
HAL Id: hal-03355116
https://hal.inria.fr/hal-03355116v2

Preprint submitted on 17 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semismooth and smoothing Newton methods for
nonlinear systems with complementarity constraints:

adaptivity and inexact resolution
Ibtihel Ben Gharbia, Joëlle Ferzly, Martin Vohralík, Soleiman yousef

To cite this version:
Ibtihel Ben Gharbia, Joëlle Ferzly, Martin Vohralík, Soleiman yousef. Semismooth and smoothing
Newton methods for nonlinear systems with complementarity constraints: adaptivity and inexact
resolution. 2021. �hal-03355116v2�

https://hal.inria.fr/hal-03355116v2
https://hal.archives-ouvertes.fr


Semismooth and smoothing Newton methods for nonlinear systems
with complementarity constraints: adaptivity and inexact resolution∗

Ibtihel Ben Gharbia† Joëlle Ferzly†‡§ Martin Vohralík‡§ Soleiman Yousef†

June 17, 2022

Abstract

We consider nonlinear algebraic systems with complementarity constraints stemming from numerical dis-
cretizations of nonlinear complementarity problems. The particularity is that they are non-differentiable, so
that classical linearization schemes like the Newton method cannot be applied directly. To approximate the
solution of such nonlinear systems, an iterative linearization algorithm like the semismooth Newton-min or an
interior-point algorithm can be used. Alternatively, the non-differentiable nonlinearity can be smoothed, which
allows a direct application of the Newton method. Corresponding linear systems can be solved only approxi-
mately using an iterative linear algebraic solver, leading to inexact approaches. In this work, we design a general
framework to systematically steer these different ingredients. We first derive an a posteriori error estimate given
by the norm of the considered system’s residual. We then, relying on smoothing, design a simple strategy of
tightening the smoothing parameter. We finally distinguish the smoothing, linearization, and algebraic error
components, which enables us to formulate an adaptive algorithm where the linear and nonlinear solvers are
stopped when the corresponding error components do not affect significantly the overall error. Numerical ex-
periments indicate that the proposed algorithm, possibly in combination with the GMRES algebraic solver,
ensures important savings in terms of the number of iterations and execution time. It appears rather promising
in comparison with the other methods, namely since its performance seems remarkably stable over a range of
academic and industrial problems.

Key words: nonlinear complementarity constraints, semismooth smoothing Newton methods, interior-point
method, a posteriori error estimate, adaptivity, stopping criteria

1 Introduction1

Consider a system of algebraic equations with complementarity constraints written in the following form: Find a2

vector X ∈ Rn such that3

EX = F , (1.1a)4

K(X) ≥ 0, G(X) ≥ 0, K(X) ·G(X) = 0, (1.1b)5
6

where for two integers n > 1 and 0 < m < n, E ∈ Rn−m,n is a matrix, K : Rn → Rm and G : Rn → Rm are (linear)7

operators, and F ∈ Rn−m is a given vector. The first line (1.1a) typically represents the discretization of a linear8

partial differential equation. The second line (1.1b) then represents the complementarity constraints. It states that9

the vectors K(X) and G(X) have nonnegative components and are orthogonal.10

Complementarity problems have important applications in many fields: economics, engineering, operations11

research, nonlinear analysis... In the literature, many theoretical results and numerical methods have been proposed12

to solve problem (1.1), see for example the books of Facchinei and Pang [23, 24], Ito and Kunisch [30], Ulbrich [43],13

Bonnans et al. [14], and the study of Aganagić [1].14
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By means of so-called C-functions (C for complementarity), see [23, 24], the complementarity constraints (1.1b)15

can be rewritten as a system of equations C(X) = 0, where C : Rn → Rn is nonlinear and semismooth. We then16

obtain the following equivalent formulation of problem (1.1): Find X ∈ Rn such that17

EX = F ,
C(X) = 0.

(1.2)18

19

A direct application of the standard Newton method to (1.2) is, however, impeded by the fact that C(X) is not20

differentiable. An introduction of the Clarke differential [16] allows to give a weaker differentiability meaning and21

leads to the class of semismooth Newton methods, with reputedly good convergence properties [33, 24, 10, 11,22

12, 19, 20]. These methods are in certain cases equivalent to primal–dual active set strategies, see Hintermüller23

et al. [27]. Moreover, in [47], a regularized semismooth Newton method combined with a hyperplane projection24

technique was proposed.25

Augmented Lagrangian method is one of the commonly used algorithms for constrained optimization, see, e.g.,26

[29] and the references therein. It seeks a solution by replacing the original constrained problem by a series of27

unconstrained problems and add to the objective function a penalty term, and another term designed to mimic a28

Lagrange multiplier.29

An additional technique, often used in a function space setting, consists in introducing a proper regularization,30

motivated by the augmented Lagrangian method. It allows to apply an infinite-dimensional semismooth Newton31

method for the solution of the regularized problem, see, e.g., [43]. In the present context, this leads to replacing32

the complementarity conditions (1.1b) by33

K(X) + min{0,−K(X) + γG(X)} = 0,34

for a parameter γ > 0. This method can be combined with a path-following strategy to update the regularization35

parameter γ, see for instance [41, 28, 40].36

Another important class of methods for constrained optimization problems of the form (1.1) is formed by interior-37

point methods. These methods consist in generating a sequence in the feasible region K(X) ≥ 0 and G(X) ≥ 0,38

under the assumption of knowing a feasible initial point. We refer to the work of Wright [46], Bellavia et al. [4],39

and the references therein for a review.40

Lastly, an additional notable method is the smoothing Newton method. The main idea of this approach is to41

approximate the semismooth (non-differentiable) function C from (1.2) by a smooth (differentiable) function that42

depends on a smoothing parameter. The problem is reformulated as a sequence of regularized smooth equations43

that can be solved by applying the standard Newton method, and where one drives the smoothing parameter down44

to zero, cf. [39, 36, 35] and the references therein.45

In this work, we design a general framework to systematically steer the above different ingredients. Our main46

philosophy is adaptive smoothing (regularization). For µj > 0, let a smoothed function Cµj (·), satisfy ‖Cµj (X)−47

C(X)‖ → 0 as µj → 0, for X ∈ Rn. The smoothing parameter µj is reduced at each smoothing iteration j ≥ 1.48

Thus, problem (1.1), or equivalently (1.2), can be reformulated as a system of smooth (differentiable) equations49

written in the form: Find Xj ∈ Rn such that50

EXj = F ,
Cµj (X

j) = 0.
(1.3)51

52

Hence, Newton-type methods can be applied to solve system (1.3), yielding, at each linearization step k ≥ 1, a53

linear system54

Aj,k−1µj Xj,k = Bj,k−1
µj , (1.4)55

where Aj,k−1µj ∈ Rn,n is a matrix and Bj,k−1
µj ∈ Rn is a vector.56

Solving (1.4) with a direct method may be very expensive. A popular approach is to solve it approximately57

by applying only a few steps of an iterative algebraic solver. Such inexact approaches can be found in [22, 32]58

for semismooth Newton methods, in [39, 26] for smoothing Newton methods, in [49] for augmented Lagrangian59

methods, and in [3] for interior-point methods. In the algorithms introduced therein, the iterations of different60

solvers are stopped according to a fixed maximal number of iterations, the Euclidean norm of the residual vector,61

or other parameters-dependant stopping criteria. In this work, the a posteriori estimate constitute a distinctive62

element at the heart of the proposed smoothing method. Importantly, it ensures the desired balance between each63

source of error at any resolution step, unlike existing approaches based on classical stopping criteria.64

At each linear algebraic step i ≥ 1 for (1.4), one in particular obtains Xj,k,i ∈ Rn such that65

Aj,k−1µj Xj,k,i = Bj,k−1
µj −Rj,k,i

alg ,66
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where Rj,k,i
alg ∈ Rn is the algebraic residual vector of (1.4).67

Our principal aim is to reduce the computational cost of the numerical resolution of (1.1) by employing an68

adaptive strategy based on a posteriori error estimates. There is a well-developed literature on a posteriori error69

estimates and mesh adaptivity for partial differential equations, see for instance the books of Ainsworth and Oden70

[2], Repin [37], and Nochetto et al. [34]. For variational inequalities, we can mention the contributions of Repin [38],71

Ben Belgacem et al. [5], Bürg and Schröder [15], and Dabaghi et al. [17]. Although smoothing Newton approaches72

have been widely studied, to the best of our knowledge, almost no work has been done to this day on a posteriori73

error estimates and adaptivity for solvers applied to discrete problems of the form (1.1).74

We first derive an upper bound on the norm of the residual of system (1.2), given by75

R(Xj,k,i) :=

[
F − EXj,k,i

−C(Xj,k,i)

