrak{G}(u_h) + \sigma_h\|_{\mathcal{K}} &\leq C_{\mathrm{st}}C_{\mathrm{cont},\mathrm{PF}}\sum_{\mathbf{a}\in\mathcal{V}_{\mathcal{K}}}\|\mathfrak{G}(u-u_h)\|_{\omega_{\mathbf{a}}},\\ \|\mathfrak{G}(u_h-s_h)\|_{\mathcal{K}} &\leq C_{\mathrm{st}}C_{\mathrm{cont},\mathrm{P}}\sum_{\mathbf{a}\in\mathcal{V}_{\mathcal{K}}}\|\mathfrak{G}(u-u_h)\|_{\omega_{\mathbf{a}}} \end{split}$$

Discontinuous Galerkin finite elements

Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B

Find $u_h \in V_h$ such that

 $\sum_{K\in\mathcal{T}_h} (\nabla u_h, \nabla v_h)_K - \sum_{e\in\mathcal{E}_h} \{\langle \{\!\!\{\nabla u_h\}\!\} \cdot \mathbf{n}_e, [\![v_h]\!]\rangle_e + \theta \langle \{\!\!\{\nabla v_h\}\!\} \cdot \mathbf{n}_e, [\![u_h]\!]\rangle_e \}$

+
$$\sum_{e \in \mathcal{E}_h} \langle \alpha h_e^{-1} \llbracket u_h \rrbracket, \llbracket v_h \rrbracket \rangle_e = (f, v_h) \qquad \forall v_h \in V_h.$$

• $V_h := \mathbb{P}_p(\mathcal{T}_h), p \ge 1$

• Assumption A: take $v_h = \psi_a$ for $\theta = 0$, otherwise estimates

for the discrete gradient $\mathfrak{G}(u_h) := \nabla u_h - \theta \sum_{e \in \mathcal{E}_h} \mathfrak{l}_e(\llbracket u_h \rrbracket)$

NIPG, IIPG: broken Poincaré—Friedrichs inequality & jumps

symmetric version:

$$\begin{split} \|\mathfrak{G}(u_h) + \sigma_h\|_{K} &\leq C_{\mathrm{st}}C_{\mathrm{cont},\mathrm{PF}}\sum_{\mathbf{a}\in\mathcal{V}_{K}}\|\mathfrak{G}(u-u_h)\|_{\omega_{\mathbf{a}}},\\ \|\mathfrak{G}(u_h-s_h)\|_{K} &\leq C_{\mathrm{st}}C_{\mathrm{cont},\mathrm{P}}\sum_{\mathbf{a}\in\mathcal{V}_{K}}\|\mathfrak{G}(u-u_h)\|_{\omega_{\mathbf{a}}} \end{split}$$

Discontinuous Galerkin finite elements

Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B

Find $u_h \in V_h$ such that

 $\sum_{K\in\mathcal{T}_h} (\nabla u_h, \nabla v_h)_K - \sum_{e\in\mathcal{E}_h} \{ \langle \{\!\!\{\nabla u_h\}\!\} \cdot \mathbf{n}_e, [\![v_h]\!] \rangle_e + \theta \langle \{\!\!\{\nabla v_h\}\!\} \cdot \mathbf{n}_e, [\![u_h]\!] \rangle_e \}$

+
$$\sum_{e \in \mathcal{E}_h} \langle \alpha h_e^{-1} \llbracket u_h \rrbracket, \llbracket v_h \rrbracket \rangle_e = (f, v_h) \qquad \forall v_h \in V_h.$$

•
$$V_h := \mathbb{P}_p(\mathcal{T}_h), p \ge 1$$

Assumption A: take v_h = ψ_a for θ = 0, otherwise estimates for the discrete gradient 𝔅(u_h) := ∇u_h − θ Σ_{e∈E_h} l_e([[u_h]])

NIPG, IIPG: broken Poincaré–Friedrichs inequality & jumps
symmetric version:

$$\begin{split} \|\mathfrak{G}(u_h) + \sigma_h\|_{K} &\leq C_{\rm st} C_{\rm cont, PF} \sum_{\mathbf{a} \in \mathcal{V}_{K}} \|\mathfrak{G}(u - u_h)\|_{\omega_{\mathbf{a}}}, \\ \|\mathfrak{G}(u_h - s_h)\|_{K} &\leq C_{\rm st} C_{\rm cont, P} \sum \|\mathfrak{G}(u - u_h)\|_{\omega_{\mathbf{a}}} \end{split}$$

Discontinuous Galerkin finite elements

Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B

Find $u_h \in V_h$ such that

 $\sum_{K\in\mathcal{T}_h} (\nabla u_h, \nabla v_h)_K - \sum_{e\in\mathcal{E}_h} \{ \langle \{\!\!\{\nabla u_h\}\!\} \cdot \mathbf{n}_e, [\![v_h]\!] \rangle_e + \theta \langle \{\!\!\{\nabla v_h\}\!\} \cdot \mathbf{n}_e, [\![u_h]\!] \rangle_e \}$

+
$$\sum_{e \in \mathcal{E}_h} \langle \alpha h_e^{-1} \llbracket u_h \rrbracket, \llbracket v_h \rrbracket \rangle_e = (f, v_h) \qquad \forall v_h \in V_h.$$

•
$$V_h := \mathbb{P}_p(\mathcal{T}_h), p \ge 1$$

- Assumption A: take v_h = ψ_a for θ = 0, otherwise estimates for the discrete gradient 𝔅(u_h) := ∇u_h − θ Σ_{e∈ε_h} l_e([[u_h]])
- NIPG, IIPG: broken Poincaré—Friedrichs inequality & jumps

symmetric version:

$$\begin{split} \|\mathfrak{G}(u_h) + \sigma_h\|_{K} &\leq C_{\mathrm{st}}C_{\mathrm{cont},\mathrm{PF}} \sum_{\mathbf{a}\in\mathcal{V}_{K}} \|\mathfrak{G}(u-u_h)\|_{\omega_{\mathbf{a}}}, \\ \|\mathfrak{G}(u_h-s_h)\|_{K} &\leq C_{\mathrm{st}}C_{\mathrm{cont},\mathrm{P}} \sum_{\mathbf{a}\in\mathcal{V}_{K}} \|\mathfrak{G}(u-u_h)\|_{\omega_{\mathbf{a}}} \end{split}$$

Discontinuous Galerkin finite elements

Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B

Find $u_h \in V_h$ such that

 $\sum_{K\in\mathcal{T}_h} (\nabla u_h, \nabla v_h)_K - \sum_{e\in\mathcal{E}_h} \{ \langle \{\!\!\{\nabla u_h\}\!\} \cdot \mathbf{n}_e, [\![v_h]\!] \rangle_e + \theta \langle \{\!\!\{\nabla v_h\}\!\} \cdot \mathbf{n}_e, [\![u_h]\!] \rangle_e \}$

+
$$\sum_{\boldsymbol{e}\in\mathcal{E}_h}\langle \alpha h_{\boldsymbol{e}}^{-1}\llbracket u_h \rrbracket, \llbracket v_h \rrbracket\rangle_{\boldsymbol{e}} = (f, v_h) \qquad \forall v_h \in V_h.$$

•
$$V_h := \mathbb{P}_p(\mathcal{T}_h), p \ge 1$$

- Assumption A: take v_h = ψ_a for θ = 0, otherwise estimates for the discrete gradient 𝔅(u_h) := ∇u_h − θ Σ_{e∈ε_h} l_e([[u_h]])
- NIPG, IIPG: broken Poincaré–Friedrichs inequality & jumps
- symmetric version:

$$\begin{split} \|\mathfrak{G}(u_{h}) + \sigma_{h}\|_{\mathcal{K}} &\leq C_{\text{st}}C_{\text{cont,PF}}\sum_{\mathbf{a}\in\mathcal{V}_{\mathcal{K}}}\|\mathfrak{G}(u-u_{h})\|_{\omega_{\mathbf{a}}}, \\ \|\mathfrak{G}(u_{h}-s_{h})\|_{\mathcal{K}} &\leq C_{\text{st}}C_{\text{cont,P}}\sum_{\mathbf{a}\in\mathcal{V}_{\mathcal{K}}}\|\mathfrak{G}(u-u_{h})\|_{\omega_{\mathbf{a}}} \end{split}$$

Outline

- Introduction and the current landscape
 - Optimal properties
 - Various energy a posteriori error estimators
- 2 Equilibrated fluxes in the Laplace case
 - Guaranteed upper bound
 - Polynomial-degree-robust local efficiency
 - Applications
 - Numerical results
- 3 Adaptive inexact Newton method
 - Guaranteed a posteriori error estimate
 - Stopping criteria, efficiency, and robustness
 - Numerical results
- 4 Full adaptivity for unsteady nonlinear problems
- Guaranteed bounds for Laplace eigen-values and -vectors
- 6 References and bibliography

Numerics: smooth test case

Model problem

$$-\Delta u = f \quad \text{in } \Omega :=]0, 1[^2 u = u_D \quad \text{on } \partial \Omega$$

Exact solution

$$u(\mathbf{x}) = (c_1 + c_2(1 - x_1) + e^{-\alpha x_1})(c_1 + c_2(1 - x_2) + e^{-\alpha x_2})$$

$$c_1 = -e^{-\alpha}, \quad c_2 = -1 - c_1, \quad \alpha = 10$$

- incomplete interior penalty discontinuous Galerkin method
- unstructured nested triangular grids
- uniform refinement

Numerics: smooth test case

Model problem

$$-\Delta u = f \quad \text{in } \Omega :=]0, 1[^2 u = u_D \quad \text{on } \partial \Omega$$

Exact solution

$$u(\mathbf{x}) = (c_1 + c_2(1 - x_1) + e^{-\alpha x_1})(c_1 + c_2(1 - x_2) + e^{-\alpha x_2})$$

$$c_1 = -e^{-\alpha}, \quad c_2 = -1 - c_1, \quad \alpha = 10$$

- incomplete interior penalty discontinuous Galerkin method
- unstructured nested triangular grids
- uniform refinement

Numerics: smooth test case

Model problem

$$-\Delta u = f$$
 in $\Omega :=]0, 1[^2$
 $u = u_D$ on $\partial \Omega$

Exact solution

$$u(\mathbf{x}) = (c_1 + c_2(1 - x_1) + e^{-\alpha x_1})(c_1 + c_2(1 - x_2) + e^{-\alpha x_2})$$

$$c_1 = -e^{-\alpha}, \quad c_2 = -1 - c_1, \quad \alpha = 10$$

- incomplete interior penalty discontinuous Galerkin method
- unstructured nested triangular grids
- uniform refinement

