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Semismooth and smoothing Newton methods for nonlinear systems
with complementarity constraints: adaptivity and inexact resolution*

Ibtihel Ben Gharbia! Joélle Ferzly™¥ Martin Vohralik® Soleiman Yousef!
June 17, 2022

Abstract

We consider nonlinear algebraic systems with complementarity constraints stemming from numerical dis-
cretizations of nonlinear complementarity problems. The particularity is that they are non-differentiable, so
that classical linearization schemes like the Newton method cannot be applied directly. To approximate the
solution of such nonlinear systems, an iterative linearization algorithm like the semismooth Newton-min or an
interior-point algorithm can be used. Alternatively, the non-differentiable nonlinearity can be smoothed, which
allows a direct application of the Newton method. Corresponding linear systems can be solved only approxi-
mately using an iterative linear algebraic solver, leading to inexact approaches. In this work, we design a general
framework to systematically steer these different ingredients. We first derive an a posteriori error estimate given
by the norm of the considered system’s residual. We then, relying on smoothing, design a simple strategy of
tightening the smoothing parameter. We finally distinguish the smoothing, linearization, and algebraic error
components, which enables us to formulate an adaptive algorithm where the linear and nonlinear solvers are
stopped when the corresponding error components do not affect significantly the overall error. Numerical ex-
periments indicate that the proposed algorithm, possibly in combination with the GMRES algebraic solver,
ensures important savings in terms of the number of iterations and execution time. It appears rather promising
in comparison with the other methods, namely since its performance seems remarkably stable over a range of
academic and industrial problems.

Key words: nonlinear complementarity constraints, semismooth smoothing Newton methods, interior-point
method, a posteriori error estimate, adaptivity, stopping criteria

1 Introduction

Consider a system of algebraic equations with complementarity constraints written in the following form: Find a
vector X € R™ such that

EX = F, (

1.1a)
K(X)>0,G(X)>0, K(X) - G(X) =0, (1.1

b)

where for two integers n > 1 and 0 < m < n, E € R""™" is a matrix, K : R” — R" and G : R” — R™ are (linear)
operators, and F' € R is a given vector. The first line (1.1a) typically represents the discretization of a linear
partial differential equation. The second line (1.1b) then represents the complementarity constraints. It states that
the vectors K(X) and G(X) have nonnegative components and are orthogonal.

Complementarity problems have important applications in many fields: economics, engineering, operations
research, nonlinear analysis... In the literature, many theoretical results and numerical methods have been proposed
to solve problem (1.1), see for example the books of Facchinei and Pang [23, 24], Ito and Kunisch [30], Ulbrich [43],
Bonnans et al. [14], and the study of Aganagic [1].
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By means of so-called C-functions (C for complementarity), see [23, 24|, the complementarity constraints (1.1b)
can be rewritten as a system of equations C(X) = 0, where C : R™ — R"™ is nonlinear and semismooth. We then
obtain the following equivalent formulation of problem (1.1): Find X € R™ such that

EX = F

c(xX) = o. (1.2)

A direct application of the standard Newton method to (1.2) is, however, impeded by the fact that C(X) is not
differentiable. An introduction of the Clarke differential [16] allows to give a weaker differentiability meaning and
leads to the class of semismooth Newton methods, with reputedly good convergence properties [33, 24, 10, 11,
12, 19, 20]. These methods are in certain cases equivalent to primal-dual active set strategies, see Hintermiiller
et al. [27]. Moreover, in [47], a regularized semismooth Newton method combined with a hyperplane projection
technique was proposed.

Augmented Lagrangian method is one of the commonly used algorithms for constrained optimization, see, e.g.,
[29] and the references therein. It seeks a solution by replacing the original constrained problem by a series of
unconstrained problems and add to the objective function a penalty term, and another term designed to mimic a
Lagrange multiplier.

An additional technique, often used in a function space setting, consists in introducing a proper regularization,
motivated by the augmented Lagrangian method. It allows to apply an infinite-dimensional semismooth Newton
method for the solution of the regularized problem, see, e.g., [43]. In the present context, this leads to replacing
the complementarity conditions (1.1b) by

K(X) + min{0, K (X) +vG(X)} = 0,

for a parameter v > 0. This method can be combined with a path-following strategy to update the regularization
parameter -, see for instance [41, 28, 40].

Another important class of methods for constrained optimization problems of the form (1.1) is formed by interior-
point methods. These methods consist in generating a sequence in the feasible region K(X) > 0 and G(X) > 0,
under the assumption of knowing a feasible initial point. We refer to the work of Wright [46], Bellavia et al. [4],
and the references therein for a review.

Lastly, an additional notable method is the smoothing Newton method. The main idea of this approach is to
approximate the semismooth (non-differentiable) function C' from (1.2) by a smooth (differentiable) function that
depends on a smoothing parameter. The problem is reformulated as a sequence of regularized smooth equations
that can be solved by applying the standard Newton method, and where one drives the smoothing parameter down
to zero, cf. [39, 36, 35] and the references therein.