]
.76

Then, decomposing R(Xj,k,i), we distinguish the different error components. This leads to an a posteriori control77

of the form78

‖R(Xj,k,i)‖r ≤ η
j,k,i = ηj,k,ism + ηj,k,ilin + ηj,k,ialg . (1.5)79

Here, ηj,k,i is a fully computable upper bound that holds true at any smoothing (regularization) step j, linearization80

step k, and algebraic solver step i, whereas the role of the estimators ηj,k,ism , ηj,k,ilin , and ηj,k,ialg is to identify the81

smoothing, linearization, and algebraic components of the error. This error bound allows to define adaptive stopping82

criteria for the nonlinear and linear algebraic solvers, in the spirit of [21, 17], and the references therein. These83

criteria, as well as a simple way to tighten the smoothing parameter µj , are incorporated in a three-level adaptive84

algorithm. In contrast to common approaches, where the termination requires reaching a fixed threshold, the85

particularity of this adaptive algorithm is that the iterations are stopped when the error component of the concerned86

solver is smaller than the total error, up to a desired fraction. The efficiency of the proposed adaptive algorithm for87

(inexact) smoothing Newton methods and (inexact) interior-point methods is showcased numerically on practical88

problems.89

It is relevant to mention that this work is extented in [8], where the present approach is applied to a system90

of PDEs with complementarity constraints in infinite-dimensional space. In particular, taking into account the91

discretization error allows to adaptively steer the smoothing in system (1.3). Although we do not address mesh92

adaptivity in our work, we underline that a posteriori estimators are an important tool for adaptive mesh refinement93

strategies, see, e.g., [18] and the references therein. Consequently, algorithms based on the previous criteria ensure94

significant computational gains in terms of total number of iterations and mesh cells.95

Our manuscript is organized as follows. In Section 2, we recall a semismooth Newton method based on an96

equivalent reformulation of the complementarity constraints in the form (1.2). Section 3 is devoted to introduce97

our adaptive inexact smoothing Newton method based on the reformulation as a system of smooth equations as in98

(1.3). We establish here the a posteriori error estimates (1.5) and propose an adaptive algorithm with a posteriori99

stopping criteria. We survey a nonparametric interior-point method in Section 4, and introduce its adaptive version100

in Section 5. Finally, a detailed numerical study is presented in Sections 6 and 7.101

2 Semismooth Newton method102

The purpose of this section is to briefly recall the semismooth Newton method to approximate the solution of the103

nonlinear system of equations (1.1), see, e.g., [33, 23, 17]. The complementarity constraints represented by (1.1b) as104

algebraic inequalities are here rewritten as non-differentiable algebraic equalities, using a complementarity function105

(C-function). A function C̃ : Rm × Rm −→ Rm, m ≥ 1, is called a C-function if106

C̃(x,y) = 0 ⇐⇒ x ≥ 0, y ≥ 0, x · y = 0 ∀(x,y) ∈ Rm × Rm.107

A variety of C-functions can be found in the literature, see, e.g., [42, 25]. We give as examples the minimum (min)108

function and the Fischer–Burmeister (F–B) function: for l = 1, . . . ,m,109 (
C̃min(x,y)

)
l

:= (min(x,y))l = (xl + yl)/2− |xl − yl|/2, (2.1)110 (
C̃FB(x,y)

)
l

:=
√
x2
l + y2

l − (xl + yl). (2.2)111
112

In general, the C-functions are not Fréchet differentiable. The min and the Fischer–Burmeister functions are,113

for example, differentiable everywhere except in x = y and (0,0), respectively. Let us introduce a function114
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C : Rn → Rm defined as C(X) := C̃ (K(X),G(X)) , where C̃ : Rm ×Rm → Rm is any C-function. By using this115

reformulation in (1.1b), it is obvious that problem (1.1) can be equivalently rewritten as: Find a vector X ∈ Rn,116

such that117

EX =F , (2.3a)118

C(X) = 0. (2.3b)119
120

Next, we detail the semismooth Newton linearization. Let an initial vector X0 ∈ Rn be given. At the step121

k ≥ 1, one looks for Xk ∈ Rn such that122

Ak−1Xk = Bk−1, (2.4)123

where the square matrix Ak−1 ∈ Rn,n and the right-hand side vector Bk−1 ∈ Rn are given by124

Ak−1 :=

[
E

JC(Xk−1)

]
, Bk−1 :=

[
F

JC(Xk−1)Xk−1 −C(Xk−1)

]
. (2.5)125

Note that the Jacobian corresponding to (2.3a) is constant and equal to E since it is linear. The semismooth126

nonlinearity occurs in the second line (2.3b): the notation JC in (2.5) stands for the Jacobian matrix in the sense127

of Clarke of the function C, cf. [23, 24]. To give an example, consider the semismooth min function (2.1) and define128

the matrices K and G ∈ Rm,n respectively by K := [∇K(X)] and G := [∇G(X)] . Then the lth row of the Jacobian129

matrix in the sense of Clarke JC is either given by the lth row of K, if (K(Xk−1))l ≤ (G(Xk−1))l, or by the lth130

row of G, if (G(Xk−1))l < (K(Xk−1))l.131

We will need below the total residual vector of problem (2.3), defined by132

R(V ) :=

[
F − EV
−C(V )

]
, V ∈ Rn. (2.6)133

In this context, the relative norm of a vector V ∈ Rn is given by ||V ||r := ||V || /
∣∣∣∣R(X0)

∣∣∣∣ , where ‖ · ‖ is the134

L2-norm.135

3 Adaptive inexact smoothing Newton method136

In this section we introduce our adaptive inexact smoothing Newton method. Based on a posteriori error estimators,137

adaptive stopping criteria are formulated to conceive an adaptive iterative algorithm.138

3.1 Smoothing of the C-functions139

The key of our developments is to smooth the non-differentiable equation formulation (2.3b) of the complementarity140

constraints (1.1b) with the help of a smooth (i.e. continuously differentiable) function. This smoothing allows us141

to approximately transform the nonsmooth nonlinear system (2.3) to a smooth system of nonlinear equations to be142

solved by using the standard Newton method.143

Let µ > 0 be a (small) smoothing parameter. We construct an approximation function C̃µ : Rm ×Rm → Rm of144

a C-function C̃ such that C̃µ(·, ·) is of class C1 on Rm × Rm and satisfies145

‖C̃(x,y)− C̃µ(x,y)‖ → 0 as µ→ 0 for all (x, y) ∈ Rm × Rm.146

For example, for l = 1, . . . ,m, a possible smoothing of the min and the Fischer–Burmeister functions (2.1) and (2.2)147

can be148

(
C̃minµ(x,y)

)
l

=
xl + yl

2
−

(
|x− y|µ

)
l

2
, with (|z|µ)

l
=
√
z2l + µ2, (3.1)149 (

C̃FBµ(x,y)
)
l

=
√
µ2 + x2

l + y2
l − (xl + yl), (3.2)150

151

where the µ-smoothed absolute value function | · |µ : Rm → Rm+ , m ≥ 0, replaces the absolute value function (not152

differentiable at 0), see Figure 1. Note that both functions | · |µ and C̃FB,µ are of class C∞.153
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x
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C̃FBµ(x)

C̃FB(x)

Figure 1: Left: Absolute value function | · | and smoothed absolute value function | · |µ. Right: Fischer–Burmeister
function C̃FB(·) and smoothed Fischer–Burmeister function C̃FBµ(·), for different values of the smoothing parameter
µ.

We define the function Cµ : Rn → Rm as Cµ(X) := C̃µ (K(X),G(X)) , where C̃µ : Rm × Rm → Rm is any154

smoothed C-function of at least class C1. This allows to approximate problem (1.1) or (1.2) by a system of smooth155

equations: Find a vector X ∈ Rn, such that156

EX = F ,
Cµ(X) = 0.

(3.3)157

158

Thus, Newton-type methods can be applied to solve the system of nonlinear algebraic equations (3.3).159

Fixing µ1 > 0, we now describe an iterative method for solving problem (2.3). At the beginning of each smoothing160

iteration (outer iteration) denoted hereafter by j ≥ 1, an initial guessXj ∈ Rn is given, and a smoothing parameter161

µj is determined; µj will be driven down to zero. Then some iterative nonlinear solver like the Newton method is162

employed to solve the smoothed problem written in the form: Find Xj ∈ Rn such that163

EXj = F ,
Cµj (X

j) = 0.
(3.4)164

165

3.2 Newton linearization of the nonlinear algebraic system166

In what follows, we detail the Newton method employed to solve problem (3.4) at a fixed outer smoothing step167

j ≥ 1. Given an initial vector Xj,0 (typically Xj,0 = Xj−1), Newton’s algorithm generates a sequence (Xj,k)k≥1168

with Xj,k ∈ Rn given by the following system of linear algebraic equations169

Aj,k−1µj Xj,k = Bj,k−1
µj , (3.5)170

where the Jacobian matrix Aj,k−1µj ∈ Rn,n and the right-hand side vector Bj,k−1
µj ∈ Rn are defined by171

Aj,k−1µj :=

[
E

JCµj (Xj,k−1)

]
, Bj,k−1

µj :=

[
F

JCµj (Xj,k−1)Xj,k−1 −Cµj (Xj,k−1)

