Stable broken H^1 and H(div) polynomial extensions

Alexandre Ern, Martin Vohralík

Inria Paris

Oberwolfach, September 22, 2016

Outline

- 2 Key ingredients
 - Stable polynomial extensions on a tetrahedron
 - 3D patch enumeration
- Proof sketch (potentials)
- 4 Numerical illustration in 2D a posteriori estimates
- 5 Conclusions and future directions

Outline

- 2 Key ingredients
 - Stable polynomial extensions on a tetrahedron
 - 3D patch enumeration
- Proof sketch (potentials)
- 4 Numerical illustration in 2D a posteriori estimates
- 5 Conclusions and future directions

Literature

Fundamental results on a reference tetrahedron

- Costabel & McIntosh (2010): bounded right inverse of the divergence operator for polynomial volume data
- Demkowicz, Gopalakrishnan, Schöberl (2009, 2012): polynomial extensions in H¹ and H(div) for polynomial boundary data

Stable broken H(div) polynomial extension on a patch

- Braess, Pillwein, & Schöberl (2009), 2D
- volume and boundary data

Stable broken *H*¹ polynomial extensions on a patch

• Ern & V. (2015), 2D, by rotation from the result of Braess, Pillwein, & Schöberl

• only boundary data (divergence-free vectors are and

Literature

Fundamental results on a reference tetrahedron

- Costabel & McIntosh (2010): bounded right inverse of the divergence operator for polynomial volume data
- Demkowicz, Gopalakrishnan, Schöberl (2009, 2012): polynomial extensions in H¹ and H(div) for polynomial boundary data

Stable broken $H(\operatorname{div})$ polynomial extension on a patch

- Braess, Pillwein, & Schöberl (2009), 2D
- volume and boundary data

Stable broken *H*¹ polynomial extensions on a patch

• Ern & V. (2015), 2D, by rotation from the result of Braess, Pillwein, & Schöberl

• only boundary data (divergence-free vectors are cul

Literature

Fundamental results on a reference tetrahedron

- Costabel & McIntosh (2010): bounded right inverse of the divergence operator for polynomial volume data
- Demkowicz, Gopalakrishnan, Schöberl (2009, 2012): polynomial extensions in H¹ and H(div) for polynomial boundary data

Stable broken H(div) polynomial extension on a patch

- Braess, Pillwein, & Schöberl (2009), 2D
- volume and boundary data

Stable broken H^1 polynomial extensions on a patch

- Ern & V. (2015), 2D, by rotation from the result of Braess, Pillwein, & Schöberl
- only boundary data (divergence-free vectors are curls)....

Setting

Patches

- *T_a* ⊂ *T_h*: patch of elements sharing *a* ∈ *V_h*, subdomain ω_a
- $\mathcal{F}_{a} = \mathcal{F}_{a}^{s} \cup \mathcal{F}_{a}^{b}$: faces of the elements in the patch \mathcal{T}_{a} , $a \in \mathcal{V}_{h}^{\circ}$

Piecewise H¹ spaces

$$H^{1}(\mathcal{T}_{\boldsymbol{a}}) := \{ \boldsymbol{v} \in L^{2}(\omega_{\boldsymbol{a}}); \ \boldsymbol{v}|_{K} \in H^{1}(K) \quad \forall K \in \mathcal{T}_{\boldsymbol{a}} \}$$

Piecewise *H*(div) spaces

 $\textit{\textbf{H}}(\mathrm{div},\mathcal{T}_{\textit{\textbf{a}}}) := \{\textit{\textbf{v}} \in \textit{\textbf{L}}^2(\omega_{\textit{\textbf{a}}}); \textit{\textbf{v}}|_{\textit{K}} \in \textit{\textbf{H}}(\mathrm{div},\textit{K}) \mid \forall \textit{K} \in \mathcal{T}_{\textit{\textbf{a}}}\}$

Setting

Patches

- *T_a* ⊂ *T_h*: patch of elements sharing *a* ∈ *V_h*, subdomain ω_a
- $\mathcal{F}_{a} = \mathcal{F}_{a}^{s} \cup \mathcal{F}_{a}^{b}$: faces of the elements in the patch \mathcal{T}_{a} , $a \in \mathcal{V}_{h}^{\circ}$

Piecewise H¹ spaces

$$H^1(\mathcal{T}_{\pmb{a}}) := \{ \pmb{v} \in L^2(\omega_{\pmb{a}}); \ \pmb{v}|_K \in H^1(K) \quad \forall K \in \mathcal{T}_{\pmb{a}} \}$$

Piecewise *H*(div) spaces

 $\boldsymbol{\textit{H}}(\mathrm{div},\mathcal{T}_{\boldsymbol{a}}):=\{\boldsymbol{\textit{v}}\in\boldsymbol{\textit{L}}^{2}(\omega_{\boldsymbol{a}});\;\boldsymbol{\textit{v}}|_{K}\in\boldsymbol{\textit{H}}(\mathrm{div},K)\quad\forall K\in\mathcal{T}_{\boldsymbol{a}}\}$

Setting

Patches

- $\mathcal{T}_{a} \subset \mathcal{T}_{h}$: patch of elements sharing $a \in \mathcal{V}_{h}$, subdomain ω_{a}
- $\mathcal{F}_{a} = \mathcal{F}_{a}^{s} \cup \mathcal{F}_{a}^{b}$: faces of the elements in the patch \mathcal{T}_{a} , $a \in \mathcal{V}_{h}^{\circ}$

Piecewise H^1 spaces

$$H^1(\mathcal{T}_{\boldsymbol{a}}) := \{ \boldsymbol{v} \in L^2(\omega_{\boldsymbol{a}}); \ \boldsymbol{v}|_K \in H^1(K) \quad \forall K \in \mathcal{T}_{\boldsymbol{a}} \}$$

Piecewise *H*(div) spaces

$$\boldsymbol{H}(\mathrm{div},\mathcal{T}_{\boldsymbol{a}}):=\{\boldsymbol{v}\in\boldsymbol{L}^2(\omega_{\boldsymbol{a}});\;\boldsymbol{v}|_{\mathcal{K}}\in\boldsymbol{H}(\mathrm{div},\mathcal{K})\quad\forall\mathcal{K}\in\mathcal{T}_{\boldsymbol{a}}\}$$

Main result: potentials

Theorem (Broken H¹ polynomial extension; Ern & V. (2015) in 2D)

For $p \geq 1$ and $\mathbf{a} \in \mathcal{V}_{h}^{\circ}$, let $\mathbf{r} \in \mathbb{P}_{p}(\mathcal{F}_{\mathbf{a}}^{s})$. Suppose the compatibility

$$r = 0$$
 on $\partial \omega_{a}$,
 $\sum_{F \in \mathcal{F}_{e}} \iota_{F,e} r_{F}|_{e} = 0$ $\forall e \in \mathcal{E}_{a}$.

Then there exists a constant $C_{st} > 0$ only depending on the mesh shape-regularity parameter $\kappa_{T_{b}}$ such that

$$\begin{array}{c|c} \min_{\substack{v_h \in \mathbb{P}_p(\mathcal{T}_a) \\ v_h = 0 \text{ on } \partial \omega_a, \\ \llbracket v_h \rrbracket = r_F \ \forall F \in \mathcal{F}_a^s} \\ \end{array} \| \nabla v_h \|_{\omega_a} \leq C_{\text{st}} \min_{\substack{v \in H^1(\mathcal{T}_a) \\ v = 0 \text{ on } \partial \omega_a, \\ \llbracket v \rrbracket = r_F \ \forall F \in \mathcal{F}_a^s} \\ \llbracket v \rrbracket = r_F \ \forall F \in \mathcal{F}_a^s \\ \end{array} \| \nabla v \|_{\omega_a}.$$
A. Ern. M. Vehralik Stable broken H^1 & H(div) polynomial extension

erc

Main result: fluxes

Theorem (Broken H(div) polynomial extension; Braess, Pillwein, & Schöberl (2009) in 2D)

For $p \ge 1$ and $\mathbf{a} \in \mathcal{V}_h^{\circ}$, let $r \in \mathbb{P}_p(\mathcal{F}_a) \times \mathbb{P}_p(\mathcal{T}_a)$. Suppose the compatibility

$$\sum_{K\in\mathcal{T}_{\boldsymbol{a}}}(r_K,1)_K-\sum_{F\in\mathcal{F}_{\boldsymbol{a}}}(r_F,1)_F=0.$$

Then there exists a constant $C_{st} > 0$ only depending on the shape-regularity parameter κ_{T_h} such that

$$\min_{\substack{\mathbf{v}_h \in \mathbf{RTN}_p(\mathcal{T}_a) \\ \mathbf{v}_h \cdot \mathbf{n}_F = r_F \ \forall F \in \mathcal{F}_a^b \\ [v_h \cdot \mathbf{n}_F] = r_F \ \forall F \in \mathcal{F}_a^s \\ \nabla_{\mathcal{T}} \cdot \mathbf{v}_h|_K = r_K \ \forall K \in \mathcal{T}_a \ (v \cdot n_F)] = r_F \ \forall F \in \mathcal{F}_a^s \\ \nabla_{\mathcal{T}} \cdot \mathbf{v}_h|_K = r_K \ \forall K \in \mathcal{T}_a \ (v \cdot n_F)] = r_F \ \forall F \in \mathcal{F}_a^s \\ \nabla_{\mathcal{T}} \cdot \mathbf{v}_h|_K = r_K \ \forall K \in \mathcal{T}_a \ (v \cdot n_F)] = r_F \ \forall F \in \mathcal{F}_a^s \\ \nabla_{\mathcal{T}} \cdot \mathbf{v}_h|_K = r_K \ \forall K \in \mathcal{T}_a \ (v \cdot n_F)] = r_F \ \forall F \in \mathcal{F}_a^s \ (v \cdot n_F)]$$

Application to piecewise polynomial approximation

Volume liftings

•
$$\tau_h \in \mathbb{P}_p(\mathcal{T}_a)$$
 so that $\tau_h|_F = 0 \ \forall F \in \mathcal{F}_a^b$, and $\llbracket \tau_h \rrbracket_F = r_F \ \forall F \in \mathcal{F}_a^s$

Corollary (Stability of best piecewise polynomial approximation)

There holds

Application to piecewise polynomial approximation

Volume liftings

•
$$\tau_h \in \mathbb{P}_p(\mathcal{T}_a)$$
 so that $\tau_h|_F = 0 \ \forall F \in \mathcal{F}_a^b$, and $\llbracket \tau_h \rrbracket_F = r_F \ \forall F \in \mathcal{F}_a^s$

Corollary (Stability of best piecewise polynomial approximation) *There holds*

$$\min_{\mathbf{v}_h \in \mathbb{P}_{\boldsymbol{\rho}}(\mathcal{T}_{\boldsymbol{a}}) \cap H_0^1(\omega_{\boldsymbol{a}})} \left\| \nabla (\tau_h - \mathbf{v}_h) \right\|_{\omega_{\boldsymbol{a}}} \le C_{\mathrm{st}} \min_{\mathbf{v} \in H_0^1(\omega_{\boldsymbol{a}})} \left\| \nabla (\tau_h - \mathbf{v}) \right\|_{\omega_{\boldsymbol{a}}},$$