In this work, we design a general framework to systematically steer the above different ingredients. Our main
philosophy is adaptive smoothing (regularization). For p > 0, let a smoothed function C,; (-), satisfy ||C,;(X) —
C(X)| = 0as p? — 0, for X € R". The smoothing parameter y/ is reduced at each smoothing iteration j > 1.
Thus, problem (1.1), or equivalently (1.2), can be reformulated as a system of smooth (differentiable) equations
written in the form: Find X/ € R” such that

EX/ = F,

C. (X)) = o (1.3)

Hence, Newton-type methods can be applied to solve system (1.3), yielding, at each linearization step k > 1, a
linear system
k=1 xrjk _ ik—1
Aij X = Bij , (1.4)

where Ai’f_l € R™" is a matrix and Bi’f_l € R™ is a vector.

Solving (1.4) with a direct method may be very expensive. A popular approach is to solve it approximately
by applying only a few steps of an iterative algebraic solver. Such inexact approaches can be found in [22, 32]
for semismooth Newton methods, in [39, 26] for smoothing Newton methods, in [49] for augmented Lagrangian
methods, and in [3] for interior-point methods. In the algorithms introduced therein, the iterations of different
solvers are stopped according to a fixed maximal number of iterations, the Euclidean norm of the residual vector,
or other parameters-dependant stopping criteria. In this work, the a posteriori estimate constitute a distinctive
element at the heart of the proposed smoothing method. Importantly, it ensures the desired balance between each
source of error at any resolution step, unlike existing approaches based on classical stopping criteria.

At each linear algebraic step i > 1 for (1.4), one in particular obtains X /%% € R™ such that

Gk=1yikyi _ pik—1 _ piki
APFTIXTRT = B e
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where Rf;l];’i € R™ is the algebraic residual vector of (1.4).

Our principal aim is to reduce the computational cost of the numerical resolution of (1.1) by employing an
adaptive strategy based on a posteriori error estimates. There is a well-developed literature on a posteriori error
estimates and mesh adaptivity for partial differential equations, see for instance the books of Ainsworth and Oden
[2], Repin [37], and Nochetto et al. [34]. For variational inequalities, we can mention the contributions of Repin [38],
Ben Belgacem et al. [5], Biirg and Schréder [15], and Dabaghi et al. [17]. Although smoothing Newton approaches
have been widely studied, to the best of our knowledge, almost no work has been done to this day on a posteriori
error estimates and adaptivity for solvers applied to discrete problems of the form (1.1).

We first derive an upper bound on the norm of the residual of system (1.2), given by
—C (X 7k

A _ Jikst
R(X) ::[F EX ]

Then, decomposing R(X7*?), we distinguish the different error components. This leads to an a posteriori control
of the form

[R(XTP), < ™" =l + 0l + g (1.5)
Here, 7%+ is a fully computable upper bound that holds true at any smoothing (regularization) step 7, linearization

step k, and algebraic solver step i, whereas the role of the estimators 7%, flrll“, and niig’i is to identify the
smoothing, linearization, and algebraic components of the error. This error bound allows to define adaptive stopping
criteria for the nonlinear and linear algebraic solvers, in the spirit of [21, 17], and the references therein. These
criteria, as well as a simple way to tighten the smoothing parameter p/, are incorporated in a three-level adaptive
algorithm. In contrast to common approaches, where the termination requires reaching a fixed threshold, the
particularity of this adaptive algorithm is that the iterations are stopped when the error component of the concerned
solver is smaller than the total error, up to a desired fraction. The efficiency of the proposed adaptive algorithm for
(inexact) smoothing Newton methods and (inexact) interior-point methods is showcased numerically on practical
problems.

It is relevant to mention that this work is extented in [8], where the present approach is applied to a system
of PDEs with complementarity constraints in infinite-dimensional space. In particular, taking into account the
discretization error allows to adaptively steer the smoothing in system (1.3). Although we do not address mesh
adaptivity in our work, we underline that a posteriori estimators are an important tool for adaptive mesh refinement
strategies, see, e.g., [18] and the references therein. Consequently, algorithms based on the previous criteria ensure
significant computational gains in terms of total number of iterations and mesh cells.

Our manuscript is organized as follows. In Section 2, we recall a semismooth Newton method based on an
equivalent reformulation of the complementarity constraints in the form (1.2). Section 3 is devoted to introduce
our adaptive inexact smoothing Newton method based on the reformulation as a system of smooth equations as in
(1.3). We establish here the a posteriori error estimates (1.5) and propose an adaptive algorithm with a posteriori
stopping criteria. We survey a nonparametric interior-point method in Section 4, and introduce its adaptive version
in Section 5. Finally, a detailed numerical study is presented in Sections 6 and 7.

2  Semismooth Newton method

The purpose of this section is to briefly recall the semismooth Newton method to approximate the solution of the
nonlinear system of equations (1.1), see, e.g., [33, 23, 17]. The complementarity constraints represented by (1.1b) as
algebraic inequalities are here rewritten as non-differentiable algebraic equalities, using a complementarity function
(C-function). A function C:R™ x R™ - R™, m > 1, is called a C-function if

Clxz,y)=0 <= £>0,y>0,z-y=0 V(z,y) e R" xR™.