]
, (3.6)172

with JCµj (Xj,k−1) the Jacobian matrix of the smooth function Cµj at Xj,k−1.173

3.3 Inexact solution of the linear algebraic system174

The linearized system (3.5) may not be solved exactly, since the use of a direct method may be expensive. For this175

reason, we consider in this work also an inexact resolution. For a fixed smoothing step j ≥ 1, a fixed Newton step176

k ≥ 1, and an initial guess Xj,k,0 (typically Xj,k,0 = Xj,k−1), only a few steps of an iterative linear algebraic solver177

can be applied to find an approximate solution to (3.5), yielding, on step i ≥ 1, an approximation Xj,k,i to Xj,k.178

This satisfies (3.5) up to the residual vector given by179

Bj,k−1
µj − Aj,k−1µj Xj,k,i. (3.7)180
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Define now the linearization function Cj,k−1
µj : Rn → Rm of Cµj at smoothing step j and Newton step k as181

Cj,k−1
µj (V ) := Cµj (X

j,k−1) + JCµj (Xj,k−1)(V −Xj,k−1) ∀ V ∈ Rn. (3.8)182

This allows us to write the algebraic residual vector for V ∈ Rn as183

RAISN
alg (V ) := Bj,k−1

µj − Aj,k−1µj V =

[
F − EV
−Cj,k−1

µj (V )

]
. (3.9)184

3.4 An upper bound for the norm of the residual185

We consider the total residual vector of problem (2.3) given in (2.6). By adding and subtracting Cµj (Xj,k,i) and186

its linearization Cj,k−1
µj (Xj,k,i) given by (3.8), the total residual vector can be decomposed as follows:187

R(Xj,k,i) =

[
F − EXj,k,i

−C(Xj,k,i)±Cµj (Xj,k,i)±Cj,k−1
µj (Xj,k,i)

]
188

=

[
0

Cµj (X
j,k,i)−C(Xj,k,i)

]
︸ ︷︷ ︸

smoothing

+

[
0

Cj,k−1
µj (Xj,k,i)−Cµj (Xj,k,i)

]
︸ ︷︷ ︸

linearization

+

[
F − EXj,k,i

−Cj,k−1
µj (Xj,k,i)

]
︸ ︷︷ ︸

algebraic

.189

190

It is reasonable to get these three terms. Indeed, the first one reflects the error due to the approximation of191

the semismooth function C by the smoothed function Cµj . The second term is related to the linearization of the192

nonlinear smooth problem (3.4). Taking into account that the resolution of the smooth linearized problem (3.5)193

is possibly done “inexactly”, the remaining term represents the error of the inexact algebraic resolution. By the194

triangle inequality, the relative norm of R(Xj,k,i) is thus bounded by the smoothing, linearization, and algebraic195

estimators respectively defined as196

ηj,k,ism,AISN :=
∣∣∣∣Cµj (Xj,k,i)−C(Xj,k,i)

∣∣∣∣
r
, (3.10a)197

ηj,k,ilin,AISN :=
∣∣∣∣∣∣Cj,k−1

µj (Xj,k,i)−Cµj (Xj,k,i)
∣∣∣∣∣∣
r
, (3.10b)198

ηj,k,ialg,AISN :=

(∣∣∣∣F − EXj,k,i
∣∣∣∣2
r

+
∣∣∣∣∣∣Cj,k−1

µj (Xj,k,i)
∣∣∣∣∣∣2
r

) 1
2

. (3.10c)199

200

Note that ηj,k,ialg,AISN is exactly equal to the relative norm of RAISN
alg (Xj,k,i) given by (3.9). From these developments201

we conclude:202

Theorem 3.1 Let Xj,k,i ∈ Rn arise from an inexact solve of (3.5). We have203 ∣∣∣∣R(Xj,k,i)
∣∣∣∣
r
≤ ηj,k,iAISN := ηj,k,ism,AISN + ηj,k,ilin,AISN + ηj,k,ialg,AISN.204

3.5 Adaptive inexact smoothing Newton algorithm205

Theorem 3.1 motivates the following. Let two real parameters αlin and αalg be given in ]0, 1], representing the206

desired relative size of the algebraic and linearization errors, and let ε > 0 be a given desired tolerance for the207

total error. The stopping criteria for the linearization, algebraic, and smoothing steps, with the bars denoting the208

stopping indices, are respectively set as209

ηj,k,ialg,AISN < αalgη
j,k,i
lin,AISN, (3.11a)210

ηj,k,ilin,AISN < αlinη
j,k,i
sm,AISN, (3.11b)211

‖R(Xj,k,i)‖r < ε. (3.11c)212
213

The first criterion (3.11a) for the algebraic iterative solver expresses that there is no need to continue with the214

algebraic steps when the linearization error becomes dominant. Similarly, the second one (3.11b) aims at stopping215

the linearization iterations when the linearization error does not substantially contribute to the smoothing error.216

Finally, the termination criterion for the smoothing steps (3.11c) is of the standard type, that is when we stop the217

entire procedure, when the relative norm of the total residual vector lies below the desired tolerance ε.218

The entire method is described by the following adaptive algorithm, which drives the smoothing parameter µj219

to zero as µj := αµj−1 at each smoothing iteration. Other common empirical ways to progressively reduce µj can220

be found, e.g., in [45]. The adaptive inexact smoothing Newton algorithm is the following:221
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Algorithm 1 Adaptive inexact smoothing Newton algorithm

1. Initialization
Choose a tolerance ε > 0 and parameters α ∈ ]0, 1[ and αlin, αalg ∈ ]0, 1].
Fix µ1 > 0 and an initial approximation X0 ∈ Rn. Set j := 1.

2. Smoothing loop

2.1 Set Xj,0 := X0 as an initial guess for the nonlinear solver. Set k := 1.

2.2 Newton linearization loop

2.2.1 From Xj,k−1 define Aj,k−1µj ∈ Rn,n and Bj,k−1
µj ∈ Rn by (3.6).

2.2.2 Consider the problem of finding a solution Xj,k to

Aj,k−1µj Xj,k = Bj,k−1
µj . (3.12)

2.2.3 Set Xj,k,0 := Xj,k−1 as initial guess for the iterative algebraic solver. Set i := 1.
2.2.4 Algebraic solver loop

i) Starting from Xj,k−1, perform a step of the iterative algebraic solver for the solution of (3.12),
yielding, on step i an approximation Xj,k,i to Xj,k satisfying

Aj,k−1µj Xj,k,i = Bj,k−1
µj −RAISN

alg (Xj,k,i).

ii) Compute the estimators given in (3.10).
iii) If ηj,k,ialg,AISN < αalgη

j,k,i
lin,AISN, set i := i and stop. If not, set i := i+ 1 and go to i).

2.2.5 If ηj,k,ilin,AISN < αlinη
j,k,i
sm,AISN, set k := k and stop. If not, set k := k + 1 and go to 2.2.1.

2.3 If ‖R(Xj,k,i)‖r < ε, set j := j and stop.
If not, set j := j + 1, Xj,0 := Xj−1,k,i, and µj := αµj−1. Then set k := 1 and go to 2.2.1.
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4 Nonparametric interior-point method222

Now we employ a nonparametric interior-point method to problem (1.1). More precisely, we consider the method223

introduced in [44] where a systematic strategy is used to steer the sequence of smoothing parameters towards zero.224

We introduce a vector µ = µ1 ∈ Rm, where µ > 0 is the smoothing parameter and 1 ∈ Rm is the vector with225

all components equal to 1. The original nonsmooth problem (1.1) is replaced by a smoothed problem written in the226

form: Find X ∈ Rn such that227

EX = F , (4.1a)228

K(X) ≥ 0, G(X) ≥ 0, K(X)G(X) = µ, (4.1b)229
230

where [(K(X)G(X)]m = [K(X)]m[G(X)]m. In order to properly adjust the sequence of smoothing parameters,231

the smoothing parameter µ is treated as an unknown, by introducing the following new equation into system (4.1)232

θµ+ µ2 = 0, (4.2)233

where θ is a small positive real parameter, chosen once and for all. This equation prevents µ from rushing to zero234

in just one iteration, and ensures quadratic convergence, see [44]. The unknown of system (4.1) is now the enlarged235

vector X = (X, µ)T ∈ Rn+1. We are thus brought back to applying the standard Newton method to a smooth236

problem.237

Let X0 ∈ Rn such that K(X0) ≥ 0 and G(X0) ≥ 0 be given. To update the iterate X k−1, we compute a238

search direction denoted by dk = [dkX , d
k
µ] ∈ Rn+1, where dkX ∈ Rn and dkµ ∈ R. Then, to preserve positivity of239

K(Xk) and G(Xk) at each step of the nonlinear solver, a truncation of the Newton direction dk is performed so240

that the corresponding update satisfies K(Xk−1 + κkdkX) ≥ 0 and G(Xk−1 + κkdkX) ≥ 0 for some κk ∈ ]0, 1], as241

close to 1 as possible. After this, we can set242

X k := X k−1 + κkdk.243

Recall that our goal is to make µ equal to 0 in the limit while ensuring the positivity of the updated iterate. Another244

choice for the additional equation (4.2) added to system (4.1) was developed and introduced in a recent work, see245