Informatics mathematics

Application to piecewise polynomial approximation

Volume liftings

- $\tau_h \in \mathbb{P}_p(\mathcal{T}_a)$ so that $\tau_h|_F = 0 \ \forall F \in \mathcal{F}_a^b$, and $\llbracket \tau_h \rrbracket_F = r_F \ \forall F \in \mathcal{F}_a^s$
- $\tau_h \in \mathbf{RTN}_p(\mathcal{T}_a)$ so that $\tau_h \cdot \mathbf{n}_F = r_F \ \forall F \in \mathcal{F}_a^b$ and $\llbracket \tau_h \cdot \mathbf{n}_F \rrbracket = r_F \ \forall F \in \mathcal{F}_a^s$

Corollary (Stability of best piecewise polynomial approximation)

There holds

$$\min_{\mathbf{v}_h \in \mathbb{P}_{\boldsymbol{\rho}}(\mathcal{T}_{\boldsymbol{a}}) \cap H_0^1(\omega_{\boldsymbol{a}})} \left\| \nabla (\tau_h - \mathbf{v}_h) \right\|_{\omega_{\boldsymbol{a}}} \le C_{\mathrm{st}} \min_{\mathbf{v} \in H_0^1(\omega_{\boldsymbol{a}})} \left\| \nabla (\tau_h - \mathbf{v}) \right\|_{\omega_{\boldsymbol{a}}},$$

Informatics mathematics

Application to piecewise polynomial approximation

Volume liftings

- $\tau_h \in \mathbb{P}_p(\mathcal{T}_a)$ so that $\tau_h|_F = 0 \ \forall F \in \mathcal{F}_a^b$, and $\llbracket \tau_h \rrbracket_F = r_F \ \forall F \in \mathcal{F}_a^s$
- $\tau_h \in \mathbf{RTN}_p(\mathcal{T}_a)$ so that $\tau_h \cdot \mathbf{n}_F = r_F \ \forall F \in \mathcal{F}_a^b$ and $\llbracket \tau_h \cdot \mathbf{n}_F \rrbracket = r_F \ \forall F \in \mathcal{F}_a^s$

Corollary (Stability of best piecewise polynomial approximation)

There holds

$$\begin{split} \min_{\substack{\boldsymbol{v}_h \in \mathbb{P}_{\rho}(\mathcal{T}_{\boldsymbol{a}}) \cap H_0^1(\omega_{\boldsymbol{a}})}} \|\nabla(\tau_h - \boldsymbol{v}_h)\|_{\omega_{\boldsymbol{a}}} &\leq C_{\mathrm{st}} \min_{\substack{\boldsymbol{v} \in H_0^1(\omega_{\boldsymbol{a}})}} \|\nabla(\tau_h - \boldsymbol{v})\|_{\omega_{\boldsymbol{a}}},\\ \min_{\substack{\boldsymbol{v}_h \in \boldsymbol{RTN}_{\rho}(\mathcal{T}_{\boldsymbol{a}}) \cap \boldsymbol{H}_0(\operatorname{div},\omega_{\boldsymbol{a}})}} \|\tau_h + \boldsymbol{v}_h\|_{\omega_{\boldsymbol{a}}} &\leq C_{\mathrm{st}} \min_{\substack{\boldsymbol{v} \in \boldsymbol{H}_0(\operatorname{div},\omega_{\boldsymbol{a}})\\ \nabla \cdot \boldsymbol{v}_h|_{\mathcal{K}} = r_{\mathcal{K}} - \nabla_{\mathcal{T}} \cdot \tau_h|_{\mathcal{K}} \,\,\forall \mathcal{K} \in \mathcal{T}_{\boldsymbol{a}}}} \|\tau_h + \boldsymbol{v}\|_{\omega_{\boldsymbol{a}}}. \end{split}$$

erc

Application to a posteriori error analysis

Laplace model problem For $f \in \mathbb{P}_{p'-1}(\mathcal{T}_h)$, $p' \ge 1$, find $u \in H_0^1(\Omega)$ such that $(\nabla u, \nabla v) = (f, v) \quad \forall v \in H_0^1(\Omega)$

Approximate solution with hat-function orthogonality $u_h \in \mathbb{P}_{p'}(\mathcal{T}_h), u_h \notin \mathcal{H}_0^1(\Omega), -\nabla u_h \notin \mathcal{H}(\operatorname{div}, \Omega)$

$$(\nabla u_h, \nabla \psi_a)_{\omega_a} = (f, \psi_a)_{\omega_a} \qquad \forall a \in \mathcal{V}_h^\circ$$

Potential case (p = p' + 1)

$$r_F := \psi_{\boldsymbol{a}} \llbracket U_h \rrbracket |_F,$$

$$\tau_h := \psi_{\boldsymbol{a}} U_h$$

Flux case (p = p')

 $r_{F} := \psi_{a} \llbracket \nabla u_{h} \cdot \boldsymbol{n}_{F} \rrbracket |_{F},$ $r_{K} := \psi_{a} (f + \Delta u_{h})|_{K},$ $\tau_{h} := \psi_{a} \nabla u_{h}$

Application to a posteriori error analysis

Laplace model problem For $f \in \mathbb{P}_{p'-1}(\mathcal{T}_h)$, $p' \geq 1$, find $u \in H^1_0(\Omega)$ such that $(\nabla u, \nabla v) = (f, v) \quad \forall v \in H_0^1(\Omega)$ Approximate solution with hat-function orthogonality $u_h \in \mathbb{P}_{\rho'}(\mathcal{T}_h), u_h \notin H_0^1(\Omega), -\nabla u_h \notin H(\operatorname{div}, \Omega)$ $(\nabla u_h, \nabla \psi_a)_{\omega_a} = (f, \psi_a)_{\omega_a} \qquad \forall a \in \mathcal{V}_h^\circ$ Flux case (p = p')

 $r_{F} := \psi_{\boldsymbol{a}} [\![\nabla u_{h} \cdot \boldsymbol{n}_{F}]\!]|_{F},$ $r_{K} := \psi_{\boldsymbol{a}} (f + \Delta u_{h})|_{K},$ $\tau_{h} := \psi_{\boldsymbol{a}} \nabla u_{h}$

Stable broken $H^1 \& H(div)$ polynomial extensions 7 / 25

Application to a posteriori error analysis

Laplace model problem

For $f \in \mathbb{P}_{p'-1}(\mathcal{T}_h)$, $p' \ge 1$, find $u \in H_0^1(\Omega)$ such that

$$(\nabla u, \nabla v) = (f, v) \qquad \forall v \in H^1_0(\Omega)$$

Approximate solution with hat-function orthogonality $u_h \in \mathbb{P}_{p'}(\mathcal{T}_h), u_h \notin H_0^1(\Omega), -\nabla u_h \notin H(\operatorname{div}, \Omega)$

$$(\nabla u_h, \nabla \psi_a)_{\omega_a} = (f, \psi_a)_{\omega_a} \qquad \forall a \in \mathcal{V}_h^\circ$$

Potential case (p = p' + 1)

$$r_F := \psi_{\boldsymbol{a}} \llbracket u_h \rrbracket |_F$$

$$\tau_h := \psi_{\boldsymbol{a}} u_h$$

Flux case (p = p')

 $\begin{aligned} r_F &:= \psi_{\boldsymbol{a}} [\![\nabla u_h \cdot \boldsymbol{n}_F]\!]|_F, \\ r_K &:= \psi_{\boldsymbol{a}} (f + \Delta u_h)|_K, \\ \tau_h &:= \psi_{\boldsymbol{a}} \nabla u_h \end{aligned}$

Application to a posteriori error analysis

Laplace model problem

For $f \in \mathbb{P}_{p'-1}(\mathcal{T}_h)$, $p' \ge 1$, find $u \in H_0^1(\Omega)$ such that $(\nabla u, \nabla v) = (f, v) \quad \forall v \in H_0^1(\Omega)$

Approximate solution with hat-function orthogonality $u_h \in \mathbb{P}_{p'}(\mathcal{T}_h), u_h \notin H_0^1(\Omega), -\nabla u_h \notin H(\operatorname{div}, \Omega)$

$$(\nabla u_h, \nabla \psi_{\boldsymbol{a}})_{\omega_{\boldsymbol{a}}} = (f, \psi_{\boldsymbol{a}})_{\omega_{\boldsymbol{a}}} \qquad \forall \boldsymbol{a} \in \mathcal{V}_h^\circ$$

Potential case (p = p' + 1)

$$\begin{aligned} \mathbf{r}_{\mathbf{F}} &:= \psi_{\mathbf{a}} \llbracket \mathbf{U}_{h} \rrbracket |_{\mathbf{F}}, \\ \tau_{h} &:= \psi_{\mathbf{a}} \mathbf{U}_{h} \end{aligned}$$

Flux case (p = p')

$$\begin{aligned} \mathbf{r}_F &:= \psi_{\mathbf{a}} \llbracket \nabla u_h \cdot \mathbf{n}_F \rrbracket |_F, \\ \mathbf{r}_K &:= \psi_{\mathbf{a}} (f + \Delta u_h)|_K, \\ \boldsymbol{\tau}_h &:= \psi_{\mathbf{a}} \nabla u_h \end{aligned}$$

Potential reconstruction

Definition (Potential reconstruction)

For each $\boldsymbol{a} \in \mathcal{V}_h$, let $\boldsymbol{s}_h^{\boldsymbol{a}}$ be given by

$$s_h^{\boldsymbol{a}} := rg\min_{\boldsymbol{v}_h \in \mathbb{P}_{p}(\mathcal{T}_{\boldsymbol{a}}) \cap H_0^1(\omega_{\boldsymbol{a}})} \|
abla(\psi_{\boldsymbol{a}} u_h - v_h) \|_{\omega_{\boldsymbol{a}}}$$

Then set $s_h := \sum_{a \in \mathcal{V}_h} s_h^a \in \mathbb{P}_{\rho}(\mathcal{T}_h) \cap H_0^1(\Omega)$.

Equivalent form Find $s_h^a \in \mathbb{P}_p(\mathcal{T}_a) \cap H_0^1(\omega_a)$ such that

 $(\nabla s_h^{\boldsymbol{a}}, \nabla v_h)_{\omega_{\boldsymbol{a}}} = (\nabla(\psi_{\boldsymbol{a}} u_h), \nabla v_h)_{\omega_{\boldsymbol{a}}} \qquad \forall v_h \in \mathbb{P}_p(\mathcal{T}_{\boldsymbol{a}}) \cap H_0^1(\omega_{\boldsymbol{a}}).$

Potential reconstruction

Definition (Potential reconstruction)

For each $\boldsymbol{a} \in \mathcal{V}_h$, let $\boldsymbol{s}_h^{\boldsymbol{a}}$ be given by

$$s_h^{\boldsymbol{a}} := rg\min_{\boldsymbol{v}_h \in \mathbb{P}_{p}(\mathcal{T}_{\boldsymbol{a}}) \cap H_0^1(\omega_{\boldsymbol{a}})} \left\|
abla(\psi_{\boldsymbol{a}} u_h - v_h)
ight\|_{\omega_{\boldsymbol{a}}}.$$

Then set $s_h := \sum_{a \in \mathcal{V}_h} s_h^a \in \mathbb{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega)$.