Estimates, errors, and effectivity indices

h p	$\ \nabla(u-u_h)\ $	$\ u - u_h\ _{DG}$	$\ \nabla u_h + \sigma_h\ $	$\ \nabla(u_h - s_h)\ $	$\eta_{ m osc}$	η	$\eta_{\rm DG}$	/ ^{eff}	I ^{eff} _{DG}
$h_0/1$ 1	1.21E+00	1.22E+00	1.24E+00	1.07E-01	5.56E-02	1.30E+00	1.31E+00	1.07	1.07
$h_0/2$	6.18E-01	6.22E-01	6.38E-01	5.09E-02	7.02E-03	6.47E-01	6.50E-01	1.05	1.05
	(0.97)	(0.97)	(0.96)	(1.07)	(2.99)	(1.01)	(1.01)		
$h_0/4$	3.12E-01	3.13E-01	3.22E-01	2.43E-02	8.80E-04	3.24E-01	3.25E-01	1.04	1.04
	(0.99)	(0.99)	(0.99)	(1.07)	(3.00)	(1.00)	(1.00)		
$h_0/8$	1.56E-01	1.57E-01	1.61E-01	1.18E-02	1.10E-04	1.62E-01	1.63E-01	1.04	1.04
	(1.00)	(1.00)	(1.00)	(1.05)	(3.00)	(1.00)	(1.00)		
$h_0/1 \ 2$	1.50E-01	1.53E-01	1.49E-01	2.76E-02	5.10E-03	1.56E-01	1.59E-01	1.04	1.04
$h_0/2$	3.85E-02	3.92E-02	3.83E-02	7.99E-03	3.22E-04	3.94E-02	4.01E-02	1.03	1.02
	(1.96)	(1.96)	(1.96)	(1.79)	(3.98)	(1.98)	(1.98)		
$h_0/4$	9.70E-03	9.88E-03	9.68E-03	2.12E-03	2.02E-05	9.93E-03	1.01E-02	1.02	1.02
	(1.99)	(1.99)	(1.98)	(1.92)	(4.00)	(1.99)	(1.99)		
$h_0/8$	2.43E-03	2.48E-03	2.43E-03	5.42E-04	1.26E-06	2.49E-03	2.54E-03	1.02	1.02
	(1.99)	(1.99)	(1.99)	(1.96)	(4.00)	(1.99)	(1.99)		
$h_0/1 \ 3$	1.32E-02	1.34E-02	1.29E-02	2.52E-03	3.58E-04	1.35E-02	1.37E-02	1.03	1.03
$h_0/2$	1.67E-03	1.69E-03	1.65E-03	3.13E-04	1.13E-05	1.70E-03	1.71E-03	1.01	1.01
	(2.98)	(2.98)	(2.97)	(3.01)	(4.99)	(3.00)	(3.00)		
$h_0/4$	2.11E-04	2.13E-04	2.09E-04	3.83E-05	3.53E-07	2.12E-04	2.15E-04	1.01	1.01
	(2.99)	(2.99)	(2.99)	(3.03)	(5.00)	(3.00)	(3.00)		
$h_0/8$	2.64E-05	2.67E-05	2.61E-05	4.69E-06	1.10E-08	2.66E-05	2.69E-05	1.01	1.01
	(3.00)	(3.00)	(3.00)	(3.03)	(5.00)	(3.00)	(3.00)		
$h_0/1$ 4	9.36E-04	9.54E-04	9.05E-04	2.41E-04	2.12E-05	9.57E-04	9.74E-04	1.02	1.02
$h_0/2$	5.93E-05	6.05E-05	5.77E-05	1.68E-05	3.36E-07	6.04E-05	6.16E-05	1.02	1.02
	(3.98)	(3.98)	(3.97)	(3.84)	(5.98)	(3.99)	(3.98)		
$h_0/4$	3.72E-06	3.80E-06	3.63E-06	1.10E-06	5.31E-09	3.80E-06	3.87E-06	1.02	1.02
	(3.99)	(3.99)	(3.99)	(3.94)	(5.98)	(3.99)	(3.99)		
$h_0/8$	2.33E-07	2.38E-07	2.27E-07	7.02E-08	8.30E-11	2.38E-07	2.43E-07	1.02	1.02
	(4.00)	(4.00)	(4.00)	(3.97)	(6.00)	(4.00)	(3.99)		
$h_0/1 \ 5$	5.41E-05	5.50E-05	5.22E-05	1.38E-05	1.06E-06	5.50E-05	5.58E-05	1.02	1.02
$h_0/2$	1.70E-06	1.72E-06	1.65E-06	4.39E-07	9.35E-09	1.72E-06	1.74E-06	1.01	1.01
	(4.99)	(5.00)	(4.98)	(4.98)	(6.82)	(5.00)	(5.00)		
$h_0/4$	5.32E-08	5.39E-08	5.19E-08	1.40E-08	7.67E-11	5.38E-08	5.45E-08	1.01	1.01
	(5.00)	(5.00)	(4.99)	(4.97)	(6.93)	(5.00)	(5.00)		
$h_0/8$	1.66E-09	1.69E-09	1.62E-09	4.41E-10	5.99E-13	1.68E-09	1.70E-09	1.01	101
	(5.00)	(5.00)	(5.00)	(4.99)	(7.00)	(5.00)	(5.00)		

informatics *mathematics*

Numerics: singular test case & hp-adaptivity

Model problem

$$\begin{array}{rcl} -\Delta u &=& 0 & \text{in } \Omega := \Omega :=]-1, 1[^2 \backslash [0,1]^2, \\ u &=& u_D & \text{on } \partial \Omega \end{array}$$

Exact solution

$$u(r,\phi)=r^{2/3}\sin(2\phi/3)$$

- incomplete interior penalty discontinuous Galerkin method
- unstructured non-nested triangular grids
- hp-adaptive refinement

Numerics: singular test case & hp-adaptivity

Model problem

$$\begin{array}{rcl} -\Delta u &=& 0 & \text{in } \Omega := \Omega :=]-1, 1[^2 \backslash [0,1]^2, \\ u &=& u_{\rm D} & \text{on } \partial \Omega \end{array}$$

Exact solution

$$u(r,\phi)=r^{2/3}\sin(2\phi/3)$$

- incomplete interior penalty discontinuous Galerkin method
- unstructured non-nested triangular grids
- hp-adaptive refinement

Numerics: singular test case & hp-adaptivity

Model problem

$$\begin{array}{rcl} -\Delta u &=& 0 & \text{in } \Omega := \Omega :=]-1, 1[^2 \backslash [0,1]^2, \\ u &=& u_{\rm D} & \text{on } \partial \Omega \end{array}$$

Exact solution

$$u(r,\phi)=r^{2/3}\sin(2\phi/3)$$

- incomplete interior penalty discontinuous Galerkin method
- unstructured non-nested triangular grids
- hp-adaptive refinement

hp-refinement grids

Estimates, errors, and effectivity indices

lev	$ \mathcal{T}_h $	DoF	$\ \nabla(u-u_h)\ $	$\ \nabla u_h + \boldsymbol{\sigma}_h\ $	$\eta_{\rm osc}$	$\ \nabla(u_h - s_h)\ $	$\eta_{\rm BC}$	η	l ^{eff}
0	114	684	6.22E-02	6.63E-02	1.89E-15	4.48E-02	3.81E-02	1.05E-01	1.69
1	122	1180	4.28E-02	4.27E-02	1.18E-14	3.08E-02	2.92E-02	7.29E-02	1.70
2	139	1919	3.28E-02	3.37E-02	8.21E-14	2.09E-02	2.12E-02	5.36E-02	1.64
3	165	2573	2.32E-02	2.30E-02	3.88E-13	1.50E-02	1.03E-02	3.41E-02	1.47
4	174	2858	1.02E-02	1.01E-02	4.48E-13	8.22E-03	9.19E-03	1.99E-02	1.96
5	199	3351	6.27E-03	6.21E-03	1.12E-12	4.81E-03	6.18E-03	1.25E-02	2.00
6	237	3926	4.21E-03	4.23E-03	1.98E-12	3.15E-03	3.29E-03	7.66E-03	1.82
7	285	4537	2.84E-03	2.91E-03	7.47E-12	2.13E-03	2.42E-03	5.33E-03	1.88
8	338	5257	2.04E-03	2.19E-03	4.63E-11	1.45E-03	1.32E-03	3.51E-03	1.72
9	372	5658	1.21E-03	1.23E-03	1.11E-11	9.07E-04	9.99E-04	2.26E-03	1.87
10	426	6500	7.70E-04	7.69E-04	5.69E-11	5.55E-04	6.95E-04	1.46E-03	1.89
11	453	7010	4.95E-04	5.04E-04	9.77E-11	3.97E-04	4.74E-04	9.91E-04	2.00
12	469	7308	3.41E-04	3.47E-04	1.13E-10	2.55E-04	2.88E-04	6.40E-04	1.88
13	463	7286	2.42E-04	2.42E-04	1.39E-10	1.73E-04	1.94E-04	4.37E-04	1.81
14	458	7215	1.69E-04	1.69E-04	1.23E-10	1.19E-04	1.53E-04	3.17E-04	1.88
15	440	6955	1.29E-04	1.31E-04	1.45E-10	9.21E-05	9.10E-05	2.24E-04	1.73
16	435	7035	9.71E-05	9.91E-05	1.39E-10	6.89E-05	7.63E-05	1.74E-04	1.79
17	434	7167	8.52E-05	8.97E-05	1.41E-10	5.76E-05	5.47E-05	1.42E-04	1.67
18	419	6960	7.51E-05	7.97E-05	1.44E-10	5.00E-05	4.15E-05	1.21E-04	1.60
19	410	6838	6.06E-05	6.35E-05	1.47E-10	3.87E-05	3.65E-05	9.69E-05	1.60

Outline

- Introduction and the current landscape
 - Optimal properties
 - Various energy a posteriori error estimators
- 2 Equilibrated fluxes in the Laplace case
 - Guaranteed upper bound
 - Polynomial-degree-robust local efficiency
 - Applications
 - Numerical results
- 3 Adaptive inexact Newton method
 - Guaranteed a posteriori error estimate
 - Stopping criteria, efficiency, and robustness
 - Numerical results
- 4 Full adaptivity for unsteady nonlinear problems
- 5 Guaranteed bounds for Laplace eigen-values and -vectors
- 6 References and bibliography

Inexact iterative linearization

Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact iterative linearization)

 Choose initial vector U⁰. Set k := 1.
 U^{k-1} ⇒ matrix A^{k-1} and vector F^{k-1}: find U^k s.t. A^{k-1}U^k ≈ F^{k-1}.

