Guaranteed a posteriori error bounds and discretization–linearization–algebraic resolution adaptivity in numerical approximations of model PDEs

Martin Vohralík

Inria Paris & Ecole des Ponts

Hasselt, November 13, 2020

European Research Council

ParisTech

Outline

Introduction

- A posteriori estimates, balancing of error components, and adaptivity
 - Mesh and polynomial degree
 - Linear and nonlinear solvers
 - Error in a quantity of interest
- 3 The heat equation
 - Equivalence between error and dual norm of the residual
 - High-order discretization & Radau reconstruction
 - Guaranteed upper bound
 - Local space-time efficiency and robustness
- Unsteady multi-phase multi-compositional Darcy flow
 - A posteriori estimate
 - Numerical experiments
 - Recovering mass balance
- 5 Conclusions

Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- conception: more effort \Rightarrow closer to the unknown solution
- example: elastic rod

Numerical approximations of PDEs

Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- $\bullet\,$ conception: more effort \Rightarrow closer to the unknown solution
- example: elastic rod

Numerical approximation u_h and its convergence to u

Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- $\bullet\,$ conception: more effort \Rightarrow closer to the unknown solution
- example: elastic rod

Numerical approximation u_h and its convergence to u

Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- $\bullet\,$ conception: more effort \Rightarrow closer to the unknown solution
- example: elastic rod

Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- $\bullet\,$ conception: more effort \Rightarrow closer to the unknown solution
- example: elastic rod

Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- $\bullet\,$ conception: more effort \Rightarrow closer to the unknown solution
- example: elastic rod

Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- $\bullet\,$ conception: more effort \Rightarrow closer to the unknown solution
- example: elastic rod

Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- $\bullet\,$ conception: more effort \Rightarrow closer to the unknown solution
- example: elastic rod

Error
$$\|\nabla(u-u_h)\| = \left\{\int_a^b |(u-u_h)'|^2\right\}^{\frac{1}{2}}$$

Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- $\bullet\,$ conception: more effort \Rightarrow closer to the unknown solution
- example: elastic rod

Numerical approximation u_h and its convergence to u

Guaran

Error
$$\|\nabla(u-u_h)\| = \left\{\int_a^b |(u-u_h)'|^2\right\}^{\frac{1}{2}}$$

$$\mathbb{A}_h \mathbf{U}_h = \mathbf{F}_h$$

Need to solve

M. Vohralík

3 crucial questions

Crucial questions

- How large is the overall error?
- Where (model/space/time/linearization/algebra) is it **localized**?
- Can we decrease it efficiently?

3 crucial questions

Crucial questions

- How large is the overall error?
- Where (model/space/time/linearization/algebra) is it **localized**?

Can we decrease it efficiently?

3 crucial questions

Crucial questions

- How large is the overall error?
- Where (model/space/time/linearization/algebra) is it localized?
- On we decrease it efficiently?

3 crucial questions & suggested answers

Crucial questions

- How large is the overall error?
- Where (model/space/time/linearization/algebra) is it **localized**?
- Oan we decrease it efficiently?

Suggested answers

A posteriori error estimates.

3 crucial questions & suggested answers

Crucial questions

- How large is the overall error?
- Where (model/space/time/linearization/algebra) is it **localized**?
- Oan we decrease it efficiently?

Suggested answers

- A posteriori error estimates.
- Identification of error components.

3 crucial questions & suggested answers

Crucial questions

- How large is the overall error?
- Where (model/space/time/linearization/algebra) is it **localized**?
- On we decrease it efficiently?

Suggested answers

- A posteriori error estimates.
- Identification of error components.
- Balancing error components, adaptivity (working where needed).

CDG Terminal 2E collapse in 2004 (opened in 2003)

no earthquake, flooding, tsunami, heavy rain, extreme temperature
deterministic, steady problem, PDE known, data known, implementation OK

CDG Terminal 2E collapse in 2004 (opened in 2003)

• no earthquake, flooding, tsunami, heavy rain, extreme temperature

• deterministic, steady problem, PDE known, data known, implementation OK

CDG Terminal 2E collapse in 2004 (opened in 2003)

- no earthquake, flooding, tsunami, heavy rain, extreme temperature
- deterministic, steady problem, PDE known, data known, implementation OK

CDG Terminal 2E collapse in 2004 (opened in 2003)

- no earthquake, flooding, tsunami, heavy rain, extreme temperature
- deterministic, steady problem, PDE known, data known, implementation OK

probably numerical simulations done with insufficient precision,

Case Studies in Engineering Failure Analysis 3 (2015) 88-92

Reliability study and simulation of the progressive collapse of Roissy Charles de Gaulle Airport

Y. El Kamari^a, W. Raphael^{4,4}, A. Chateauneuf^{b,c} "Scale Stations of Intelligence de Research 1989, Université State-Joseph, CST Mar Reader, PO Box 11-514, Read IJ Solt Instant 1107/205

M. Vohralík

Guaranteed a posteriori error bounds and full adaptivity 4 / 33

CDG Terminal 2E collapse in 2004 (opened in 2003)

- no earthquake, flooding, tsunami, heavy rain, extreme temperature
- deterministic, steady problem, PDE known, data known, implementation OK

probably numerical simulations done with insufficient precision, I believe without error certification

Case Studies in Engineering Failure Analysis 3 (2015) 88-92

Reliability study and simulation of the progressive collapse of Desentation Roissy Charles de Gaulle Airport

Y. El Kamari^a, W. Raphael^{a,*}, A. Chateauneuf^{b,c} "Icol: Statistics of Institution of Investor (SIR). Universite/State-levenh. CS Mar Readors, PO Box 11-514, Read II Solt Institut 1107/205

Guaranteed a posteriori error bounds and full adaptivity 4 / 33

Outline

Introduction

- 2 A posteriori estimates, balancing of error components, and adaptivity
 - Mesh and polynomial degree
 - Linear and nonlinear solvers
 - Error in a quantity of interest

3 The heat equation

- Equivalence between error and dual norm of the residual
- High-order discretization & Radau reconstruction
- Guaranteed upper bound
- Local space-time efficiency and robustness
- 4 Unsteady multi-phase multi-compositional Darcy flow
 - A posteriori estimate
 - Numerical experiments
 - Recovering mass balance
- 5 Conclusions

Estimates & adaptivity Heat equation Multi-phase-compositional Darcy C Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest Appetizer: it works! (nonlinear problem with linearization & algebra)

Exact error distribution

A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2013)

M. Vohralík

Guaranteed a posteriori error bounds and full adaptivity 5 / 33

Commercial: get more

Commercial: get more, pay less! (balancing all error components)

Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest

A posteriori error estimates: control the error

Elastic membrane equation

 $\begin{aligned} -\Delta u &= f \quad \text{in} \quad \Omega, \\ u &= 0 \quad \text{on} \quad \partial \Omega \end{aligned}$

Guaranteed error upper bound (reliability)

Error lower bound (efficiency)

 $\eta(u_h) \leq C_{\mathrm{eff}} \|
abla(u-u_h) \|$

- C_{eff} independent of Ω , u, u_h , h, p
- computable bound on $C_{
 m eff}$ available, $C_{
 m eff} pprox$ 5

Estimates & adaptivity Heat equation Multi-phase-compositional Darcy C Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest

A posteriori error estimates: control the error

Elastic membrane equation

 $-\Delta u = f$ in Ω , $\mu = 0$ on $\partial \Omega$

Guaranteed error upper bound (reliability)

- indermotiques methémotiques

Estimates & adaptivity Heat equation Multi-phase-compositional Darcy C Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest

A posteriori error estimates: control the error

Elastic membrane equation

 $-\Delta u = f$ in Ω , $\mu = 0$ on $\partial \Omega$

Guaranteed error upper bound (reliability)

Error lower bound (efficiency)

 $\eta(u_h) \leq C_{\text{eff}} \|\nabla(u-u_h)\|$

- $C_{\rm eff}$ independent of Ω , u, u_h , h, p
- computable bound on $C_{\rm eff}$ available. $C_{\rm eff} \approx 5$
- Prager and Synge (1947), Ladevèze (1975), Babuška & Rheinboldt (1987), informationer, methium

Estimates & adaptivity Heat equation Multi-phase-compositional Darcy C Mesh & polynomial degree Linear & polynomial solvers. Quantity of interest

A posteriori error estimates: control the error

Elastic membrane equation

 $-\Delta u = f$ in Ω , $\mu = 0$ on $\partial \Omega$

Guaranteed error upper bound (reliability)

Error lower bound (efficiency)

 $\eta(u_h) \leq C_{\text{eff}} \|\nabla(u-u_h)\|$

- C_{eff} independent of Ω , u, u_h , h, p
- computable bound on $C_{\rm eff}$ available, $C_{\rm eff} \approx 5$
- Prager and Synge (1947), Ladevèze (1975), Babuška & Rheinboldt (1987), Verfürth (1989), Ainsworth & Oden (1993), Destuynder & Métivet (1999), Braess, Pillwein, & Schöberl (2009), Ern & Vohralík (2015) informationer methods

How large is the overall error?

h	р	$\eta({\it u_h})$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{off}} = \frac{\eta(u_b)}{\ \nabla(u-u_b)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$pprox h_0/2$	2	4.23×10^{-2}				
$\approx h_0/8$	-4	2.60×10^{-4}				

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Doleiší, A. Ern, M. Vohralik, SIAM Journal on Scientific Computing (2016)

How large is the overall error?

h	<mark>ο</mark> η(u _h)	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1 1.25	28%	1.07	24%	1.17
$\approx h_0/2$.	$2 4.23 \times 10^{-2}$	9.5 × 107 96	4.07×10^{-4}		
$pprox h_0/4$.	$3 2.62 \times 10^{-4}$	6.9×10 ⁻¹ %	2.60×10^{-4}		
$pprox h_0/8$.	4 2.60 \times 10 ⁻⁷	6.9 × 107 %	2.58×10^{-4}		

A. Em, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Dolelát, A. Em, M. Vohralik, SIAM Journal on Scientific Computing (2016)

h	р	$\eta({m u_h})$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 imes 10^{-1}$ %	4.07×10^{-4}	9.2×10^{-1} %	
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 imes 10^{-3}$ %	-2.60×10^{-4}	5.9 × 10 ⁻² 96	
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 imes 10^{-6}\%$	2.58×10^{-6}	5.8 × 10 ⁻⁹ %	

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysia (2015) Dolejší, A. Ern, M. Vohralik, SIAM Journal on Scientific Computing (2018)

h	р	$\eta({m u_h})$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = rac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 imes 10^{-1}$ %	4.07×10^{-2}	9.2×10^{-1} %	
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 imes 10^{-3}$ %	2.60×10^{-4}	5.9×10 ⁻³ 96	
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 imes 10^{-6}\%$	2.58×10^{-7}	5.8×10 ⁻¹ %	

A. Em, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Doleidi, A. Em, M. Vohralik, SIAM Journal on Scientific Computing (2016)

h	р	$\eta({m u_h})$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 imes 10^{-1}$ %	4.07×10^{-2}	$9.2 imes 10^{-1}$ %	1.0.6
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 imes 10^{-3}$ %	2.60×10^{-4}	$5.9 imes 10^{-3}$ %	1.01
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 imes 10^{-6}\%$	2.58×10^{-7}	$5.8 imes 10^{-6}$ %	1.01

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Doleiši, A. Ern, M. Vohralik, SIAM Journal on Scientific Computing (2016)

h	ο η(U _h)	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1.25	28%	1.07	24%	1.17
$pprox$ $h_0/2$	6.07×10^{-1}		$5.56 imes 10^{-1}$	13%	
$\approx h_0/2$	$2 4.23 \times 10^{-2}$	$9.5 imes 10^{-1}$ %	4.07×10^{-2}	$9.2 imes 10^{-1}$ %	1.04
$\approx h_0/4$:	2.62×10^{-4}	$5.9 imes 10^{-3}$ %	2.60×10^{-4}	$5.9 imes 10^{-3}$ %	1.01
$\approx h_0/8$ ·	$ 2.60 \times 10^{-7}$	$5.9 imes 10^{-6}$ %	2.58×10^{-7}	$5.8 imes 10^{-6}$ %	1.01

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015)