Equivalent form Find $s_h^a \in \mathbb{P}_p(\mathcal{T}_a) \cap H_0^1(\omega_a)$ such that

$$(\nabla s_h^{\boldsymbol{a}}, \nabla v_h)_{\omega_{\boldsymbol{a}}} = (\nabla(\psi_{\boldsymbol{a}} u_h), \nabla v_h)_{\omega_{\boldsymbol{a}}} \qquad \forall v_h \in \mathbb{P}_p(\mathcal{T}_{\boldsymbol{a}}) \cap H^1_0(\omega_{\boldsymbol{a}}).$$

Flux reconstruction

Definition (Flux reconstruction)

For each $\boldsymbol{a} \in \mathcal{V}_h$, let $\boldsymbol{\sigma}_h^{\boldsymbol{a}}$ be given by

$$\sigma_h^{\boldsymbol{a}} := \arg \min_{\substack{\boldsymbol{v}_h \in \boldsymbol{RTN}_{\boldsymbol{p}}(\mathcal{T}_{\boldsymbol{a}}) \cap \boldsymbol{H}_0(\operatorname{div}, \omega_{\boldsymbol{a}}) \\ \nabla \cdot \boldsymbol{v}_h = (\psi_{\boldsymbol{a}}f - \nabla \psi_{\boldsymbol{a}} \cdot \nabla u_h)|_K \; \forall K \in \mathcal{T}_{\boldsymbol{a}}} \|\psi_{\boldsymbol{a}} \nabla u_h + \boldsymbol{v}_h\|_{\omega_{\boldsymbol{a}}}.$$

Then set $\sigma_h := \sum_{\boldsymbol{a} \in \mathcal{V}_h} \sigma_h^{\boldsymbol{a}} \in \boldsymbol{RTN}_{\rho}(\mathcal{T}_h) \cap \boldsymbol{H}(\operatorname{div}, \Omega).$

Equivalent form Find $\sigma_h^a \in V_h^a := RTN_p(\mathcal{T}_a) \cap H_0(\operatorname{div}, \omega_a)$ and $r_h^a \in Q_h^a := \mathbb{P}_p(\mathcal{T}_a)$ with mean value zero such that

$$\begin{aligned} (\boldsymbol{\sigma}_{h}^{\boldsymbol{a}}, \boldsymbol{v}_{h})_{\omega_{\boldsymbol{a}}} - (r_{h}^{\boldsymbol{a}}, \nabla \cdot \boldsymbol{v}_{h})_{\omega_{\boldsymbol{a}}} &= -(\psi_{\boldsymbol{a}} \nabla u_{h}, \boldsymbol{v}_{h})_{\omega_{\boldsymbol{a}}} & \forall \boldsymbol{v}_{h} \in \boldsymbol{V}_{h}^{\boldsymbol{a}}, \\ (\nabla \cdot \boldsymbol{\sigma}_{h}^{\boldsymbol{a}}, q_{h})_{\omega_{\boldsymbol{a}}} &= (\psi_{\boldsymbol{a}} f - \nabla \psi_{\boldsymbol{a}} \cdot \nabla u_{h}, q_{h})_{\omega_{\boldsymbol{a}}} & \forall q_{h} \in \boldsymbol{Q}_{h}^{\boldsymbol{a}}. \end{aligned}$$

Flux reconstruction

Definition (Flux reconstruction)

For each $\boldsymbol{a} \in \mathcal{V}_h$, let $\sigma_h^{\boldsymbol{a}}$ be given by

$$\sigma_h^{\boldsymbol{a}} := \arg \min_{\substack{\boldsymbol{v}_h \in \boldsymbol{RTN}_{\boldsymbol{\rho}}(\mathcal{T}_{\boldsymbol{a}}) \cap \boldsymbol{H}_0(\operatorname{div}, \omega_{\boldsymbol{a}}) \\ \nabla \cdot \boldsymbol{v}_h = (\psi_{\boldsymbol{a}}f - \nabla \psi_{\boldsymbol{a}} \cdot \nabla u_h)|_K \ \forall K \in \mathcal{T}_{\boldsymbol{a}}} \|\psi_{\boldsymbol{a}} \nabla u_h + \boldsymbol{v}_h\|_{\omega_{\boldsymbol{a}}}.$$

Then set $\sigma_h := \sum_{\boldsymbol{a} \in \mathcal{V}_h} \sigma_h^{\boldsymbol{a}} \in \boldsymbol{RTN}_{\rho}(\mathcal{T}_h) \cap \boldsymbol{H}(\operatorname{div}, \Omega).$

Equivalent form

Find $\sigma_h^a \in V_h^a := RTN_p(\mathcal{T}_a) \cap H_0(\operatorname{div}, \omega_a)$ and $r_h^a \in Q_h^a := \mathbb{P}_p(\mathcal{T}_a)$ with mean value zero such that

$$\begin{aligned} (\boldsymbol{\sigma}_{h}^{\boldsymbol{a}}, \boldsymbol{v}_{h})_{\omega_{\boldsymbol{a}}} - (r_{h}^{\boldsymbol{a}}, \nabla \cdot \boldsymbol{v}_{h})_{\omega_{\boldsymbol{a}}} &= -(\psi_{\boldsymbol{a}} \nabla u_{h}, \boldsymbol{v}_{h})_{\omega_{\boldsymbol{a}}} & \forall \boldsymbol{v}_{h} \in \boldsymbol{V}_{h}^{\boldsymbol{a}}, \\ (\nabla \cdot \boldsymbol{\sigma}_{h}^{\boldsymbol{a}}, q_{h})_{\omega_{\boldsymbol{a}}} &= (\psi_{\boldsymbol{a}} f - \nabla \psi_{\boldsymbol{a}} \cdot \nabla u_{h}, q_{h})_{\omega_{\boldsymbol{a}}} & \forall q_{h} \in \boldsymbol{Q}_{h}^{\boldsymbol{a}}. \end{aligned}$$

Guaranteed reliability and *p*-robust efficiency

Guaranteed reliability

$$\|\nabla(u-u_h)\|^2 \leq \sum_{K\in\mathcal{T}_h} \|\nabla u_h + \boldsymbol{\sigma}_h\|_K^2 + \sum_{K\in\mathcal{T}_h} \|\nabla(u_h - \boldsymbol{s}_h)\|_K^2$$

Potential local p-robust efficiency

 $\left\|\nabla(\psi_{\boldsymbol{a}}\boldsymbol{u}_{h}-\boldsymbol{s}_{h}^{\boldsymbol{a}})\right\|_{\omega_{\boldsymbol{a}}} \leq C_{\mathrm{st}}C_{\mathrm{cont,bPF}} \left\|\nabla(\boldsymbol{u}-\boldsymbol{u}_{h})\right\|_{\omega_{\boldsymbol{a}}}$

 $\begin{aligned} & \left\| \psi_{\boldsymbol{a}} \nabla u_{h} + \sigma_{h}^{\boldsymbol{a}} \right\|_{\omega_{\boldsymbol{a}}} \leq C_{\mathrm{st}} C_{\mathrm{cont},\mathrm{PF}} \left\| \nabla (u - u_{h}) \right\|_{\omega_{\boldsymbol{a}}} \end{aligned}$

Applications

- conforming finite elements
- nonconforming finite elements
- discontinuous Galerkin
- mixed finite elements
- . . .

A. Ern, M. Vohralík

Guaranteed reliability and *p*-robust efficiency

Guaranteed reliability

$$\|\nabla(u-u_h)\|^2 \leq \sum_{K\in\mathcal{T}_h} \|\nabla u_h + \boldsymbol{\sigma}_h\|_K^2 + \sum_{K\in\mathcal{T}_h} \|\nabla(u_h - \boldsymbol{s}_h)\|_K^2$$

Potential local p-robust efficiency

$$\left\|
abla(\psi_{\boldsymbol{a}}\boldsymbol{u}_{h} - \boldsymbol{s}_{h}^{\boldsymbol{a}}) \right\|_{\omega_{\boldsymbol{a}}} \leq C_{\mathrm{st}} C_{\mathrm{cont, bPF}} \left\|
abla(\boldsymbol{u} - \boldsymbol{u}_{h}) \right\|_{\omega_{\boldsymbol{a}}}$$

Flux local *p*-robust efficiency $\|\psi_{a} \nabla u_{h} + \sigma_{h}^{a}\|_{\omega_{a}} \leq C_{\text{st}} C_{\text{cont,PF}} \|\nabla(u - u_{h})\|_{\omega_{a}}$

Applications

- conforming finite elements
- nonconforming finite elements
- discontinuous Galerkin
- mixed finite elements

• . .

Guaranteed reliability and *p*-robust efficiency

Guaranteed reliability

$$\|\nabla(u-u_h)\|^2 \leq \sum_{K\in\mathcal{T}_h} \|\nabla u_h + \sigma_h\|_K^2 + \sum_{K\in\mathcal{T}_h} \|\nabla(u_h - s_h)\|_K^2$$

Potential local p-robust efficiency

$$\left\|\nabla(\psi_{\boldsymbol{a}}\boldsymbol{u}_{h}-\boldsymbol{s}_{h}^{\boldsymbol{a}})\right\|_{\omega_{\boldsymbol{a}}} \leq C_{\mathrm{st}}C_{\mathrm{cont,bPF}}\left(\left\|\nabla(\boldsymbol{u}-\boldsymbol{u}_{h})\right\|_{\omega_{\boldsymbol{a}}}+\left\{\sum_{F\in\mathcal{F}_{\boldsymbol{a}}\setminus\mathcal{F}_{\boldsymbol{a}}^{b}}h_{F}^{-1}\left\|\Pi_{F}^{0}\left[\left[\boldsymbol{u}_{h}\right]\right]\right\|_{F}^{2}\right\}^{\frac{1}{2}}\right)$$

Flux local *p*-robust efficiency $\|\psi_{a} \nabla u_{h} + \sigma_{h}^{a}\|_{\omega_{a}} \leq C_{\text{st}} C_{\text{cont,PF}} \|\nabla(u - u_{h})\|_{\omega_{a}}$

Applications

- conforming finite elements
- nonconforming finite elements
- discontinuous Galerkin
- mixed finite elements
- . .

Guaranteed reliability and *p*-robust efficiency

Guaranteed reliability

$$\|\nabla(u-u_h)\|^2 \leq \sum_{K\in\mathcal{T}_h} \|\nabla u_h + \boldsymbol{\sigma}_h\|_K^2 + \sum_{K\in\mathcal{T}_h} \|\nabla(u_h - \boldsymbol{s}_h)\|_K^2$$

Potential local p-robust efficiency

$$\left\|
abla(\psi_{a}u_{h} - s_{h}^{a}) \right\|_{\omega_{a}} \leq C_{\mathrm{st}}C_{\mathrm{cont, bPF}} \left\|
abla(u - u_{h}) \right\|_{\omega_{a}}$$

Flux local *p*-robust efficiency $\|\psi_{a} \nabla u_{h} + \sigma_{h}^{a}\|_{\omega_{a}} \leq C_{\text{st}} C_{\text{cont,PF}} \|\nabla(u - u_{h})\|_{\omega_{a}}$

Applications

- conforming finite elements
- nonconforming finite elements
- discontinuous Galerkin
- mixed finite elements

• . .