[45, Section 3]. The proposed equation does not require to truncate the Newton direction, and couples µ and X in246

a tighter way.247

We rewrite system (4.1) as an enlarged system of n+ 1 equations248

EX = F ,
K(X)G(X)− µ = 0,

θµ+ µ2 = 0.
(4.3)249

250

5 Adaptive inexact interior-point method251

We present in this section our adaptive inexact version of the nonparametric interior point method of Section252

4. In contrast to Section 4, we consider, however, µ > 0 as a parameter, and not as an unknown. At each253

smoothing step j ≥ 1, we may solve the system of smoothing equations written as: Find Xj ∈ Rn such that254

K(Xj) ≥ 0, G(Xj) ≥ 0, and255

EXj = F , (5.1a)256

Hµj (X
j) := K(Xj)G(Xj)− µj = 0. (5.1b)257

258

The values of µj are gradually decreased at each smoothing iteration, creating a sequence of suitable µj converging259

to zero.260

5.1 Newton linearization of the nonlinear algebraic system261

Let X0 ∈ Rn such that K(X0) ≥ 0 and G(X0) ≥ 0 be given. At each smoothing iteration j ≥ 1 and each262

linearization step k ≥ 1, starting with an initial approximation Xj,0 such that K(Xj,0) ≥ 0 and G(Xj,0) ≥ 0263

(typically Xj,0 = Xj−1), we try to approach the solution of problem (5.1) by finding Xj,k ∈ Rn such that264

Aj,k−1µj Xj,k = Bj,k−1
µj , (5.2)265
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where the Jacobian matrix Aj,k−1µj ∈ Rn,n and the right-hand side vector Bj,k−1
µj ∈ Rn are defined by266

Aj,k−1µj :=

[
E

JHµj
(Xj,k−1)

]
, Bj,k−1

µj :=

[
F

JHµj
(Xj,k−1)Xj,k−1 −Hµj (X

j,k−1)

]
, (5.3)267

with JHµj
the Jacobian matrix of Hµj . To ensure the positivity of the complementarity constraints, we then define268

the direction dj,k := Xj,k −Xj,k−1 ∈ Rn and find κj,k ∈ ]0, 1] such that269

K(Xj,k−1 + κj,kdj,k) ≥ 0 and G(Xj,k−1 + κj,kdj,k) ≥ 0.270

5.2 Inexact solution of the linear algebraic system271

For a fixed smoothing iteration j ≥ 1, a fixed Newton step k ≥ 1, and an initial guess Xj,k,0 (typically Xj,k,0 =272

Xj,k−1), an iterative algebraic solver can be applied to approach the solution of (5.2), yielding, on step i ≥ 1, an273

approximation Xj,k,i to Xj,k. This satisfies (5.2) up to a residual vector defined by274

Bj,k−1
µj − Aj,k−1µj Xj,k,i. (5.4)275

Introduce the linearization Hj,k−1
µj : Rn → Rm of Hµj (·) such that for V ∈ Rn,276

Hj,k−1
µj (V ) := Hµj (X

j,k−1) + JHµj
(Xj,k−1)(V −Xj,k−1). (5.5)277

Using (5.5), the algebraic residual vector can be written as follows278

RAIIP
alg (V ) := Bj,k−1

µj − Aj,k−1µj V =

[
F − EV
−Hj,k−1

µj (V )

]
, V ∈ Rn. (5.6)279

We now define the function H : Rn → Rm by280

H(V ) := K(V )G(V ), V ∈ Rn. (5.7)

and the total residual vector associated to the adaptive inexact interior-point method by281

RAIIP(V ) :=

[
F − EV
−H(V )

]
, V ∈ Rn. (5.8)282

Here again, the relative norm of a given vector V ∈ Rn is given by ||V ||r := ||V || /‖RAIIP(X0)‖.283

5.3 An upper bound for the norm of the residual284

In the same spirit as in Section 3.4, we decompose at each smoothing step j ≥ 1, each linearization step k ≥ 1, and285

each algebraic step i ≥ 1 the total residual vector given by (5.8)286

RAIIP(Xj,k,i) =

[
0

Hµj (X
j,k,i)−H(Xj,k,i)

]
︸ ︷︷ ︸

smoothing

+

[
0

Hj,k−1
µj (Xj,k,i)−Hµj (X

j,k,i)

]
︸ ︷︷ ︸

linearization

287

+

[
F − EXj,k,i

−Hj,k−1
µj (Xj,k,i)

]
︸ ︷︷ ︸

algebraic

.288

289

We then define the smoothing, linearization, and algebraic estimators by290

ηj,k,ism,AIIP :=
∣∣∣∣Hµj (X

j,k,i)−H(Xj,k,i)
∣∣∣∣
r

=
∣∣∣∣µj∣∣∣∣

r
, (5.9a)291

ηj,k,ilin,AIIP :=
∣∣∣∣∣∣Hj,k−1

µj (Xj,k,i)−Hµj (X
j,k,i)

∣∣∣∣∣∣
r
, (5.9b)292

ηj,k,ialg,AIIP :=
(
‖F − EXj,k,i‖2r + ‖Hj,k−1

µj (Xj,k,i)‖
2

r

) 1
2

. (5.9c)293
294

Then we have an upper bound for the norm
∣∣∣∣RAIIP(Xj,k,i)

∣∣∣∣
r
:295

Theorem 5.1 Let Xj,k,i ∈ Rn be the approximation of X given by an iterative algebraic solver. Then we have296 ∣∣∣∣RAIIP(Xj,k,i)
∣∣∣∣
r
≤ ηj,k,iAIIP := ηj,k,ism,AIIP + ηj,k,ilin,AIIP + ηj,k,ialg,AIIP.297
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5.4 Adaptive inexact interior-point algorithm298

Our proposed adaptive inexact interior-point algorithm implements adaptive stopping criteria formulated using the299

error component estimators given by (5.9) is as follows:300

Algorithm 2 Adaptive inexact interior-point algorithm

1. Initialization
Choose a tolerance ε > 0 and parameters α ∈ ]0, 1[ and αlin, αalg ∈ ]0, 1].
Fix µ1 > 0 and an initial vector X0 ∈ Rn such that K(X0) ≥ 0 and G(X0) ≥ 0. Set j := 1.

2. Smoothing loop

2.1 Set Xj,0 := X0 as an initial guess for the linearization loop and k := 1.

2.2 Interior-point linearization loop

2.2.1 From Xj,k−1 define Aj,k−1µj ∈ Rn,n and Bj,k−1
µj ∈ Rn by (5.3).

2.2.2 Consider the problem of finding Xj,k ∈ Rn such that

Aj,k−1µj Xj,k = Bj,k−1
µj . (5.10)

2.2.3 Set Xj,k,0 := Xj,k−1 as initial guess for the iterative algebraic solver. Set i := 1.

2.2.4 Algebraic solver loop
i) Starting from Xj,k−1 perform a step of the iterative algebraic solver for (5.10), yielding, at step
i ≥ 1, a vector Xj,k,i ∈ Rn such that

Aj,k−1µj Xj,k = Bj,k−1
µj −RAIIP

alg (Xj,k,i).

ii) Set dj,k,i := Xj,k −Xj,k−1 and compute κj,k,i ∈ ]0, 1] such that

K(Xj,k−1 + κj,k,idj,k,i) ≥ 0 and G(Xj,k−1 + κj,k,idj,k,i) ≥ 0.

Then set Xj,k,i := Xj,k−1 + κj,k,idj,k,i.

iii) Compute the estimators given by (5.9).
iv) If ηj,k,ialg,AIIP < αalgη

j,k,i
lin,AIIP, set i := i and stop. If not, set i := i+ 1 and go to i).

2.2.5 If ηj,k,ilin,AIIP < αlinη
j,k,i
sm,AIIP, set k := k and stop. If not, set k := k + 1 and go to 2.2.1.

2.3 If
∣∣∣∣∣∣RAIIP(Xj,k,i)

∣∣∣∣∣∣
r
< ε, set j := j and stop. If not, set j := j + 1, Xj,0 := Xj−1,k,i, and µj := αµj−1.

Then set k := 1 and go to 2.2.1.