2016). Dolejší, A. Ern, M. Vohralik, SIAM Journal on Scientific Computing (2016)

h	р	$\eta({m u_h})$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$pprox h_0/2$		$6.07 imes 10^{-1}$	14%	$5.56 imes 10^{-1}$	13%	1.09
$\approx h_0/4$		$3.10 imes 10^{-1}$		$2.92 imes 10^{-1}$	6.6%	1.06
$\approx h_0/2$	2	$4.23 imes 10^{-2}$	$9.5 imes10^{-1}\%$	$4.07 imes 10^{-2}$	$9.2 imes 10^{-1}$ %	1.04
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 imes 10^{-3}$ %	2.60×10^{-4}	$5.9 imes 10^{-3}\%$	1.01
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 imes 10^{-6}$ %	2.58×10^{-7}	$5.8 imes 10^{-6}$ %	1.01

A. Em, M. Vohralik, SIAM Journal on Numerical Analysis (2015)

(2018) Dolejší, A. Em, M. Vohralík, SIAM Journal on Scientific Computing

h	р	$\eta({m u_h})$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$pprox h_0/2$		$6.07 imes 10^{-1}$	14%	$5.56 imes 10^{-1}$	13%	1.09
$pprox h_0/4$		$3.10 imes 10^{-1}$	7.0%	$2.92 imes 10^{-1}$	6.6%	1.06
$pprox h_0/8$		$1.45 imes 10^{-1}$		$1.39 imes 10^{-1}$	3.1%	1.04
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 imes 10^{-1}$ %	4.07×10^{-2}	$9.2 imes 10^{-1}\%$	1.04
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 imes10^{-3}\%$	2.60×10^{-4}	$5.9 imes 10^{-3}$ %	1.01
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 imes 10^{-6}$ %	2.58×10^{-7}	$5.8 imes 10^{-6}$ %	1.01

A. Em, M. Vohralik, SIAM Journal on Numerical Analysis (2015)

(2016) Dolejší, A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2016).

h	р	$\eta({m u_h})$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$		$6.07 imes 10^{-1}$	14%	$5.56 imes 10^{-1}$	13%	1.09
$\approx h_0/4$		$3.10 imes10^{-1}$	7.0%	$2.92 imes 10^{-1}$	6.6%	1.06
$\approx h_0/8$		$1.45 imes10^{-1}$	3.3%	$1.39 imes 10^{-1}$	3.1%	1.04
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 imes 10^{-1}$ %	4.07×10^{-2}	$9.2 imes 10^{-1}\%$	1.04
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 imes 10^{-3} \%$	2.60×10^{-4}	$5.9 imes 10^{-3}\%$	1.01
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 imes10^{-6}\%$	2.58×10^{-7}	$5.8 imes 10^{-6}\%$	1.01

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015)

V. Dolejší, A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2016)

h	р	$\eta({m u_h})$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$pprox h_0/2$		$6.07 imes 10^{-1}$	14%	$5.56 imes 10^{-1}$	13%	1.09
$\approx h_0/4$		$3.10 imes10^{-1}$	7.0%	$2.92 imes 10^{-1}$	6.6%	1.06
$\approx h_0/8$		$1.45 imes10^{-1}$	3.3%	$1.39 imes 10^{-1}$	3.1%	1.04
$\approx h_0/2$	2	$4.23 imes10^{-2}$	$9.5 imes 10^{-1}$ %	$4.07 imes 10^{-2}$	$9.2 imes10^{-1}\%$	1.04
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 imes 10^{-3}$ %	2.60×10^{-4}	$5.9 imes 10^{-3}\%$	1.01
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 imes 10^{-6} \%$	2.58×10^{-7}	$5.8 imes 10^{-6}\%$	1.01

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015)

Jolejsi, A. Ern, M. Vohralik, SIAM Journal on Scientific Computing (2016)

h	р	$\eta({m u_h})$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$pprox h_0/2$		$6.07 imes10^{-1}$	14%	$5.56 imes 10^{-1}$	13%	1.09
$\approx h_0/4$		$3.10 imes10^{-1}$	7.0%	$2.92 imes 10^{-1}$	6.6%	1.06
$\approx h_0/8$		$1.45 imes10^{-1}$	3.3%	$1.39 imes 10^{-1}$	3.1%	1.04
$\approx h_0/2$	2	$4.23 imes10^{-2}$	$9.5 imes 10^{-1}$ %	$4.07 imes 10^{-2}$	$9.2 imes10^{-1}\%$	1.04
$\approx h_0/4$	3	$2.62 imes 10^{-4}$	$5.9 imes 10^{-3}$ %	$2.60 imes10^{-4}$	$5.9 imes10^{-3}\%$	1.01
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 imes10^{-6}\%$	2.58×10^{-7}	$5.8 imes 10^{-6}\%$	1.01

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Dolejší, A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2016)

h	<mark>ρ</mark> η(U _h)	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1 1.25	28%	1.07	24%	1.17
$pprox h_0/2$	$6.07 imes 10^{-1}$	14%	5.56×10^{-1}	13%	1.09
$\approx h_0/4$	$3.10 imes 10^{-1}$	7.0%	2.92×10^{-1}	6.6%	1.06
$\approx h_0/8$	$1.45 imes 10^{-1}$	3.3%	1.39×10^{-1}	3.1%	1.04
$\approx h_0/2$	2 4.23 \times 10 ⁻²	$9.5 imes 10^{-1}$ %	$4.07 imes 10^{-2}$	$9.2 imes10^{-1}\%$	1.04
$\approx h_0/4$	$3 2.62 \times 10^{-4}$	$5.9 imes 10^{-3}$ %	$2.60 imes 10^{-4}$	$5.9 imes10^{-3}\%$	1.01
$\approx h_0/8$	4 2.60 \times 10 ⁻⁷	$5.9 imes 10^{-6}$ %	2.58×10^{-7}	$5.8 imes10^{-6}\%$	1.01

A. Ern, M. Vohralík, SIAM Journal on Numerical Analysis (2015) V. Doleiší, A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2016)

Outline

Introduction

2 A posteriori estimates, balancing of error components, and adaptivity

Mesh and polynomial degree

- Linear and nonlinear solvers
- Error in a quantity of interest

3 The heat equation

- Equivalence between error and dual norm of the residual
- High-order discretization & Radau reconstruction
- Guaranteed upper bound
- Local space-time efficiency and robustness
- Unsteady multi-phase multi-compositional Darcy flow
 - A posteriori estimate
 - Numerical experiments
 - Recovering mass balance
- 5 Conclusions

Where (in space) is the error localized?

Exact error distribution $\|\nabla(u - u_h)\|_{\mathcal{K}}$

P. Daniel, A. Ern, I. Smears, M. Vohralík, Computers & Mathematics with Applications (2018)

M. Vohralík

Guaranteed a posteriori error bounds and full adaptivity 9 / 33

Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest

Adaptive mesh refinement (linear problem with exact solvers)

Adaptive mesh refinement

• Dörfler marking: subset \mathcal{M}_{ℓ} containing θ -fraction of the estimates

$$\sum_{K \in \mathcal{M}_{\ell}} \eta_K(u_{\ell})^2 \geq \frac{\theta^2}{K \in \mathcal{T}_{\ell}} \eta_K(u_{\ell})^2$$

Convergence on a sequence of adaptively refined meshes

$$\|
abla (u-u_\ell)\| o$$

- some mesh elements may not be refined at all: $h \searrow 0$
- Babuška & Miller (1987), Dörfler (1996)

Optimal error decay rate wrt degrees of freedom

- $\|
 abla(u-u_\ell)\| \lesssim |\mathsf{DoF}_\ell|^{-p/d}$ (replaces h^p)
- same for smooth & singular solutions: higher-order only pay-off for sm. sol.
- decays to zero as fast as on a best-possible sequence of meshes
- Morin, Nochetto, Siebert (2000), Stevenson (2005, 2007), Cascón, Kreuzer, Nochetto, Siebert (2008), Canuto, Nochetto, Stevenson, Verani (20)

Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest

Adaptive mesh refinement (linear problem with exact solvers)

Adaptive mesh refinement

• Dörfler marking: subset \mathcal{M}_{ℓ} containing θ -fraction of the estimates

 $\begin{array}{cc} & & & & \\ \textbf{Convergence} \text{ on a sequence of adaptively refined meshes} \\ \end{array}$

$$\|
abla(u-u_\ell)\| o$$

 $\sum \eta_{\mathcal{K}}(u_{\ell})^2 \geq \theta^2 \sum \eta_{\mathcal{K}}(u_{\ell})^2$

- some mesh elements may not be refined at all: $h \searrow 0$
- Babuška & Miller (1987), Dörfler (1996)

Optimal error decay rate wrt degrees of freedom

• $\|
abla(u-u_\ell)\| \lesssim |\mathsf{DoF}_\ell|^{-p/d}$ (replaces h^p)

- same for smooth & singular solutions: higher-order only pay-off for sm. sol.
- decays to zero as fast as on a best-possible sequence of meshes
- Morin, Nochetto, Siebert (2000), Stevenson (2005, 2007), Cascón, Kreuzer, Nochetto, Siebert (2008), Canuto, Nochetto, Stevenson, Verani (2010)

Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest

Adaptive mesh refinement (linear problem with exact solvers)

Adaptive mesh refinement

• Dörfler marking: subset \mathcal{M}_{ℓ} containing θ -fraction of the estimates

$$\sum_{K\in\mathcal{M}_\ell}\eta_K(u_\ell)^2\geq \theta^2\sum_{K\in\mathcal{T}_\ell}\eta_K(u_\ell)^2$$

Convergence on a sequence of adaptively refined meshes

$$\|
abla(u-u_\ell)\| o 0$$

- some mesh elements may not be refined at all: $h \searrow 0$
- Babuška & Miller (1987), Dörfler (1996)

Optimal error decay rate wrt degrees of freedom

- $\|\nabla(u-u_\ell)\| \lesssim |\mathsf{DoF}_\ell|^{-p/d}$ (replaces h^p)
- same for smooth & singular solutions: higher-order only pay-off for sm. sol.
- decays to zero as fast as on a best-possible sequence of meshes
- Morin, Nochetto, Siebert (2000), Stevenson (2005, 2007), Cascón, Kreuzer, Nochetto, Siebert (2008), Canuto, Nochetto, Stevenson, Verani (2017)

I Estimates & adaptivity Heat equation Multi-phase-compositional Darcy C Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest

Can we decrease the error efficiently? *hp* adaptivity, (**smooth** solution)

Mesh \mathcal{T}_{ℓ} and pol. degrees $p_{\mathcal{K}}$

P. Daniel, A. Ern, I. Smears, M. Vohralík, Computers & Mathematics with Applications (2018)

Can we decrease the error efficiently? *hp* adaptivity, (**smooth** solution)

Mesh \mathcal{T}_{ℓ} and pol. degrees $p_{\mathcal{K}}$

Exact solution

P. Daniel, A. Ern, I. Smears, M. Vohralík, Computers & Mathematics with Applications (2018)

M. Vohralík

Guaranteed a posteriori error bounds and full adaptivity 11 / 33

I Estimates & adaptivity Heat equation Multi-phase-compositional Darcy C Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest

Can we decrease the error efficiently? hp adaptivity, (singular solution)

Mesh \mathcal{T}_{ℓ} and polynomial degrees p_{K}

P3

P2

 10^{-2}

 10^{-3}

10-4

Mesh \mathcal{T}_{ℓ} and polynomial degrees p_{K}

Relative error as a function of DoF

15

 $DoF^{1/3}$

20

25

30

P. Daniel, A. Ern, J. Smears, M. Vohralík, Computers & Mathematics with Applications (2018)

5

uniform h, p=1

 $\dots h$ -adaptivity, p=1- hp-adaptivity 🛏 a priori best

10

Guaranteed a posteriori error bounds and full adaptivity 11 / 33

Outline

Introduction

- 2 A posteriori estimates, balancing of error components, and adaptivity
 - Mesh and polynomial degree

• Linear and nonlinear solvers

• Error in a quantity of interest

3 The heat equation

- Equivalence between error and dual norm of the residual
- High-order discretization & Radau reconstruction
- Guaranteed upper bound
- Local space-time efficiency and robustness
- Unsteady multi-phase multi-compositional Darcy flow
 - A posteriori estimate
 - Numerical experiments
 - Recovering mass balance
- 5 Conclusions

Estimates & adaptivity Heat equation Multi-phase-compositional Darcy C Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest Balancing error components (nonlinear problem with inexact solvers) Fully adaptive algorithm • total error estimate on mesh \mathcal{T}_{ℓ} , linearization step k, algebraic solver step i

link – inexact Newton method: Bank & Rose (1982), Hackbusch & Reusken (1989), Deuflhard (1991), Eisenstat & Walker (1994)
 Convergence, optimal error decay rate wrt DoFs
 Gantner, Haberl, Praetorius, & Stiftner (2018), Heid & Wihler (2019)
 Optimal error decay rate wrt overall computational cost
 Haberl, Praetorius, Schimanko, & Vohralík (HAL preprint 02557718)