A variety of C-functions can be found in the literature, see, e.g., [42, 25]. We give as examples the minimum (min)
function and the Fischer-Burmeister (F-B) function: for I =1,...,m,

(C’min(m, y))l = (min(z, y)), = (21 +31)/2 — |21 — w]/2. (2.1)

(C’FB(m,y)>l = /a2 4y — (@ + ). (2.2)

In general, the C-functions are not Fréchet differentiable. The min and the Fischer-Burmeister functions are,
for example, differentiable everywhere except in * = y and (0,0), respectively. Let us introduce a function
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C :R" — R™ defined as C(X) := C (K(X),G(X)), where C : R™ x R™ — R™ is any C-function. By using this
reformulation in (1.1b), it is obvious that problem (1.1) can be equivalently rewritten as: Find a vector X € R™,
such that

EX =F, (2.3a)
C(X)=0. (2.3b)

Next, we detail the semismooth Newton linearization. Let an initial vector X° € R™ be given. At the step
k > 1, one looks for X* € R” such that
AFTIXF = BFL (2.4)

where the square matrix A*~! € R™" and the right-hand side vector B¥~! € R™ are given by

k=1 ._ E k=1 ._ F
A T l: JC(Xk—l) ] ) B T |: JC(Xk—l)Xk—l _ C(Xk—l) (2'5)
Note that the Jacobian corresponding to (2.3a) is constant and equal to E since it is linear. The semismooth
nonlinearity occurs in the second line (2.3b): the notation J¢ in (2.5) stands for the Jacobian matrix in the sense
of Clarke of the function C, cf. [23, 24]. To give an example, consider the semismooth min function (2.1) and define
the matrices K and G € R™" respectively by K := [VK(X)] and G := [VG(X)]. Then the I*" row of the Jacobian
matrix in the sense of Clarke J¢ is either given by the I** row of K, if (K(X*~1)), < (G(X*1)),, or by the !
row of G, if (G(X*71)), < (K(X*71)),.
We will need below the total residual vector of problem (2.3), defined by

F -EV n
R(V) = [ el% } , VeR™ (2.6)
In this context, the relative norm of a vector V' € R" is given by ||V, := [|V]|/ HR(XO)H, where || - || is the

Lo-norm.

3 Adaptive inexact smoothing Newton method

In this section we introduce our adaptive inexact smoothing Newton method. Based on a posteriori error estimators,
adaptive stopping criteria are formulated to conceive an adaptive iterative algorithm.

3.1 Smoothing of the C-functions

The key of our developments is to smooth the non-differentiable equation formulation (2.3b) of the complementarity
constraints (1.1b) with the help of a smooth (i.e. continuously differentiable) function. This smoothing allows us
to approximately transform the nonsmooth nonlinear system (2.3) to a smooth system of nonlinear equations to be
solved by using the standard Newton method.

Let p > 0 be a (small) smoothing parameter. We construct an approximation function CN’M :R™ x R™ — R™ of
a C-function C such that C,,(-,-) is of class C' on R™ x R™ and satisfies

|C(x,y) — Culzx,y)|| = 0as u—0 forall (z,y) € R™ x R™.

For example, for I = 1,...,m, a possible smoothing of the min and the Fischer-Burmeister functions (2.1) and (2.2)
can be

= z + Y (|a:—y\u> .
(Coin, @), = F 5 = L with (J2],), = /=F + w2, (3.1)
(CFBM (z, y))l = /1 +a} +yi — (@ + ), (32)

where the p-smoothed absolute value function | - | p i R™ = R, m > 0, replaces the absolute value function (not

differentiable at 0), see Figure 1. Note that both functions ||, and Crg,,, are of class C™.
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\\\\ - = CVFB‘L (1})

\\\\ - C~4FB (17)
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Figure 1: Left: Absolute value function |- | and smoothed absolute value function |- [,. Right: Fischer-Burmeister

function Crp(-) and smoothed Fischer-Burmeister function CN'FBH (+), for different values of the smoothing parameter
1.

We define the function C,, : R* — R™ as C,(X) := C, (K(X),G(X)), where C,, : R™ x R™ — R™ is any
smoothed C-function of at least class C. This allows to approximate problem (1.1) or (1.2) by a system of smooth
equations: Find a vector X € R™, such that

EX = OF’ (3.3)

Cu(X) =

Thus, Newton-type methods can be applied to solve the system of nonlinear algebraic equations (3.3).

Fixing ! > 0, we now describe an iterative method for solving problem (2.3). At the beginning of each smoothing
iteration (outer iteration) denoted hereafter by j > 1, an initial guess X7 € R" is given, and a smoothing parameter
u/ is determined; p/ will be driven down to zero. Then some iterative nonlinear solver like the Newton method is
employed to solve the smoothed problem written in the form: Find X7 € R™ such that

EX’ = F,
Cﬂj(Xj) = 0. (3.4)

3.2 Newton linearization of the nonlinear algebraic system

In what follows, we detail the Newton method employed to solve problem (3.4) at a fixed outer smoothing step
j > 1. Given an initial vector X7 (typically X79 = X7~1), Newton’s algorithm generates a sequence (X7**);>q
with X 7% € R™ given by the following system of linear algebraic equations

k=1 y ik j k1
ATTIXIR = BT, (3.5)
where the Jacobian matrix Aijk ! € R™" and the right-hand side vector BZL ’jk_l € R" are defined by

- F
}, Bl = , (3.6)

APR—L E . . ,
A = JCMJ‘ (Xj,k—l)XJ,k—l _ Cuj (Xj,k—l)

i = |: JCMj (Xj’k_l)

with J¢ (X7#=1) the Jacobian matrix of the smooth function C,,; at XJ*~1.