2 Do an algebraic solver step $\Rightarrow U^{k,i}$ s.t. ($R^{k,i}$ algebraic res.)

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

- Convergence? $OK \Rightarrow U^k := U^{k,i}$. $KO \Rightarrow i := i + 1$, back to 3.2.
- Sonvergence? OK \Rightarrow finish. KO \Rightarrow k := k + 1, back to 2.

amotics
Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact iterative linearization)

- Choose initial vector U^0 . Set k := 1.
- ② U^{k-1} ⇒ matrix \mathbb{A}^{k-1} and vector F^{k-1} : find U^k s.t. $\mathbb{A}^{k-1}U^k \approx F^{k-1}$.
 - - ② Do an algebraic solver step \Rightarrow $U^{k,i}$ s.t. ($R^{k,i}$ algebraic res.)

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

- Convergence? $OK \Rightarrow U^k := U^{k,i}$. $KO \Rightarrow i := i + 1$, back to 3.2.
- Convergence? OK \Rightarrow finish. KO \Rightarrow k := k + 1, back to 2.

Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact iterative linearization)

Choose initial vector U⁰. Set k := 1.
 U^{k-1} ⇒ matrix A^{k-1} and vector F^{k-1}: find U^k s.t.

$$\mathbb{A}^{k-1}U^k \approx F^{k-1}.$$

• Set $U^{k,0} := U^{k-1}$ and i := 1.

Do an algebraic solver step \Rightarrow U^{k,i} s.t. (R^{k,i} algebraic res.)

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

Solution Convergence? $OK \Rightarrow U^k := U^{k,i}$. $KO \Rightarrow i := i + 1$, back to 3.2.

• Convergence? OK \Rightarrow finish. KO \Rightarrow k := k + 1, back to 2.

Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact iterative linearization)

• Choose initial vector U^0 . Set k := 1.

- $U^{k-1} \Rightarrow matrix \mathbb{A}^{k-1}$ and vector F^{k-1} : find U^k s.t. $\mathbb{A}^{k-1}U^k \approx F^{k-1}$.

Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact iterative linearization)

• Choose initial vector U^0 . Set k := 1.

- $U^{k-1} \Rightarrow matrix \mathbb{A}^{k-1}$ and vector F^{k-1} : find U^k s.t. $\mathbb{A}^{k-1}U^k \approx F^{k-1}$.
- **3 5** Set $U^{k,0} := U^{k-1}$ and i := 1.
 - **2** Do an algebraic solver step $\Rightarrow U^{k,i}$ s.t. ($R^{k,i}$ algebraic res.)

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

- Sonvergence? OK ⇒ U^k := U^{k,i}. KO ⇒ i := i + 1, back to 3.2.
- Convergence? OK \Rightarrow finish. KO \Rightarrow k := k + 1, back to 2.

I Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact iterative linearization)

• Choose initial vector U^0 . Set k := 1.

• $U^{k-1} \Rightarrow matrix \mathbb{A}^{k-1}$ and vector F^{k-1} : find U^k s.t. $\mathbb{A}^{k-1}U^k \approx F^{k-1}$.

3 • Set
$$U^{k,0} := U^{k-1}$$
 and $i := 1$

2 Do an algebraic solver step $\Rightarrow U^{k,i}$ s.t. ($R^{k,i}$ algebraic res.)

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

Solution Convergence? $OK \Rightarrow U^k := U^{k,i}$. $KO \Rightarrow i := i + 1$, back to 3.2.

If Convergence? OK \Rightarrow finish. KO \Rightarrow k := k + 1, back to 2.

I Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact iterative linearization)

• Choose initial vector U^0 . Set k := 1.

• $U^{k-1} \Rightarrow matrix \mathbb{A}^{k-1}$ and vector F^{k-1} : find U^k s.t. $\mathbb{A}^{k-1}U^k \approx F^{k-1}$.

3 • Set
$$U^{k,0} := U^{k-1}$$
 and $i := 1$

2 Do an algebraic solver step $\Rightarrow U^{k,i}$ s.t. ($R^{k,i}$ algebraic res.)

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

Solution Convergence? $OK \Rightarrow U^k := U^{k,i}$. $KO \Rightarrow i := i + 1$, back to 3.2.

Onvergence? $OK \Rightarrow finish$. $KO \Rightarrow k := k + 1$, back to 2.

Approximate solution

• approximate solution $U^{k,i}$ does not solve $\mathcal{A}(U^{k,i}) = F$ Numerical method

- underlying numerical method: the vector $U^{k,i}$ is associated with a (piecewise polynomial) approximation $u_h^{k,i}$
- Partial differential equation
 - underlying PDE, *u* its weak solution: A(u) = f

Question (Stopping criteria)

- What is a good stopping criterion for the linear solver?
- What is a good stopping criterion for the nonlinear solver?

Question (Error)

Approximate solution

• approximate solution $U^{k,i}$ does not solve $\mathcal{A}(U^{k,i}) = F$ Numerical method

 underlying numerical method: the vector U^{k,i} is associated with a (piecewise polynomial) approximation u^{k,i}_h

Partial differential equation

• underlying PDE, *u* its weak solution: A(u) = f

Question (Stopping criteria)

- What is a good stopping criterion for the linear solver?
- What is a good stopping criterion for the nonlinear solver?

Question (Error)

Approximate solution

• approximate solution $U^{k,i}$ does not solve $\mathcal{A}(U^{k,i}) = F$

Numerical method

• underlying numerical method: the vector $U^{k,i}$ is associated with a (piecewise polynomial) approximation $u_h^{k,i}$

Partial differential equation

• underlying PDE, u its weak solution: A(u) = f

Question (Stopping criteria)

- What is a good stopping criterion for the linear solver?
- What is a good stopping criterion for the nonlinear solver?

Question (Error)

Approximate solution

• approximate solution $U^{k,i}$ does not solve $\mathcal{A}(U^{k,i}) = F$

Numerical method

• underlying numerical method: the vector $U^{k,i}$ is associated with a (piecewise polynomial) approximation $u_h^{k,i}$

Partial differential equation

• underlying PDE, u its weak solution: A(u) = f

Question (Stopping criteria)

- What is a good stopping criterion for the linear solver?
- What is a good stopping criterion for the nonlinear solver?

Question (Error)

Approximate solution

• approximate solution $U^{k,i}$ does not solve $\mathcal{A}(U^{k,i}) = F$

Numerical method

• underlying numerical method: the vector $U^{k,i}$ is associated with a (piecewise polynomial) approximation $u_h^{k,i}$

Partial differential equation

• underlying PDE, u its weak solution: A(u) = f

Question (Stopping criteria)

- What is a good stopping criterion for the linear solver?
- What is a good stopping criterion for the nonlinear solver?

Question (Error)

 How big is the error ||u - u_h^{k,i}|| on Newton step k and algebraic solver step i, how is it distributed?

Reliability Stop. criteria & efficiency Numerics

Model steady problem, discretization

Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B

Quasi-linear elliptic problem

$$-\nabla \cdot \overline{\sigma}(u, \nabla u) = f \quad \text{in } \Omega, \\ u = 0 \quad \text{on } \partial \Omega$$

•
$$p > 1, q := \frac{p}{p-1}, f \in L^{q}(\Omega)$$

- example: *p*-Laplacian with $\overline{\sigma}(u, \nabla u) = |\nabla u|^{p-2} \nabla u$
- f piecewise polynomial for simplicity
- weak solution: $u \in V := W_0^{1,p}(\Omega)$ such that

$$(\overline{\sigma}(u, \nabla u), \nabla v) = (f, v) \qquad \forall v \in V$$

Numerical approximation

- simplicial mesh T_h , linearization step k, algebraic step i
- $u_h^{k,i} \in V(\mathcal{T}_h) := \{ v \in L^p(\Omega), v |_K \in W^{1,p}(K) \quad \forall K \in \mathcal{T}_h \} \not\subset V$

Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B Reliability Stop. criteria & efficiency Numerics

Model steady problem, discretization

Quasi-linear elliptic problem

$$-\nabla \cdot \overline{\sigma}(u, \nabla u) = f \quad \text{in } \Omega, \\ u = 0 \quad \text{on } \partial \Omega$$

•
$$p > 1, q := \frac{p}{p-1}, f \in L^{q}(\Omega)$$

- example: *p*-Laplacian with $\overline{\sigma}(u, \nabla u) = |\nabla u|^{p-2} \nabla u$
- f piecewise polynomial for simplicity
- weak solution: $u \in V := W_0^{1,p}(\Omega)$ such that

$$(\overline{\sigma}(u, \nabla u), \nabla v) = (f, v) \qquad \forall v \in V$$

Numerical approximation

• simplicial mesh T_h , linearization step k, algebraic step i

•
$$u_h^{k,i} \in V(\mathcal{T}_h) := \{ v \in L^p(\Omega), v |_K \in W^{1,p}(K) \quad \forall K \in \mathcal{T}_h \} \not\subseteq V$$

Outline

- Introduction and the current landscape
 - Optimal properties
 - Various energy a posteriori error estimators
- 2 Equilibrated fluxes in the Laplace case
 - Guaranteed upper bound
 - Polynomial-degree-robust local efficiency
 - Applications
 - Numerical results
- 3 Adaptive inexact Newton method
 - Guaranteed a posteriori error estimate
 - Stopping criteria, efficiency, and robustness
 - Numerical results
- 4 Full adaptivity for unsteady nonlinear problems
- Guaranteed bounds for Laplace eigen-values and -vectors
- 6 References and bibliography

Abstract assumptions

Assumption A (Total flux reconstruction)

There exists $\sigma_h^{k,i} \in \mathbf{H}^q(\operatorname{div}, \Omega)$ and $\rho_h^{k,i} \in L^q(\Omega)$ such that

$$\nabla \cdot \boldsymbol{\sigma}_{h}^{k,i} = \boldsymbol{f} - \rho_{h}^{k}$$

algebraic remainder

Assumption B (Discretization, linearization, and alg. fluxes)