Including **algebraic** error: $\mathbb{A}_{\ell} \mathbf{U}_{\ell}^{\dagger} \neq \mathbf{F}_{\ell}$

Guaranteed a posteriori error bounds and full adaptivity 13 / 33

Including **algebraic** error: $\mathbb{A}_{\ell} \mathbf{U}_{\ell}^{i} \neq \mathbf{F}_{\ell}$

Estimated algebraic errors $\eta_{\text{alg},\kappa}(u_{\ell}^{i})$

J. Papež, U. Rüde, M. Vohralík, B. Wohlmuth, preprint (2020)

inducantiques methicantiques

Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest

Including **algebraic** error: $\mathbb{A}_{\ell} \mathbf{U}_{\ell}^{\dagger} \neq \mathbf{F}_{\ell}$

Including **algebraic** error: $\mathbb{A}_{\ell} U'_{\ell} \neq F_{\ell}$

J. Papež, U. Rüde, M. Vohralík, B. Wohlmuth (2020)

Estimates & adaptivity Heat equation Multi-phase-compositional Darcy C Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest

Nonlinear pb $-\nabla \cdot \sigma(\nabla u) = f$: including linearization and algebraic error. $\mathcal{A}_{\ell}(\mathbf{U}_{\ell}^{k,l}) \neq \mathbf{F}_{\ell}, \mathbb{A}_{\ell}^{k-1}\mathbf{U}_{\ell}^{k,l} =$

Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest

Nonlinear pb $-\nabla \cdot \sigma(\nabla u) = f$: including **linearization** and **algebraic** error: $\mathcal{A}_{\ell}(\mathbf{U}_{\ell}^{k,i}) \neq \mathbf{F}_{\ell}, \mathbb{A}_{\ell}^{k-1}\mathbf{U}_{\ell}^{k,i} \neq \mathbf{F}_{\ell}^{k-1}$ Nonlinear pb $-\nabla \cdot \boldsymbol{\sigma}(\nabla u) = f$: including **linearization** and **algebraic** error: $\mathcal{A}_{\ell}(\mathbf{U}_{\ell}^{k,i}) \neq \mathbf{F}_{\ell}, \mathbb{A}_{\ell}^{k-1}\mathbf{U}_{\ell}^{k,i} \neq \mathbf{F}_{\ell}^{k-1}$

Nonlinear pb $-\nabla \cdot \sigma(\nabla u) = f$: including **linearization** and **algebraic** error: $\mathcal{A}_{\ell}(\mathbf{U}_{\ell}^{k,i}) \neq \mathbf{F}_{\ell}, \mathbb{A}_{\ell}^{k-1}\mathbf{U}_{\ell}^{k,i} \neq \mathbf{F}_{\ell}^{k-1}$

M. Vohralík

Guaranteed a posteriori error bounds and full adaptivity 14 / 33

I Estimates & adaptivity Heat equation Multi-phase-compositional Darcy C Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest

Nonlinear pb $-\nabla \cdot \sigma(\nabla u) = f$: including **linearization** and **algebraic** error: $\mathcal{A}_{\ell}(\mathbf{U}_{\ell}^{k,i}) \neq \mathbf{F}_{\ell}, \mathbb{A}_{\ell}^{k-1}\mathbf{U}_{\ell}^{k,i} \neq \mathbf{F}_{\ell}^{k-1}$

M. Vohralík

Guaranteed a posteriori error bounds and full adaptivity 14 / 33

Estimates & adaptivity Heat equation Multi-phase-compositional Darcy C Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest Nonlinear pb $-\nabla \cdot \sigma(\nabla u) = f$: including **linearization** and **algebraic** error: $\mathcal{A}_{\ell}(\mathbf{U}_{\ell}^{k,i}) \neq \mathbf{F}_{\ell}, \, \mathbb{A}_{\ell}^{k-1}\mathbf{U}_{\ell}^{k,i} \neq \mathbf{F}_{\ell}^{k-1}$

 $\times 10^{-3}$

4.5

35

2.5

1.5

0.5

M. Vohralík

Guaranteed a posteriori error bounds and full adaptivity 14 / 33

Convergence and optimal decay rate wrt DoFs & computational cost

ical alg. solver its last mesh 550 relative error estimate 4.6%

relative error estimate 1.19

A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2013)

M. Vohralík

Convergence and optimal decay rate wrt DoFs & computational cost

Convergence and optimal decay rate wrt DoFs & computational cost

Convergence and optimal decay rate wrt DoFs & computational cost

Outline

Introduction

2 A posteriori estimates, balancing of error components, and adaptivity

- Mesh and polynomial degree
- Linear and nonlinear solvers

• Error in a quantity of interest

3 The heat equation

- Equivalence between error and dual norm of the residual
- High-order discretization & Radau reconstruction
- Guaranteed upper bound
- Local space-time efficiency and robustness
- Unsteady multi-phase multi-compositional Darcy flow
 - A posteriori estimate
 - Numerical experiments
 - Recovering mass balance
- 5 Conclusions

Can we certify error in a practical case $-\nabla \cdot (\mathbf{K} \nabla u) = f$: outflow error $|\int_{v=2200} \mathbf{K} \nabla (u - u_v) \cdot \mathbf{n}|$ (goal functional)

Estimates & adaptivity Heat equation Multi-phase-compositional Darcy C Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest

Can we certify error in a practical case $-\nabla \cdot (\mathbf{K} \nabla u) = f$: outflow error $\left| \int_{V=2200} \mathbf{K} \nabla (u - u_{\ell}) \cdot \mathbf{n} \right|$ (goal functional)

G. Mallik, M. Vohralik, S. Yousef, Journal of Computational and Applied Mathematics (2019)

Estimates & adaptivity Heat equation Multi-phase-compositional Darcy C Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest

Can we certify error in a practical case $-\nabla \cdot (\mathbf{K} \nabla u) = f$: outflow error $\left| \int_{V=2200} \mathbf{K} \nabla (u - u_{\ell}) \cdot \mathbf{n} \right|$ (goal functional)

G. Mallik, M. Vohralík, S. Yousef, Journal of Computational and Applied Mathematics (2019)

Layer permeability

Estimates & adaptivity Heat equation Multi-phase-compositional Darcy C Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest

Can we certify error in a practical case $-\nabla \cdot (\mathbf{K} \nabla u) = f$: outflow error $\left| \int_{V=2200} \mathbf{K} \nabla (u - u_{\ell}) \cdot \mathbf{n} \right|$ (goal functional)

G. Mallik, M. Vohralík, S. Yousef, Journal of Computational and Applied Mathematics (2019)

Layer permeability

M. Vohralík

Outline

- Introduction
- 2 A posteriori estimates, balancing of error components, and adaptivity
 - Mesh and polynomial degree
 - Linear and nonlinear solvers
 - Error in a quantity of interest
- 3 The heat equation
 - Equivalence between error and dual norm of the residual
 - High-order discretization & Radau reconstruction
 - Guaranteed upper bound
 - Local space-time efficiency and robustness
- Unsteady multi-phase multi-compositional Darcy flow
 - A posteriori estimate
 - Numerical experiments
 - Recovering mass balance
- 5 Conclusions

Error & residual Reconstruction Reliability Efficiency and robustness Estimates & adaptivity Heat equation Multi-phase-compositional Darcy C The heat equation: $f \in L^2(0, T; L^2(\Omega)), u_0 \in L^2(\Omega)$ The heat equation $\partial_t u - \Delta u = f$ in $\Omega \times (0, T)$, u = 0 on $\partial \Omega \times (0, T)$, $u(0) = u_0$ in Ω

Error & residual Reconstruction Reliability Efficiency and robustness Estimates & adaptivity Heat equation Multi-phase-compositional Darcy C The heat equation: $f \in L^2(0, T; L^2(\Omega)), u_0 \in L^2(\Omega)$ The heat equation $\partial_t u - \Delta u = f$ in $\Omega \times (0, T)$, u = 0 on $\partial \Omega \times (0, T)$, $u(0) = u_0$ in Ω Spaces $X := L^2(0, T; H_0^1(\Omega)),$ $\|\boldsymbol{v}\|_X^2 := \int_0^T \|\nabla \boldsymbol{v}\|^2 \,\mathrm{d}t,$ $\boldsymbol{Y} \coloneqq \widetilde{\boldsymbol{L}}^{\boldsymbol{2}}(0,T;H^{1}_{0}(\Omega)) \cap H^{1}(0,T;H^{-1}(\Omega)),$ $\|\boldsymbol{v}\|_{Y}^{2} \coloneqq \int_{0}^{T} \|\partial_{t}\boldsymbol{v}\|_{H^{-1}(\Omega)}^{2} + \|\nabla\boldsymbol{v}\|^{2} \,\mathrm{d}t + \|\boldsymbol{v}(T)\|^{2}$

Error & residual Reconstruction Reliability Efficiency and robustness Estimates & adaptivity Heat equation Multi-phase-compositional Darcy The heat equation: $f \in L^2(0, T; L^2(\Omega)), u_0 \in L^2(\Omega)$ The heat equation $\partial_t u - \Delta u = f$ in $\Omega \times (0, T)$, u = 0 on $\partial \Omega \times (0, T)$, $u(0) = u_0$ in Ω Spaces $X := L^2(0, T; H^1_0(\Omega)),$ $\|\boldsymbol{v}\|_{\boldsymbol{X}}^{2} := \int_{0}^{T} \|\nabla \boldsymbol{v}\|^{2} \,\mathrm{d}t,$ $\boldsymbol{Y} \coloneqq \tilde{\boldsymbol{L}}^{2}(0, T; H_{0}^{1}(\Omega)) \cap H^{1}(0, T; H^{-1}(\Omega)),$ $\|v\|_{Y}^{2} \coloneqq \int_{0}^{T} \|\partial_{t}v\|_{H^{-1}(\Omega)}^{2} + \|\nabla v\|^{2} dt + \|v(T)\|^{2}$ Weak solution Find $u \in Y$ with $u(0) = u_0$ such that $\int_{0}^{T} \langle \partial_{t} u, v \rangle + (\nabla u, \nabla v) \, \mathrm{d}t = \int_{0}^{T} (f, v) \, \mathrm{d}t \qquad \forall v \in X$

An optimal a posteriori estimate for evolutive problems

Guaranteed upper bound

- $\|u u_{h\tau}\|_{?,\Omega \times (0,T)}^2 \le \sum_{n=1}^N \sum_{K \in \mathcal{T}_h^n} \eta_K^n (u_{h\tau})^2$
- no undetermined constant: error control

Local efficiency

- $\eta_K^n(u_{h\tau}) \leq C_{\text{eff}} ||u u_{h\tau}||_{?,\text{neighbors of } K \times (t^{n-1}, t^n)}$
- optimal space-time mesh refinement
- local in time and in space error lower bound

Robustness

• C_{eff} independent of data, domain Ω , **final time** T, meshes, solution u, **polynomial degrees** of $u_{h\tau}$ in space and in time

Asymptotic exactness

•
$$\sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{h}^{n}} \eta_{K}^{n} (u_{h\tau})^{2} / \|u - u_{h\tau}\|_{2,\Omega \times (0,T)}^{2} > 1$$

• overestimation factor goes to one with increasing effort

Small evaluation cost

An optimal a posteriori estimate for evolutive problems

Guaranteed upper bound

- $\|u u_{h\tau}\|_{?,\Omega \times (0,T)}^2 \le \sum_{n=1}^N \sum_{K \in \mathcal{T}_h^n} \eta_K^n (u_{h\tau})^2$
- no undetermined constant: error control

Local efficiency

- $\eta_K^n(u_{h\tau}) \leq C_{\text{eff}} ||u u_{h\tau}||_{?,\text{neighbors of } K \times (t^{n-1}, t^n)}$
- optimal space-time mesh refinement
- local in time and in space error lower bound

Robustness

• C_{eff} independent of data, domain Ω , **final time** *T*, meshes, solution *u*, **polynomial degrees** of $u_{h\tau}$ in space and in time

Asymptotic exactness

•
$$\sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{h}^{n}} \eta_{K}^{n} (u_{h\tau})^{2} / \|u - u_{h\tau}\|_{2,\Omega \times (0,T)}^{2} > 1$$

overestimation factor goes to one with increasing effort

Small evaluation cost

An optimal a posteriori estimate for evolutive problems

Guaranteed upper bound

- $\|u u_{h\tau}\|_{?,\Omega \times (0,T)}^2 \le \sum_{n=1}^N \sum_{K \in \mathcal{T}_h^n} \eta_K^n (u_{h\tau})^2$
- no undetermined constant: error control