Guaranteed reliability and *p*-robust efficiency

Guaranteed reliability

$$\|\nabla(u-u_h)\|^2 \leq \sum_{K\in\mathcal{T}_h} \|\nabla u_h + \boldsymbol{\sigma}_h\|_K^2 + \sum_{K\in\mathcal{T}_h} \|\nabla(u_h - \boldsymbol{s}_h)\|_K^2$$

Potential local p-robust efficiency

$$\left\|
abla(\psi_{a} u_{h} - s_{h}^{a}) \right\|_{\omega_{a}} \leq C_{\mathrm{st}} C_{\mathrm{cont, bPF}} \left\|
abla(u - u_{h}) \right\|_{\omega_{a}}$$

Flux local p-robust efficiency

$$\left\|\psi_{\boldsymbol{a}} \nabla u_{h} + \boldsymbol{\sigma}_{h}^{\boldsymbol{a}}\right\|_{\omega_{\boldsymbol{a}}} \leq C_{\mathrm{st}} C_{\mathrm{cont,PF}} \left\|\nabla (u - u_{h})\right\|_{\omega_{\boldsymbol{a}}}$$

Applications

- conforming finite elements
- nonconforming finite elements
- discontinuous Galerkin
- mixed finite elements

Outline

Main results & applications

2 Key ingredients

- Stable polynomial extensions on a tetrahedron
- 3D patch enumeration

Proof sketch (potentials)

- 4 Numerical illustration in 2D a posteriori estimates
- 5 Conclusions and future directions

Outline

- 2 Key ingredients
 - Stable polynomial extensions on a tetrahedron
 - 3D patch enumeration
- Proof sketch (potentials)
- 4 Numerical illustration in 2D a posteriori estimates
- 5 Conclusions and future directions

Lemma (H^1 polynomial extension on a tetrahedron)

Let $K \in \mathcal{T}_h$, $\mathcal{F}_K^D \subset \mathcal{F}_K$. Let $r \in \mathbb{P}_p(\mathcal{F}_K^D)$ be continuous on \mathcal{F}_K^D . Then for $C = C(\kappa_K) > 0$,

$$\min_{\substack{v_h \in \mathbb{P}_{p}(K) \\ v_h = r_F \text{ on all } F \in \mathcal{F}_{K}^{\mathrm{D}}}} \|\nabla v_h\|_{K} \leq C \min_{\substack{v \in H^1(K) \\ v = r_F \text{ on all } F \in \mathcal{F}_{K}^{\mathrm{D}}}} \|\nabla v\|_{K}$$

Lemma (H^1 polynomial extension on a tetrahedron)

Let $K \in \mathcal{T}_h$, $\mathcal{F}_K^D \subset \mathcal{F}_K$. Let $r \in \mathbb{P}_p(\mathcal{F}_K^D)$ be continuous on \mathcal{F}_K^D . Then for $C = C(\kappa_K) > 0$,

$$\min_{\substack{v_h \in \mathbb{P}_{p}(K) \\ v_h = r_F \text{ on all } F \in \mathcal{F}_{K}^{\mathrm{D}}}} \|\nabla v_h\|_{K} \leq C \min_{\substack{v \in H^{1}(K) \\ v = r_F \text{ on all } F \in \mathcal{F}_{K}^{\mathrm{D}}}} \|\nabla v\|_{K}$$

$$\begin{array}{c} \textbf{Context} \\ -\Delta\zeta_{\mathcal{K}} = 0 & \text{ in } \mathcal{K}, \\ \zeta_{\mathcal{K}} = \textbf{\textit{r}}_{\mathcal{F}} & \text{ on all } \mathcal{F} \in \mathcal{F}_{\mathcal{K}}^{\mathrm{D}}, \\ -\nabla\zeta_{\mathcal{K}} \cdot \textbf{\textit{n}}_{\mathcal{K}} = 0 & \text{ on all } \mathcal{F} \in \mathcal{F}_{\mathcal{K}} \setminus \mathcal{F}_{\mathcal{K}}^{\mathrm{D}}. \end{array}$$

Lemma (H^1 polynomial extension on a tetrahedron)

Let $K \in \mathcal{T}_h$, $\mathcal{F}_K^D \subset \mathcal{F}_K$. Let $r \in \mathbb{P}_p(\mathcal{F}_K^D)$ be continuous on \mathcal{F}_K^D . Then for $C = C(\kappa_K) > 0$,

$$\min_{\substack{v_h \in \mathbb{P}_p(K) \\ v_h = r_F \text{ on all } F \in \mathcal{F}_K^{\mathrm{D}}}} \|\nabla v_h\|_K \leq C \min_{\substack{v \in \mathcal{H}^1(K) \\ v = r_F \text{ on all } F \in \mathcal{F}_K^{\mathrm{D}}}} \|\nabla v\|_K = C \|\nabla \zeta_K\|_K.$$

$$\begin{array}{c} \textbf{Context} \\ -\Delta \zeta_{K} = 0 & \text{ in } K, \\ \zeta_{K} = \textbf{\textit{r}}_{F} & \text{ on all } F \in \mathcal{F}_{K}^{D}, \\ -\nabla \zeta_{K} \cdot \textbf{\textit{n}}_{K} = 0 & \text{ on all } F \in \mathcal{F}_{K} \setminus \mathcal{F}_{K}^{D}. \end{array}$$

Lemma (H^1 polynomial extension on a tetrahedron)

Let
$$K \in \mathcal{T}_h$$
, $\mathcal{F}_K^D \subset \mathcal{F}_K$. Let $r \in \mathbb{P}_p(\mathcal{F}_K^D)$ be continuous on \mathcal{F}_K^D .
Then for $C = C(\kappa_K) > 0$,

$$\left\|\nabla\zeta_{h,K}\right\|_{K} \stackrel{FEs}{=} \min_{\substack{v_{h}\in\mathbb{P}_{p}(K)\\v_{h}=r_{F} \text{ on all } F\in\mathcal{F}_{K}^{D}}} \left\|\nabla v_{h}\right\|_{K} \leq C \min_{\substack{v\in\mathcal{H}^{1}(K)\\v=r_{F} \text{ on all } F\in\mathcal{F}_{K}^{D}}} \left\|\nabla v\right\|_{K} = C \left\|\nabla\zeta_{K}\right\|_{K}.$$

$$\begin{array}{c} \textbf{Context} \\ -\Delta\zeta_{\mathcal{K}} = 0 & \text{ in } \mathcal{K}, \\ \zeta_{\mathcal{K}} = \textbf{\textit{r}}_{\mathcal{F}} & \text{ on all } \mathcal{F} \in \mathcal{F}_{\mathcal{K}}^{\mathrm{D}}, \\ -\nabla\zeta_{\mathcal{K}} \cdot \textbf{\textit{n}}_{\mathcal{K}} = 0 & \text{ on all } \mathcal{F} \in \mathcal{F}_{\mathcal{K}} \setminus \mathcal{F}_{\mathcal{K}}^{\mathrm{D}}. \end{array}$$

Lemma (*H*(div) polynomial extension on a tetrahedron)

$$\min_{\substack{\mathbf{v}_h \in \mathbf{RTN}_{\mathcal{P}}(K) \\ \mathbf{v}_h \cdot \mathbf{n}_K = r_F \ \forall F \in \mathcal{F}_K^N \\ \nabla \cdot \mathbf{v}_h = r_K}} \|\mathbf{v}_h\|_K \leq C \min_{\substack{\mathbf{v} \in \mathbf{H}(\operatorname{div},K) \\ \mathbf{v} \cdot \mathbf{n}_K = r_F \ \forall F \in \mathcal{F}_K^N \\ \nabla \cdot \mathbf{v}_h = r_K}} \|\mathbf{v}\|_K$$

Lemma (*H*(div) polynomial extension on a tetrahedron)

$$\min_{\substack{\boldsymbol{v}_h \in \boldsymbol{\mathsf{PTN}}_p(K) \\ \boldsymbol{v}_h \cdot \boldsymbol{n}_K = r_F \ \forall F \in \mathcal{F}_K^N \\ \nabla \cdot \boldsymbol{v}_h = r_K}} \|\boldsymbol{v}_h\|_K \leq C \min_{\substack{\boldsymbol{v} \in \boldsymbol{H}(\operatorname{div},K) \\ \boldsymbol{v} \cdot \boldsymbol{n}_K = r_F \ \forall F \in \mathcal{F}_K^N \\ \nabla \cdot \boldsymbol{v}_h = r_K}} \|\boldsymbol{v}_h\|_K$$

Lemma (*H*(div) polynomial extension on a tetrahedron)

$$\min_{\substack{\boldsymbol{v}_h \in \boldsymbol{\mathsf{RTN}}_p(K) \\ \boldsymbol{v}_h \cdot \boldsymbol{n}_K = r_F \ \forall F \in \mathcal{F}_K^N \\ \nabla \cdot \boldsymbol{v}_h = r_K}} \| \boldsymbol{v}_h \|_{\mathcal{K}} \leq C \min_{\substack{\boldsymbol{v} \in \boldsymbol{\mathsf{H}}(\operatorname{div}, \mathcal{K}) \\ \boldsymbol{v} \cdot \boldsymbol{n}_K = r_F \ \forall F \in \mathcal{F}_K^N \\ \nabla \cdot \boldsymbol{v}_h = r_K}} \| \boldsymbol{v}_h \|_{\mathcal{K}} = C \| \boldsymbol{\xi}_K \|_{\mathcal{K}}.$$

Lemma (*H*(div) polynomial extension on a tetrahedron)

$$\|\boldsymbol{\xi}_{h,K}\|_{K} \stackrel{MFEs}{=} \min_{\substack{\boldsymbol{v}_{h} \in \boldsymbol{RTN}_{p}(K) \\ \boldsymbol{v}_{h} \cdot \boldsymbol{n}_{K} = r_{F} \forall F \in \mathcal{F}_{K}^{N} \\ \nabla \cdot \boldsymbol{v}_{h} = r_{K} \forall F \in \mathcal{F}_{K}^{N}} \|\boldsymbol{v}_{h}\|_{K} \leq C \min_{\substack{\boldsymbol{v} \in \boldsymbol{H}(\operatorname{div},K) \\ \boldsymbol{v} \cdot \boldsymbol{n}_{K} = r_{F} \forall F \in \mathcal{F}_{K}^{N} \\ \nabla \cdot \boldsymbol{v}_{h} = r_{K} \forall F \in \mathcal{F}_{K}^{N}} \|\boldsymbol{v}\|_{K} = C \|\boldsymbol{\xi}_{K}\|_{K} .$$

Outline

2 Key ingredients

- Stable polynomial extensions on a tetrahedron
- 3D patch enumeration
- Proof sketch (potentials)
- 4 Numerical illustration in 2D a posteriori estimates
- 5 Conclusions and future directions

A graph result for patch enumerations (shellability of polytopes, e.g. Ziegler, Lectures on Polytopes)