3.3 Inexact solution of the linear algebraic system

The linearized system (3.5) may not be solved exactly, since the use of a direct method may be expensive. For this
reason, we consider in this work also an inexact resolution. For a fixed smoothing step j > 1, a fixed Newton step
k > 1, and an initial guess X 7% (typically X7%0 = X3*=1) only a few steps of an iterative linear algebraic solver
can be applied to find an approximate solution to (3.5), yielding, on step i > 1, an approximation X 7% to X7,
This satisfies (3.5) up to the residual vector given by

B pdE X (3.7)
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Define now the linearization function C :R™ = R™ of C),; at smoothing step j and Newton step k as

CIF Y (V) = Cu(XPF ) + Jg (X (V = X7F7) YV eR™ (3.8)
This allows us to write the algebraic residual vector for V eR" as
; ; F-EV
K ko
R3N(V) = B, 1 Al v = [ _CI () } (3.9)
,u]

3.4 An upper bound for the norm of the residual

We consider the total residual vector of problem (2.3) given in (2.6). By adding and subtracting C,,; (X7*) and
its linearization Ci’jk_l(X J:k:%) given by (3.8), the total residual vector can be decomposed as follows:

o F —EXJk
.mXMﬂ:[ }

—C(X7H0) + O (XkT) + COFH (X R1)
0 F - EXJWki

0
C(X k) ] + [ Ci,jkfl(Xj,k,i) — Cy (X } + [ _Civjk—l(Xj,k,i)

- { Cu (XI1) -

smoothing linearization algebraic

It is reasonable to get these three terms. Indeed, the first one reflects the error due to the approximation of
the semismooth function C by the smoothed function C\;. The second term is related to the linearization of the
nonlinear smooth problem (3.4). Taking into account that the resolution of the smooth linearized problem (3.5)
is possibly done “inexactly”, the remaining term represents the error of the inexact algebraic resolution. By the
triangle inequality, the relative norm of R(X/*?) is thus bounded by the smoothing, linearization, and algebraic
estimators respectively defined as

Moy arsn = [|Cs (XPF1) —C(XPH0)] | (3.10a)

ﬁljlff\ISN = chk HXI) — Cps (XPEN (3.10b)

r

I

1
77@1]; lAISN = (HF EX]’k’lH + chk ! (X1 2) i . (3.10c)

Note that n&lg \1sn 18 exactly equal to the relative norm of RaﬁIgSN(X 3:#:%) given by (3.9). From these developments
we conclude:

Theorem 3.1 Let X% € R™ arise from an inevact solve of (3.5). We have
| R(X7 Z)||1r < NN = M AN T i A1sN + Taig  AISN-
3.5 Adaptive inexact smoothing Newton algorithm

Theorem 3.1 motivates the following. Let two real parameters ain and aaie be given in ]0, 1], representing the
desired relative size of the algebraic and linearization errors, and let € > 0 be a given desired tolerance for the
total error. The stopping criteria for the linearization, algebraic, and smoothing steps, with the bars denoting the
stopping indices, are respectively set as

i ki
”ilg AISN < O‘algnhn AISN? (3.11a)
771i}1,AISN < O‘Iinnsr’n:Alsw (3.11b)
|R(XTFH)|. <e. (3.11c)

The first criterion (3.11a) for the algebraic iterative solver expresses that there is no need to continue with the
algebraic steps when the linearization error becomes dominant. Similarly, the second one (3.11b) aims at stopping
the linearization iterations when the linearization error does not substantially contribute to the smoothing error.
Finally, the termination criterion for the smoothing steps (3.11c) is of the standard type, that is when we stop the
entire procedure, when the relative norm of the total residual vector lies below the desired tolerance ¢.

The entire method is described by the following adaptive algorithm, which drives the smoothing parameter
to zero as p/ := ap/~! at each smoothing iteration. Other common empirical ways to progressively reduce p/ can
be found, e.g., in [45]. The adaptive inexact smoothing Newton algorithm is the following:



Algorithm 1 Adaptive inexact smoothing Newton algorithm

1. Initialization

Choose a tolerance € > 0 and parameters « € ]0, 1] and avin, catg € 10, 1].
Fix p' > 0 and an initial approximation X° € R™. Set j := 1.

2. Smoothing loop

2.1 Set X707 := XY as an initial guess for the nonlinear solver. Set k := 1.
2.2 Newton linearization loop
2.2.1 From X7#~1 define A7F ™" € R™" and BJ/™" € R" by (3.6).
2.2.2 Consider the problem of finding a solution X7 to
Gk—1yrjk _ pik—1
AT XM =B (3.12)

2.2.3 Set X /%0 := XJF~1 ag initial guess for the iterative algebraic solver. Set i := 1.
2.2.4 Algebraic solver loop

i) Starting from X7F1

, perform a step of the iterative algebraic solver for the solution of (3.12),
yielding, on step 7 an approximation X7%?* to X7* satisfying

Jk=1~yrj.ki _ pik—1 AISN g,k,i
ATTIXIR = Bl — Ryt (XM,

ii) Compute the estimators given in (3.10).
iii) If niigijSN < aalgnﬂf”gISN, set i := 4 and stop. If not, set i := i+ 1 and go to i).