Local efficiency

- $\eta_K^n(u_{h\tau}) \leq C_{\text{eff}} ||u u_{h\tau}||_{?,\text{neighbors of } K \times (t^{n-1}, t^n)}$
- optimal space-time mesh refinement
- local in time and in space error lower bound

Robustness

• C_{eff} independent of data, domain Ω , final time T, meshes, solution u, polynomial degrees of $u_{h\tau}$ in space and in time

Asymptotic exactness

• $\sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{h}^{n}} \eta_{K}^{n} (u_{h\tau})^{2} / \|u - u_{h\tau}\|_{?,\Omega \times (0,T)}^{2} \searrow 1$

overestimation factor goes to one with increasing effort

Small evaluation cost

An optimal a posteriori estimate for evolutive problems

Guaranteed upper bound

- $\|u u_{h\tau}\|_{?,\Omega \times (0,T)}^2 \le \sum_{n=1}^N \sum_{K \in \mathcal{T}_h^n} \eta_K^n (u_{h\tau})^2$
- no undetermined constant: error control

Local efficiency

- $\eta_{K}^{n}(u_{h\tau}) \leq C_{\text{eff}} \| u u_{h\tau} \|_{?,\text{neighbors of } K \times (t^{n-1}, t^{n})}$
- optimal space-time mesh refinement
- local in time and in space error lower bound

Robustness

• C_{eff} independent of data, domain Ω , final time T, meshes, solution u, polynomial degrees of $u_{h\tau}$ in space and in time

Asymptotic exactness

•
$$\sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{h}^{n}} \eta_{K}^{n} (u_{h\tau})^{2} / \|u - u_{h\tau}\|_{?,\Omega \times (0,T)}^{2} \searrow 1$$

• overestimation factor goes to one with increasing effort

Small evaluation cost

An optimal a posteriori estimate for evolutive problems

Guaranteed upper bound

- $\|u u_{h\tau}\|_{?,\Omega \times (0,T)}^2 \le \sum_{n=1}^N \sum_{K \in \mathcal{T}_h^n} \eta_K^n (u_{h\tau})^2$
- no undetermined constant: error control

Local efficiency

- $\eta_{K}^{n}(u_{h\tau}) \leq C_{\text{eff}} \| u u_{h\tau} \|_{?,\text{neighbors of } K \times (t^{n-1}, t^{n})}$
- optimal space-time mesh refinement
- local in time and in space error lower bound

Robustness

• C_{eff} independent of data, domain Ω , final time T, meshes, solution u, polynomial degrees of $u_{h\tau}$ in space and in time

Asymptotic exactness

•
$$\sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{h}^{n}} \eta_{K}^{n} (u_{h\tau})^{2} / \|u - u_{h\tau}\|_{?,\Omega \times (0,T)}^{2} \searrow 1$$

• overestimation factor goes to one with increasing effort

Small evaluation cost

- Picasso / Verfürth (1998), work with the energy norm X:
 - ✓ upper bound $||u u_{h\tau}||_X^2 \le C \sum_{n=1}^N \sum_{K \in \mathcal{T}_h^n} \eta_K^n (u_{h\tau})^2$
 - \boldsymbol{X} constrained lower bound (\boldsymbol{h} and τ strongly linked)
- Repin (2002), guaranteed upper bound
- Verfürth (2003) (cf. also Bergam, Bernardi, and Mghazli (2005)), work with the Y norm:
 - ✓ upper bound $||u u_{h\tau}||_Y^2 \le C \sum_{n=1}^N \sum_{K \in \mathcal{T}_h^n} \eta_K^n (u_{h\tau})^2$
 - ✓ efficiency $\sum_{K \in \mathcal{T}_h^n} \eta_K^n (u_{h\tau})^2 \le C \|u u_{h\tau}\|_{Y(I_n)}^2$
 - ✓ robustness with respect to the final time T, no link $h \tau$
 - X efficiency local in time but global in space
- Makridakis and Nochetto (2006): Radau reconstruction
- Ern and Vohralík (2010): unified framework for different spatial discretizations

- Picasso / Verfürth (1998), work with the energy norm X:
 - ✓ upper bound $||u u_{h\tau}||_X^2 \le C \sum_{n=1}^N \sum_{K \in \mathcal{T}_h^n} \eta_K^n (u_{h\tau})^2$
 - \boldsymbol{X} constrained lower bound (\boldsymbol{h} and τ strongly linked)
- Repin (2002), guaranteed upper bound
- Verfürth (2003) (cf. also Bergam, Bernardi, and Mghazli (2005)), work with the Y norm:
 - ✓ upper bound $||u u_{h\tau}||_Y^2 \le C \sum_{n=1}^N \sum_{K \in \mathcal{T}_h^n} \eta_K^n (u_{h\tau})^2$
 - ✓ efficiency $\sum_{K \in \mathcal{T}_h^n} \eta_K^n (u_{h\tau})^2 \le C \|u u_{h\tau}\|_{Y(I_n)}^2$
 - ✓ robustness with respect to the final time T, no link $h \tau$
 - X efficiency local in time but global in space
- Makridakis and Nochetto (2006): Radau reconstruction
- Ern and Vohralík (2010): unified framework for different spatial discretizations

- Picasso / Verfürth (1998), work with the energy norm X:
 - ✓ upper bound $||u u_{h\tau}||_X^2 \le C \sum_{n=1}^N \sum_{K \in \mathcal{T}_h^n} \eta_K^n (u_{h\tau})^2$
 - \boldsymbol{X} constrained lower bound (\boldsymbol{h} and τ strongly linked)
- Repin (2002), guaranteed upper bound
- Verfürth (2003) (cf. also Bergam, Bernardi, and Mghazli (2005)), work with the <u>Y</u> norm:
 - ✓ upper bound $||u u_{h\tau}||_Y^2 \le C \sum_{n=1}^N \sum_{K \in \mathcal{T}_h^n} \eta_K^n (u_{h\tau})^2$
 - ✓ efficiency $\sum_{K \in \mathcal{T}_h^n} \eta_K^n (u_{h\tau})^2 \le C \|u u_{h\tau}\|_{Y(I_n)}^2$
 - ✓ robustness with respect to the final time T, no link $h \tau$
 - X efficiency local in time but global in space
- Makridakis and Nochetto (2006): Radau reconstruction
- Ern and Vohralík (2010): unified framework for different spatial discretizations

- Picasso / Verfürth (1998), work with the energy norm X:
 - ✓ upper bound $||u u_{h\tau}||_X^2 \le C \sum_{n=1}^N \sum_{K \in \mathcal{T}_h^n} \eta_K^n (u_{h\tau})^2$
 - \boldsymbol{X} constrained lower bound (\boldsymbol{h} and τ strongly linked)
- Repin (2002), guaranteed upper bound
- Verfürth (2003) (cf. also Bergam, Bernardi, and Mghazli (2005)), work with the <u>Y</u> norm:
 - ✓ upper bound $||u u_{h\tau}||_Y^2 \le C \sum_{n=1}^N \sum_{K \in \mathcal{T}_h^n} \eta_K^n (u_{h\tau})^2$
 - ✓ efficiency $\sum_{K \in \mathcal{T}_h^n} \eta_K^n (u_{h\tau})^2 \le C \|u u_{h\tau}\|_{Y(I_n)}^2$
 - ✓ robustness with respect to the final time T, no link $h \tau$
 - X efficiency local in time but global in space
- Makridakis and Nochetto (2006): Radau reconstruction
- Ern and Vohralík (2010): unified framework for different spatial discretizations

- Picasso / Verfürth (1998), work with the energy norm X:
 - ✓ upper bound $||u u_{h\tau}||_X^2 \le C \sum_{n=1}^N \sum_{K \in \mathcal{T}_h^n} \eta_K^n (u_{h\tau})^2$
 - \boldsymbol{X} constrained lower bound (\boldsymbol{h} and τ strongly linked)
- Repin (2002), guaranteed upper bound
- Verfürth (2003) (cf. also Bergam, Bernardi, and Mghazli (2005)), work with the <u>Y</u> norm:
 - ✓ upper bound $||u u_{h\tau}||_Y^2 \le C \sum_{n=1}^N \sum_{K \in \mathcal{T}_h^n} \eta_K^n (u_{h\tau})^2$
 - ✓ efficiency $\sum_{K \in \mathcal{T}_h^n} \eta_K^n (u_{h\tau})^2 \le C \|u u_{h\tau}\|_{Y(I_n)}^2$
 - ✓ robustness with respect to the final time T, no link $h \tau$
 - X efficiency local in time but global in space
- Makridakis and Nochetto (2006): Radau reconstruction
- Ern and Vohralík (2010): unified framework for different spatial discretizations

Outline

- Introduction
- A posteriori estimates, balancing of error components, and adaptivity
 - Mesh and polynomial degree
 - Linear and nonlinear solvers
 - Error in a quantity of interest

3 The heat equation

- Equivalence between error and dual norm of the residual
- High-order discretization & Radau reconstruction
- Guaranteed upper bound
- Local space-time efficiency and robustness
- Unsteady multi-phase multi-compositional Darcy flow
 - A posteriori estimate
 - Numerical experiments
 - Recovering mass balance
- 5 Conclusions

Weak solution

Find $u \in Y$ with $u(0) = u_0$ such that

$$\int_0^T \langle \partial_t u, v \rangle + (\nabla u, \nabla v) \, \mathrm{d}t = \int_0^T (f, v) \, \mathrm{d}t \qquad \forall v \in \mathsf{X}$$

Theorem (Parabolic inf-sup identity)

For every $\varphi \in \mathbf{Y}$, we have $\|\varphi\|_{\mathbf{Y}}^2 = \left[\sup_{\mathbf{v}\in\mathbf{X}, \, \|\mathbf{v}\|_{\mathbf{X}}=1} \int_0^T \langle \partial_t \varphi, \mathbf{v} \rangle + (\nabla \varphi, \nabla \mathbf{v}) \, \mathrm{d}t\right]^2 + \|\varphi(\mathbf{0})\|^2.$

Residual of $u_{h\tau} \in X$

• $\mathcal{R}(u_{h\tau}) \in X'$, the misfit of $u_{h\tau}$ in the weak formulation:

$$\langle \mathcal{R}(u_{h\tau}), v \rangle := \int_{0}^{T} (f, v) - \langle \partial_{t} u_{h\tau}, v \rangle - (\nabla u_{h\tau}, \nabla v) dt \qquad v \in X$$

dual norm of the residual

$$\|\mathcal{R}(u_{h\tau})\|_{X'} \coloneqq \sup_{v \in X, \|v\|_X=1} \langle \mathcal{R}(u_{h\tau}), v \rangle$$

Y norm error is the dual X norm of the residual + IC error

$$\|u - u_{h\tau}\|_{Y}^{2} = \|\mathcal{R}(u_{h\tau})\|_{X'}^{2} + \|u_{0} - u_{h\tau}(0)\|^{2}$$

Theorem (Parabolic inf-sup identity)

For every $\varphi \in \mathbf{Y}$, we have $\|\varphi\|_{\mathbf{Y}}^{2} = \left[\sup_{\mathbf{v}\in\mathbf{X}, \|\mathbf{v}\|_{\mathbf{X}}=1} \int_{0}^{T} \langle \partial_{t}\varphi, \mathbf{v} \rangle + (\nabla\varphi, \nabla\mathbf{v}) \, \mathrm{d}t\right]^{2} + \|\varphi(\mathbf{0})\|^{2}.$

Residual of $u_{h\tau} \in Y$

• $\mathcal{R}(u_{h\tau}) \in X'$, the misfit of $u_{h\tau}$ in the weak formulation:

$$\langle \mathcal{R}(u_{h\tau}), v \rangle \coloneqq \int_0^T (f, v) - \langle \partial_t u_{h\tau}, v \rangle - (\nabla u_{h\tau}, \nabla v) \, \mathrm{d}t \qquad v \in X$$

dual norm of the residual

$$\|\mathcal{R}(u_{h\tau})\|_{X'}\coloneqq \sup_{v\in X, \, \|v\|_X=1} \langle \mathcal{R}(u_{h\tau}), v
angle$$

Y norm error is the dual X norm of the residual + IC error

$$\|u - u_{h\tau}\|_{Y}^{2} = \|\mathcal{R}(u_{h\tau})\|_{X'}^{2} + \|u_{0} - u_{h\tau}(0)\|^{2}$$

Theorem (Parabolic inf-sup identity)

For every
$$\varphi \in Y$$
, we have
 $\|\varphi\|_Y^2 = \left[\sup_{\boldsymbol{v}\in \boldsymbol{X}, \, \|\boldsymbol{v}\|_{\boldsymbol{X}}=1} \int_0^T \langle \partial_t \varphi, \boldsymbol{v} \rangle + (\nabla \varphi, \nabla \boldsymbol{v}) \, \mathrm{d}t \right]^2 + \|\varphi(0)\|^2.$

Residual of $u_{h\tau} \in Y$

• $\mathcal{R}(u_{h\tau}) \in X'$, the misfit of $u_{h\tau}$ in the weak formulation:

$$\langle \mathcal{R}(u_{h\tau}), v \rangle \coloneqq \int_0^T (f, v) - \langle \partial_t u_{h\tau}, v \rangle - (\nabla u_{h\tau}, \nabla v) \, \mathrm{d}t \qquad v \in X$$

dual norm of the residual

$$\|\mathcal{R}(u_{h\tau})\|_{X'} \coloneqq \sup_{\mathbf{v}\in X, \, \|\mathbf{v}\|_X=1} \langle \mathcal{R}(u_{h\tau}), \mathbf{v} \rangle$$

Y norm error is the dual X norm of the residual + IC error

$$\|u - u_{h\tau}\|_{Y}^{2} = \|\mathcal{R}(u_{h\tau})\|_{X'}^{2} + \|u_{0} - u_{h\tau}(0)\|^{2}$$

Proof.