Two families of faces

- already visited faces: $\mathcal{F}_i^{\sharp} := \{ F \in \mathcal{F}_a^s, F = \partial K_i \cap \partial K_j, j < i \}$
- yet unvisited faces: $\mathcal{F}_i^{\flat} := \mathcal{F}_a^{\mathsf{s}} \cap \mathcal{F}_K \setminus \mathcal{F}_i^{\sharp}$

•
$$|\mathcal{F}_i^{\flat}| + |\mathcal{F}_i^{\sharp}| = 3, \ \mathcal{F}_1^{\sharp} = \emptyset, \ \text{and} \ \mathcal{F}_{|\mathcal{T}_a|}^{\flat} = \emptyset$$

Lemma (Interior patch enumeration)

There exists an enumeration of the patch \mathcal{T}_{a} so that (i) For all $1 < i < |\mathcal{T}_{a}|, |\mathcal{F}_{i}^{\sharp}| \in \{1, 2\}$. (ii) If $|\mathcal{F}_{i}^{\sharp}| \geq 2$ then $K_{j} \in \mathcal{T}_{F_{i}^{1} \cap F_{i}^{2}} \setminus \{K_{i}\}, \{F_{i}^{1}, F_{i}^{2}\} \subset \mathcal{F}_{i}^{\sharp}$, implies j < i.

erc

A graph result for patch enumerations (shellability of polytopes, e.g. Ziegler, Lectures on Polytopes)

Two families of faces

- already visited faces: $\mathcal{F}_i^{\sharp} := \{ F \in \mathcal{F}_a^s, F = \partial K_i \cap \partial K_j, j < i \}$
- yet unvisited faces: $\mathcal{F}_i^{\flat} := \mathcal{F}_a^{\mathsf{s}} \cap \mathcal{F}_K \setminus \mathcal{F}_i^{\sharp}$

•
$$|\mathcal{F}_i^{\flat}| + |\mathcal{F}_i^{\sharp}| = 3, \ \mathcal{F}_1^{\sharp} = \emptyset, \ \text{and} \ \mathcal{F}_{|\mathcal{T}_a|}^{\flat} = \emptyset$$

Lemma (Interior patch enumeration)

There exists an enumeration of the patch \mathcal{T}_{a} so that (i) For all $1 < i < |\mathcal{T}_{a}|, |\mathcal{F}_{i}^{\sharp}| \in \{1, 2\}$. (ii) If $|\mathcal{F}_{i}^{\sharp}| \ge 2$ then $K_{j} \in \mathcal{T}_{F_{i}^{1} \cap F_{i}^{2}} \setminus \{K_{i}\}, \{F_{i}^{1}, F_{i}^{2}\} \subset \mathcal{F}_{i}^{\sharp}$, implies j < i.

erc

Outline

- 2 Key ingredients
 - Stable polynomial extensions on a tetrahedron
 - 3D patch enumeration
- Proof sketch (potentials)
- 4 Numerical illustration in 2D a posteriori estimates
- 5 Conclusions and future directions

Run through the patch following the enumeration: K_1

Construct $\zeta_h \in \mathbb{P}_p(\mathcal{T}_a)$, $\zeta_h = 0$ on $\partial \omega_a$, $\llbracket \zeta_h \rrbracket = r_F$ for all $F \in \mathcal{F}_a^s$: $\|\nabla \zeta_h\|_{\omega_a} \lesssim \|\nabla v^*\|_{\omega_a} = \min_{\substack{v \in H^1(\mathcal{T}_a) \\ v = 0 \text{ on } \partial \omega_a, \\ \llbracket v \rrbracket = r_F \ \forall F \in \mathcal{F}_a^s}} \|\nabla v\|_{\omega_a}$

spirit of Braess, Pillwein, & Schöberl (2009), but work with strong norms

 $\|\nabla\zeta_{h,K_i}\|_{K_i} \lesssim \|\nabla\zeta_{K_i}\|_{K_i}$

On K_i , $1 \le i < |\mathcal{T}_a|$, consider the weak form of: find ζ_{K_i} s.t.

 $-\Delta \zeta_{K_i} = 0 \qquad \text{in } K_i,$ $\zeta_{K_i} = -r_F + \zeta_{h,K_j}|_F \qquad \text{on all } F = \partial I$ $\zeta_{K_i} = 0 \qquad \text{on } \partial K_i \cap \partial \omega_e$ $\nabla \zeta = \mathbf{r} \qquad 0$

1) i = 1: trivially $0 = \left\| \nabla \zeta_{h, \mathcal{K}_1} \right\|_{\mathcal{K}_1} \le \left\| \nabla v^* \right\|_{\omega_a}$

2) only one (Dirichlet) face in the set \mathcal{F}_{i}^{\sharp}

- prescribed conditions compatible
- *H*¹ polynomial extension on a tetrahedron:

Run through the patch following the enumeration: K_1

Construct $\zeta_h \in \mathbb{P}_p(\mathcal{T}_a)$, $\zeta_h = 0$ on $\partial \omega_a$, $\llbracket \zeta_h \rrbracket = r_F$ for all $F \in \mathcal{F}_a^s$: $\|\nabla \zeta_h\|_{\omega_a} \lesssim \|\nabla v^*\|_{\omega_a} = \min_{\substack{v \in H^1(\mathcal{T}_a) \\ v = 0 \text{ on } \partial \omega_a, \\ \llbracket v \rrbracket = r_F \ \forall F \in \mathcal{F}_a^s}} \|\nabla v\|_{\omega_a}$

spirit of Braess, Pillwein, & Schöberl (2009), but work with strong norms

On K_i , $1 \le i < |T_a|$, consider the weak form of: find ζ_{K_i} s.t.

 $\begin{aligned} -\Delta\zeta_{K_i} &= 0 & \text{in } K_i, \\ \zeta_{K_i} &= -r_F + \zeta_{h,K_j}|_F & \text{on all } F = \partial K_i \cap \partial K_j \in \mathcal{F}_i^{\sharp}, \\ \zeta_{K_i} &= 0 & \text{on } \partial K_i \cap \partial \omega_{\boldsymbol{a}}, \\ -\nabla\zeta_{K_i} \cdot \boldsymbol{n}_K &= 0 & \text{on all } F \in \mathcal{F}_i^{\flat} \end{aligned}$

1) i = 1: trivially $0 = \|\nabla \zeta_{h,K_1}\|_{K_1} \le \|\nabla v^*\|_{\omega_a}$

2) only one (Dirichlet) face in the set \mathcal{F}_{i}^{i}

- prescribed conditions compatible
- *H*¹ polynomial extension on a tetrahedron:

Run through the patch following the enumeration: K_1

Construct $\zeta_h \in \mathbb{P}_p(\mathcal{T}_a)$, $\zeta_h = 0$ on $\partial \omega_a$, $\llbracket \zeta_h \rrbracket = r_F$ for all $F \in \mathcal{F}_a^s$: $\|\nabla \zeta_h\|_{\omega_a} \lesssim \|\nabla v^*\|_{\omega_a} = \min_{\substack{v \in H^1(\mathcal{T}_a) \\ v = 0 \text{ on } \partial \omega_a, \\ \llbracket v \rrbracket = r_F \ \forall F \in \mathcal{F}_a^s}} \|\nabla v\|_{\omega_a}$

spirit of Braess, Pillwein, & Schöberl (2009), but work with strong norms

On K_i , $1 \le i < |T_a|$, consider the weak form of: find ζ_{K_i} s.t.

 $\begin{aligned} -\Delta\zeta_{K_i} &= 0 & \text{in } K_i, \\ \zeta_{K_i} &= -r_F + \zeta_{h,K_j}|_F & \text{on all } F = \partial K_i \cap \partial K_j \in \mathcal{F}_i^{\sharp}, \\ \zeta_{K_i} &= 0 & \text{on } \partial K_i \cap \partial \omega_{\boldsymbol{a}}, \\ -\nabla\zeta_{K_i} \cdot \boldsymbol{n}_K &= 0 & \text{on all } F \in \mathcal{F}_i^{\flat} \end{aligned}$

1) i = 1: trivially $0 = \left\| \nabla \zeta_{h, \mathcal{K}_1} \right\|_{\mathcal{K}_1} \le \left\| \nabla v^* \right\|_{\omega_a}$

2) only one (Dirichlet) face in the set \mathcal{F}_{i}^{\sharp}

• prescribed conditions compatible

• *H*¹ polynomial extension on a tetrahedron:

Stable broken H¹ & H(div) polynomial extensions 14 / 25

 $\|\nabla \zeta_{h,K_i}\|_{K} \lesssim \|\nabla \zeta_{K_i}\|_{K}$ informatics mathematics

Run through the patch following the enumeration: K_1

Construct $\zeta_h \in \mathbb{P}_p(\mathcal{T}_a)$, $\zeta_h = 0$ on $\partial \omega_a$, $\llbracket \zeta_h \rrbracket = r_F$ for all $F \in \mathcal{F}_a^s$: $\|\nabla \zeta_h\|_{\omega_a} \lesssim \|\nabla v^*\|_{\omega_a} = \min_{\substack{v \in H^1(\mathcal{T}_a) \\ v \equiv 0 \text{ on } \partial \omega_a, \\ \llbracket v \rrbracket = r_F \ \forall F \in \mathcal{F}_a^s}} \|\nabla v\|_{\omega_a}$

spirit of Braess, Pillwein, & Schöberl (2009), but work with strong norms

On K_i , $1 \le i < |T_a|$, consider the weak form of: find ζ_{K_i} s.t.

- $\begin{aligned} -\Delta\zeta_{K_i} &= 0 & \text{in } K_i, \\ \zeta_{K_i} &= -r_F + \zeta_{h,K_j}|_F & \text{on all } F = \partial K_i \cap \partial K_j \in \mathcal{F}_i^{\sharp}, \\ \zeta_{K_i} &= 0 & \text{on } \partial K_i \cap \partial \omega_{\boldsymbol{a}}, \\ -\nabla\zeta_{K_i} \cdot \boldsymbol{n}_K &= 0 & \text{on all } F \in \mathcal{F}_i^{\flat} \end{aligned}$
- 1) i = 1: trivially $0 = \left\| \nabla \zeta_{h, \mathcal{K}_1} \right\|_{\mathcal{K}_1} \le \left\| \nabla v^* \right\|_{\omega_a}$

2) only one (Dirichlet) face in the set \mathcal{F}_{i}^{\sharp}

- prescribed conditions compatible
- *H*¹ polynomial extension on a tetrahedron:

Stable broken H¹ & H(div) polynomial extensions 14 / 25

 $\|\nabla \zeta_{h,K_i}\|_{K} \lesssim \|\nabla \zeta_{K_i}\|_{K}$ informatics mathematics

Run through the patch following the enumeration: K_1

Construct $\zeta_h \in \mathbb{P}_p(\mathcal{T}_a)$, $\zeta_h = 0$ on $\partial \omega_a$, $\llbracket \zeta_h \rrbracket = r_F$ for all $F \in \mathcal{F}_a^s$: $\|\nabla \zeta_h\|_{\omega_a} \lesssim \|\nabla v^*\|_{\omega_a} = \min_{\substack{v \in H^1(\mathcal{T}_a) \\ v = 0 \text{ on } \partial \omega_a, \\ \llbracket v \rrbracket = r_F \ \forall F \in \mathcal{F}_a^s}} \|\nabla v\|_{\omega_a}$

spirit of Braess, Pillwein, & Schöberl (2009), but work with strong norms

On K_i , $1 \le i < |T_a|$, consider the weak form of: find ζ_{K_i} s.t.