There exist fluxes $\mathbf{d}_{h}^{k,i}, \mathbf{l}_{h}^{k,i}, \mathbf{a}_{h}^{k,i} \in [L^{q}(\Omega)]^{d}$ such that (i) $\boldsymbol{\sigma}_{h}^{k,i} = \mathbf{d}_{h}^{k,i} + \mathbf{l}_{h}^{k,i} + \mathbf{a}_{h}^{k,i};$

(ii) as the linear solver converges, $\|\mathbf{a}_{h}^{k,i}\|_{q} \rightarrow 0$;

(iii) as the nonlinear solver converges, $\| {f I}_h^{k,i} \|_q o 0.$

Abstract assumptions

Assumption A (Total flux reconstruction)

There exists $\sigma_h^{k,i} \in \mathbf{H}^q(\operatorname{div}, \Omega)$ and $\rho_h^{k,i} \in L^q(\Omega)$ such that

$$\nabla \cdot \boldsymbol{\sigma}_{h}^{k,i} = f - \rho_{h}^{k,i}$$

algebraic remainder

Assumption B (Discretization, linearization, and alg. fluxes)

There exist fluxes $\mathbf{d}_{h}^{k,i}, \mathbf{l}_{h}^{k,i}, \mathbf{a}_{h}^{k,i} \in [L^{q}(\Omega)]^{d}$ such that (i) $\boldsymbol{\sigma}_{h}^{k,i} = \mathbf{d}_{h}^{k,i} + \mathbf{l}_{h}^{k,i} + \mathbf{a}_{h}^{k,i};$

(ii) as the linear solver converges, $\|\mathbf{a}_{h}^{k,i}\|_{q} \rightarrow 0$;

(iii) as the nonlinear solver converges, $\|\mathbf{I}_{h}^{k,i}\|_{q} o 0.$

Abstract assumptions

Assumption A (Total flux reconstruction)

There exists $\sigma_{h}^{k,i} \in \mathbf{H}^{q}(\operatorname{div},\Omega)$ and $\rho_{h}^{k,i} \in L^{q}(\Omega)$ such that

$$\nabla \cdot \boldsymbol{\sigma}_{h}^{k,i} = \boldsymbol{f} - (\rho_{h}^{k,i})$$

remainder

Assumption B (Discretization, linearization, and alg. fluxes)

There exist fluxes
$$\mathbf{d}_{h}^{k,i}, \mathbf{l}_{h}^{k,i}, \mathbf{a}_{h}^{k,i} \in [L^{q}(\Omega)]^{d}$$
 such that
(i) $\sigma_{h}^{k,i} = \mathbf{d}_{h}^{k,i} + \mathbf{l}_{h}^{k,i} + \mathbf{a}_{h}^{k,i};$

(ii) as the linear solver converges, $\|\mathbf{a}_{h}^{k,i}\|_{q} \rightarrow 0$;

(iii) as the nonlinear solver converges, $\|\mathbf{I}_{b}^{k,i}\|_{q} \to 0$.

Estimate distinguishing error components

Theorem (Estimate distinguishing different error components)

Let

- $u \in V$ be the weak solution.
- $u_h^{k,i} \in V(\mathcal{T}_h)$ be arbitrary,
- Assumptions A and B hold.

Then there holds

Energy a posteriori error estimators

Outline

- Introduction and the current landscape
 - Optimal properties
 - Various energy a posteriori error estimators
- 2 Equilibrated fluxes in the Laplace case
 - Guaranteed upper bound
 - Polynomial-degree-robust local efficiency
 - Applications
 - Numerical results
- 3 Adaptive inexact Newton method
 - Guaranteed a posteriori error estimate
 - Stopping criteria, efficiency, and robustness
 - Numerical results
- 4 Full adaptivity for unsteady nonlinear problems
- Guaranteed bounds for Laplace eigen-values and -vectors
- 6 References and bibliography

Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B Reliability Stop. criteria & efficiency Numerics

Stopping criteria and efficiency

Global stopping criteria $\gamma_{rem}, \gamma_{alg}, \gamma_{lin} \approx 0.1$

$$\begin{split} \eta_{\text{rem}}^{k,i} &\leq \gamma_{\text{rem}} \max\{\eta_{\text{disc}}^{k,i}, \eta_{\text{lin}}^{k,i}, \eta_{\text{alg}}^{k,i}\},\\ \eta_{\text{alg}}^{k,i} &\leq \gamma_{\text{alg}} \max\{\eta_{\text{disc}}^{k,i}, \eta_{\text{lin}}^{k,i}\},\\ \eta_{\text{lin}}^{k,i} &\leq \gamma_{\text{lin}} \eta_{\text{disc}}^{k,i} \end{split}$$

Theorem (Global efficiency)

Under the global stopping criteria and the usual assumptions,

$$\eta_{\text{disc}}^{k,i} + \eta_{\text{lin}}^{k,i} + \eta_{\text{alg}}^{k,i} + \eta_{\text{rem}}^{k,i} \le C(\mathcal{J}_{U}(u_{h}^{k,i}) + \eta_{\text{quad}}^{k,i} + \eta_{\text{osc}}),$$

where C is independent of $\overline{\sigma}$ and q.

- local (elementwise) stopping criteria \Rightarrow **local** efficiency
- robustness with respect to the **nonlinearity** thanks to the choice of \mathcal{J}_u as error measure

M. Vohralík

Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B Reliability Stop. cri

Stopping criteria and efficiency

Global stopping criteria $\gamma_{rem}, \gamma_{alg}, \gamma_{lin} \approx 0.1$

$$\begin{split} \eta_{\text{rem}}^{k,i} &\leq \gamma_{\text{rem}} \max\{\eta_{\text{disc}}^{k,i}, \eta_{\text{lin}}^{k,i}, \eta_{\text{alg}}^{k,i}\},\\ \eta_{\text{alg}}^{k,i} &\leq \gamma_{\text{alg}} \max\{\eta_{\text{disc}}^{k,i}, \eta_{\text{lin}}^{k,i}\},\\ \eta_{\text{lin}}^{k,i} &\leq \gamma_{\text{lin}} \eta_{\text{disc}}^{k,i} \end{split}$$

Theorem (Global efficiency)

Under the global stopping criteria and the usual assumptions,

$$\eta_{ ext{disc}}^{k,i} + \eta_{ ext{lin}}^{k,i} + \eta_{ ext{alg}}^{k,i} + \eta_{ ext{rem}}^{k,i} \leq m{C}(\mathcal{J}_{m{u}}(m{u}_{m{h}}^{k,i}) + \eta_{ ext{quad}}^{k,i} + \eta_{ ext{osc}})$$

where C is independent of $\overline{\sigma}$ and q.

- local (elementwise) stopping criteria ⇒ local efficiency
- **robustness** with respect to the **nonlinearity** thanks to the choice of \mathcal{J}_u as error measure

Stopping criteria and efficiency

Global stopping criteria $\gamma_{rem}, \gamma_{alg}, \gamma_{lin} \approx 0.1$

$$\begin{split} \eta_{\text{rem}}^{k,i} &\leq \gamma_{\text{rem}} \max\{\eta_{\text{disc}}^{k,i}, \eta_{\text{lin}}^{k,i}, \eta_{\text{alg}}^{k,i}\},\\ \eta_{\text{alg}}^{k,i} &\leq \gamma_{\text{alg}} \max\{\eta_{\text{disc}}^{k,i}, \eta_{\text{lin}}^{k,i}\},\\ \eta_{\text{lin}}^{k,i} &\leq \gamma_{\text{lin}} \eta_{\text{disc}}^{k,i} \end{split}$$

Theorem (Global efficiency)

Under the global stopping criteria and the usual assumptions,

$$\eta_{ ext{disc}}^{k,i} + \eta_{ ext{lin}}^{k,i} + \eta_{ ext{alg}}^{k,i} + \eta_{ ext{rem}}^{k,i} \leq m{C}(\mathcal{J}_{m{u}}(m{u}_{m{h}}^{k,i}) + \eta_{ ext{quad}}^{k,i} + \eta_{ ext{osc}}),$$

where C is independent of $\overline{\sigma}$ and q.

- local (elementwise) stopping criteria \Rightarrow **local** efficiency
- **robustness** with respect to the **nonlinearity** thanks to the choice of \mathcal{J}_u as error measure

Reliability Stop. criteria & efficiency Numerics

Stopping criteria and efficiency

Global stopping criteria $\gamma_{rem}, \gamma_{alg}, \gamma_{lin} \approx 0.1$

$$\begin{split} \eta_{\text{rem}}^{k,i} &\leq \gamma_{\text{rem}} \max\{\eta_{\text{disc}}^{k,i}, \eta_{\text{lin}}^{k,i}, \eta_{\text{alg}}^{k,i}\},\\ \eta_{\text{alg}}^{k,i} &\leq \gamma_{\text{alg}} \max\{\eta_{\text{disc}}^{k,i}, \eta_{\text{lin}}^{k,i}\},\\ \eta_{\text{lin}}^{k,i} &\leq \gamma_{\text{lin}} \eta_{\text{disc}}^{k,i} \end{split}$$

Theorem (Global efficiency)

Under the global stopping criteria and the usual assumptions,

$$\eta_{ ext{disc}}^{k,i} + \eta_{ ext{lin}}^{k,i} + \eta_{ ext{alg}}^{k,i} + \eta_{ ext{rem}}^{k,i} \leq m{C}(\mathcal{J}_{m{u}}(m{u}_{m{h}}^{k,i}) + \eta_{ ext{quad}}^{k,i} + \eta_{ ext{osc}}),$$

where C is independent of $\overline{\sigma}$ and q.

- local (elementwise) stopping criteria \Rightarrow **local** efficiency
- robustness with respect to the nonlinearity thanks to the choice of \mathcal{J}_u as error measure

M. Vohralík

Outline

- Introduction and the current landscape
 - Optimal properties
 - Various energy a posteriori error estimators
- 2 Equilibrated fluxes in the Laplace case
 - Guaranteed upper bound
 - Polynomial-degree-robust local efficiency
 - Applications
 - Numerical results
- 3 Adaptive inexact Newton method
 - Guaranteed a posteriori error estimate
 - Stopping criteria, efficiency, and robustness
 - Numerical results
- 4 Full adaptivity for unsteady nonlinear problems
- 5 Guaranteed bounds for Laplace eigen-values and -vectors
- 6 References and bibliography

Error and estimators as a function of CG iterations, regular 10-Laplacian, 6th level mesh, 6th Newton step.

Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B

Reliability Stop. criteria & efficiency Numerics

Overall algebraic solver iterations, regular 10-Laplacian

Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B Reliability Stop. criteria & efficiency Numerics

I Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B Reliability Stop. criteria & efficiency Numerics

Full adaptivity, singular 4-Laplacian

Estimated error distribution

Exact error distribution

M. Vohralík

Energy a posteriori error estimators 33 / 52

Outline

- Introduction and the current landscape
 - Optimal properties
 - Various energy a posteriori error estimators
- Equilibrated fluxes in the Laplace case
 - Guaranteed upper bound
 - Polynomial-degree-robust local efficiency
 - Applications
 - Numerical results
- 3 Adaptive inexact Newton method
 - Guaranteed a posteriori error estimate
 - Stopping criteria, efficiency, and robustness
 - Numerical results
- Full adaptivity for unsteady nonlinear problems
 Guaranteed bounds for Laplace eigen-values and -vector
 Defenses and hiblic graphs

Two-phase flow in porous media

Two-phase flow in porous media

$$egin{aligned} &\partial_t(\phi m{s}_lpha) +
abla \cdot m{u}_lpha &= m{q}_lpha, & lpha \in \{\mathrm{o},\mathrm{w}\}, \ & -\lambda_lpha(m{s}_\mathrm{w}) \underline{\mathbf{K}}(
abla m{p}_lpha +
ho_lpha m{g}
abla m{z}) &= m{u}_lpha, & lpha \in \{\mathrm{o},\mathrm{w}\}, \ & m{s}_\mathrm{o} + m{s}_\mathrm{w} &= m{1}, \ & m{p}_\mathrm{o} - m{p}_\mathrm{w} &= m{p}_\mathrm{c}(m{s}_\mathrm{w}) \end{aligned}$$

+ boundary & initial conditions

Mathematical issues

- coupled system
- unsteady, nonlinear
- elliptic-degenerate parabolic type
- dominant advection

Two-phase flow in porous media

Two-phase flow in porous media

$$egin{aligned} &\partial_t(\phi m{s}_lpha) +
abla \cdot m{u}_lpha &= m{q}_lpha, & lpha \in \{\mathrm{o},\mathrm{w}\}, \ & -\lambda_lpha(m{s}_\mathrm{w}) \underline{\mathbf{K}}(
abla p_lpha +
ho_lpha m{g}
abla m{z}) &= m{u}_lpha, & lpha \in \{\mathrm{o},\mathrm{w}\}, \ & m{s}_\mathrm{o} + m{s}_\mathrm{w} &= m{1}, \ & m{p}_\mathrm{o} - m{p}_\mathrm{w} &= m{p}_\mathrm{c}(m{s}_\mathrm{w}) \end{aligned}$$

+ boundary & initial conditions

Mathematical issues

- coupled system
- unsteady, nonlinear
- elliptic-degenerate parabolic type
- dominant advection

Global and complementary pressures

Global pressure

$$\mathfrak{p}(s_{\mathrm{w}},
ho_{\mathrm{w}}) :=
ho_{\mathrm{w}} + \int_{0}^{s_{\mathrm{w}}} rac{\lambda_{\mathrm{o}}(a)}{\lambda_{\mathrm{w}}(a) + \lambda_{\mathrm{o}}(a)}
ho_{\mathrm{c}}'(a) \mathrm{d}a$$

Complementary pressure

$$\mathfrak{q}(s_{\mathrm{w}}):=-\int_{0}^{s_{\mathrm{w}}}rac{\lambda_{\mathrm{w}}(a)\lambda_{\mathrm{o}}(a)}{\lambda_{\mathrm{w}}(a)+\lambda_{\mathrm{o}}(a)}p_{\mathrm{c}}'(a)\mathrm{d}a$$

Comments

- necessary for the correct definition of the weak solution
- equivalent Darcy velocities expressions

$$\begin{split} \mathbf{u}_{\mathrm{w}}(s_{\mathrm{w}}, p_{\mathrm{w}}) &:= - \mathbf{K} \big(\lambda_{\mathrm{w}}(s_{\mathrm{w}}) \nabla \mathfrak{p}(s_{\mathrm{w}}, p_{\mathrm{w}}) + \nabla \mathfrak{q}(s_{\mathrm{w}}) + \lambda_{\mathrm{w}}(s_{\mathrm{w}}) \rho_{\mathrm{w}} g \nabla z \big), \\ \mathbf{u}_{\mathrm{o}}(s_{\mathrm{w}}, p_{\mathrm{w}}) &:= - \mathbf{K} \big(\lambda_{\mathrm{o}}(s_{\mathrm{w}}) \nabla \mathfrak{p}(s_{\mathrm{w}}, p_{\mathrm{w}}) - \nabla \mathfrak{q}(s_{\mathrm{w}}) + \lambda_{\mathrm{o}}(s_{\mathrm{w}}) \rho_{\mathrm{o}} g \nabla z \big) \end{split}$$

Global and complementary pressures

Global pressure

$$\mathfrak{p}(s_{\mathrm{w}}, p_{\mathrm{w}}) := p_{\mathrm{w}} + \int_{0}^{s_{\mathrm{w}}} rac{\lambda_{\mathrm{o}}(a)}{\lambda_{\mathrm{w}}(a) + \lambda_{\mathrm{o}}(a)} p_{\mathrm{c}}'(a) \mathrm{d}a$$

Complementary pressure

$$\mathfrak{q}(\pmb{s}_{\mathrm{w}}):=-\int_{0}^{\pmb{s}_{\mathrm{w}}}rac{\lambda_{\mathrm{w}}(\pmb{a})\lambda_{\mathrm{o}}(\pmb{a})}{\lambda_{\mathrm{w}}(\pmb{a})+\lambda_{\mathrm{o}}(\pmb{a})}\pmb{p}_{\mathrm{c}}'(\pmb{a})\mathrm{d}\pmb{a}$$

Comments

- necessary for the correct definition of the weak solution
- equivalent Darcy velocities expressions

$$\begin{split} \mathbf{u}_{\mathrm{w}}(s_{\mathrm{w}}, p_{\mathrm{w}}) &:= - \mathbf{K} \big(\lambda_{\mathrm{w}}(s_{\mathrm{w}}) \nabla \mathfrak{p}(s_{\mathrm{w}}, p_{\mathrm{w}}) + \nabla \mathfrak{q}(s_{\mathrm{w}}) + \lambda_{\mathrm{w}}(s_{\mathrm{w}}) \rho_{\mathrm{w}} g \nabla z \big), \\ \mathbf{u}_{\mathrm{o}}(s_{\mathrm{w}}, p_{\mathrm{w}}) &:= - \mathbf{K} \big(\lambda_{\mathrm{o}}(s_{\mathrm{w}}) \nabla \mathfrak{p}(s_{\mathrm{w}}, p_{\mathrm{w}}) - \nabla \mathfrak{q}(s_{\mathrm{w}}) + \lambda_{\mathrm{o}}(s_{\mathrm{w}}) \rho_{\mathrm{o}} g \nabla z \big) \end{split}$$

Global and complementary pressures

Global pressure

$$\mathfrak{p}(s_{\mathrm{w}}, p_{\mathrm{w}}) := p_{\mathrm{w}} + \int_{0}^{s_{\mathrm{w}}} rac{\lambda_{\mathrm{o}}(a)}{\lambda_{\mathrm{w}}(a) + \lambda_{\mathrm{o}}(a)} p_{\mathrm{c}}'(a) \mathrm{d}a$$

Complementary pressure

$$\mathfrak{q}(m{s}_{\mathrm{w}}):=-\int_{0}^{m{s}_{\mathrm{w}}}rac{\lambda_{\mathrm{w}}(m{a})\lambda_{\mathrm{o}}(m{a})}{\lambda_{\mathrm{w}}(m{a})+\lambda_{\mathrm{o}}(m{a})}m{p}_{\mathrm{c}}'(m{a})\mathrm{d}m{a}$$

Comments

- necessary for the correct definition of the weak solution
- equivalent Darcy velocities expressions

$$\begin{split} \mathbf{u}_{\mathrm{w}}(\boldsymbol{s}_{\mathrm{w}},\boldsymbol{\rho}_{\mathrm{w}}) &:= - \,\mathbf{K}\big(\lambda_{\mathrm{w}}(\boldsymbol{s}_{\mathrm{w}})\nabla\mathfrak{p}(\boldsymbol{s}_{\mathrm{w}},\boldsymbol{\rho}_{\mathrm{w}}) + \nabla\mathfrak{q}(\boldsymbol{s}_{\mathrm{w}}) + \lambda_{\mathrm{w}}(\boldsymbol{s}_{\mathrm{w}})\rho_{\mathrm{w}}\boldsymbol{g}\nabla\boldsymbol{z}\big),\\ \mathbf{u}_{\mathrm{o}}(\boldsymbol{s}_{\mathrm{w}},\boldsymbol{\rho}_{\mathrm{w}}) &:= - \,\mathbf{K}\big(\lambda_{\mathrm{o}}(\boldsymbol{s}_{\mathrm{w}})\nabla\mathfrak{p}(\boldsymbol{s}_{\mathrm{w}},\boldsymbol{\rho}_{\mathrm{w}}) - \nabla\mathfrak{q}(\boldsymbol{s}_{\mathrm{w}}) + \lambda_{\mathrm{o}}(\boldsymbol{s}_{\mathrm{w}})\rho_{\mathrm{o}}\boldsymbol{g}\nabla\boldsymbol{z}\big) \end{split}$$

Weak formulation

Energy space

 $X:=L^2((0,T);H^1_D(\Omega))$

Weak formulation

Energy space

$$X := L^2((0, T); H^1_{\mathrm{D}}(\Omega))$$

Definition (Weak solution (Arbogast 1992, Chen 2001)) Find (s_w, p_w) such that, with $s_0 := 1 - s_w$, $s_{w} \in C([0, T]; L^{2}(\Omega)), s_{w}(\cdot, 0) = s_{w}^{0},$ $\partial_t \mathbf{s}_{w} \in L^2((0, T); (H^1_{\mathcal{D}}(\Omega))').$ $\mathfrak{p}(s_w, p_w) \in X$. $\mathfrak{q}(\boldsymbol{s}_{\mathrm{w}}) \in \boldsymbol{X},$ $\int_0^t \left\{ \langle \partial_t(\phi \boldsymbol{s}_\alpha), \varphi \rangle - (\mathbf{u}_\alpha(\boldsymbol{s}_{\mathrm{w}}, \boldsymbol{\rho}_{\mathrm{w}}), \nabla \varphi) - (\boldsymbol{q}_\alpha, \varphi) \right\} \mathrm{d}t = \mathbf{0}$ $\forall \varphi \in \mathbf{X}, \alpha \in \{\mathbf{0}, \mathbf{w}\}.$