• let $w_* \in X$ be defined by, a.e. in (0, T),

$$\langle \nabla w_*, \nabla v \rangle = \langle \partial_t \varphi, v \rangle \quad \forall v \in H^1_0(\Omega) \Rightarrow \| \nabla w_* \|^2 = \| \partial_t \varphi \|^2_{H^{-1}(\Omega)}$$

Proof.

• let $w_* \in X$ be defined by, a.e. in (0, T),

$$(\nabla w_*, \nabla v) = \langle \partial_t \varphi, v \rangle \quad \forall v \in H^1_0(\Omega) \Rightarrow \|\nabla w_*\|^2 = \|\partial_t \varphi\|^2_{H^{-1}(\Omega)}$$

• using $\int_0^t 2(\partial_t \varphi, \varphi) dt = ||\varphi(T)||^2 - ||\varphi(0)||^2$ gives

$$\begin{bmatrix} \sup_{v \in X, \|v\|_{X}=1} \int_{0}^{T} dt \end{bmatrix}^{2}$$

= $\|w_{*} + \varphi\|_{X}^{2} = \int_{0}^{T} \|\nabla(w_{*} + \varphi)\|^{2} dt$
= $\int_{0}^{T} \|\nabla w_{*}\|^{2} + 2(\nabla w_{*}, \nabla \varphi) + \|\nabla \varphi\|^{2} dt$
= $\int_{0}^{T} \|\partial_{t}\varphi\|_{H^{-1}(\Omega)}^{2} + 2\langle \partial_{t}\varphi, \varphi \rangle + \|\nabla \varphi\|^{2} dt = \|\varphi\|_{Y}^{2}$

Proof.

• let $w_* \in X$ be defined by, a.e. in (0, T),

$$(\nabla w_*, \nabla v) = \langle \partial_t \varphi, v \rangle \quad \forall v \in H^1_0(\Omega) \Rightarrow \|\nabla w_*\|^2 = \|\partial_t \varphi\|^2_{H^{-1}(\Omega)}$$

٩

$$\begin{bmatrix} \sup_{\boldsymbol{\nu}\in\boldsymbol{X}, \|\boldsymbol{\nu}\|_{\boldsymbol{X}}=1} \int_{0}^{T} \langle \partial_{t}\varphi, \boldsymbol{\nu} \rangle + (\nabla\varphi, \nabla\boldsymbol{\nu}) \, \mathrm{d}t \end{bmatrix}^{2}$$

= $\|\boldsymbol{w}_{*} + \varphi\|_{\boldsymbol{X}}^{2} = \int_{0}^{T} \|\nabla(\boldsymbol{w}_{*} + \varphi)\|^{2} \, \mathrm{d}t$
= $\int_{0}^{T} \|\nabla\boldsymbol{w}_{*}\|^{2} + 2(\nabla\boldsymbol{w}_{*}, \nabla\varphi) + \|\nabla\varphi\|^{2} \, \mathrm{d}t = \|\varphi\|_{\boldsymbol{Y}}^{2} - \|\varphi\|_{\boldsymbol{Y}}^{2}$

Proof.

• let $w_* \in X$ be defined by, a.e. in (0, T),

$$(\nabla w_*, \nabla v) = \langle \partial_t \varphi, v \rangle \quad \forall v \in H^1_0(\Omega) \Rightarrow \|\nabla w_*\|^2 = \|\partial_t \varphi\|^2_{H^{-1}(\Omega)}$$

٩

$$\left[\sup_{\boldsymbol{\nu}\in\boldsymbol{X},\,\|\boldsymbol{\nu}\|_{\boldsymbol{X}}=1}\int_{0}^{T} (\nabla(\boldsymbol{w}_{*}+\varphi),\nabla\boldsymbol{\nu})\,\mathrm{d}t\right]^{2}$$

= $\|\boldsymbol{w}_{*}+\varphi\|_{\boldsymbol{X}}^{2} = \int_{0}^{T} \|\nabla(\boldsymbol{w}_{*}+\varphi)\|^{2}\,\mathrm{d}t$
= $\int_{0}^{T} \|\nabla\boldsymbol{w}_{*}\|^{2} + 2(\nabla\boldsymbol{w}_{*},\nabla\varphi) + \|\nabla\varphi\|^{2}\,\mathrm{d}t$
= $\int_{0}^{T} \|\partial\varphi\|_{\dot{H}^{-1}(\Omega)}^{2} + 2(\partial\varphi,\varphi) + \|\nabla\varphi\|^{2}\,\mathrm{d}t = \|\varphi\|_{Y^{-1}}^{2}$

Proof.

• let $w_* \in X$ be defined by, a.e. in (0, T),

$$(\nabla w_*, \nabla v) = \langle \partial_t \varphi, v \rangle \quad \forall v \in H^1_0(\Omega) \Rightarrow \|\nabla w_*\|^2 = \|\partial_t \varphi\|^2_{H^{-1}(\Omega)}$$

٩

$$\begin{bmatrix} \sup_{\boldsymbol{\nu}\in\boldsymbol{X},\,\|\boldsymbol{\nu}\|_{\boldsymbol{X}}=1} \int_{0}^{T} (\nabla(\boldsymbol{w}_{*}+\varphi),\nabla\boldsymbol{\nu}) \,\mathrm{d}t \end{bmatrix}^{2}$$

= $\|\boldsymbol{w}_{*}+\varphi\|_{\boldsymbol{X}}^{2} = \int_{0}^{T} \|\nabla(\boldsymbol{w}_{*}+\varphi)\|^{2} \,\mathrm{d}t$
= $\int_{0}^{T} \|\nabla\boldsymbol{w}_{*}\|^{2} + 2(\nabla\boldsymbol{w}_{*},\nabla\varphi) + \|\nabla\varphi\|^{2} \,\mathrm{d}t$
= $\int_{0}^{T} \|\partial_{t}\varphi\|_{H^{-1}(\Omega)}^{2} + 2\langle\partial_{t}\varphi,\varphi\rangle + \|\nabla\varphi\|^{2} \,\mathrm{d}t = \|\varphi\|_{Y}^{2} - \|\varphi\|$

Proof.

• let $w_* \in X$ be defined by, a.e. in (0, T),

$$(\nabla w_*, \nabla v) = \langle \partial_t \varphi, v \rangle \quad \forall v \in H^1_0(\Omega) \Rightarrow \|\nabla w_*\|^2 = \|\partial_t \varphi\|^2_{H^{-1}(\Omega)}$$

• using $\int_0^T 2\langle \partial_t \varphi, \varphi \rangle dt = \|\varphi(T)\|^2 - \|\varphi(0)\|^2$ gives

$$\begin{bmatrix} \sup_{\boldsymbol{v}\in\boldsymbol{X},\,\|\boldsymbol{v}\|_{\boldsymbol{X}}=1} \int_{0}^{T} (\nabla(\boldsymbol{w}_{*}+\varphi),\nabla\boldsymbol{v}) \,\mathrm{d}t \end{bmatrix}^{2}$$

= $\|\boldsymbol{w}_{*}+\varphi\|_{\boldsymbol{X}}^{2} = \int_{0}^{T} \|\nabla(\boldsymbol{w}_{*}+\varphi)\|^{2} \,\mathrm{d}t$
= $\int_{0}^{T} \|\nabla\boldsymbol{w}_{*}\|^{2} + 2(\nabla\boldsymbol{w}_{*},\nabla\varphi) + \|\nabla\varphi\|^{2} \,\mathrm{d}t$
= $\int_{0}^{T} \|\partial_{t}\varphi\|_{\mathcal{H}^{-1}(\Omega)}^{2} + 2\langle\partial_{t}\varphi,\varphi\rangle + \|\nabla\varphi\|^{2} \,\mathrm{d}t = \|\varphi\|_{\boldsymbol{Y}}^{2} - \|\varphi(0)\|_{\boldsymbol{Y}}^{2}$

Proof.

• let $w_* \in X$ be defined by, a.e. in (0, T),

$$(\nabla w_*, \nabla v) = \langle \partial_t \varphi, v \rangle \quad \forall v \in H^1_0(\Omega) \Rightarrow \|\nabla w_*\|^2 = \|\partial_t \varphi\|^2_{H^{-1}(\Omega)}$$

• using $\int_0^T 2\langle \partial_t \varphi, \varphi \rangle dt = \|\varphi(T)\|^2 - \|\varphi(0)\|^2$ gives

$$\begin{bmatrix} \sup_{\boldsymbol{v}\in\boldsymbol{X},\,\|\boldsymbol{v}\|_{\boldsymbol{X}}=1} \int_{0}^{T} \langle\partial_{t}\varphi,\boldsymbol{v}\rangle + (\nabla\varphi,\nabla\boldsymbol{v})\,\mathrm{d}t \end{bmatrix}^{2}$$

= $\|\boldsymbol{w}_{*} + \varphi\|_{\boldsymbol{X}}^{2} = \int_{0}^{T} \|\nabla(\boldsymbol{w}_{*} + \varphi)\|^{2}\,\mathrm{d}t$
= $\int_{0}^{T} \|\nabla\boldsymbol{w}_{*}\|^{2} + 2(\nabla\boldsymbol{w}_{*},\nabla\varphi) + \|\nabla\varphi\|^{2}\,\mathrm{d}t$
= $\int_{0}^{T} \|\partial_{t}\varphi\|_{H^{-1}(\Omega)}^{2} + 2\langle\partial_{t}\varphi,\varphi\rangle + \|\nabla\varphi\|^{2}\,\mathrm{d}t = \|\varphi\|_{Y}^{2} - \|\varphi(0)\|^{2}$

Proof.

• let $w_* \in X$ be defined by, a.e. in (0, T),

 $(\nabla w_*, \nabla v) = \langle \partial_t \varphi, v \rangle \quad \forall v \in H^1_0(\Omega) \Rightarrow \|\nabla w_*\|^2 = \|\partial_t \varphi\|^2_{H^{-1}(\Omega)}$

• using $\int_0^T 2\langle \partial_t \varphi, \varphi \rangle dt = \|\varphi(T)\|^2 - \|\varphi(0)\|^2$ gives

$$\begin{bmatrix} \sup_{\boldsymbol{v}\in\boldsymbol{X},\,\|\boldsymbol{v}\|_{\boldsymbol{X}}=1} \int_{0}^{T} \langle\partial_{t}\varphi,\boldsymbol{v}\rangle + (\nabla\varphi,\nabla\boldsymbol{v})\,\mathrm{d}t \end{bmatrix}^{2}$$

= $\|\boldsymbol{w}_{*} + \varphi\|_{\boldsymbol{X}}^{2} = \int_{0}^{T} \|\nabla(\boldsymbol{w}_{*} + \varphi)\|^{2}\,\mathrm{d}t$
= $\int_{0}^{T} \|\nabla\boldsymbol{w}_{*}\|^{2} + 2(\nabla\boldsymbol{w}_{*},\nabla\varphi) + \|\nabla\varphi\|^{2}\,\mathrm{d}t$
= $\int_{0}^{T} \|\partial_{t}\varphi\|_{H^{-1}(\Omega)}^{2} + 2\langle\partial_{t}\varphi,\varphi\rangle + \|\nabla\varphi\|^{2}\,\mathrm{d}t = \|\varphi\|_{\boldsymbol{Y}}^{2} - \|\varphi(0)|_{\boldsymbol{Y}}^{2}$

Proof.