- $\begin{aligned} -\Delta\zeta_{K_i} &= 0 & \text{in } K_i, \\ \zeta_{K_i} &= -r_F + \zeta_{h,K_j}|_F & \text{on all } F = \partial K_i \cap \partial K_j \in \mathcal{F}_i^{\sharp}, \\ \zeta_{K_i} &= 0 & \text{on } \partial K_i \cap \partial \omega_{\boldsymbol{a}}, \\ -\nabla\zeta_{K_i} \cdot \boldsymbol{n}_K &= 0 & \text{on all } F \in \mathcal{F}_i^{\flat} \end{aligned}$
- 1) i = 1: trivially $0 = \left\| \nabla \zeta_{h, K_1} \right\|_{K_1} \le \left\| \nabla v^* \right\|_{\omega_{a}}$

2) only one (Dirichlet) face in the set \mathcal{F}_{i}^{\sharp}

- prescribed conditions compatible
- H¹ polynomial extension on a tetrahedron:

$$\nabla \zeta_{h,K_i} \|_{K_i} \lesssim \| \nabla \zeta_{K_i} \|_{K_i}$$

Run through the patch following the enumeration: K_i

• $K \in \mathcal{T}_a$ adjacent to K_i over $F \in \mathcal{F}_i^{\sharp}$, affine map $T_{K_j \to K_i}$

$$\begin{aligned} \left\| \nabla \zeta_{\mathcal{K}_{i}} \right\|_{\mathcal{K}_{i}} &\leq \left\| \nabla (\boldsymbol{v}^{*} - (\boldsymbol{v}^{*} - \zeta_{h,\mathcal{K}_{j}}) \circ \boldsymbol{T}_{\mathcal{K}_{j} \to \mathcal{K}_{i}}^{-1}) \right\|_{\mathcal{K}_{i}} \\ &\lesssim \left\| \nabla \boldsymbol{v}^{*} \right\|_{\mathcal{K}_{i}} + \left\| \nabla \boldsymbol{v}^{*} \right\|_{\mathcal{K}_{j}} + \left\| \zeta_{h,\mathcal{K}_{j}} \right\|_{\mathcal{K}_{i}} \lesssim \left\| \nabla \boldsymbol{v}^{*} \right\|_{\omega_{\boldsymbol{a}}} \end{aligned}$$

3) two faces in $\mathcal{F}_i^{\sharp} \Leftrightarrow K_i$ last in rotation around *e* by shellability

- compatibility of the Dirichlet data by assumption
- H^1 extension on a tetrahedron: $\|\nabla \zeta_{h,K_i}\|_{K_i} \lesssim \|\nabla \zeta_{K_i}\|_{K_i}$
- binary coloring: affine maps to satisfy the Dirichlet BCs

$$\tilde{\zeta}_{K_i} := v^* - \frac{1}{2} \sum_{\substack{F \in \mathcal{F}_{\theta} \setminus \mathcal{F}_i^{\sharp} \\ F = \partial K_i \cap \partial K_m}} \left\{ (v^*|_{K_i} - \zeta_{h,K_i}) \circ \mathbf{T}_{K_i \to K_i}^{-1} - (v^*|_{K_m} - \zeta_{h,K_m}) \circ \mathbf{T}_{K_m \to K_i}^{-1} \right\}$$

• stability of $\tilde{\zeta}_{K_i}$:

$$\left\|\nabla\zeta_{K_{i}}\right\|_{K_{i}} \leq \left\|\nabla\widetilde{\zeta}_{K_{i}}\right\|_{K_{i}} \lesssim \sum_{K \in \mathcal{T}_{o}, K \neq K_{i}} \left\{\left\|\nabla v^{*}\right\|_{K} + \left\|\nabla\zeta_{h,K}\right\|_{K}\right\} + \left\|\nabla v^{*}\right\|_{K_{i}} \lesssim \left\|\nabla v^{*}\right\|_{\omega_{a}}$$

Run through the patch following the enumeration: K_i

• $K \in \mathcal{T}_a$ adjacent to K_i over $F \in \mathcal{F}_i^{\sharp}$, affine map $T_{K_j \to K_i}$

$$\begin{split} \left\| \nabla \zeta_{\mathcal{K}_{i}} \right\|_{\mathcal{K}_{i}} &\leq \left\| \nabla (\boldsymbol{v}^{*} - (\boldsymbol{v}^{*} - \zeta_{h,\mathcal{K}_{j}}) \circ \boldsymbol{T}_{\mathcal{K}_{j} \to \mathcal{K}_{i}}^{-1}) \right\|_{\mathcal{K}_{i}} \\ &\lesssim \left\| \nabla \boldsymbol{v}^{*} \right\|_{\mathcal{K}_{i}} + \left\| \nabla \boldsymbol{v}^{*} \right\|_{\mathcal{K}_{j}} + \left\| \zeta_{h,\mathcal{K}_{j}} \right\|_{\mathcal{K}_{i}} \lesssim \left\| \nabla \boldsymbol{v}^{*} \right\|_{\omega_{\boldsymbol{a}}} \end{split}$$

3) two faces in $\mathcal{F}_i^{\sharp} \Leftrightarrow K_i$ last in rotation around *e* by shellability

- compatibility of the Dirichlet data by assumption
- H^1 extension on a tetrahedron: $\|\nabla \zeta_{h,K_i}\|_{K_i} \lesssim \|\nabla \zeta_{K_i}\|_{K_i}$
- binary coloring: affine maps to satisfy the Dirichlet BCs

$$\tilde{\zeta}_{K_i} := \mathbf{v}^* - \frac{1}{2} \sum_{\substack{F \in \mathcal{F}_{\theta} \setminus \mathcal{F}_i^{\sharp} \\ F = \partial K_i \cap \partial K_m}} \left\{ (\mathbf{v}^*|_{K_i} - \zeta_{h,K_i}) \circ \mathbf{T}_{K_i \to K_i}^{-1} - (\mathbf{v}^*|_{K_m} - \zeta_{h,K_m}) \circ \mathbf{T}_{K_m \to K_i}^{-1} \right\}$$

• stability of $\tilde{\zeta}_{K_i}$:

$$\left\|\nabla\zeta_{K_{i}}\right\|_{K_{i}} \leq \left\|\nabla\widetilde{\zeta}_{K_{i}}\right\|_{K_{i}} \lesssim \sum_{K \in \mathcal{T}_{\Theta}, K \neq K_{i}} \left\{\left\|\nabla v^{*}\right\|_{K} + \left\|\nabla\zeta_{h,K}\right\|_{K}\right\} + \left\|\nabla v^{*}\right\|_{K_{i}} \lesssim \left\|\nabla v^{*}\right\|_{\omega_{a}}$$

Run through the patch following the enumeration: K_i

• $K \in \mathcal{T}_a$ adjacent to K_i over $F \in \mathcal{F}_i^{\sharp}$, affine map $T_{K_j \to K_i}$

$$\begin{split} \left\| \nabla \zeta_{\mathcal{K}_{i}} \right\|_{\mathcal{K}_{i}} &\leq \left\| \nabla (\boldsymbol{v}^{*} - (\boldsymbol{v}^{*} - \zeta_{h,\mathcal{K}_{j}}) \circ \boldsymbol{T}_{\mathcal{K}_{j} \to \mathcal{K}_{i}}^{-1}) \right\|_{\mathcal{K}_{i}} \\ &\lesssim \left\| \nabla \boldsymbol{v}^{*} \right\|_{\mathcal{K}_{i}} + \left\| \nabla \boldsymbol{v}^{*} \right\|_{\mathcal{K}_{j}} + \left\| \zeta_{h,\mathcal{K}_{j}} \right\|_{\mathcal{K}_{i}} \lesssim \left\| \nabla \boldsymbol{v}^{*} \right\|_{\omega_{\boldsymbol{a}}} \end{split}$$

3) two faces in $\mathcal{F}_i^{\sharp} \Leftrightarrow K_i$ last in rotation around *e* by shellability

- compatibility of the Dirichlet data by assumption
- H^1 extension on a tetrahedron: $\|\nabla \zeta_{h,K_i}\|_{K_i} \lesssim \|\nabla \zeta_{K_i}\|_{K_i}$
- binary coloring: affine maps to satisfy the Dirichlet BCs

$$\tilde{\zeta}_{K_i} := \mathbf{v}^* - \frac{1}{2} \sum_{\substack{F \in \mathcal{F}_{\theta} \setminus \mathcal{F}_i^{\sharp} \\ F = \partial K_i \cap \partial K_m}} \left\{ (\mathbf{v}^*|_{K_i} - \zeta_{h,K_i}) \circ \mathbf{T}_{K_i \to K_i}^{-1} - (\mathbf{v}^*|_{K_m} - \zeta_{h,K_m}) \circ \mathbf{T}_{K_m \to K_i}^{-1} \right\}$$

• stability of $\tilde{\zeta}_{K_i}$:

$$\left\|\nabla\zeta_{\mathcal{K}_{i}}\right\|_{\mathcal{K}_{i}} \leq \left\|\nabla\tilde{\zeta}_{\mathcal{K}_{i}}\right\|_{\mathcal{K}_{i}} \lesssim \sum_{\mathcal{K}\in\mathcal{T}_{e}, \, \mathcal{K}\neq\mathcal{K}_{i}} \{\left\|\nabla\boldsymbol{v}^{*}\right\|_{\mathcal{K}} + \left\|\nabla\zeta_{h,\mathcal{K}}\right\|_{\mathcal{K}}\} + \left\|\nabla\boldsymbol{v}^{*}\right\|_{\mathcal{K}_{i}} \lesssim \left\|\nabla\boldsymbol{v}^{*}\right\|_{\omega_{a}}$$

Run through the patch following the enumeration: $K_{|\mathcal{T}_a|}$

3) On K_n , $n := |\mathcal{T}_a|$, consider the weak form of: find ζ_{K_n} s.t.

 $\begin{aligned} -\Delta \zeta_{K_n} &= 0 & \text{in } K_n, \\ \zeta_{K_n} &= -r_F + \zeta_{h,K_j}|_F & \text{on all } F &= \partial K_n \cap \partial K_j \in \mathcal{F}_n^{\sharp}, \\ \zeta_{K_n} &= 0 & \text{on } \partial K_n \cap \partial \omega_{\boldsymbol{a}} \end{aligned}$

- three faces in \mathcal{F}_n^{\sharp} : pure Dirichlet problem
- compatibility of the Dirichlet data again by assumption
- H^1 extension on a tetrahedron: $\|\nabla \zeta_{h,K_n}\|_{K_n} \lesssim \|\nabla \zeta_{K_n}\|_{K_n}$
- ternary coloring in a sub-patch: affine maps to construct $\tilde{\zeta}_{K_n}$ satisfying the Dirichlet BCs, thus $\|\nabla \zeta_{K_n}\|_{K_n} \leq \|\nabla \tilde{\zeta}_{K_n}\|_{\kappa}$

• stability of
$$\tilde{\zeta}_{K_n}$$
: $\left\|\nabla \tilde{\zeta}_{K_n}\right\|_{K_n} \lesssim \left\|\nabla v^*\right\|_{\omega_a}$

4) $\zeta_h|_{K_i} := \zeta_{h,K_i}$ for all $1 \le i \le n$ meets all the requirements

Run through the patch following the enumeration: $K_{|\mathcal{T}_a|}$

3) On K_n , $n := |\mathcal{T}_a|$, consider the weak form of: find ζ_{K_n} s.t.