Christian mathematics

Link energy-type error – dual norm of the residual

Dual norm of the residual on the time interval *I*_n

$$\mathcal{J}_{\boldsymbol{s}_{\mathrm{w}},\boldsymbol{\rho}_{\mathrm{w}}}^{\boldsymbol{n}}(\boldsymbol{s}_{\mathrm{w},h\tau},\boldsymbol{\rho}_{\mathrm{w},h\tau}) := \left\{ \sum_{\alpha \in \{\mathrm{o},\mathrm{w}\}} \left\{ \sup_{\varphi \in \boldsymbol{X}_{n}, \, \|\varphi\|_{\boldsymbol{X}_{n}}=1} \int_{I_{n}}^{I} \left\{ \langle \partial_{t}(\phi \boldsymbol{s}_{\alpha}) - \partial_{t}(\phi \boldsymbol{s}_{\alpha,h\tau}), \varphi \rangle \right. \right. \\ \left. - \left(\boldsymbol{\mathsf{u}}_{\alpha}(\boldsymbol{s}_{\mathrm{w}},\boldsymbol{\rho}_{\mathrm{w}}) - \boldsymbol{\mathsf{u}}_{\alpha}(\boldsymbol{s}_{\mathrm{w},h\tau},\boldsymbol{\rho}_{\mathrm{w},h\tau}), \nabla \varphi \right) \right\} \mathrm{d}t \right\}^{2} \right\}^{\frac{1}{2}}$$

Theorem (Link energy-type error – dual norm of the residual

Let (s_w, p_w) be the weak solution. Let $(s_{w,h\tau}, p_{w,h\tau})$ be arbitrary such that $\mathfrak{p}(s_{w,h\tau}, p_{w,h\tau}) \in X$ and $\mathfrak{q}(s_{w,h\tau}) \in X$ (and satisfying the initial and boundary conditions for simplicity). Then

$$egin{aligned} &\|m{s}_{\mathrm{w}}-m{s}_{\mathrm{w},h au}\|_{L^{2}((0,T);H^{-1}(\Omega))}+\|m{q}(m{s}_{\mathrm{w}})-m{q}(m{s}_{\mathrm{w},h au})\|_{L^{2}(\Omega imes(0,T))}\ &+\|m{p}(m{s}_{\mathrm{w}},m{p}_{\mathrm{w}})-m{p}(m{s}_{\mathrm{w},h au},m{p}_{\mathrm{w},h au})\|_{L^{2}((0,T);H^{1}_{0}(\Omega))}\ &\leq Cigg\{\sum_{n=1}^{N}\mathcal{J}^{n}_{m{s}_{\mathrm{w}},m{p}_{\mathrm{w}}}(m{s}_{\mathrm{w},h au},m{p}_{\mathrm{w},h au})^{2}igg\}^{rac{1}{2}}. \end{aligned}$$
Link energy-type error – dual norm of the residual

Dual norm of the residual on the time interval *I*_n

$$\mathcal{J}_{\boldsymbol{s}_{\mathrm{w}},\boldsymbol{p}_{\mathrm{w}}}^{\boldsymbol{n}}(\boldsymbol{s}_{\mathrm{w},\boldsymbol{h}\tau},\boldsymbol{p}_{\mathrm{w},\boldsymbol{h}\tau}) := \left\{ \sum_{\alpha \in \{\mathrm{o},\mathrm{w}\}} \left\{ \sup_{\varphi \in \boldsymbol{X}_{\boldsymbol{n}}, \|\varphi\|_{\boldsymbol{X}_{\boldsymbol{n}}}=1} \int_{I_{\boldsymbol{n}}} \left\{ \langle \partial_{t}(\phi \boldsymbol{s}_{\alpha}) - \partial_{t}(\phi \boldsymbol{s}_{\alpha,\boldsymbol{h}\tau}), \varphi \rangle \right. \right. \\ \left. - \left(\boldsymbol{\mathsf{u}}_{\alpha}(\boldsymbol{s}_{\mathrm{w}},\boldsymbol{p}_{\mathrm{w}}) - \boldsymbol{\mathsf{u}}_{\alpha}(\boldsymbol{s}_{\mathrm{w},\boldsymbol{h}\tau},\boldsymbol{p}_{\mathrm{w},\boldsymbol{h}\tau}), \nabla \varphi \right) \right\} \mathrm{d}t \right\}^{2} \right\}^{\frac{1}{2}}$$

Theorem (Link energy-type error – dual norm of the residual)

Let (s_w, p_w) be the weak solution. Let $(s_{w,h\tau}, p_{w,h\tau})$ be arbitrary such that $p(s_{w,h\tau}, p_{w,h\tau}) \in X$ and $q(s_{w,h\tau}) \in X$ (and satisfying the initial and boundary conditions for simplicity). Then

$$\begin{split} \|s_{w} - s_{w,h\tau}\|_{L^{2}((0,T);H^{-1}(\Omega))} + \|\mathfrak{q}(s_{w}) - \mathfrak{q}(s_{w,h\tau})\|_{L^{2}(\Omega\times(0,T))} \\ + \|\mathfrak{p}(s_{w},\rho_{w}) - \mathfrak{p}(s_{w,h\tau},\rho_{w,h\tau})\|_{L^{2}((0,T);H^{1}_{0}(\Omega))} \\ & \leq O\left(\sum_{k=0}^{N} \sigma_{k}^{n} - (s_{k}-s_{k}-s_{k})^{2}\right)^{\frac{1}{2}} \end{split}$$

Link energy-type error – dual norm of the residual

Dual norm of the residual on the time interval *I*_n

$$\mathcal{J}_{\mathbf{s}_{\mathrm{w}},\mathbf{p}_{\mathrm{w}}}^{n}(\mathbf{s}_{\mathrm{w},h\tau},\mathbf{p}_{\mathrm{w},h\tau}) := \left\{ \sum_{\alpha \in \{\mathrm{o},\mathrm{w}\}} \left\{ \sup_{\varphi \in \mathbf{X}_{n}, \, \|\varphi\|_{\mathbf{X}_{n}}=1} \int_{I_{n}}^{I} \left\{ \langle \partial_{t}(\phi \mathbf{s}_{\alpha}) - \partial_{t}(\phi \mathbf{s}_{\alpha,h\tau}), \varphi \rangle \right. \right. \\ \left. - \left(\mathbf{u}_{\alpha}(\mathbf{s}_{\mathrm{w}},\mathbf{p}_{\mathrm{w}}) - \mathbf{u}_{\alpha}(\mathbf{s}_{\mathrm{w},h\tau},\mathbf{p}_{\mathrm{w},h\tau}), \nabla \varphi \right) \right\} \mathrm{d}t \right\}^{2} \right\}^{\frac{1}{2}}$$

Theorem (Link energy-type error – dual norm of the residual)

Let (s_w, p_w) be the weak solution. Let $(s_{w,h\tau}, p_{w,h\tau})$ be arbitrary such that $p(s_{w,h\tau}, p_{w,h\tau}) \in X$ and $q(s_{w,h\tau}) \in X$ (and satisfying the initial and boundary conditions for simplicity). Then

$$\begin{split} \| s_{\mathrm{w}} - s_{\mathrm{w},h\tau} \|_{L^{2}((0,T);H^{-1}(\Omega))} + \| \mathfrak{q}(s_{\mathrm{w}}) - \mathfrak{q}(s_{\mathrm{w},h\tau}) \|_{L^{2}(\Omega \times (0,T))} \\ + \| \mathfrak{p}(s_{\mathrm{w}}, p_{\mathrm{w}}) - \mathfrak{p}(s_{\mathrm{w},h\tau}, p_{\mathrm{w},h\tau}) \|_{L^{2}((0,T);H^{1}_{0}(\Omega))} \\ & \leq C \Biggl\{ \sum_{n=1}^{N} \mathcal{J}^{n}_{s_{\mathrm{w}},p_{\mathrm{w}}}(s_{\mathrm{w},h\tau}, p_{\mathrm{w},h\tau})^{2} \Biggr\}^{\frac{1}{2}}. \end{split}$$

Link energy-type error – dual norm of the residual

Dual norm of the residual on the time interval *I*_n

$$\mathcal{J}_{\boldsymbol{s}_{\mathrm{w}},\boldsymbol{\rho}_{\mathrm{w}}}^{\boldsymbol{n}}(\boldsymbol{s}_{\mathrm{w},h\tau},\boldsymbol{\rho}_{\mathrm{w},h\tau}) := \left\{ \sum_{\alpha \in \{\mathrm{o},\mathrm{w}\}} \left\{ \sup_{\varphi \in \boldsymbol{X}_{n}, \, \|\varphi\|_{\boldsymbol{X}_{n}}=1} \int_{I_{n}}^{I} \left\{ \langle \partial_{t}(\phi \boldsymbol{s}_{\alpha}) - \partial_{t}(\phi \boldsymbol{s}_{\alpha,h\tau}), \varphi \rangle \right. \right. \\ \left. - \left(\boldsymbol{\mathsf{u}}_{\alpha}(\boldsymbol{s}_{\mathrm{w}},\boldsymbol{\rho}_{\mathrm{w}}) - \boldsymbol{\mathsf{u}}_{\alpha}(\boldsymbol{s}_{\mathrm{w},h\tau},\boldsymbol{\rho}_{\mathrm{w},h\tau}), \nabla \varphi \right) \right\} \mathrm{d}t \right\}^{2} \right\}^{\frac{1}{2}}$$

Theorem (Link energy-type error – dual norm of the residual)