• let $w_* \in X$ be defined by, a.e. in (0, T),

$$(\nabla w_*, \nabla v) = \langle \partial_t \varphi, v \rangle \quad \forall v \in H^1_0(\Omega) \Rightarrow \|\nabla w_*\|^2 = \|\partial_t \varphi\|^2_{H^{-1}(\Omega)}$$

• using $\int_0^T 2\langle \partial_t \varphi, \varphi \rangle dt = \|\varphi(T)\|^2 - \|\varphi(0)\|^2$ gives

$$\begin{bmatrix} \sup_{\boldsymbol{v}\in\boldsymbol{X},\,\|\boldsymbol{v}\|_{\boldsymbol{X}}=1} \int_{0}^{T} \langle \partial_{t}\varphi,\boldsymbol{v}\rangle + (\nabla\varphi,\nabla\boldsymbol{v})\,\mathrm{d}t \end{bmatrix}^{2}$$

= $\|\boldsymbol{w}_{*} + \varphi\|_{\boldsymbol{X}}^{2} = \int_{0}^{T} \|\nabla(\boldsymbol{w}_{*} + \varphi)\|^{2}\,\mathrm{d}t$
= $\int_{0}^{T} \|\nabla\boldsymbol{w}_{*}\|^{2} + 2(\nabla\boldsymbol{w}_{*},\nabla\varphi) + \|\nabla\varphi\|^{2}\,\mathrm{d}t$
= $\int_{0}^{T} \|\partial_{t}\varphi\|_{H^{-1}(\Omega)}^{2} + 2\langle\partial_{t}\varphi,\varphi\rangle + \|\nabla\varphi\|^{2}\,\mathrm{d}t = \|\varphi\|_{Y}^{2} - \|\varphi(0)$

||2

Outline

- Introduction
- 2 A posteriori estimates, balancing of error components, and adaptivity
 - Mesh and polynomial degree
 - Linear and nonlinear solvers
 - Error in a quantity of interest

3 The heat equation

- Equivalence between error and dual norm of the residual
- High-order discretization & Radau reconstruction
- Guaranteed upper bound
- Local space-time efficiency and robustness
- Unsteady multi-phase multi-compositional Darcy flow
 - A posteriori estimate
 - Numerical experiments
 - Recovering mass balance
- 5 Conclusions

 $U_{h\tau}$

Approximate solution and Radau reconstruction

Approximate solution

- ✓ $u_{h\tau}(t), t \in I_n$, is a piecewise continuous polynomial in space in $V_h^n := \{v_h \in H_0^1(\Omega), v_h|_K \in \mathcal{P}_{P_K}(K) \mid \forall K \in \mathcal{T}^n\}$
- X $u_{h\tau}$ is a piecewise discontinuous polynomial in time X $u_{h\tau} \in Y \Rightarrow$ impossible to estimate $||u - u_{h\tau}||_Y$

Radau reconstruction $\checkmark \mathcal{I}u_{h\tau} \in \mathbf{Y}, \mathcal{I}u_{h\tau}|_{I_n} \in \mathcal{Q}_{q_n+1}(I_n; \widetilde{V}_h^n)$ (Makridakis–Nochetto) $\int_{I_n} (\partial_t \mathcal{I}u_{h\tau}, \mathbf{v}_{h\tau}) + (\nabla u_{h\tau}, \nabla v_{h\tau}) dt = \int_{I_n} (f, v_{h\tau}) dt \quad \forall v_{h\tau} \in \mathcal{Q}_{q_n}(I_n; V_h^n)$ \checkmark final norm: $\|u\| = u_{h\tau}\|_{L^{\infty}} = \|u\| = \mathcal{I}u_{h\tau}\|_{L^{\infty}} + \|u_{h\tau}\| = \mathcal{I}u_{h\tau}\|_{L^{\infty}}$

Guaranteed a posteriori error bounds and full adaptivity 22 / 33

Guaranteed a posteriori error bounds and full adaptivity 22 / 33

Guaranteed a posteriori error bounds and full adaptivity 22 / 33

Outline

- Introduction
- 2 A posteriori estimates, balancing of error components, and adaptivity
 - Mesh and polynomial degree
 - Linear and nonlinear solvers
 - Error in a quantity of interest

3 The heat equation

- Equivalence between error and dual norm of the residual
- High-order discretization & Radau reconstruction

• Guaranteed upper bound

- Local space-time efficiency and robustness
- Unsteady multi-phase multi-compositional Darcy flow
 - A posteriori estimate
 - Numerical experiments
 - Recovering mass balance
- 5 Conclusions

Results in the Y norm

Theorem (Reliability in the Y norm)

Suppose no data oscillation for simplicity. Then, for any $\sigma_{h\tau} \in L^2(0, T; \mathbf{H}(\operatorname{div}, \Omega))$ with $\nabla \cdot \sigma_{h\tau} = f - \partial_t \mathcal{I} u_{h\tau}$, there holds

$$\|u-\mathcal{I}u_{h\tau}\|_{Y}^{2} \leq \int_{0}^{T} \|\boldsymbol{\sigma}_{h\tau}+\nabla \mathcal{I}u_{h\tau}\|^{2} \mathrm{d}t.$$

Proof of the upper bound

Proof.

• equivalence error-residual (no error in the initial condition):

$$\|u - \mathcal{I}u_{h\tau}\|_{\mathbf{Y}} = \sup_{v \in X, \, \|v\|_{\mathbf{X}} = 1} \langle \mathcal{R}(\mathcal{I}u_{h\tau}), v \rangle$$

Green theorem

$$(\boldsymbol{\sigma}_{h\tau}, \nabla \mathcal{I} \boldsymbol{u}_{h\tau}) + (\nabla \cdot \boldsymbol{\sigma}_{h\tau}, \mathcal{I} \boldsymbol{u}_{h\tau}) \,\mathrm{d}t = 0$$

residual definition, Cauchy–Schwarz inequality

$$\langle \mathcal{R}(\mathcal{I}u_{h\tau}), v \rangle = \int_{0}^{T} (f, v) - (\partial_{t}\mathcal{I}u_{h\tau}, v) - (\nabla\mathcal{I}u_{h\tau}, \nabla v) dt$$

$$= \int_{0}^{T} (\underbrace{f - \partial_{t}\mathcal{I}u_{h\tau} - \nabla \cdot \sigma_{h\tau}}_{=0}, v) - (\nabla\mathcal{I}u_{h\tau} + \sigma_{h\tau}, \nabla v) dt$$

$$\leq \left\{ \int_{0}^{T} \|\sigma_{h\tau} + \nabla\mathcal{I}u_{h\tau}\|^{2} dt \right\}^{\frac{1}{2}} \|v\|_{X}$$

erc

Proof of the upper bound

Proof.

• equivalence error-residual (no error in the initial condition):

$$\|u - \mathcal{I}u_{h\tau}\|_{\mathbf{Y}} = \sup_{\mathbf{v}\in X, \|\mathbf{v}\|_{\mathbf{X}}=1} \langle \mathcal{R}(\mathcal{I}u_{h\tau}), \mathbf{v} \rangle$$

Green theorem

$$\int_{0}^{T} (\boldsymbol{\sigma}_{h\tau}, \nabla \mathcal{I} \boldsymbol{u}_{h\tau}) + (\nabla \cdot \boldsymbol{\sigma}_{h\tau}, \mathcal{I} \boldsymbol{u}_{h\tau}) \, \mathrm{d}t = 0$$

• residual definition, Cauchy–Schwarz inequality:

$$\langle \mathcal{R}(\mathcal{I}u_{h\tau}), v \rangle = \int_{0}^{T} (f, v) - (\partial_{t}\mathcal{I}u_{h\tau}, v) - (\nabla\mathcal{I}u_{h\tau}, \nabla v) dt$$

$$= \int_{0}^{T} (\underbrace{f - \partial_{t}\mathcal{I}u_{h\tau} - \nabla \cdot \sigma_{h\tau}}_{=0}, v) - (\nabla\mathcal{I}u_{h\tau} + \sigma_{h\tau}, \nabla v) dt$$

$$\leq \left\{ \int_{0}^{T} \|\sigma_{h\tau} + \nabla\mathcal{I}u_{h\tau}\|^{2} dt \right\}^{\frac{1}{2}} \|v\|_{X}$$

erc

Proof of the upper bound

Proof.

• equivalence error-residual (no error in the initial condition):

$$\|u - \mathcal{I}u_{h\tau}\|_{\mathbf{Y}} = \sup_{\mathbf{v}\in X, \|\mathbf{v}\|_{\mathbf{X}}=1} \langle \mathcal{R}(\mathcal{I}u_{h\tau}), \mathbf{v} \rangle$$

Green theorem

$$\int_0^T (\boldsymbol{\sigma}_{h\tau}, \nabla \mathcal{I} \boldsymbol{u}_{h\tau}) + (\nabla \cdot \boldsymbol{\sigma}_{h\tau}, \mathcal{I} \boldsymbol{u}_{h\tau}) \, \mathrm{d} t = 0$$

• residual definition, Cauchy–Schwarz inequality:

$$\langle \mathcal{R}(\mathcal{I}u_{h\tau}), \mathbf{v} \rangle = \int_{0}^{T} (f, \mathbf{v}) - (\partial_{t}\mathcal{I}u_{h\tau}, \mathbf{v}) - (\nabla\mathcal{I}u_{h\tau}, \nabla\mathbf{v}) dt = \int_{0}^{T} (\underbrace{f - \partial_{t}\mathcal{I}u_{h\tau} - \nabla\cdot\boldsymbol{\sigma}_{h\tau}}_{=0}, \mathbf{v}) - (\nabla\mathcal{I}u_{h\tau} + \boldsymbol{\sigma}_{h\tau}, \nabla\mathbf{v}) dt \leq \left\{ \int_{0}^{T} \|\boldsymbol{\sigma}_{h\tau} + \nabla\mathcal{I}u_{h\tau}\|^{2} dt \right\}^{\frac{1}{2}} \|\mathbf{v}\|_{X}$$

erc

Equilibrated flux reconstruction

Definition (Equilibrated flux reconstruction)

For each time-step interval I_n and for each vertex $\mathbf{a} \in \mathcal{V}^n$, let

$$\sigma_{h\tau}^{\mathbf{a},n} \coloneqq \arg \min_{\substack{\mathbf{v}_h \in \mathbf{V}_{h\tau}^{\mathbf{a},n} \\ \nabla \cdot \mathbf{v}_h = \psi_{\mathbf{a}}(f - \partial_t \mathcal{I} \boldsymbol{u}_{h\tau}) - \nabla \psi_{\mathbf{a}} \cdot \nabla \boldsymbol{u}_{h\tau}} \int_{I_n} \|\mathbf{v}_h + \psi_{\mathbf{a}} \nabla \boldsymbol{u}_{h\tau}\|_{\omega_{\mathbf{a}}}^2 \, \mathrm{d}t.$$

Then set

$$oldsymbol{\sigma}_{h au}\coloneqq \sum_{n=1}^N\sum_{\mathbf{a}\in\mathcal{V}^n} oldsymbol{\sigma}_{h au}^{\mathbf{a},n}$$

Comments

✓ satisfies $\sigma_{h\tau} \in L^2(0, T; \mathbf{H}(\operatorname{div}, \Omega))$ with $\nabla \cdot \sigma_{h\tau} = f - \partial_t \mathcal{I} u_{h\tau}$

• works on the common refinement $\mathcal{T}^{\mathbf{a},n}$ of the patch $\omega_{\mathbf{a}}$

uncouples to q_n elliptic problems posed in $V_h^{a,r}$

Equilibrated flux reconstruction

Definition (Equilibrated flux reconstruction)