2.2.5 If nlji’f’/iISN < aﬁnnzr’f:iISN’ set k := k and stop. If not, set k := k + 1 and go to 2.2.1.

2.3 If ||R(XJ"E’E)||r < ¢, set j := j and stop.

If not, set j := j + 1, X930 := X3=1ki and pd := api~1. Then set k := 1 and go to 2.2.1.
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4 Nonparametric interior-point method

Now we employ a nonparametric interior-point method to problem (1.1). More precisely, we consider the method
introduced in [44] where a systematic strategy is used to steer the sequence of smoothing parameters towards zero.

We introduce a vector p = ul € R™, where 1 > 0 is the smoothing parameter and 1 € R™ is the vector with
all components equal to 1. The original nonsmooth problem (1.1) is replaced by a smoothed problem written in the
form: Find X € R™ such that

EX = F, (4.1a)
K(X)>0, G(X)>0, K(X)G(X)=p, (4.10)
where [(K(X)G(X)],, = [K(X)],,[G(X)],,- In order to properly adjust the sequence of smoothing parameters,

the smoothing parameter p is treated as an unknown, by introducing the following new equation into system (4.1)
Ou+ p* =0, (4.2)

where 6 is a small positive real parameter, chosen once and for all. This equation prevents p from rushing to zero
in just one iteration, and ensures quadratic convergence, see [44]. The unknown of system (4.1) is now the enlarged
vector X = (X,pu)T € R**!. We are thus brought back to applying the standard Newton method to a smooth
problem.

Let X0 € R” such that K(X°) > 0 and G(X°) > 0 be given. To update the iterate X*~!, we compute a
search direction denoted by d* = [d_l§{7dﬁ] € R*! where d’_§( € R™ and dl’j € R. Then, to preserve positivity of
K(X"%) and G(XF) at each step of the nonlinear solver, a truncation of the Newton direction d* is performed so
that the corresponding update satisfies K(X*~1 + x*d%) > 0 and G(X*~! + kFd) > 0 for some x* € ]0,1], as
close to 1 as possible. After this, we can set

e A A A

Recall that our goal is to make p equal to 0 in the limit while ensuring the positivity of the updated iterate. Another
choice for the additional equation (4.2) added to system (4.1) was developed and introduced in a recent work, see
[45, Section 3]. The proposed equation does not require to truncate the Newton direction, and couples p and X in
a tighter way.

We rewrite system (4.1) as an enlarged system of n + 1 equations

EX F,
K(X)G(X)—p = 0, (4.3)
Ou+p? = 0.

5 Adaptive inexact interior-point method

We present in this section our adaptive inexact version of the nonparametric interior point method of Section
4. In contrast to Section 4, we consider, however, u > 0 as a parameter, and not as an unknown. At each
smoothing step j > 1, we may solve the system of smoothing equations written as: Find X7 € R” such that
K(X7) >0, G(X’) >0, and
EXY =F, (5.1a)
H,(X7):=KX)G(X’)—p =0. (5.1b)

The values of 7 are gradually decreased at each smoothing iteration, creating a sequence of suitable 7 converging
to zero.

5.1 Newton linearization of the nonlinear algebraic system

Let X° € R” such that K(X") > 0 and G(X°) > 0 be given. At each smoothing iteration j > 1 and each
linearization step k > 1, starting with an initial approximation X7 such that K(X7°) > 0 and G(X’?) > 0
(typically X70 = X7~1), we try to approach the solution of problem (5.1) by finding X7** € R™ such that

A]’#]k*lXj:k = BJ-"'J.]€717 (52)
j2 I



26 Wwhere the Jacobian matrix Afﬂk ! € R™ and the right-hand side vector Bi ’jkfl € R™ are defined by

. E F

j,kfl Jk—1 )
267 Aﬂj |: JH (XJ k=1 ] ) BHJ JH (Xj h—1) xik—1 ~H, (X3k=1y | (5.3)
28 with J H, - the Jacobian matrix of H,;. To ensure the positivity of the complementarity constraints, we then define
260 the dlrectlon Ak = X0k — Xk 6 R” and find 7% € ]0,1] such that
K(XPF=1 4 ghkdik)y >0 and G(XPF! 4 wi*di*) >0

. 5.2  Inexact solution of the linear algebraic system

272 For a fixed smoothing iteration j > 1, a fixed Newton step k > 1, and an initial guess X7%° (typically X /%0 =
273 X7#*~1) an iterative algebraic solver can be applied to approach the solution of (5.2), yielding, on step i > 1, an
27« approximation X757 to X7*. This satisfies (5.2) up to a residual vector defined by

Gk—1 _ pdk—1 gk

275 Bﬂj Aﬂj D, G (5.4)
276 Introduce the linearization Hi’jkfl :R" — R™ of H,;(-) such that for V € R",
HIF N (V) o= Hyy (X1 4 g (XPR)(V = X0F), (5.5)
azs Using (5.5), the algebraic residual vector can be written as follows

. F—-EV

k— k— n
279 RﬁgP(V) = Blj“ ! A] 1‘/ |: H] k— I(V) :| s V e R". (56)
280 We now define the function H : R® — R™ by

H(V)=K(V)G(V), VecR". (5.7)
2s1  and the total residual vector associated to the adaptive inexact interior-point method by

F—-EV
ATTP — n

282 R (V) = { _H(V) ] , V e R™ (5.8)

2ss  Here again, the relative norm of a given vector V' € R™ is given by ||V||, := ||V|| /| RAMP(X9)].