6 Numerical experiments: Problem of contact between two membranes301

This section reports some numerical illustrations obtained using the algorithms previously presented. We consider302

here the model problem of contact between two membranes.303

6.1 Problem statement304

Let Ω = (a, b) be a one-dimensional domain. The problem reads: Find u1, u2, and λ such that305 
−µ1∆u1 − λ = f1 in Ω,
−µ2∆u2 + λ = f2 in Ω,

(u1 − u2)λ = 0, u1 − u2 ≥ 0, λ ≥ 0 in Ω,
u1 = g on ∂Ω,
u2 = 0 on ∂Ω,

(6.1)306

307
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where u1 and u2 represent the vertical displacements of the two membranes and λ is a Lagrange multiplier char-308

acterizing the action of the second membrane on the first one, −λ being the reaction. The constant parameters309

µ1, µ2 > 0 correspond to the tension of each membrane, whereas f1, f2 ∈ L2(Ω) are given external forces. The310

boundary condition prescribed by a constant g > 0 ensures that, on the boundary ∂Ω, the first membrane is above311

the second one. The third line of (6.1) represents the linear complementarity conditions which serve to distinguish312

two different physical situations: either the membranes are separated (u1 > u2 and λ = 0), or they are in contact313

(u1 = u2 and λ > 0). We discretize this problem by the finite volume method. The corresponding discretization314

can be written under the form of problem (1.1).315

6.2 Test problem setting316

Following [5], we set Ω = (−1, 1) and consider the following analytical solution for x ∈ Ω317

u1(x) := g(2x2 − 1), u2(x) :=

{
2g(1− x2)(2x2 − 1) if x < −1√

2
or x > 1√

2
,

g(2x2 − 1) otherwise,
318

319

λ(x) :=

{
0 if x < −1√

2
or x > 1√

2
,

2g otherwise.
320

This triple is the solution of (6.1) for the data f1 and f2 given by321

f1(x) :=

{
−4g if x < −1√

2
or x > 1√

2
,

−6g otherwise,
and f2(x) :=

{
−12g(1− 4x2) if x < −1√

2
or x > 1√

2
,

−2g otherwise.
322

Throughout the computational experiments, the parameters µ1 and µ2 are set to 1 and the boundary condition323

g for the first membrane is taken equal to 0.1. Let N be the number of mesh elements. The initial guess X0 ∈ R3N
324

has its first N components equal to g and its other components equal to zero for the semismooth and smoothing325

Newton methods. For the nonparametric interior-point method (resp. the adaptive interior-point method), the326

initialization is given by X 0 = [0.1 0 0.5 0.05]
T ∈ R3N+1 (resp. X0 = [0.1 0 0.5]

T ∈ R3N ). All the simulations327

are performed in MATLAB. We consider N = 25000 elements, leading to the matrix A of size n = 75000.328

6.3 Semismooth Newton method329

We start by presenting the numerical results of the semismooth Newton method described in Section 2, using the330

F–B function (2.2). The stopping criterion is on the total residual vector (2.6)331

‖R(Xk)‖r < 10−8. (6.2)332

To achieve this stopping criterion, 527 semismooth Newton-F–B iterations (CPU time: 68.9s) and 2232 Newton-333

min iterations (CPU time: 338.9s) are needed. Figure 2 represents the evolution of ‖R(Xk)‖r as a function of the334

semismooth Newton-F–B iterations. We can see that it decreases slowly during iterations, then the convergence335

gets extremely fast at the end.336
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Figure 2: [Semismooth Newton method, F–B function (2.2), stopping criterion (6.2)] Relative norm of the total
residual vector (2.6) as a function of semismooth Newton iterations.

6.4 Adaptive smoothing Newton method337

We now test the adaptive smoothing Newton method, denoted by ASN, with the smoothed F–B function (3.2). This338

consists in employing the method presented in Section 3, summarized in Algorithm 1, but with an exact resolution339

of the nonlinear system (3.5). The linearization and smoothing estimators are respectively defined by340

ηj,klin,ASN :=
∣∣∣∣Cµj (Xj,k)

∣∣∣∣
r
, (6.3a)341

ηj,ksm,ASN :=
∣∣∣∣Cµj (Xj,k)−C(Xj,k)

∣∣∣∣
r
, (6.3b)342

343

and the total estimator by ηj,kASN := ηj,ksm,ASN + ηj,klin,ASN.344

First, we analyze the performance of the adaptive stopping criterion based on the estimators for stopping the345

linearization steps. We compare it with the classical approach in where the linearization is continued until the346

relative norm of the linearization estimator becomes smaller than a threshold taken as 10−8, i.e.,347

Classical stopping criterion: ηj,klin,ASN < 10−8, (6.4)348

Adaptive stopping criterion: ηj,klin,ASN < αlinη
j,k
sm,ASN. (6.5)349

350

We set µ1 = 1, ε = 10−8, αlin = 1, and α = 0.1 in Algorithm 1. Figure 3 depicts the evolution of the estimators and351

the relative norm of the total residual vector R(Xj,k) given in (2.6) as a function of the smoothing Newton–F–B352

iterations, at a specific smoothing iteration j = 1 (µ1 = 1), left, and j = 3 (µ3 = 10−2), right. We can observe from353

Figure 3, left, that, as expected, the smoothing estimator and ‖R(Xj,k)‖r stagnates after few steps, since here the354

smoothing parameter µ1 is equal to 1, whereas the linearization estimator steadily decreases. If we consider the355

classical stopping criterion (6.4), the linearization will only be stopped at step k = 8. On the other hand, with356

our adaptive stopping criterion (6.5), only one iteration is necessary. Clearly after a few linearization steps, the357

linearization estimator no longer affects significantly the smoothing estimator, and we can economize many useless358

iterations.359

Next, we provide in Table 1 the results obtained using the adaptive stopping criterion (6.5) to stop the nonlinear360

solver. We terminate the smoothing iterations using the relative norm of the total residual vector (2.6)361

‖R(Xj,k)‖r < 10−8. (6.6)362

We present the cumulated number of Newton iterations Niter, the estimators (6.3), and the relative norm of the363

total residual vector (2.6) at each smoothing step j. In terms of numbers, 10 smoothing iterations and 36 cumulated364

Newton iterations (CPU time: 6.9s) are needed to achieve the stopping criterion (6.6). From Table 1, one can365

see that for each value of µj , the Newton iterations are stopped according to (6.5). ‖R(Xj,k)‖r decreases until366

lying below 10−8. Figure 4 displays the curve of the estimators as a function of cumulated Newton iterations367

and smoothing iterations, as well as the relative norm of the total residual vector as a function of smoothing368

iterations. The improvement of the performance with respect to the semismooth Newton-F–B method of Section369

6.3 is spectacular.370
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Figure 3: [Adaptive smoothing Newton method, smoothed F–B function (3.2), classical and adaptive stopping
criteria (6.4) and (6.5)] Relative norm of the total residual vector (2.6) and estimators (6.3) as a function of Newton
iterations k, at a specific smoothing iteration j = 1 (µ1 = 1), left, and at j = 3 (µ3 = 10−2), right.
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Figure 4: [Adaptive smoothing Newton method, smoothed F–B function (3.2), adaptive stopping criterion (6.5)]
Estimators (6.3) as a function of cumulated Newton iterations (left). Estimators (6.3) (middle) and relative norm
of the total residual vector (2.6) (right) as a function of smoothing iterations j at convergence of the linearization
solver.

µj Niter ηj,klin,ASN ηj,ksm,ASN ‖R(Xj,k)‖r
1e+00 1 2.17e+03 4.24e+03 2.17e+03
1e-01 3 6.00e+01 2.37e+02 2.03e+02
1e-02 4 9.73e+00 1.53e+01 1.01e+01
1e-03 5 3.18e-01 6.84e-01 6.00e-01
1e-04 7 9.87e-03 3.58e-02 3.43e-02
1e-05 4 1.06e-03 2.33e-03 1.87e-03
1e-06 3 1.14e-04 1.50e-04 7.45e-05
1e-07 3 4.85e-06 8.04e-06 3.84e-06
1e-08 3 3.23e-07 4.72e-07 1.83e-07
1e-09 3 1.43e-08 2.15e-08 8.04e-09

Table 1: [Adaptive smoothing Newton method, smoothed F–B function (3.2), adaptive stopping criterion (6.5)]
Number of Newton iterations Niter, estimators (6.3), and relative norm of the total residual vector (2.6) at each
smoothing iteration j, at convergence of the linearization solver.
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With the intention to compare the proposed method to existing methods, we complete the semismooth Newton371

method by a path-following strategy to solve problem (1.1), following [48]. For the sake of brevity, we shall not372

detail this here. The following test compares the semismooth Newton method (SSN) and the semismooth Newton373

method with path-following (SSN-pf) in which the linearization is stopped when the criterion (6.2) is satisfied,374

to the adaptive smoothing Newton method, using the smoothed min and F–B functions (3.1) and (3.2) and the375

stopping criteria (6.5) and (6.2) respectively for the linearization and smoothing iterations. We compare the number376

of cumulated linearization iterations and the global CPU time of the simulation for the different strategies. The377

results are displayed in Figure 5. They confirm the expected reduction of the computational cost of the numerical378

resolution with our adaptive approaches. Actually, we notice that the semismooth Newton method with path-379

following (red curve) and the adaptive smoothing Newton method (purple and dark blue curves) require significantly380

fewer cumulated Newton iterations and time to converge, in comparison with the semismooth Newton method (green381

and orange curves). Therefore, employing the path-following strategy or the adaptive strategy based on a posteriori382

error estimates enables to save many unnecessary additional iterations, and yield much better results than the pure383

semismooth Newton method. We note that, using the adaptive smoothing Newton method, one obtains similar384

computational results using both the smoothed F–B or the smoothed min function.385
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Figure 5: [Semismooth Newton method (with and without a path-following strategy) and adaptive smoothing
method] Cumulated number of Newton iterations (left) and CPU time (right) as a function of the number of mesh
elements.