For each time-step interval I_n and for each vertex $\mathbf{a} \in \mathcal{V}^n$, let

$$\sigma_{h\tau}^{\mathbf{a},n} \coloneqq \arg \min_{\substack{\mathbf{v}_h \in \mathbf{V}_{h\tau}^{\mathbf{a},n} \\ \nabla \cdot \mathbf{v}_h = \psi_{\mathbf{a}}(f - \partial_t \mathcal{I} \boldsymbol{u}_{h\tau}) - \nabla \psi_{\mathbf{a}} \cdot \nabla \boldsymbol{u}_{h\tau}} \int_{I_n} \|\mathbf{v}_h + \psi_{\mathbf{a}} \nabla \boldsymbol{u}_{h\tau}\|_{\omega_{\mathbf{a}}}^2 \, \mathrm{d}t.$$

$${\pmb\sigma}_{h au}\coloneqq \sum_{n=1}^N\sum_{{m a}\in {\mathcal V}^n}{\pmb\sigma}_{h au}^{{m a},n}.$$

Comments

✓ satisfies $\sigma_{h\tau} \in L^2(0, T; \mathbf{H}(\operatorname{div}, \Omega))$ with $\nabla \cdot \sigma_{h\tau} = f - \partial_t \mathcal{I} u_{h\tau}$

• works on the common refinement $\mathcal{T}^{a,n}$ of the patch ω_a

✓ uncouples to q_n elliptic problems posed in $V_h^{a,n}$

Equilibrated flux reconstruction

Definition (Equilibrated flux reconstruction)

For each time-step interval I_n and for each vertex $\mathbf{a} \in \mathcal{V}^n$, let

$$\boldsymbol{\sigma}_{h\tau}^{\mathbf{a},n} \coloneqq \arg \min_{\substack{\boldsymbol{v}_h \in \boldsymbol{V}_{h\tau}^{\mathbf{a},n} \\ \nabla \cdot \boldsymbol{v}_h = \psi_{\mathbf{a}}(f - \partial_t \mathcal{I} \boldsymbol{u}_{h\tau}) - \nabla \psi_{\mathbf{a}} \cdot \nabla \boldsymbol{u}_{h\tau}} \int_{I_n} \|\boldsymbol{v}_h + \psi_{\mathbf{a}} \nabla \boldsymbol{u}_{h\tau}\|_{\omega_{\mathbf{a}}}^2 \, \mathrm{d}t.$$

$$\sigma_{h au} \coloneqq \sum_{n=1}^N \sum_{\mathbf{a} \in \mathcal{V}^n} \sigma_{h au}^{\mathbf{a},n}.$$

Comments

- ✓ satisfies $\sigma_{h\tau} \in L^2(0, T; \mathbf{H}(\operatorname{div}, \Omega))$ with $\nabla \cdot \sigma_{h\tau} = f \partial_t \mathcal{I} u_{h\tau}$
- works on the common refinement $\widetilde{\mathcal{T}^{a,n}}$ of the patch ω_a
- ✓ uncouples to q_n elliptic problems posed in $V_h^{a,n}$

Guaranteed upper bound

Theorem (Guaranteed upper bound)

In the absence of data oscillation (f and u_0 piecewise polynomial), there holds

$$\|u-u_{h\tau}\|_{\mathcal{E}_Y}^2 \leq \sum_{n=1}^N \sum_{K\in\mathcal{T}^n} \int_{I_n} \|\sigma_{h\tau} + \nabla \mathcal{I} u_{h\tau}\|_K^2 + \|\nabla (u_{h\tau} - \mathcal{I} u_{h\tau})\|_K^2 dt.$$

Outline

- Introduction
- 2 A posteriori estimates, balancing of error components, and adaptivity
 - Mesh and polynomial degree
 - Linear and nonlinear solvers
 - Error in a quantity of interest

3 The heat equation

- Equivalence between error and dual norm of the residual
- High-order discretization & Radau reconstruction
- Guaranteed upper bound
- Local space-time efficiency and robustness
- Unsteady multi-phase multi-compositional Darcy flow
 - A posteriori estimate
 - Numerical experiments
 - Recovering mass balance
- 5 Conclusions

Error & residual Reconstruction Reliability Efficiency and robustness

Local space-time efficiency and robustness

Local error contributions

$$\begin{aligned} |u - u_{h\tau}|_{\mathcal{E}_{Y}^{\mathbf{a},n}}^{2} &= \int_{I_{n}} \|\partial_{t}(u - \mathcal{I}u_{h\tau})\|_{H^{-1}(\omega_{\mathbf{a}})}^{2} + \|\nabla(u - \mathcal{I}u_{h\tau})\|_{\omega_{\mathbf{a}}}^{2} \,\mathrm{d}t \\ &+ \int_{I_{n}} \|\nabla(u_{h\tau} - \mathcal{I}u_{h\tau})\|_{\omega_{\mathbf{a}}}^{2} \,\mathrm{d}t \end{aligned}$$

Theorem (Local space-time efficiency and robustness)

For each time-step interval I_n and for each element $K \in T^n$, there holds, in the absence of data oscillation,

$$\int_{I_n} \|\boldsymbol{\sigma}_{h\tau} + \nabla \mathcal{I} \boldsymbol{u}_{h\tau}\|_K^2 + \|\nabla (\boldsymbol{u}_{h\tau} - \mathcal{I} \boldsymbol{u}_{h\tau})\|_K^2 \mathrm{d} t \leq C_{\mathrm{eff}}^2 \sum_{\mathbf{a} \in \mathcal{V}_K} |\boldsymbol{u} - \boldsymbol{u}_{h\tau}|_{\mathcal{E}_Y^{\mathbf{a},n}}^2.$$

Comments

Iocal in space and time

✓ C_{eff} only depends on shape regularity ⇒ robustness w.r.t the final time T and the polynomial degrees p and q

M. Vohralík

Guaranteed a posteriori error bounds and full adaptivity 27 / 33

Error & residual Reconstruction Reliability Efficiency and robustness

Local space-time efficiency and robustness

Local error contributions

$$\begin{aligned} |u - u_{h\tau}|^{2}_{\mathcal{E}^{\mathbf{a},n}_{Y}} &= \int_{I_{n}} \|\partial_{t}(u - \mathcal{I}u_{h\tau})\|^{2}_{H^{-1}(\omega_{\mathbf{a}})} + \|\nabla(u - \mathcal{I}u_{h\tau})\|^{2}_{\omega_{\mathbf{a}}} \,\mathrm{d}t \\ &+ \int_{I_{n}} \|\nabla(u_{h\tau} - \mathcal{I}u_{h\tau})\|^{2}_{\omega_{\mathbf{a}}} \,\mathrm{d}t \end{aligned}$$

recall

$$\|u - u_{h\tau}\|_{\mathcal{E}_{Y}}^{2} = \int_{0}^{T} \|\partial_{t}(u - \mathcal{I}u_{h\tau})\|_{H^{-1}(\Omega)}^{2} dt + \int_{0}^{T} \|\nabla(u - \mathcal{I}u_{h\tau})\|^{2} dt + \int_{0}^{T} \|\nabla(u_{h\tau} - \mathcal{I}u_{h\tau})\|^{2} dt + \|(u - \mathcal{I}u_{h\tau})(\mathcal{T})\|^{2}$$

Theorem (Local space-time efficiency and robustness)

For each time-step interval I_n and for each element $K \in T^n$, there holds, in the absence of data oscillation,

Error & residual Reconstruction Reliability Efficiency and robustness

Local space-time efficiency and robustness

Local error contributions

$$\begin{aligned} \|u - u_{h\tau}\|_{\mathcal{E}_{Y}^{\mathbf{a},n}}^{2} &= \int_{I_{n}} \|\partial_{t}(u - \mathcal{I}u_{h\tau})\|_{H^{-1}(\omega_{\mathbf{a}})}^{2} + \|\nabla(u - \mathcal{I}u_{h\tau})\|_{\omega_{\mathbf{a}}}^{2} \,\mathrm{d}t \\ &+ \int_{I_{n}} \|\nabla(u_{h\tau} - \mathcal{I}u_{h\tau})\|_{\omega_{\mathbf{a}}}^{2} \,\mathrm{d}t \end{aligned}$$

Theorem (Local space-time efficiency and robustness)

For each time-step interval I_n and for each element $K \in \mathcal{T}^n$, there holds, in the absence of data oscillation,

$$\int_{I_n} \|\boldsymbol{\sigma}_{h\tau} + \nabla \mathcal{I} \boldsymbol{u}_{h\tau}\|_K^2 + \|\nabla (\boldsymbol{u}_{h\tau} - \mathcal{I} \boldsymbol{u}_{h\tau})\|_K^2 \mathrm{d} t \leq C_{\mathrm{eff}}^2 \sum_{\boldsymbol{\mathsf{a}} \in \mathcal{V}_K} |\boldsymbol{u} - \boldsymbol{u}_{h\tau}|_{\mathcal{E}^{\boldsymbol{\mathsf{a}},n}_Y}^2.$$

Comments

Iocal in space and time

✓ C_{eff} only depends on shape regularity ⇒ robustness w.r.t the final time T and the polynomial degrees p and q

Error & residual Reconstruction Reliability Efficiency and robustness

Local space-time efficiency and robustness

Local error contributions

$$\begin{aligned} \|u - u_{h\tau}\|_{\mathcal{E}_{Y}^{\mathbf{a},n}}^{2} &= \int_{I_{n}} \|\partial_{t}(u - \mathcal{I}u_{h\tau})\|_{H^{-1}(\omega_{\mathbf{a}})}^{2} + \|\nabla(u - \mathcal{I}u_{h\tau})\|_{\omega_{\mathbf{a}}}^{2} \,\mathrm{d}t \\ &+ \int_{I_{n}} \|\nabla(u_{h\tau} - \mathcal{I}u_{h\tau})\|_{\omega_{\mathbf{a}}}^{2} \,\mathrm{d}t \end{aligned}$$

Theorem (Local space-time efficiency and robustness)

For each time-step interval I_n and for each element $K \in \mathcal{T}^n$, there holds, in the absence of data oscillation,

$$\int_{I_n} \|\boldsymbol{\sigma}_{h\tau} + \nabla \mathcal{I} \boldsymbol{u}_{h\tau}\|_K^2 + \|\nabla (\boldsymbol{u}_{h\tau} - \mathcal{I} \boldsymbol{u}_{h\tau})\|_K^2 \mathrm{d} t \leq C_{\mathrm{eff}}^2 \sum_{\boldsymbol{\mathsf{a}} \in \mathcal{V}_K} |\boldsymbol{u} - \boldsymbol{u}_{h\tau}|_{\mathcal{E}^{\boldsymbol{\mathsf{a}},n}_Y}^2.$$

Comments

- Iocal in space and time
- ✓ C_{eff} only depends on shape regularity ⇒ robustness w.r.t the final time T and the polynomial degrees p and q

Outline

- Introduction
- 2 A posteriori estimates, balancing of error components, and adaptivity
 - Mesh and polynomial degree
 - Linear and nonlinear solvers
 - Error in a quantity of interest
- 3 The heat equation
 - Equivalence between error and dual norm of the residual
 - High-order discretization & Radau reconstruction
 - Guaranteed upper bound
 - Local space-time efficiency and robustness
- Unsteady multi-phase multi-compositional Darcy flow
 - A posteriori estimate
 - Numerical experiments
 - Recovering mass balance
- Conclusions

Multi-phase multi-compositional flows

Unknowns

- reference pressure P
- phase saturations $\boldsymbol{S} := (\boldsymbol{S}_{p})_{p \in \mathcal{P}}$
- component molar fractions $C_{\rho} := (C_{\rho,c})_{c \in C_{\rho}}$ of phase $\rho \in \mathcal{P}$

Constitutive laws

• phase pressure = reference pressure + capillary pressure

$$P_{p} := P + P_{c_{p}}(\boldsymbol{S})$$

• Darcy's law

$$\mathbf{u}_{p}(P_{p}) := -\underline{\mathbf{K}}(\nabla P_{p} + \rho_{p}g\nabla z)$$

ocomponent fluxes

$$\boldsymbol{\theta}_{\boldsymbol{c}} := \sum_{\boldsymbol{p} \in \mathcal{P}_{\boldsymbol{c}}} \boldsymbol{\theta}_{\boldsymbol{p}, \boldsymbol{c}}, \qquad \boldsymbol{\theta}_{\boldsymbol{p}, \boldsymbol{c}} := \nu_{\boldsymbol{p}} C_{\boldsymbol{p}, \boldsymbol{c}} \mathbf{u}_{\boldsymbol{p}}(P_{\boldsymbol{p}})$$

• amount of moles of component c per unit volume

$$I_{c} = \phi \sum_{p \in \mathcal{P}_{c}} \zeta_{p} S_{p} C_{p,c}$$

Multi-phase multi-compositional flows

Unknowns

- reference pressure P
- phase saturations $\boldsymbol{S} := (\boldsymbol{S}_{p})_{p \in \mathcal{P}}$
- component molar fractions $\boldsymbol{C}_{p} := (\boldsymbol{C}_{p,c})_{c \in \mathcal{C}_{p}}$ of phase $p \in \mathcal{P}$