2 5.3  An upper bound for the norm of the residual

2ss  In the same spirit as in Section 3.4, we decompose at each smoothing step j > 1, each linearization step k > 1, and
2ss  each algebraic step ¢ > 1 the total residual vector given by (5.8)

0 0

AIIP i kay .
287 R (XJ ) - |: Hﬂj (Xj,k,i) _ H(Xj,k,i) ] + |: H]’jk_l(Xj’k’i) _ Huj (Xj,k,i)
1

smoothing linearization
{ F — EX 7k

J,k—1 g,k i
—HIFTH (X

289 algebraic

200 We then define the smoothing, linearization, and algebraic estimators by
. - - ,

291 ngm ;\HP - ||Hﬁ"j (XJ’ 71) - H(XL 7Z)Hr = ||HJ | ‘r ’ (59&)
k j k— i i ke

202 771]111 AP = HHZL] NI — H,; (XM L (5.9b)

1

j ki j ki || k=1 xj.k, 2

2 Mg = (IF = EXPE + [ HZ (xR )) (5.9¢)

s Then we have an upper bound for the norm ||RAMF(X7k4)]| -

26 Theorem 5.1 Let X757 € R™ be the approxzimation of X given by an iterative algebraic solver. Then we have

AIIP [ yrj,kyi k
207 [[RATF (X7 < MR = T’Sm arp 771m Anp + 77a1g,AHP



s 5.4 Adaptive inexact interior-point algorithm

200 Our proposed adaptive inexact interior-point algorithm implements adaptive stopping criteria formulated using the
300 €rror component estimators given by (5.9) is as follows:

Algorithm 2 Adaptive inexact interior-point algorithm

1. Initialization
Choose a tolerance € > 0 and parameters « € ]0, 1] and avin, catg € 10, 1].
Fix p! > 0 and an initial vector X° € R™ such that K(X°) > 0 and G(X°) > 0. Set j := 1.

2. Smoothing loop

2.1 Set X70:= XY as an initial guess for the linearization loop and k := 1.
2.2 Interior-point linearization loop
2.2.1 From X7*~1 define A7~ € R™" and B/~ € R" by (5.3).
2.2.2 Consider the problem of finding X7* € R™ such that

AR xik _ gik—1 (5.10)

% wi

2.2.3 Set X /%0 := XJF~1 ag initial guess for the iterative algebraic solver. Set i := 1.
2.2.4 Algebraic solver loop

i) Starting from X7*~1 perform a step of the iterative algebraic solver for (5.10), yielding, at step
i > 1, a vector X7* ¢ R™ such that

j k=1 57, i k—1 A i ki
ATTIXIR = Bl - R (XR).
ii) Set d/ki .= X7k — X3k~ and compute x7"** € ]0,1] such that
K(ijk—l + Kj7k7idj»k7i) > 0 and G(Xj,k—l + Kj,k,idj,k,i) > 0.

Then set X7k := X3k=1 4 gikigiki
iii) Compute the estimators given by (5.9).
iv) If niig’inp < aalgnﬂfinp, set i := 4 and stop. If not, set i := i+ 1 and go to i).

2.2.5 If nlj%}]f}inp < alinngﬁy’inp, set k := k and stop. If not, set k := k + 1 and go to 2.2.1.

2.3 If HRAHP(XJ"E’E)H < e, set j:=j and stop. If not, set j := j + 1, X90 := XJ-Lki and pf = aui—L.
r

Then set k£ := 1 and go to 2.2.1.

.« 6 Numerical experiments: Problem of contact between two membranes

302 This section reports some numerical illustrations obtained using the algorithms previously presented. We consider
303 here the model problem of contact between two membranes.

s 6.1 Problem statement

s0s  Let Q = (a,b) be a one-dimensional domain. The problem reads: Find ug,us, and A such that

—mAu — A = fi in Q,

—p2Aus + X = fo in £,
306 (7.L1 - UQ))\ = O, Uy — Uz Z 0, A 2 0 in Q, (61)
Uy = g on 0f,
ug = 0 on 01,

10
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where u; and us represent the vertical displacements of the two membranes and A is a Lagrange multiplier char-
acterizing the action of the second membrane on the first one, —\ being the reaction. The constant parameters
w1, 2 > 0 correspond to the tension of each membrane, whereas fi, fo € L*(Q) are given external forces. The
boundary condition prescribed by a constant g > 0 ensures that, on the boundary 912, the first membrane is above
the second one. The third line of (6.1) represents the linear complementarity conditions which serve to distinguish
two different physical situations: either the membranes are separated (u; > us and A = 0), or they are in contact
(u1 = u2 and A > 0). We discretize this problem by the finite volume method. The corresponding discretization
can be written under the form of problem (1.1).