6.5 Adaptive inexact smoothing Newton method386

We focus in this section on the adaptive inexact Newton method introduced in Section 3 and investigate the387

performance of Algorithm 1 using the smoothed F–B function (3.2) together with the restarted GMRES method.388

Typically, we use a fixed restart parameter equal to 300. The behavior of the adaptive smoothing solvers can be389

improved dramatically by using good preconditioners. Here, we merely use an ILU preconditioner to speed-up the390

GMRES solver. For other possibilities for preconditioners, we refer to, e.g., [31] and the references therein. To391

point out the efficiency of the adaptivity, we test two approaches. First, we stop the algebraic iterations using the392

standard GMRES stopping criterion on the relative residual given by393

Rrel :=
‖M2\(M1\(Bj,k−1

µj − Aj,k−1µj Xj,k,i))‖

‖M2\(M1\(Bj,k−1
µj − Aj,k−1µj Xj,k−1))‖

≤ 10−10, (6.7)394

where M1 and M2 are the preconditioner matrices. Second, we incorporate the adaptive stopping criteria (3.11a)395

for the algebraic solver in Algorithm 1. We set the parameters µ1 = 1, ε = 10−5, αalg = 10−3, αlin = 1, and α = 0.1.396

Figure 6 depicts the evolution of the algebraic and linearization estimators and the GMRES relative residual during397

the algebraic resolution, for specific smoothing step j and linearization step k. For j = 2 and k = 2, we see that 22398

GMRES iterations are needed to achieve the standard stopping criterion (6.7), whereas in the adaptive resolution399

case, only 10 GMRES iterations are required to satisfy the adaptive stopping criterion (3.11a). In this case, we can400

avoid many unnecessary iterations. One can also see from the right part of Figure 6, for j = 3 and k = 1, that the401

overall gain in terms of algebraic iterations obtained using our stopping criteria is quite significant.402

Figure 7, left, shows the evolution of the estimators during smoothing iterations, at convergence of the nonlinear403

and linear solvers. As expected, the estimators decrease when µ decreases at each smoothing step. In the middle404
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Figure 6: [Adaptive inexact smoothing Newton method, smoothed F–B function (3.2), Algorithm 1] Algebraic and
linearization estimators (3.10) and GMRES relative residual as a function of the GMRES iterations i, for a fixed
smoothing and linearization iterations, j = 2, k = 2, i varies, left, and j = 3, k = 1, i varies, right, using the classical
stopping criterion (6.7) and the adaptive one (3.11a).
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Figure 7: [Adaptive inexact smoothing Newton method, smoothed F–B function (3.2), Algorithm 1] Estimators
(3.10) as a function of smoothing iterations j at convergence of the algebraic and linearization solvers, left. Esti-
mators as a function of cumulated Newton iterations at convergence of the algebraic solver, middle. Estimators as
a function of cumulated GMRES iterations during the first two smoothing iterations (j = 1 and j = 2), right.

part of Figure 7, we can observe the behavior of the estimators at the end of the algebraic iterations, during the405

linearization iterations. We present 8 curves, each one corresponding to a specific value of µj . We can see that at406

each smoothing iteration j, the smoothing estimator ηj,k,ism,AISN stagnates after about two iterations. The linearization407

estimator ηj,k,ilin,AISN decreases until becoming smaller than the smoothing estimator, satisfying the stopping criterion408

(3.11b). Finally, the detected behavior in terms of all smoothing iterations j, linearization iterations k, and algebraic409

solver iterations i is presented in Figure 7, right, for j ≤ 2. The overall results are collected in Table 2. We present410

in particular the number of linearization and cumulated algebraic iterations per smoothing step j, Niter and Giter411

respectively, as well as the estimators (3.10) and the relative norm of the total residual vector (2.6) at the end of412

each smoothing step j. Using the adaptive stopping criteria (3.11), 8 smoothing iterations, 39 cumulated Newton413

iterations, and 5999 cumulated GMRES iterations are needed to ensure convergence. Figure 8 illustrates the414

performance of the adaptive inexact smoothing Newton method. It represents the ratio between: 1) the number415

of algebraic iterations (left) and the CPU time (right) using the classical GMRES stopping criterion (6.7) and 2)416

the number of algebraic iterations and the CPU time using the adaptive stopping criterion (3.11a) for GMRES, as417

a function of the number of elements. For larger systems, 20-times fewer iterations and 18-times faster execution418

time are achieved.419
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µj Niter Giter ηj,k,ilin,AISN ηj,k,ism,AISN ηj,k,ialg,AISN

∣∣∣∣∣∣R(Xj,k,i)
∣∣∣∣∣∣
r

1e+00 1 8 2.16e+03 4.24e+03 1.80e+00 2.19e+03
1e-01 4 34 5.95e+01 2.31e+02 1.89e-02 1.80e+02
1e-02 3 391 1.54e+01 1.73e+01 1.41e-02 6.75e+00
1e-03 4 198 5.04e-01 8.16e-01 4.60e-04 5.95e-01
1e-04 10 796 7.99e-03 3.53e-02 5.58e-06 3.43e-02
1e-05 10 684 8.54e-04 2.12e-03 7.61e-07 1.94e-03
1e-06 4 513 9.03e-05 1.48e-04 7.42e-08 1.05e-04
1e-07 3 3375 6.04e-06 8.14e-06 4.27e-09 4.26e-06

Table 2: [Adaptive inexact smoothing Newton method, smoothed F–B function (3.2), Algorithm 1] Number of
Newton iterations and cumulated GMRES iterations, estimators (3.10), and relative norm of the total residual
vector (2.6) at each smoothing iteration j, at convergence of the algebraic and linearization solvers.
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Figure 8: [Adaptive inexact smoothing Newton method, smoothed F–B function (3.2), Algorithm 1] Ratio between:
the number of algebraic iterations (left) and CPU time (right) needed by the classical stopping criterion (6.7) to
converge to the number and time needed by the adaptive stopping criterion (3.11a), as a function of the number of
mesh elements.

6.6 Nonparametric interior-point method420

We consider here the nonparametric interior-point approach of Section 4, where the dimension of the corresponding421

problem is n = 3N + 1. The value of the constant θ in the additional equation (4.2) is 10−1. The stopping criterion422

is on the relative norm of the linearization residual vector423

‖RIP(X k)‖r := ‖RIP(X k)‖/‖RIP(X 0)‖ < 10−8, (6.8)424

with

RIP(X k) :=

 F − EXk

µ−K(Xk)G(Xk)

−θµk − (µk)
2

 .
Using this method, 19 Newton iterations (CPU time: 6.7s) are needed to reach the end of the simulation. Figure 9425

shows that
∣∣∣∣∣∣RIP(X k)

∣∣∣∣∣∣
r
decreases during the Newton interior-point iterations until satisfying the stopping criterion426

(6.8).427

6.7 Adaptive interior-point method428

Next, we consider the adaptive interior-point method, which is the method presented in Section 5, Algorithm 2429

without applying an algebraic iterative solver to approximate the solution of the linear system (5.2). In this case,430

we can define the linearization and smoothing estimators respectively by431

ηj,klin,AIP :=
∣∣∣∣Hµj (X

j,k)
∣∣∣∣
r
, (6.9a)432

ηj,ksm,AIP :=
∣∣∣∣µj∣∣∣∣

r
, (6.9b)433

434
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Figure 9: [Nonparametric interior-point method, stopping criterion (6.8)] Relative norm of the linearization residual
vector (6.8) as a function of Newton iterations.

where Hµj (·) is defined in (5.1b), and the total estimator by ηj,kAIP := ηj,ksm,AIP + ηj,klin,AIP. Recall from (5.8) the435

definition of the total residual vector for V ∈ Rn as436

RAIP(V ) :=

[
F − EV
−H(V )

]
, (6.10)437

where H(·) is defined in (5.7). The adaptive stopping criterion438

ηj,klin,AIP < αlinη
j,k
sm,AIP (6.11)439

is used to stop the nonlinear solver and a criterion on the relative norm of the total residual vector is applied to440

stop the smoothing iterations441

‖RAIP(Xj,k)‖r < 10−8. (6.12)442

The initial smoothing vector is µ1 = [1, . . . , 1]T ∈ RN and αlin = 1. Concerning the update of the smoothing443

parameter µ, we set α = 10−1. Table 3 summarizes the results. To achieve the stopping criterion (6.12), 11444

smoothing iterations and 20 cumulated Newton iterations are needed (CPU time: 5.0s). In Figure 10, we plot445

the estimators (6.9) as a function of the cumulated Newton iterations (left), the smoothing iterations (middle),446

and the relative norm of the residual vector as a function of the smoothing iterations (right). The behavior of447 ∣∣∣∣∣∣RAIP(Xj,k)
∣∣∣∣∣∣
r
in Figure 10 appears a bit different from its behavior in Figure 4. This is related to the fact that448

the relative norm of the total residual given by (2.6) includes C(X) in the adaptive smoothing Newton method,449

whereas in this adaptive interior-point method, the relative norm of the total residual given by (6.10) includes450

K(X)G(X).451

µj Niter ηj,klin,AIP ηj,ksm,AIP

∣∣∣∣∣∣RAIP(Xj,k)
∣∣∣∣∣∣
r

1e+00 2 1.11e+01 2.00e+01 3.00e+01
1e-01 2 1.24e+00 2.00e+00 3.20e+00
1e-02 2 1.15e-01 2.00e-01 3.11e-01
1e-03 2 6.51e-03 2.00e-02 2.43e-02
1e-04 2 3.38e-04 2.00e-03 2.14e-03
1e-05 1 1.58e-04 2.00e-04 2.82e-04
1e-06 2 3.67e-06 2.00e-05 2.10e-05
1e-07 2 1.00e-07 2.00e-06 2.02e-06
1e-08 1 1.86e-07 2.00e-07 3.84e-07
1e-09 2 9.33e-10 2.00e-08 2.01e-08
1e-10 2 2.55e-11 2.00e-09 2.00e-09

Table 3: [Adaptive interior-point method] Number of Newton iterations, estimators (6.9), and relative norm of the
total residual vector (6.10) at each smoothing step j, at convergence of the linearization solver.
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Figure 10: [Adaptive interior-point method] Estimators (6.9) as a function of cumulated Newton iterations (left).
Estimators (6.9) (middle) and relative norm of the total residual vector (6.10) (right) as a function of smoothing
iterations j at convergence of the linearization solver.