Constitutive laws

• phase pressure = reference pressure + capillary pressure

$${\sf P}_{
ho}:={\sf P}+{\sf P}_{{
m c}_{
ho}}({old S})$$

Darcy's law

$$\mathbf{u}_{p}(P_{p}) := -\mathbf{\underline{K}} \left(
abla P_{p} +
ho_{p} g
abla z
ight)$$

component fluxes

$$oldsymbol{ heta}_{c} := \sum_{oldsymbol{p}\in\mathcal{P}_{c}}oldsymbol{ heta}_{oldsymbol{p},c}, \qquad oldsymbol{ heta}_{oldsymbol{p},c} :=
u_{oldsymbol{p}}C_{oldsymbol{p},c} oldsymbol{u}_{oldsymbol{p}}(P_{oldsymbol{p}})$$

amount of moles of component c per unit volume

$$l_{c} = \phi \sum_{\boldsymbol{p} \in \mathcal{P}_{c}} \zeta_{\boldsymbol{p}} S_{\boldsymbol{p}} C_{\boldsymbol{p},c}$$

Estimates & adaptivity Heat equation Multi-phase-compositional Darcy C Estimate Numerics Mass balance

Multi-phase multi-compositional flows

Governing PDEs

conservation of mass for components

$$\partial_t l_c + \nabla \cdot \boldsymbol{\theta}_c = \boldsymbol{q}_c \qquad \forall \boldsymbol{c} \in \mathcal{C}$$

• + boundary & initial conditions

Closure algebraic equations

- conservation of pore volume: $\sum_{\rho \in \P} S_{\rho} = 1$
- conservation of the quantity of the matter: $\sum_{c \in C_p} C_{p,c} = 1$ for all $p \in \P$
- thermodynamic equilibrium

Mathematical issues

- coupled system PDE algebraic constraints
- unsteady, nonlinear
- elliptic-degenerate parabolic type
- dominant advection

Estimates & adaptivity Heat equation Multi-phase-compositional Darcy C Estimate Numerics Mass balance

Multi-phase multi-compositional flows

Governing PDEs

conservation of mass for components

$$\partial_t l_c + \nabla \cdot \boldsymbol{\theta}_c = \boldsymbol{q}_c \qquad \forall \boldsymbol{c} \in \mathcal{C}$$

• + boundary & initial conditions

Closure algebraic equations

- conservation of pore volume: $\sum_{p \in \P} S_p = 1$
- conservation of the quantity of the matter: $\sum_{c \in C_p} C_{p,c} = 1$ for all $p \in \P$
- thermodynamic equilibrium

Mathematical issues

- coupled system PDE algebraic constraints
- unsteady, nonlinear
- elliptic-degenerate parabolic type
- dominant advection

Estimates & adaptivity Heat equation Multi-phase-compositional Darcy C Estimate Numerics Mass balance

Multi-phase multi-compositional flows

Governing PDEs

conservation of mass for components

$$\partial_t l_c + \nabla \cdot \boldsymbol{\theta}_c = \boldsymbol{q}_c \qquad \forall \boldsymbol{c} \in \mathcal{C}$$

• + boundary & initial conditions

Closure algebraic equations

- conservation of pore volume: $\sum_{p \in \P} S_p = 1$
- conservation of the quantity of the matter: $\sum_{c \in C_n} C_{p,c} = 1$ for all $p \in \P$
- thermodynamic equilibrium

Mathematical issues

- coupled system PDE algebraic constraints
- unsteady, nonlinear
- elliptic-degenerate parabolic type
- dominant advection

Outline

- Introduction
- 2 A posteriori estimates, balancing of error components, and adaptivity
 - Mesh and polynomial degree
 - Linear and nonlinear solvers
 - Error in a quantity of interest
- 3 The heat equation
 - Equivalence between error and dual norm of the residual
 - High-order discretization & Radau reconstruction
 - Guaranteed upper bound
 - Local space-time efficiency and robustness
- Unsteady multi-phase multi-compositional Darcy flow
 - A posteriori estimate
 - Numerical experiments
 - Recovering mass balance
- 5 Conclusions

Estimate Numerics Mass balance

A posteriori error estimate

Theorem (Multi-phase multi-compositional Darcy flow)

Under Assumption A, there holds

$$\begin{aligned} \text{dual residual norm} \leq \left\{ \sum_{c \in \mathcal{C}} \left(\eta_{\text{sp,c}}^{n,k,i} + \eta_{\text{tm,c}}^{n,k,i} + \eta_{\text{alg,c}}^{n,k,i} + \eta_{\text{rem,c}}^{n,k,i} \right)^2 \right\}^{\frac{1}{2}} \\ \text{with } \eta_{\bullet,c}^{n,k,i} &:= \left\{ \int_{I_n} \sum_{K \in \mathcal{M}^n} \left(\eta_{\bullet,K,c}^{n,k,i} \right)^2 dt \right\}^{\frac{1}{2}}, \ \bullet = \text{sp, tm, lin, alg, rem.} \end{aligned}$$

Comments

- immediate extension of the results of the steady case
- still matrix-vector multiplication on each element
- same element matrices \mathbb{S}_K , \mathbb{M}_K , and \mathbb{A}_K or $\overline{\mathbb{A}}_K$
- input: available normal face fluxes, reference pressure, phase saturations, and component molar fractions
- same physical units of estimators of all error components

Estimate Numerics Mass balance

A posteriori error estimate

Theorem (Multi-phase multi-compositional Darcy flow)

Under Assumption A, there holds

$$\begin{aligned} \text{dual residual norm} &\leq \left\{ \sum_{c \in \mathcal{C}} \left(\eta_{\text{sp,c}}^{n,k,i} + \eta_{\text{tm,c}}^{n,k,i} + \eta_{\text{alg,c}}^{n,k,i} + \eta_{\text{rem,c}}^{n,k,i} \right)^2 \right\}^{\frac{1}{2}} \\ \text{with } \eta_{\bullet,c}^{n,k,i} &:= \left\{ \int_{I_n} \sum_{K \in \mathcal{M}^n} \left(\eta_{\bullet,K,c}^{n,k,i} \right)^2 dt \right\}^{\frac{1}{2}}, \ \bullet = \text{sp, tm, lin, alg, rem.} \end{aligned}$$

Comments

- immediate extension of the results of the steady case
- still matrix-vector multiplication on each element
- same element matrices \mathbb{S}_K , \mathbb{M}_K , and \mathbb{A}_K or \mathbb{A}_K
- input: available normal face fluxes, reference pressure, phase saturations, and component molar fractions
- same physical units of estimators of all error components

Outline

- Introduction
- 2 A posteriori estimates, balancing of error components, and adaptivity
 - Mesh and polynomial degree
 - Linear and nonlinear solvers
 - Error in a quantity of interest
- 3 The heat equation
 - Equivalence between error and dual norm of the residual
 - High-order discretization & Radau reconstruction
 - Guaranteed upper bound
 - Local space-time efficiency and robustness
- Unsteady multi-phase multi-compositional Darcy flow
 - A posteriori estimate
 - Numerical experiments
 - Recovering mass balance
- 5 Conclusions

Estimate Numerics Mass balance

3 phases, 3 components (black-oil) problem: permeability

Guaranteed a posteriori error bounds and full adaptivity 30 / 33

Estimate Numerics Mass balance

3 phases, 3 components (black-oil) problem: gas saturation and a posteriori estimate

M. Vohralík

3 phases, 3 components (black-oil): alg. solver & mesh adaptivity

	Linear solver		AMR		
		time	time		factor
Standard resolution	66386	1023s			
Adaptive resolution	20184	201s	42s	26s	3.8

M. Vohralík, S. Yousef, Computer Methods in Applied Mechanics and Engineering (2020)

M. Vohralík

Guaranteed a posteriori error bounds and full adaptivity 31 / 33

3 phases, 3 components (black-oil): alg. solver & mesh adaptivity

	Linear solver steps	Resolution time	AMR time	Estimators evaluation	Gain factor
Standard resolution	66386	1023s	-	-	-
Adaptive resolution	20184	201s	42s	26s	3.8

M. Vohralík, S. Yousef, Computer Methods in Applied Mechanics and Engineering (2020)

Outline

- Introduction
- 2 A posteriori estimates, balancing of error components, and adaptivity
 - Mesh and polynomial degree
 - Linear and nonlinear solvers
 - Error in a quantity of interest
- 3 The heat equation
 - Equivalence between error and dual norm of the residual
 - High-order discretization & Radau reconstruction
 - Guaranteed upper bound
 - Local space-time efficiency and robustness
- Unsteady multi-phase multi-compositional Darcy flow
 - A posteriori estimate
 - Numerical experiments
 - Recovering mass balance
- 5 Conclusion

Estimate Numerics Mass balance

2 phases: recovering water mass balance

original mass balance misfit (m^2s^{-1})

Estimate Numerics Mass balance

2 phases: recovering oil mass balance

×10⁻¹⁹

2.5

1.5

0.5

Estimate Numerics Mass balance

2 phases: recovering oil mass balance

× 10⁻⁵

1.8

1.6 1.4 1.2

0.8 0.6

0.2

original mass balance misfit (m^2s^{-1})

Setting

- fully implicit discretization
- cell-centered finite volumes on a square mesh
- time step 260 (60 days), 1st Newton linearization, GMRes iteration 195

J. Papež, U. Rüde, M. Vohralík, B. Wohlmuth, HAL Preprint 01662944 (2020)

corrected mass balance misfit (m^2s^{-1})

10-19

2.5

1.5

0.5

Outline

- Introduction
- 2 A posteriori estimates, balancing of error components, and adaptivity
 - Mesh and polynomial degree
 - Linear and nonlinear solvers
 - Error in a quantity of interest
- 3 The heat equation
 - Equivalence between error and dual norm of the residual
 - High-order discretization & Radau reconstruction
 - Guaranteed upper bound
 - Local space-time efficiency and robustness
- Unsteady multi-phase multi-compositional Darcy flow
 - A posteriori estimate
 - Numerical experiments
 - Recovering mass balance

Conclusions

Conclusions

Conclusions

- a posteriori error control
- simple estimates on polygonal/polyhedral meshes
- full adaptivity: linear solver, nonlinear solver, time step, space mesh
- recovering mass balance in any situation

Conclusions

Conclusions

- a posteriori error control
- simple estimates on polygonal/polyhedral meshes
- full adaptivity: linear solver, nonlinear solver, time step, space mesh
- recovering mass balance in any situation
- ERN A., VOHRALIK M., Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput. 35 (2013), A1761–A1791.
- PAPEŽ J., RÜDE U., VOHRALÍK M., WOHLMUTH B., Sharp algebraic and total a posteriori error bounds for h and p finite elements via a multilevel approach. Recovering mass balance in any situation, Comput. Methods Appl. Mech. Engrg. 371 (2020), 113243.
- ERN A., SMEARS I., VOHRALÍK M., Guaranteed, locally space-time efficient, and polynomial-degree robust a posteriori error estimates for high-order discretizations of parabolic problems, SIAM J. Numer. Anal. 55 (2017), 2811–2834.
- VOHRALÍK M., YOUSEF S., A simple a posteriori estimate on general polytopal meshes with applications to complex porous media flows, *Comput. Methods Appl. Mech. Engrg.* **331** (2018), 728–760.

Thank you for your attention!

Conclusions

Conclusions

- a posteriori error control
- simple estimates on polygonal/polyhedral meshes
- full adaptivity: linear solver, nonlinear solver, time step, space mesh
- recovering mass balance in any situation
- ERN A., VOHRALIK M., Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput. 35 (2013), A1761–A1791.
- PAPEŽ J., RÜDE U., VOHRALÍK M., WOHLMUTH B., Sharp algebraic and total a posteriori error bounds for h and p finite elements via a multilevel approach. Recovering mass balance in any situation, Comput. Methods Appl. Mech. Engrg. 371 (2020), 113243.
- ERN A., SMEARS I., VOHRALIK M., Guaranteed, locally space-time efficient, and polynomial-degree robust a posteriori error estimates for high-order discretizations of parabolic problems, *SIAM J. Numer. Anal.* **55** (2017), 2811–2834.
- VOHRALÍK M., YOUSEF S., A simple a posteriori estimate on general polytopal meshes with applications to complex porous media flows, *Comput. Methods Appl. Mech. Engrg.* **331** (2018), 728–760.

Thank you for your attention!