6.2 Test problem setting

Following [5], we set @ = (—1,1) and consider the following analytical solution for € 2

29(1—2°)(22° —1) ifz < Zforaz>

=g(222 -1 = vz’
ui(@) = g(2 ) uelw) { g(22% — 1) otherwise,
. -1 1
Ma) = 0 1f$<ﬁorx>%,
2g otherwise.
This triple is the solution of (6.1) for the data f; and fy given by
—4g fr< RForax>-L —129(1 —42?) ifr < L orz> L
= V2 V2’ d = V2 V2’
hiw) { —6g otherwise, and - f2(r) —2g otherwise.

Throughout the computational experiments, the parameters p; and us are set to 1 and the boundary condition
g for the first membrane is taken equal to 0.1. Let N be the number of mesh elements. The initial guess X° € R3V
has its first N components equal to g and its other components equal to zero for the semismooth and smoothing
Newton methods. For the nonparametric interior-point method (resp. the adaptive interior-point method), the
initialization is given by X° = [0.1 0 0.5 0.05]" € R3V+1 (resp. X° =[0.1 0 0.5]" € R3YN). All the simulations
are performed in MATLAB. We consider N = 25000 elements, leading to the matrix A of size n = 75000.

6.3 Semismooth Newton method

We start by presenting the numerical results of the semismooth Newton method described in Section 2, using the
F-B function (2.2). The stopping criterion is on the total residual vector (2.6)

IR(X™)||, < 107*. (6.2)

To achieve this stopping criterion, 527 semismooth Newton-F-B iterations (CPU time: 68.9s) and 2232 Newton-
min iterations (CPU time: 338.9s) are needed. Figure 2 represents the evolution of || R(X")||, as a function of the
semismooth Newton-F-B iterations. We can see that it decreases slowly during iterations, then the convergence
gets extremely fast at the end.

11
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Figure 2: [Semismooth Newton method, F-B function (2.2), stopping criterion (6.2)] Relative norm of the total
residual vector (2.6) as a function of semismooth Newton iterations.

6.4 Adaptive smoothing Newton method

We now test the adaptive smoothing Newton method, denoted by ASN, with the smoothed F-B function (3.2). This
consists in employing the method presented in Section 3, summarized in Algorithm 1, but with an exact resolution
of the nonlinear system (3.5). The linearization and smoothing estimators are respectively defined by

nljif,ASN = HCM' (Xj’k)Hrv (6.3a)
ngf,ASN = [|Cu (X7F) —C(X7F)]| (6.3b)

r

and the total estimator by nQIS“N = ng;f’ASN + nlji’f_ASN.

First, we analyze the performance of the adaptive stopping criterion based on the estimators for stopping the
linearization steps. We compare it with the classical approach in where the linearization is continued until the
relative norm of the linearization estimator becomes smaller than a threshold taken as 1078, i.e.,

Classical stopping criterion: nljifASN <1078, (6.4)

Adaptive stopping criterion: nflf AsN < annnigff, ASN® (6.5)

Weset u! =1, = 1078, ayjy = 1, and o = 0.1 in Algorithm 1. Figure 3 depicts the evolution of the estimators and
the relative norm of the total residual vector R(X7*) given in (2.6) as a function of the smoothing Newton-F-B
iterations, at a specific smoothing iteration j = 1 (u! = 1), left, and j = 3 (u® = 1072), right. We can observe from
Figure 3, left, that, as expected, the smoothing estimator and || R(X7*)||, stagnates after few steps, since here the
smoothing parameter u! is equal to 1, whereas the linearization estimator steadily decreases. If we consider the
classical stopping criterion (6.4), the linearization will only be stopped at step & = 8. On the other hand, with
our adaptive stopping criterion (6.5), only one iteration is necessary. Clearly after a few linearization steps, the
linearization estimator no longer affects significantly the smoothing estimator, and we can economize many useless
iterations.

Next, we provide in Table 1 the results obtained using the adaptive stopping criterion (6.5) to stop the nonlinear
solver. We terminate the smoothing iterations using the relative norm of the total residual vector (2.6)

IR(X7F)], < 1075, (6.6)

We present the cumulated number of Newton iterations Niter, the estimators (6.3), and the relative norm of the
total residual vector (2.6) at each smoothing step j. In terms of numbers, 10 smoothing iterations and 36 cumulated
Newton iterations (CPU time: 6.9s) are needed to achieve the stopping criterion (6.6). From Table 1, one can
see that for each value of 4/, the Newton iterations are stopped according to (6.5). ||[R(X?")| . decreases until
lying below 1078, Figure 4 displays the curve of the estimators as a function of cumulated Newton iterations
and smoothing iterations, as well as the relative norm of the total residual vector as a function of smoothing
iterations. The improvement of the performance with respect to the semismooth Newton-F-B method of Section
6.3 is spectacular.
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Figure 3: [Adaptive smoothing Newton method, smoothed F-B function (3.2), classical and adaptive stopping
criteria (6.4) and (6.5)] Relative norm of the total residual vector (2.6) and estimators (6.3) as a function of Newton
iterations k, at a specific smoothing iteration j = 1 (u! = 1), left, and at j = 3 (u® = 10~2), right.
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Figure 4: [Adaptive smoothing Newton method, smoothed F-B function (3.2), adaptive stopping criterion (6.5)]
Estimators (6.3) as a function of cumulated Newton iterations (left). Estimators (6.3) (middle) and relative norm
of the total residual vector (2.6) (right) as a function of smoothing iterations j at convergence of the linearization

solver.