6.8 Adaptive inexact interior-point method452

Let us now present the numerical results of the adaptive inexact interior-point method, detailed in Section 5. We453

employ Algorithm 2 with the GMRES algebraic solver and an ILU preconditioner. The parameters in Algorithm 2454

are set as µ1 = [1, . . . , 1]T ∈ RN , ε = 10−5, αalg = 1, αlin = 1, and α = 0.1. The restart parameter of restarted455

GMRES is chosen equal to 300. From Table 4, we can see that the method converged after 8 smoothing iterations,456

20 cumulated linearization iterations, and 760 cumulated GMRES iterations. Figure 11, left, displays the curves of457

the estimators (5.9) as a function of the smoothing iteration. One can see that the estimators satisfy the adaptive458

stopping criteria incorporated in Algorithm 2. In Figure 11, right, the estimators are shown as a function of459

cumulated Newton iterations, at convergence of the linear solver.460

µj Niter Giter ηj,k,ilin,AIIP ηj,k,ism,AIIP ηj,k,ialg,AIIP

∣∣∣∣∣∣RAIIP(Xj,k,i)
∣∣∣∣∣∣
r

1e+00 3 7 1.15e+01 2.00e+01 3.36e+00 5.59e+00
1e-01 2 12 5.44e-01 2.00e+00 1.78e-02 2.00e+00
1e-02 3 20 9.75e-02 2.00e-01 2.80e-02 2.04e-01
1e-03 3 29 4.82e-03 2.00e-02 1.74e-03 2.01e-02
1e-04 3 56 2.52e-04 2.00e-03 2.19e-04 2.01e-03
1e-05 2 62 1.77e-04 2.00e-04 1.08e-04 2.29e-04
1e-06 2 110 1.49e-05 2.00e-05 1.42e-05 2.46e-05
1e-07 2 464 1.34e-06 2.00e-06 1.16e-06 2.31e-06

Table 4: [Adaptive inexact interior-point method, Algorithm 2] Number of cumulated Newton and GMRES it-
erations, estimators (5.9), and relative norm of the total residual vector (5.8) at each smoothing iteration j, at
convergence of the algebraic and linearization solvers.

6.9 Comparison of the methods461

This section is devoted to compare the semismooth Newton method (SSN), semismooth Newton method with path-462

following (SSN-pf), nonparametric interior-point method (IP), adaptive smoothing Newton method (ASN), and463

adaptive interior-point method (AIP). For this purpose, we introduce a unified residual vector, for V ∈ Rn464

Runif(V ) :=


F − EV

min(0,K(V ))
min(0,G(V ))
K(V ) ·G(V )

 , (6.13)465
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Figure 11: [Adaptive inexact interior-point method, Algorithm 2] Estimators (5.9) as a function of smoothing
iterations j at convergence of the algebraic and linearization solvers (left). Estimators as a function of cumulated
Newton iterations k at convergence of the algebraic solver (right).

independent of the way the nonlinear complementarity constraints are reformulated. The stopping criterion of466

the nonlinear solver for the classical methods (SSN, SSN-pf, IP) is on the relative unified residual ‖Runif(X
k)‖r467

lying below 10−8. Regarding the adaptive methods (ASN, AIP), to stop the nonlinear solver, we use the adaptive468

stopping criteria given respectively in (6.5) and (6.11). To stop the smoothing iterations, ‖Runif(X
j,k)‖r is requested469

to become smaller than 10−8.470
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Figure 12: [Semismooth Newton method (F–B function (2.2)), semismooth Newton method with a path-following
strategy, nonparametric interior-point method, adaptive interior-point method, and adaptive smoothing Newton
method (smoothed F–B function (3.2))] Number of cumulated Newton iterations (left) and CPU time (right) as a
function of the number of mesh elements, employing a stopping criterion on the relative norm of the unified residual
vector (6.13).

In Figure 12, we plot the cumulated number of the Newton iterations (left) and the CPU time (right) required by471

each method, as a function of the number of mesh elements. It is clearly seen that the semismooth Newton method472

(green curve) is typically more costly, both in terms of the required number of iterations and the CPU time, in473

comparison with the other methods. Precisely, we can observe an important gain between the semismooth Newton474

method (green curve) and the adaptive smoothing Newton method (purple curve). Moreover, as we can remark475

from the red curve, the combination of a path-following strategy to the semismooth Newton method seems to be476

efficient. Finally, one does not see a remarkable difference between the results of the nonparametric interior-point477

method (cyan curve) and the adaptive interior-point method (black curve) in this test case.478
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7 Numerical experiments: Two-phase flow with phase transition479

The second model problem that we consider in our numerical tests is a two-phase flow model (liquid–gas) with480

phase transition in porous media following [6, 13, 9]. Each of the liquid phase, denoted by l, and the gas phase,481

denoted by g, is composed of two components, water and hydrogen, denoted respectively by w and h.482

7.1 Problem statement483

The problem at hand can be formulated as a system of nonlinear partial differential equations with nonlinear484

complementarity constraints at each time step τν . Let Th be the spatial mesh, we denote respectively by SνK , P
ν
K , and485

χνK the discrete elementwise unknowns approximating the values of the saturation Sl, the pressure P l, and the molar486

fraction of hydrogen in the liquid phase χl
h in the elementK ∈ Th and on time step 1 ≤ ν ≤ Nt. Let N be the number487

of elements in the mesh Th. If one introduces the appropriate nonlinear function Hν
c,K : R3N → R, c ∈ {w,h}, and488

suitable functions FK : R3 → R and GK : R3 → R, the discrete problem written elementwise consists in finding489

Xν := (Xν
K)K∈Th ∈ Rn, where n = 3N, and Xν

K := [SνK , P
ν
K , χ

ν
K ] ∈ R3, such that for all K ∈ Th490

Hν
c,K(Xν) = 0, c ∈ {w,h}, (7.1a)491

FK(Xν
K) ≥ 0, GK(Xν

K) ≥ 0, FK(Xν
K)GK(Xν

K) = 0. (7.1b)492
493

The formulation (7.1) allows to model the transition from a single-phase flow to a two-phase flow during the494

appearance and disappearance of the gas phase and vice versa. As an example, a detailed finite volume discretization495

can be found in [7, Section 3.2]. The first 2N lines of system (7.1) can be written globally as496

Hν(Xν) = 0,497

where Hn : R3N → R2N is defined elementwise by (7.1a).498

Considering a C-function Cν , for 1 ≤ ν ≤ Nt, we define a function Cν : R3N → RN as499

Cν(Xν) = Cν ((FK(Xν
K))K∈Th , (GK(Xν

K))K∈Th) . This leads us to apply a semismooth Newton method to find a500

solution for problem (7.1) written as501

Hν(Xν) = 0,
Cν(Xν) = 0.

(7.2)502

503

The total residual vector R(V ) of problem (7.2) is thus given by504

R(V ) :=

[
−Hν(V )
−Cν(V )

]
, ∀ V ∈ Rn. (7.3)505

7.2 Adaptive smoothing Newton method506

We introduce a function Cνµ : R3N → RN defined as Cνµ(Xν) = Cνµ ((FK(Xν
K))K∈Th , (GK(Xν

K))K∈Th) , for 1 ≤507

ν ≤ Nt, where Cνµ is a smoothed C-function. Line (7.1b) can be approximated as a smoothed nonlinear equation508

Cνµ(Xν) = 0, making it possible to apply the standard Newton method to solve the resulting nonlinear system in509

the form: Find Xν,j ∈ R3N at each time step ν, 1 ≤ ν ≤ Nt, satisfying510

Hν(Xν,j) = 0,
Cνµjν (Xν,j) = 0.