 $\begin{aligned} -\Delta \zeta_{K_n} &= 0 & \text{in } K_n, \\ \zeta_{K_n} &= -r_F + \zeta_{h,K_j}|_F & \text{on all } F &= \partial K_n \cap \partial K_j \in \mathcal{F}_n^{\sharp}, \\ \zeta_{K_n} &= 0 & \text{on } \partial K_n \cap \partial \omega_{\boldsymbol{a}} \end{aligned}$

- three faces in \mathcal{F}_n^{\sharp} : pure Dirichlet problem
- compatibility of the Dirichlet data again by assumption
- H^1 extension on a tetrahedron: $\|\nabla \zeta_{h,K_n}\|_{K_n} \lesssim \|\nabla \zeta_{K_n}\|_{K_n}$
- ternary coloring in a sub-patch: affine maps to construct $\tilde{\zeta}_{K_n}$ satisfying the Dirichlet BCs, thus $\|\nabla \zeta_{K_n}\|_{K_n} \leq \|\nabla \tilde{\zeta}_{K_n}\|_{\kappa}$

• stability of
$$\tilde{\zeta}_{K_n}$$
: $\left\|\nabla \tilde{\zeta}_{K_n}\right\|_{K_n} \lesssim \left\|\nabla v^*\right\|_{\omega_a}$

4) $\zeta_h|_{K_i} := \zeta_{h,K_i}$ for all $1 \le i \le n$ meets all the requirements

Run through the patch following the enumeration: $K_{|\mathcal{T}_a|}$

3) On K_n , $n := |\mathcal{T}_a|$, consider the weak form of: find ζ_{K_n} s.t.

 $\begin{aligned} -\Delta \zeta_{K_n} &= 0 & \text{in } K_n, \\ \zeta_{K_n} &= -r_F + \zeta_{h,K_j}|_F & \text{on all } F &= \partial K_n \cap \partial K_j \in \mathcal{F}_n^{\sharp}, \\ \zeta_{K_n} &= 0 & \text{on } \partial K_n \cap \partial \omega_{\boldsymbol{a}} \end{aligned}$

- three faces in \mathcal{F}_n^{\sharp} : pure Dirichlet problem
- compatibility of the Dirichlet data again by assumption
- H^1 extension on a tetrahedron: $\|\nabla \zeta_{h,K_n}\|_{K_n} \lesssim \|\nabla \zeta_{K_n}\|_{K_n}$
- ternary coloring in a sub-patch: affine maps to construct $\tilde{\zeta}_{K_n}$ satisfying the Dirichlet BCs, thus $\|\nabla \zeta_{K_n}\|_{K_n} \leq \|\nabla \tilde{\zeta}_{K_n}\|_{\kappa}$

• stability of
$$\tilde{\zeta}_{K_n}$$
: $\left\|\nabla \tilde{\zeta}_{K_n}\right\|_{K_n} \lesssim \left\|\nabla v^*\right\|_{\omega_a}$

4) $\zeta_h|_{K_i} := \zeta_{h,K_i}$ for all $1 \le i \le n$ meets all the requirements

Outline

- 2 Key ingredients
 - Stable polynomial extensions on a tetrahedron
 - 3D patch enumeration
- Proof sketch (potentials)
- 4 Numerical illustration in 2D a posteriori estimates
- 6 Conclusions and future directions

Smooth case

Model problem

$$-\Delta u = f \quad \text{in } \Omega :=]0, 1[^2, u = 0 \quad \text{on } \partial \Omega$$

Exact solution

$$u(\boldsymbol{x}) = \sin(2\pi\boldsymbol{x}_1)\sin(2\pi\boldsymbol{x}_2)$$

- symmetric, nonsymmetric, and incomplete interior penalty discontinuous Galerkin method
- unstructured triangular grids
- uniform refinement

Smooth case

Model problem

$$-\Delta u = f \quad \text{in } \Omega :=]0, 1[^2, u = 0 \quad \text{on } \partial \Omega$$

Exact solution

$$u(\boldsymbol{x}) = \sin(2\pi\boldsymbol{x}_1)\sin(2\pi\boldsymbol{x}_2)$$

- symmetric, nonsymmetric, and incomplete interior penalty discontinuous Galerkin method
- unstructured triangular grids
- uniform refinement

Smooth case

Model problem

$$-\Delta u = f \quad \text{in } \Omega :=]0, 1[^2, u = 0 \quad \text{on } \partial \Omega$$

Exact solution

$$u(\boldsymbol{x}) = \sin(2\pi\boldsymbol{x}_1)\sin(2\pi\boldsymbol{x}_2)$$

- symmetric, nonsymmetric, and incomplete interior penalty discontinuous Galerkin method
- unstructured triangular grids
- uniform refinement

Incomplete DG, nested grids

h p	$\ \nabla(u-u_h)\ $	$\ u-u_h\ _{DG}$	$\ \nabla u_h + \sigma_h\ $	$\ \nabla(u_h - s_h)\ $	$\eta_{\rm osc}$	η	$\eta_{\rm DG}$	/ ^{eff}	/eff DG	
$h_0/1$ 1	1.21E+00	1.22E+00	1.24E+00	1.07E-01	5.56E-02	1.30E+00	1.31E+00	1.07	1.07	1
$h_0/2$	6.18E-01	6.22E-01	6.38E-01	5.09E-02	7.02E-03	6.47E-01	6.50E-01	1.05	1.05	1
	(0.97)	(0.97)	(0.96)	(1.07)	(2.99)	(1.01)	(1.01)			1
$h_0/4$	3.12E-01	3.13E-01	3.22E-01	2.43E-02	8.80E-04	3.24E-01	3.25E-01	1.04	1.04	1
	(0.99)	(0.99)	(0.99)	(1.07)	(3.00)	(1.00)	(1.00)			1
$h_0/8$	1.56E-01	1.57E-01	1.61E-01	1.18E-02	1.10E-04	1.62E-01	1.63E-01	1.04	1.04	
	(1.00)	(1.00)	(1.00)	(1.05)	(3.00)	(1.00)	(1.00)			
$h_0/1$ 2	1.50E-01	1.53E-01	1.49E-01	2.76E-02	5.10E-03	1.56E-01	1.59E-01	1.04	1.04	
$h_0/2$	3.85E-02	3.92E-02	3.83E-02	7.99E-03	3.22E-04	3.94E-02	4.01E-02	1.03	1.02	
	(1.96)	(1.96)	(1.96)	(1.79)	(3.98)	(1.98)	(1.98)			
$h_0/4$	9.70E-03	9.88E-03	9.68E-03	2.12E-03	2.02E-05	9.93E-03	1.01E-02	1.02	1.02	1
	(1.99)	(1.99)	(1.98)	(1.92)	(4.00)	(1.99)	(1.99)			1
$h_0/8$	2.43E-03	2.48E-03	2.43E-03	5.42E-04	1.26E-06	2.49E-03	2.54E-03	1.02	1.02	1
	(1.99)	(1.99)	(1.99)	(1.96)	(4.00)	(1.99)	(1.99)			1
$h_0/1$ 3	1.32E-02	1.34E-02	1.29E-02	2.52E-03	3.58E-04	1.35E-02	1.37E-02	1.03	1.03	
$h_0/2$	1.67E-03	1.69E-03	1.65E-03	3.13E-04	1.13E-05	1.70E-03	1.71E-03	1.01	1.01	
	(2.98)	(2.98)	(2.97)	(3.01)	(4.99)	(3.00)	(3.00)			
$h_0/4$	2.11E-04	2.13E-04	2.09E-04	3.83E-05	3.53E-07	2.12E-04	2.15E-04	1.01	1.01	
1 10	(2.99)	(2.99)	(2.99)	(3.03)	(5.00)	(3.00)	(3.00)			
h ₀ /8	2.64E-05	2.67E-05	2.61E-05	4.69E-06	1.10E-08	2.66E-05	2.69E-05	1.01	1.01	
	(3.00)	(3.00)	(3.00)	(3.03)	(5.00)	(3.00)	(3.00)			1
$h_0/1$ 4	9.36E-04	9.54E-04	9.05E-04	2.41E-04	2.12E-05	9.57E-04	9.74E-04	1.02	1.02	
$h_0/2$	5.93E-05	6.05E-05	5.77E-05	1.68E-05	3.36E-07	6.04E-05	6.16E-05	1.02	1.02	
	(3.98)	(3.98)	(3.97)	(3.84)	(5.98)	(3.99)	(3.98)			
n ₀ /4	3.72E-06	3.80E-06	3.63E-06	1.10E-06	5.31E-09	3.80E-06	3.8/E-06	1.02	1.02	
h /0	(3.99)	(3.99)	(3.99)	(3.94)	(5.98)	(3.99)	(3.99)	4 00	4 00	
n ₀ /8	2.33E-07	2.38E-07	2.2/E-0/	7.02E-08	8.30E-11	2.38E-07	2.43E-07	1.02	1.02	
h /4 5	(4.00)	(4.00)	(4.00)	(3.97)	(6.00)	(4.00)	(3.99)	4 00	4 00	
10/1 5	5.41E-05	3.50E-05	3.22E-05	1.38E-05	1.00E-06	3.50E-05	0.00E-05	1.02	1.02	1
10/2	1.70E-06	1.72E-06	1.05E-06	4.39E-07	9.35E-09	1.72E-06	1.74E-06	1.01	1.01	1
h 11	(4.99)	(0.00)	(4.98)	(4.98)	(0.82) 7.67E 11		(0.00)	1 01	1 01	1
10/4	(5.00)	0.09E-00	(4.00)	(4.07)	/.0/E-11	(5.00)	(F 00)	1.01	1.01	1
h /0	1 665 00	1 605 00	1 625 00	(4.97)	(0.93)	1 695 00	1 70E 00	1 01	1 01	1
10/0	(5.00)	(5.00)	(5.00)	4.41E-10 (4.99)	(7 00)	(5.00)	(5.00	1.01	1.01	mathematics
L	(0.00)	(0.00)	(0.00)	(4.99)	(7.00)	(5.00)	(0.00	info	matics	
								UI		1