Let (s_w, p_w) be the weak solution. Let $(s_{w,h\tau}, p_{w,h\tau})$ be arbitrary such that $p(s_{w,h\tau}, p_{w,h\tau}) \in X$ and $q(s_{w,h\tau}) \in X$ (and satisfying the initial and boundary conditions for simplicity). Then

$$\begin{split} \| \boldsymbol{s}_{w} - \boldsymbol{s}_{w,h\tau} \|_{L^{2}((0,T);H^{-1}(\Omega))} + \| \mathfrak{q}(\boldsymbol{s}_{w}) - \mathfrak{q}(\boldsymbol{s}_{w,h\tau}) \|_{L^{2}(\Omega \times (0,T))} \\ + \| \mathfrak{p}(\boldsymbol{s}_{w},\boldsymbol{p}_{w}) - \mathfrak{p}(\boldsymbol{s}_{w,h\tau},\boldsymbol{p}_{w,h\tau}) \|_{L^{2}((0,T);H^{1}_{0}(\Omega))} \\ & \leq C \Biggl\{ \sum_{n=1}^{N} \mathcal{J}^{n}_{\boldsymbol{s}_{w},\boldsymbol{p}_{w}}(\boldsymbol{s}_{w,h\tau},\boldsymbol{p}_{w,h\tau})^{2} \Biggr\}^{\frac{1}{2}}. \end{split}$$

Distinguishing the error components

Theorem (Distinguishing the error components)

Consider a vertex-centered finite volume / backward Euler approximation and Newton linearization. Let

- n be the time step,
- k be the linearization step,
- i be the algebraic solver step,

with the approximations $(s_{w,h\tau}^{n,k,i}, p_{w,h\tau}^{n,k,i})$. Then

$$\mathcal{J}_{\boldsymbol{s}_{\mathrm{w}},\boldsymbol{\rho}_{\mathrm{w}}}^{\boldsymbol{n}}(\boldsymbol{s}_{\mathrm{w},h\tau}^{\boldsymbol{n},\boldsymbol{k},i},\boldsymbol{\rho}_{\mathrm{w},h\tau}^{\boldsymbol{n},\boldsymbol{k},i}) \leq \eta_{\mathrm{sp}}^{\boldsymbol{n},\boldsymbol{k},i} + \eta_{\mathrm{tm}}^{\boldsymbol{n},\boldsymbol{k},i} + \eta_{\mathrm{lin}}^{\boldsymbol{n},\boldsymbol{k},i} + \eta_{\mathrm{alg}}^{\boldsymbol{n},\boldsymbol{k},i}.$$

Error components

- $\eta_{sp}^{n,k,i}$: spatial discretization
- $\eta_{tm}^{n,k,i}$: temporal discretization
- $\eta_{\text{lin}}^{n,k,i}$: linearization
- $\eta_{\text{alg}}^{n,k,i}$: algebraic solver

M. Vohralík

Distinguishing the error components

Theorem (Distinguishing the error components)

Consider a vertex-centered finite volume / backward Euler approximation and Newton linearization. Let

- n be the time step,
- k be the linearization step,
- i be the algebraic solver step,

with the approximations $(s_{w,h\tau}^{n,k,i}, p_{w,h\tau}^{n,k,i})$. Then

 $\mathcal{J}^{n}_{\boldsymbol{s}_{\mathrm{w}},\boldsymbol{\rho}_{\mathrm{w}}}(\boldsymbol{s}_{\mathrm{w},h\tau}^{n,k,i},\boldsymbol{\rho}_{\mathrm{w},h\tau}^{n,k,i}) \leq \eta_{\mathrm{sp}}^{n,k,i} + \eta_{\mathrm{tm}}^{n,k,i} + \eta_{\mathrm{lin}}^{n,k,i} + \eta_{\mathrm{alg}}^{n,k,i}.$

Error components

- $\eta_{sp}^{n,k,i}$: spatial discretization
- $\eta_{tm}^{n,k,i}$: temporal discretization
- $\eta_{lin}^{n,k,i}$: linearization
- $\eta_{\text{alg}}^{n,k,i}$: algebraic solver

Estimators and stopping criteria

Estimators in function of GMRes iterations

Estimators in function of iterative coupling iterations

GMRes iterations

Energy a posteriori error estimators 40 / 52

Space/time/nonlinear solver/linear solver adaptivity

Fully adaptive computation

Energy a posteriori error estimators 41 / 52

Full adaptivity

Full adaptivity

- only a necessary number of algebraic/linearization solver iterations
- adaptive **regularization**, model adaptation, adaptive choice of the scheme parameters
- "online decisions": algebraic step / linearization step / space mesh refinement / time step modification
- important computational savings

Outline

- Introduction and the current landscape
 - Optimal properties
 - Various energy a posteriori error estimators
- Equilibrated fluxes in the Laplace case
 - Guaranteed upper bound
 - Polynomial-degree-robust local efficiency
 - Applications
 - Numerical results
- 3 Adaptive inexact Newton method
 - Guaranteed a posteriori error estimate
 - Stopping criteria, efficiency, and robustness
 - Numerical results
 - Full adaptivity for unsteady nonlinear problems
 - Guaranteed bounds for Laplace eigen-values and -vectors
 - References and bibliography

Laplace eigenvalue problem

Setting

Find eigenvector & eigenvalue pair (u, λ) such that ||u|| = 1 and

$$\begin{aligned} -\Delta u &= \lambda u & \text{ in } \Omega \subset \mathbb{R}^d, d = 2, 3, \\ u &= 0 & \text{ on } \partial \Omega. \end{aligned}$$

Full problem, weak formulation Find $(u_k, \lambda_k) \in V := H_0^1(\Omega) \times \mathbb{R}^+$ with $||u_k|| = 1, k \ge 1$, s. t.

$$(\nabla u_k, \nabla v) = \lambda_k(u_k, v) \quad \forall v \in V$$

• $0 < \lambda_1 < \lambda_2 \leq \ldots \leq \lambda_k \to \infty$

Laplace eigenvalue problem

Setting

Find eigenvector & eigenvalue pair (u, λ) such that ||u|| = 1 and

$$\begin{aligned} -\Delta u &= \lambda u & \text{ in } \Omega \subset \mathbb{R}^d, d = 2, 3, \\ u &= 0 & \text{ on } \partial \Omega. \end{aligned}$$

Full problem, weak formulation Find $(u_k, \lambda_k) \in V := H_0^1(\Omega) \times \mathbb{R}^+$ with $||u_k|| = 1, k \ge 1$, s. t.

$$(\nabla u_k, \nabla v) = \lambda_k(u_k, v) \quad \forall v \in V$$

•
$$0 < \lambda_1 < \lambda_2 \leq \ldots \leq \lambda_k \to \infty$$

Approximate solution and assumptions

Assumption A (Conforming variational solution)

There holds

- $(u_h, \lambda_h) \in V \times \mathbb{R}^+$
- $||u_h|| = 1$
- (*u_h*, 1) > 0

•
$$\|\nabla u_h\|^2 = \lambda_h$$

Assumption B (Galerkin orthogonality of the residual to $\psi_{\mathbf{a}}$)

There holds, for all $\mathbf{a} \in \mathcal{V}_h^{\text{int}}$,

$$\lambda_h(\boldsymbol{u}_h, \boldsymbol{\psi}_{\mathbf{a}})_{\omega_{\mathbf{a}}} - (\nabla \boldsymbol{u}_h, \nabla \boldsymbol{\psi}_{\mathbf{a}})_{\omega_{\mathbf{a}}} = \mathbf{0}.$$

Assumption C (Piecewise polynomial form)

There holds $u_h \in \mathbb{P}_p(\mathcal{T}_h)$, $p \ge 1$, and the mixed finite element spaces $\mathbf{V}_h \times Q_h$ are of degree p + 1.

ematics

Approximate solution and assumptions

Assumption A (Conforming variational solution)

There holds

- $(u_h, \lambda_h) \in V \times \mathbb{R}^+$
- $||u_h|| = 1$
- (*u_h*, 1) > 0

•
$$\|\nabla u_h\|^2 = \lambda_h$$

Assumption B (Galerkin orthogonality of the residual to $\psi_{\mathbf{a}}$)

There holds, for all $\mathbf{a} \in \mathcal{V}_h^{\text{int}}$,

$$\lambda_h(u_h,\psi_{\mathbf{a}})_{\omega_{\mathbf{a}}}-(\nabla u_h,\nabla\psi_{\mathbf{a}})_{\omega_{\mathbf{a}}}=\mathbf{0}.$$

Assumption C (Piecewise polynomial form)

There holds $u_h \in \mathbb{P}_p(\mathcal{T}_h)$, $p \ge 1$, and the mixed finite element spaces $\mathbf{V}_h \times \mathbf{Q}_h$ are of degree p + 1.

ematics

Approximate solution and assumptions

Assumption A (Conforming variational solution)

There holds

- $(u_h, \lambda_h) \in V \times \mathbb{R}^+$
- $\|u_h\| = 1$

•
$$\|\nabla u_h\|^2 = \lambda_h$$

Assumption B (Galerkin orthogonality of the residual to $\psi_{\mathbf{a}}$)

There holds, for all $\mathbf{a} \in \mathcal{V}_h^{\text{int}}$,

$$\lambda_h(u_h, \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} - (\nabla u_h, \nabla \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} = \mathbf{0}.$$

Assumption C (Piecewise polynomial form)

There holds $u_h \in \mathbb{P}_p(\mathcal{T}_h)$, $p \ge 1$, and the mixed finite element spaces $\mathbf{V}_h \times Q_h$ are of degree p + 1.