(7.4)511

512

At each time step 1 ≤ ν ≤ Nt, each smoothing step j ≥ 1, and each linearization step k ≥ 1, fixing Xν,j,0 ∈ Rn, we513

try to approach the solution of problem (7.4) by finding a solution Xν,j,k ∈ Rn such that514

Aν,j,k−1µjν Xν,j,k = Bν,j,k−1
µjν , (7.5)515

where the Jacobian matrix Aν,j,k−1µjν ∈ Rn,n and the right-hand side vector Bν,j,k−1
µjν ∈ Rn are defined by516

Aν,j,k−1µjν :=

[
JHν (Xν,j,k−1)
JCν

µjν
(Xν,j,k−1)

]
, (7.6a)517

Bν,j,k−1
µjν :=

[
JHν (Xν,j,k−1)Xν,j,k−1 −Hν(Xν,j,k−1)

JCν
µjν

(Xν,j,k−1)Xν,j,k−1 − Cνµjν (Xν,j,k−1)

]
, (7.6b)518

519

with JHν (Xν,j,k−1) and JCν
µjν

(Xν,j,k−1) the Jacobian matrices of the function Hν and the smoothed function Cνµjν ,520

respectively, at the point Xν,j,k−1 obtained by a Newton linearization.521
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7.3 Adaptive smoothing Newton algorithm522

Let ε > 0 be the desired relative tolerance, αlin ∈ ]0, 1] be the desired relative size of the linearization error, and523

α ∈ ]0, 1[ the smoothing decrease parameter. The unsteady adaptive smoothing Newton algorithm reads as follows:524

Algorithm 3 Unsteady adaptive smoothing Newton algorithm

Initialization: Fix ε > 0, α ∈ ]0, 1[, and αlin ∈ ]0, 1]. Set ν := 1 and tν := 0. Choose Xν,0 ∈ Rn.

Time loop

1. Fix µjν > 0 and set j := 1.

2. Smoothing loop

2.1 Set Xν,j,0 := Xν,0 and k := 1.

2.2 Newton linearization loop

2.2.1 From Xν,j,k−1 define Aν,j,k−1µjν ∈ Rn,n and Bν,j,k−1
µjν ∈ Rn given by (7.6).

2.2.2 Find Xν,j,k solution to the linear system

Aν,j,k−1µjν Xν,j,k = Bν,j,k−1
µjν .

2.2.3 Compute the estimators and check the stopping criterion for the nonlinear solver(
ην,j,klin,ASN < αlinη

ν,j,k
sm,ASN

)
or

(
ην,j,klin,ASN < ε

)
. (7.7)

If satisfied, set k := k and stop. If not, set k := k + 1 and go to 2.2.1.

2.3 Check the stopping criterion for the smoothing iterations in the form:

max
{
ην,j,ksm,ASN,

∣∣∣∣∣∣R(Xν,j,k)
∣∣∣∣∣∣
r

}
< ε. (7.8)

If satisfied, set j := j and stop. If not, set j := j + 1, Xν,j,0 := Xν,j−1,k, and µjν := αµ(j−1)ν . Then set
k := 1 and go to 2.2.1.

If ν = Nt, stop. If not, set ν := ν + 1, j = 1, Xν,j,0 := Xν−1,j , and tν := τν + tν−1. Then set µjν = µjν−1 , k = 1,
and go to 2.2.1.

Description of Algorithm 3 For the first time step ν = 1, starting with an initial approximationXν,0 ∈ Rn and525

an initial smoothing parameter µν,1 > 0, we solve the smoothed nonlinear system (7.5) by the Newton linearization526

solver, and decrease the smoothing parameter µν,j at each smoothing step j, until the stopping criterion (7.8) on527

the smoothing estimator or the relative norm of the total residual vector is satisfied at step j. Then, we continue528

the time loop, for 2 ≤ ν ≤ Nt, starting for j = 1 with Xν,j,0 := Xν−1,j and µjν := µjν−1 , until satisfying the529

stopping criterion (7.8).530

7.4 Numerical results531

We consider a homogeneous porous medium in one dimension, supposed to be horizontal with length 2m, and a532

uniform spatial mesh with N = 1000 elements. The final time of simulation is tF= 100s, and the time step is533

constant τν = 10s. We assume that the medium is initially saturated with liquid, Sl = 1, and containing no534

hydrogen, χlh = 0, on which we impose an injection of gas (hydrogen), constant in time, in the first cell of the mesh.535

The initial conditions are Sl,ν=0 = 1, P l,ν=0 = 106Pa, and χl,ν=0
h = 0.536

Semismooth Newton method. We begin by employing the semismooth Newton method presented in Section537

2, with the min function (2.1) to solve the nonlinear system (7.2). On each time step ν ≥ 1, we request the relative538

norm of the total residual vector R(Xν,k) given by (7.3) to drop below 10−4.539
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In Figure 13, the evolution of
∣∣∣∣R(Xν,k)

∣∣∣∣
r
is shown at each time step. 31 cumulated Newton iterations are540

needed.541
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Figure 13: [Semismooth Newton method, min function (2.1)] Relative norm of the total residual vector (7.3) as a
function of cumulated Newton iterations along the time steps ν.

Adaptive smoothing Newton method. Next, we present the results obtained using the adaptive smoothing542

Newton method, summarized in Algorithm 3, with the smoothed min function (3.1) to solve the smoothed nonlinear543

problem (7.4) at each time step τν , 1 ≤ ν ≤ Nt. The parameters are set as µj1 = 10−1, ε = 10−4, αlin = 1, and544

α = 0.1.545
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Figure 14: [Adaptive smoothing Newton method, smoothed min function (3.1), Algorithm 3] Estimators (6.3) and
relative norm of the total residual vector (7.3) at the first time step ν = 1 as a function of smoothing iterations j,
at convergence of the linearization solver (ν = 1 fixed, j varies, k = k), left, and of cumulated Newton iterations,
right, (ν = 1 fixed, j and k vary).
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ν µjν Niter ην,j,klin,ASN ην,j,ksm,ASN

∣∣∣∣∣∣R(Xν,j,k)
∣∣∣∣∣∣
r

2 1e-05 3 2.15e-07 3.13e-07 2.86e-07
3 1e-05 3 3.13e-07 3.68e-07 4.24e-07
4 1e-05 3 3.93e-07 1.19e-07 3.47e-07
5 1e-05 3 4.62e-07 1.59e-07 4.01e-07
6 1e-05 3 5.04e-07 1.88e-06 1.87e-06
7 1e-05 3 5.58e-07 1.74e-07 4.94e-07
8 1e-05 3 5.94e-07 3.76e-07 7.08e-07
9 1e-05 3 6.64e-07 2.77e-07 7.50e-07
10 1e-05 3 7.01e-07 3.00e-07 7.89e-07

Table 5: [Adaptive smoothing Newton method, smoothed min function (3.1), Algorithm 3] Relative norm of the
total residual vector (7.3) and estimators (6.3) at each time step ν, at convergence of the linearization solver.

From Figure 14, one can see that at the first time step ν = 1 and at each smoothing step j ≤ 4, the linearization546

estimator decreases until lying below the smoothing estimator. The smoothing iterations are thus stopped in the first547

possibility according to the stopping criterion (7.7). On the other hand, at the 5th smoothing step, ην,j,klin,ASN is smaller548

than the fixed tolerance but not smaller than ην,j,ksm,ASN. Even after additional Newton iterations at this smoothing549

step, we will have the same observation. This justifies the modification applied in the adaptive stopping criterion550

(7.7). In Figure 14, right, we report the estimators and ‖R(X1,j,k)‖r as a function of cumulated Newton iteration551

for ν = 1. The stopping criterion (7.8) is satisfied after 5 cumulated smoothing iterations, and 10 cumulated Newton552

iterations. Then, as presented in Table 5, starting at the second time step (ν = 2) with µjν = 10−5, the smoothing553

parameter does not decrease since the stopping criterion (7.8) is satisfied at each time step after one smoothing554

step only. To reach the end of the simulation, 9 cumulated smoothing steps and 31 cumulated linearization steps555

are needed.556

As a conclusion, the results confirm the expected behavior of Algorithm 3 featuring an adaptive stopping criterion557

for the nonlinear solver. In this case, though, the stopping criteria in the adative smoothing Newton method do558

not bring the number of iterations down since the semismooth Newton method already behaves very well here.559

8 Conclusion and outlook560

In this work, we have considered nonlinear algebraic systems with inequalities in a form of complementarity con-561

straints. We have considered some existing methods, like the semismooth Newton method, possibly combined with562

a path-following strategy, or a nonparametric interior-point method. Our goal was to propose a systematic way to563

drive such methods with adaptive stopping criteria and possibly inexact algebraic solvers. We have achieved this by564

a reformulation of the complementarity constraints using a smoothed function and a posteriori error estimate that565

enables to distinguish the different error components. Numerical experiments confirmed that the proposed adaptive566

approaches yield significant computational savings compared to some standard approaches from literature. More-567

over, their numerical performance seems to be notably good across a range of test problems. In [8], we also take568

into account the discretization error of the considered problem, enabling to adaptively stop the outer smoothing569

loop in Algorithm 1, and employ the method to solve more involved problems.570
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