A. Ern, M. Vohralík

Stable broken $H^1 \& H(div)$ polynomial extensions 18 / 25

Symmetric DG, non-nested grids

h	р	$\ \nabla_{\mathbf{d}}(u-u_h)\ $	$\ u-u_h\ _{\mathrm{DG}}$	$\ \nabla_{\mathbf{d}} u_h + \boldsymbol{\sigma}_h\ $	$\eta_{\rm osc}$	$\ \nabla_{\mathbf{d}}(u_h - s_h)\ $	η	$\eta_{\rm DG}$	l ^{eff}	I ^{eff} _{DG}
h_0	1	1.07E-00	1.09E-00	1.12E-00	5.55E-02	4.16E-01	1.25E-00	1.26E-00	1.17	1.16
$\approx h_0/2$		5.56E-01	5.61E-01	5.71E-01	7.42E-03	1.82E-01	6.07E-01	6.11E-01	1.09	1.09
$\approx h_0/4$		2.92E-01	2.93E-01	2.96E-01	1.04E-03	8.77E-02	3.10E-01	3.11E-01	1.06	1.06
$\approx h_0/8$		1.39E-01	1.39E-01	1.40E-01	1.10E-04	3.85E-02	1.45E-01	1.45E-01	1.04	1.04
h_0	2	1.54E-01	1.55E-01	1.55E-01	5.10E-03	3.05E-02	1.63E-01	1.64E-01	1.06	1.06
$\approx h_0/2$		4.07E-02	4.09E-02	4.13E-02	3.53E-04	7.55E-03	4.23E-02	4.26E-02	1.04	1.04
$\approx h_0/4$		1.10E-02	1.11E-02	1.12E-02	2.51E-05	1.97E-03	1.14E-02	1.15E-02	1.03	1.03
$\approx h_0/8$		2.50E-03	2.52E-03	2.54E-03	1.30E-06	4.21E-04	2.57E-03	2.59E-03	1.03	1.03
h_0	3	1.37E-02	1.37E-02	1.37E-02	3.58E-04	1.74E-03	1.41E-02	1.41E-02	1.03	1.03
$\approx h_0/2$		1.85E-03	1.85E-03	1.85E-03	1.26E-05	2.10E-04	1.88E-03	1.88E-03	1.01	1.01
$\approx h_0/4$		2.60E-04	2.60E-04	2.60E-04	4.73E-07	2.54E-05	2.62E-04	2.62E-04	1.01	1.01
$\approx h_0/8$		2.75E-05	2.75E-05	2.75E-05	1.15E-08	2.55E-06	2.76E-05	2.76E-05	1.01	1.01
h_0	4	9.87E-04	9.87E-04	9.84E-04	2.12E-05	1.11E-04	1.01E-03	1.01E-03	1.02	1.02
$\approx h_0/2$		6.92E-05	6.93E-05	6.92E-05	3.96E-07	7.44E-06	7.00E-05	7.00E-05	1.01	1.01
$\approx h_0/4$		5.04E-06	5.04E-06	5.04E-06	7.58E-09	4.98E-07	5.07E-06	5.07E-06	1.01	1.01
$\approx h_0/8$		2.58E-07	2.59E-07	2.58E-07	8.96E-11	2.47E-08	2.60E-07	2.60E-07	1.01	1.01
h_0	5	5.64E-05	5.64E-05	5.63E-05	1.06E-06	4.50E-06	5.75E-05	5.75E-05	1.02	1.02
$\approx h_0/2$		2.01E-06	2.01E-06	2.01E-06	9.88E-09	1.46E-07	2.03E-06	2.03E-06	1.01	1.01
$\approx h_0/4$		7.74E-08	7.74E-08	7.73E-08	1.01E-10	4.35E-09	7.76E-08	7.76E-08	1.00	1.00
$\approx h_0/8$		1.86E-09	1.86E-09	1.86E-09	1.70E-12	1.00E-10	1.86E-09	1.86E-09	1.00	1.00
h_0	6	2.85E-06	2.85E-06	2.85E-06	4.70E-08	2.18E-07	2.90E-06	2.90E-06	1.02	1.02
$\approx h_0/2$		5.42E-08	5.42E-08	5.42E-08	2.40E-10	4.02E-09	5.46E-08	5.46E-08	1.01	1.01
$\approx h_0/4$		1.07E-09	1.07E-09	1.07E-09	1.03E-11	6.90E-11	1.08E-09	1.08E-09	1.01	1.01

erc

Nonsymmetric DG, non-nested grids

h	р	$\ \nabla_{\mathbf{d}}(u-u_h)\ $	$\ u-u_h\ _{\mathrm{DG}}$	$\ \nabla_{\mathbf{d}} u_h + \boldsymbol{\sigma}_h\ $	$\eta_{\rm osc}$	$\ \nabla_{\mathbf{d}}(u_h - s_h)\ $	η	$\eta_{\rm DG}$	l ^{eff}	/eff DG
h_0	1	1.08E-00	1.09E-00	8.05E-01	5.55E-02	7.98E-01	1.17E-00	1.18E-00	1.09	1.09
$\approx h_0/2$		5.50E-01	5.55E-01	4.18E-01	7.42E-03	3.75E-01	5.66E-01	5.71E-01	1.03	1.03
$\approx h_0/4$		2.84E-01	2.86E-01	2.18E-01	1.04E-03	1.86E-01	2.87E-01	2.89E-01	1.01	1.01
$\approx h_0/8$		1.34E-01	1.35E-01	1.04E-01	1.10E-04	8.64E-02	1.36E-01	1.36E-01	1.01	1.01
h_0	2	1.65E-01	1.72E-01	1.41E-01	5.10E-03	1.71E-01	2.24E-01	2.30E-01	1.36	1.33
$\approx h_0/2$		4.28E-02	4.46E-02	3.67E-02	3.53E-04	4.74E-02	6.01E-02	6.14E-02	1.41	1.38
$\approx h_0/4$		1.14E-02	1.19E-02	9.86E-03	2.51E-05	1.29E-02	1.63E-02	1.66E-02	1.43	1.40
$\approx h_0/8$		2.58E-03	2.70E-03	2.24E-03	1.30E-06	2.99E-03	3.74E-03	3.82E-03	1.45	1.42
h_0	3	1.53E-02	1.54E-02	1.34E-02	3.58E-04	9.19E-03	1.65E-02	1.66E-02	1.08	1.08
$\approx h_0/2$		2.07E-03	2.07E-03	1.79E-03	1.26E-05	1.22E-03	2.18E-03	2.18E-03	1.05	1.05
$\approx h_0/4$		2.99E-04	2.99E-04	2.64E-04	4.73E-07	1.59E-04	3.08E-04	3.09E-04	1.03	1.03
$\approx h_0/8$		3.16E-05	3.17E-05	2.82E-05	1.15E-08	1.60E-05	3.24E-05	3.25E-05	1.02	1.02
h_0	4	1.11E-03	1.12E-03	9.80E-04	2.12E-05	7.21E-04	1.23E-03	1.24E-03	1.11	1.11
$\approx h_0/2$		7.71E-05	7.75E-05	6.89E-05	3.96E-07	5.08E-05	8.59E-05	8.63E-05	1.11	1.11
$\approx h_0/4$		5.66E-06	5.69E-06	5.05E-06	7.58E-09	3.76E-06	6.30E-06	6.33E-06	1.11	1.11
$\approx h_0/8$		2.89E-07	2.91E-07	2.58E-07	8.96E-11	1.96E-07	3.24E-07	3.26E-07	1.12	1.12
h_0	5	6.23E-05	6.24E-05	5.62E-05	1.06E-06	3.23E-05	6.57E-05	6.58E-05	1.05	1.05
$\approx h_0/2$		2.26E-06	2.27E-06	2.04E-06	9.88E-09	1.17E-06	2.36E-06	2.36E-06	1.04	1.04
$\approx h_0/4$		8.86E-08	8.87E-08	8.17E-08	1.01E-10	3.90E-08	9.06E-08	9.06E-08	1.02	1.02
$\approx h_0/8$		2.11E-09	2.12E-09	1.96E-09	1.70E-12	9.02E-10	2.16E-09	2.16E-09	1.02	1.02
h_0	6	3.18E-06	3.18E-06	2.91E-06	4.70E-08	1.66E-06	3.39E-06	3.39E-06	1.07	1.07
$\approx h_0/2$		6.00E-08	6.01E-08	5.57E-08	2.40E-10	3.07E-08	6.38E-08	6.39E-08	1.06	1.06
$\approx h_0/4$		1.20E-09	1.20E-09	1.12E-09	1.03E-11	6.01E-10	1.28E-09	1.28E-09	1.07	1.07

erc

Singular case & hp-adaptivity

Model problem

$$\begin{array}{rcl} -\Delta u &=& 0 & \text{in } \Omega :=]-1, 1 [^2 \backslash [0,1]^2, \\ u &=& u_D & \text{on } \partial \Omega \end{array}$$

Exact solution

$$u(r,\phi)=r^{2/3}\sin(2\phi/3)$$

- incomplete interior penalty discontinuous Galerkin method
- unstructured non-nested triangular grids
- hp-adaptive refinement

Singular case & *hp*-adaptivity

Model problem

$$\begin{array}{rcl} -\Delta u &=& 0 & \text{in } \Omega :=]-1, 1 [^2 \backslash [0,1]^2, \\ u &=& u_{\rm D} & \text{on } \partial \Omega \end{array}$$

Exact solution

$$u(r,\phi)=r^{2/3}\sin(2\phi/3)$$

- incomplete interior penalty discontinuous Galerkin method
- unstructured non-nested triangular grids
- hp-adaptive refinement

Singular case & hp-adaptivity

Model problem

$$\begin{array}{rcl} -\Delta u &=& 0 & \text{in } \Omega :=]-1, 1 [^2 \backslash [0,1]^2, \\ u &=& u_{\rm D} & \text{on } \partial \Omega \end{array}$$

Exact solution

$$u(r,\phi)=r^{2/3}\sin(2\phi/3)$$

- incomplete interior penalty discontinuous Galerkin method
- unstructured non-nested triangular grids
- hp-adaptive refinement

hp-adaptive refinement: exponential convergence

A. Ern, M. Vohralík

hp-refinement grids

Outline

- 2 Key ingredients
 - Stable polynomial extensions on a tetrahedron
 - 3D patch enumeration
- Proof sketch (potentials)
- 4 Numerical illustration in 2D a posteriori estimates
- 5 Conclusions and future directions

Conclusions and future directions

Conclusions

- stability of the best piecewise polynomial approximation
- polynomial-degree-robust local efficiency of a posteriori error estimates
- a framework covering all standard numerical methods (conforming FEs, nonconforming FEs, discontinuous Galerkin, mixed FEs...)

Ongoing generalizations

- transmission problems with sing changing coefficients
- singularly-perturbed reaction-diffusion problems
- Stokes equation
- eigenvalue problems
- heat equation

Conclusions and future directions

Conclusions

- stability of the best piecewise polynomial approximation
- polynomial-degree-robust local efficiency of a posteriori error estimates
- a framework covering all standard numerical methods (conforming FEs, nonconforming FEs, discontinuous Galerkin, mixed FEs...)

Ongoing generalizations

- transmission problems with sing changing coefficients
- singularly-perturbed reaction-diffusion problems
- Stokes equation
- eigenvalue problems
- heat equation

Bibliography

- ERN A., VOHRALÍK M., Stable broken H¹ and H(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions, to be sumbitted, 2016.
- ERN A., VOHRALÍK M., Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, *SIAM J. Numer. Anal.*, **53** (2015), 1058–1081.
- DOLEJŠÍ V., ERN A., VOHRALÍK M., *hp*-adaptation driven by polynomial-degree-robust a posteriori error estimates for elliptic problems, *SIAM J. Sci. Comput.*, accepted for publication, 2016.

Thank you for your attention!