Guaranteed bounds for the first eigenvalue

Theorem (Eigenvalue bounds)

Let $0 < \underline{\lambda_2} \leq \lambda_2$ and $0 < \underline{\lambda_1} \leq \lambda_1$. Let Assumptions A and B hold and let $\lambda_h < \lambda_2$. Let $\overline{\sigma_h}$ be an equilibrated flux and let

$$\underbrace{\frac{\beta_h}{\searrow 0}}_{\searrow 0} := \frac{1}{\sqrt{\underline{\lambda_1}}} \left(1 - \frac{\lambda_h}{\underline{\lambda_2}} \right)^{-1} \|\nabla u_h + \sigma_h\| < 1,$$
$$\underbrace{\alpha_h^2}_{\searrow 0} := 2 \left(1 - \sqrt{1 - \beta_h^2} \right) \le |\Omega|^{-1} (u_h, 1)^2$$

Then

$$\lambda_{1} \geq \lambda_{h} - \left(1 - \frac{\lambda_{h}}{\underline{\lambda_{2}}}\right)^{-2} \left(1 - \frac{\alpha_{h}^{2}}{4}\right)^{-1} \|\nabla u_{h} + \boldsymbol{\sigma}_{h}\|^{2},$$

$$\lambda_{1} \leq \lambda_{h} - \tilde{\eta}^{2}.$$

Energy a posteriori error estimators 45 / 52

Guaranteed bounds for the first eigenvalue

Theorem (Eigenvalue bounds)

Let $0 < \underline{\lambda_2} \le \lambda_2$ and $0 < \underline{\lambda_1} \le \lambda_1$. Let Assumptions A and B hold and let $\lambda_h < \lambda_2$. Let σ_h be an equilibrated flux and let

$$\underbrace{\frac{\beta_h}{\searrow 0}}_{\searrow 0} := \frac{1}{\sqrt{\underline{\lambda_1}}} \left(1 - \frac{\underline{\lambda_h}}{\underline{\lambda_2}} \right)^{-1} \|\nabla u_h + \sigma_h\| < 1,$$
$$\underbrace{\alpha_h^2}_{\searrow 0} := 2 \left(1 - \sqrt{1 - \beta_h^2} \right) \le |\Omega|^{-1} (u_h, 1)^2.$$

Then

$$\lambda_{1} \geq \lambda_{h} - \left(1 - \frac{\lambda_{h}}{\underline{\lambda_{2}}}\right)^{-2} \left(1 - \frac{\alpha_{h}^{2}}{4}\right)^{-1} \|\nabla u_{h} + \boldsymbol{\sigma}_{h}\|^{2},$$

$$\lambda_{1} \leq \lambda_{h} - \tilde{\eta}^{2}.$$

Guaranteed bounds for the first eigenvalue

Theorem (Eigenvalue bounds)

Let $0 < \underline{\lambda_2} \le \lambda_2$ and $0 < \underline{\lambda_1} \le \lambda_1$. Let Assumptions A and B hold and let $\lambda_h < \lambda_2$. Let σ_h be an equilibrated flux and let

$$\underbrace{\frac{\beta_h}{\searrow_0}}_{\searrow_0} := \frac{1}{\sqrt{\underline{\lambda_1}}} \left(1 - \frac{\underline{\lambda_h}}{\underline{\lambda_2}}\right)^{-1} \|\nabla u_h + \sigma_h\| < 1,$$
$$\underbrace{\alpha_h^2}_{\bigvee_0} := 2 \left(1 - \sqrt{1 - \beta_h^2}\right) \le |\Omega|^{-1} (u_h, 1)^2.$$

Then

$$\frac{\eta^{2}}{\lambda_{1} \geq \lambda_{h} - \left(1 - \frac{\lambda_{h}}{\underline{\lambda_{2}}}\right)^{-2} \left(1 - \frac{\alpha_{h}^{2}}{4}\right)^{-1} \|\nabla u_{h} + \boldsymbol{\sigma}_{h}\|^{2}, \\
\lambda_{1} \leq \lambda_{h} - \tilde{\eta}^{2}.$$

Guaranteed bounds for the first eigenvector

Theorem (Eigenvector bounds)

Let the assumptions of the eigenvalue theorem be verified. Then $\|\nabla(u_{n-1}u_{n})\| \leq n$

 $\|\nabla(u_1-u_h)\|\leq \eta.$

Moreover, under Assumption C,

Guaranteed bounds for the first eigenvector

Theorem (Eigenvector bounds)

Let the assumptions of the eigenvalue theorem be verified. Then $\|\nabla(u - u)\| \le \pi$

 $\|\nabla(u_1-u_h)\|\leq \eta.$

Moreover, under Assumption C,

Guaranteed eigenvalue and eigenvector bounds

Energy a posteriori error estimators 47 / 52

Outline

- Introduction and the current landscape
 - Optimal properties
 - Various energy a posteriori error estimators
- 2 Equilibrated fluxes in the Laplace case
 - Guaranteed upper bound
 - Polynomial-degree-robust local efficiency
 - Applications
 - Numerical results
- 3 Adaptive inexact Newton method
 - Guaranteed a posteriori error estimate
 - Stopping criteria, efficiency, and robustness
 - Numerical results
- 4 Full adaptivity for unsteady nonlinear problems
 - Guaranteed bounds for Laplace eigen-values and -vectors
- References and bibliography

Previous results (Laplace)

Global flux reconstructions

• Prager and Synge (1947):

Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B

 $\|\nabla u + \sigma_h\|^2 + \|\nabla (u - u_h)\|^2 = \|\nabla u_h + \sigma_h\|^2$

for any $u_h \in H_0^1(\Omega)$ and any $\sigma_h \in \mathbf{H}(\operatorname{div}, \Omega)$ s.t. $\nabla \cdot \sigma_h = f$ • Hlaváček, Haslinger, Nečas, and Lovíšek (1979), Repin (1997), ...: global construction of σ_h : unprecise/costly

Local flux reconstructions

- Ladevèze and Leguillon (1983), equilibrated face fluxes
- Destuynder and Métivet (1999), discrete flux σ_h
- Luce and Wohlmuth (2004), local efficiency proof
- Kim (2007), Ainsworth (2007), Ern, Nicaise, and Vohralík (2007), discontinuous Galerkin method elementwise prescription
- Braess and Schöberl (2008), Vohralík (2008), Ern and Vohralík (2009), local Neumann MFE problems

Previous results (Laplace)

Global flux reconstructions

• Prager and Synge (1947):

Equilibrated fluxes Inexact Newton Adaptivity Eigenproblems R&B

 $\|\nabla u + \sigma_h\|^2 + \|\nabla (u - u_h)\|^2 = \|\nabla u_h + \sigma_h\|^2$

for any $u_h \in H^1_0(\Omega)$ and any $\sigma_h \in \mathbf{H}(\operatorname{div}, \Omega)$ s.t. $\nabla \cdot \sigma_h = f$

 Hlaváček, Haslinger, Nečas, and Lovíšek (1979), Repin (1997), ...: global construction of *σ_h*: unprecise/costly

Local flux reconstructions

- Ladevèze and Leguillon (1983), equilibrated face fluxes
- Destuynder and Métivet (1999), discrete flux σ_h
- Luce and Wohlmuth (2004), local efficiency proof
- Kim (2007), Ainsworth (2007), Ern, Nicaise, and Vohralík (2007), discontinuous Galerkin method elementwise prescription
- Braess and Schöberl (2008), Vohralík (2008), Ern and Vohralík (2009), local Neumann MFE problems

Previous results (nonlinear and stopping criteria)

A posteriori error estimates for numerical discretizations of nonlinear problems

- Ladevèze (since 1990's), guaranteed upper bound
- Verfürth (1994), residual estimates
- Chaillou and Suri (2006, 2007), distinguishing discretization and linearization errors

Stopping criteria for algebraic solvers

- Becker, Johnson, and Rannacher (1995), multigrid stopping criterion
- Arioli (2000's), comparison of the algebraic and discretization errors

Previous results (nonlinear and stopping criteria)

A posteriori error estimates for numerical discretizations of nonlinear problems

- Ladevèze (since 1990's), guaranteed upper bound
- Verfürth (1994), residual estimates
- Chaillou and Suri (2006, 2007), distinguishing discretization and linearization errors

Stopping criteria for algebraic solvers

- Becker, Johnson, and Rannacher (1995), multigrid stopping criterion
- Arioli (2000's), comparison of the algebraic and discretization errors

Previous results (unsteady nonlinear)

Nonlinear unsteady problems

- Eriksson and Johnson (1995), L[∞](0, T; L²(Ω)) estimates exploiting stability of the adjoint problem
- Gallimard, Ladevèze, Pelle (1997), const. rel. estimates
- Verfürth (1998), framework for energy control, efficiency
- Ohlberger (2001), non-energy estimates, hyperbolic limit
- Akrivis, Makridakis, and Nochetto (2006), higher-order temporal discretizations

Degenerate parabolic problems

• Nochetto, Schmidt, Verdi (2000), Stefan problem

Two-phase flows

• Chen and Ewing (2003), mesh adaptivity

Previous results (unsteady nonlinear)

Nonlinear unsteady problems

- Eriksson and Johnson (1995), L[∞](0, T; L²(Ω)) estimates exploiting stability of the adjoint problem
- Gallimard, Ladevèze, Pelle (1997), const. rel. estimates
- Verfürth (1998), framework for energy control, efficiency
- Ohlberger (2001), non-energy estimates, hyperbolic limit
- Akrivis, Makridakis, and Nochetto (2006), higher-order temporal discretizations

Degenerate parabolic problems

• Nochetto, Schmidt, Verdi (2000), Stefan problem

Two-phase flows

• Chen and Ewing (2003), mesh adaptivity

Previous results (unsteady nonlinear)

Nonlinear unsteady problems

- Eriksson and Johnson (1995), L[∞](0, T; L²(Ω)) estimates exploiting stability of the adjoint problem
- Gallimard, Ladevèze, Pelle (1997), const. rel. estimates
- Verfürth (1998), framework for energy control, efficiency
- Ohlberger (2001), non-energy estimates, hyperbolic limit
- Akrivis, Makridakis, and Nochetto (2006), higher-order temporal discretizations

Degenerate parabolic problems

• Nochetto, Schmidt, Verdi (2000), Stefan problem

Two-phase flows

Chen and Ewing (2003), mesh adaptivity

Previous results (eigenproblems)

Eigenvalues

- Carstensen and Gedicke (2014): guaranteed bound, lowest-order nonconforming FEs
- Hu, Huang, Lin (2014): nonconforming FEs (saturation assumption may be necessary)
- Šebestová and Vejchodský (2014), Kuznetsov and Repin (2013): guaranteed bounds (condition on applicability, suboptimal convergence speed)
- Liu and Oishi (2013): guaranteed bound, lowest-order conforming FEs (auxiliary eigenvalue problem)

Eigenvectors

 Rannacher, Westenberger, Wollner (2010), Grubišić and Ovall (2009), Durán, Padra, Rodríguez (2003), Heuveline and Rannacher (2002), Larson (2000), Maday and Patera (2000), Verfürth (1994) (uncomputable higher-order terms)

M. Vohralík

Bibliography

Bibliography

- ERN A., VOHRALÍK M., Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, *SIAM J. Numer. Anal.*, **53** (2015), 1058–1081.
- CANCÈS E., DUSSON G., MADAY Y., STAMM B., VOHRALÍK M., Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations, HAL Preprint 01194364.
- ERN A., VOHRALÍK M., Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, *SIAM J. Sci. Comput.* 35 (2013), A1761–A1791.
- CANCÈS C., POP I. S., VOHRALÍK M., An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow, *Math. Comp.* 83 (2014), 153–188.

Thank you for your attention!