w ‘ Niter ‘ nljifASN ‘ Ugif,ASN ‘ ||R(Xj’k)“r
1le+00 1 2.17e+03 | 4.24e+03 2.17e+03
le-01 3 6.00e+01 | 2.37e+02 | 2.03e+02
le-02 4 9.73e+00 | 1.53e+01 1.01e+401
le-03 ) 3.18e-01 6.84e-01 6.00e-01
le-04 7 9.87e-03 | 3.58e-02 3.43¢-02
le-05 4 1.06e-03 | 2.33e-03 1.87e-03
1e-06 3 1.14e-04 1.50e-04 7.45e-05
1le-07 3 4.85e-06 8.04e-06 3.84e-06
1le-08 3 3.23e-07 4.72e-07 1.83e-07
1e-09 3 1.43e-08 | 2.15e-08 8.04e-09

Table 1: [Adaptive smoothing Newton method, smoothed F-B function (3.2), adaptive stopping criterion (6.5)]
Number of Newton iterations Niter, estimators (6.3), and relative norm of the total residual vector (2.6) at each
smoothing iteration j, at convergence of the linearization solver.
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With the intention to compare the proposed method to existing methods, we complete the semismooth Newton
method by a path-following strategy to solve problem (1.1), following [48]. For the sake of brevity, we shall not
detail this here. The following test compares the semismooth Newton method (SSN) and the semismooth Newton
method with path-following (SSN-pf) in which the linearization is stopped when the criterion (6.2) is satisfied,
to the adaptive smoothing Newton method, using the smoothed min and F-B functions (3.1) and (3.2) and the
stopping criteria (6.5) and (6.2) respectively for the linearization and smoothing iterations. We compare the number
of cumulated linearization iterations and the global CPU time of the simulation for the different strategies. The
results are displayed in Figure 5. They confirm the expected reduction of the computational cost of the numerical
resolution with our adaptive approaches. Actually, we notice that the semismooth Newton method with path-
following (red curve) and the adaptive smoothing Newton method (purple and dark blue curves) require significantly
fewer cumulated Newton iterations and time to converge, in comparison with the semismooth Newton method (green
and orange curves). Therefore, employing the path-following strategy or the adaptive strategy based on a posteriori
error estimates enables to save many unnecessary additional iterations, and yield much better results than the pure
semismooth Newton method. We note that, using the adaptive smoothing Newton method, one obtains similar
computational results using both the smoothed F-B or the smoothed min function.

w
&
i r 1 |——ssnF-B
< 1 SSN-min
£ 0l | 102 ||+ ssnpf
g F ] F 1 |2 ASN-FB
= r 1 — F —e— ASN-min
3} [ ] N [
Z | | @ [
K e I
2 2ot ;
§ 10% |- B © F
= N ] =
j - N
z | ——r————— 1 I
g | ) 100 |-
=3 1 1 1 1 b 1 1 1 1
© 0.5 1 1.5 2 05 1 L5 2
Number of mesh elements (%) -10* Number of mesh elements (%) 10

Figure 5: [Semismooth Newton method (with and without a path-following strategy) and adaptive smoothing
method] Cumulated number of Newton iterations (left) and CPU time (right) as a function of the number of mesh
elements.

6.5 Adaptive inexact smoothing Newton method

We focus in this section on the adaptive inexact Newton method introduced in Section 3 and investigate the
performance of Algorithm 1 using the smoothed F-B function (3.2) together with the restarted GMRES method.
Typically, we use a fixed restart parameter equal to 300. The behavior of the adaptive smoothing solvers can be
improved dramatically by using good preconditioners. Here, we merely use an ILU preconditioner to speed-up the
GMRES solver. For other possibilities for preconditioners, we refer to, e.g., [31] and the references therein. To
point out the efficiency of the adaptivity, we test two approaches. First, we stop the algebraic iterations using the
standard GMRES stopping criterion on the relative residual given by
Jk—1 _ aJk—1~xrjki
R 1o MO\ B — B EIEN]_y o
Mo\ (M \ (B2 T — A2 T Xk-1)) |

where M; and My are the preconditioner matrices. Second, we incorporate the adaptive stopping criteria (3.11a)
for the algebraic solver in Algorithm 1. We set the parameters u! = 1,6 = 107°, @iy = 1073, cnipy = 1, and « = 0.1.
Figure 6 depicts the evolution of the algebraic and linearization estimators and the GMRES relative residual during
the algebraic resolution, for specific smoothing step j and linearization step k. For j = 2 and k = 2, we see that 22
GMRES iterations are needed to achieve the standard stopping criterion (6.7), whereas in the adaptive resolution
case, only 10 GMRES iterations are required to satisfy the adaptive stopping criterion (3.11a). In this case, we can
avoid many unnecessary iterations. One can also see from the right part of Figure 6, for j = 3 and k = 1, that the
overall gain in terms of algebraic iterations obtained using our stopping criteria is quite significant.

Figure 7, left, shows the evolution of the estimators during smoothing iterations, at convergence of the nonlinear
and linear solvers. As expected, the estimators decrease when p decreases at each smoothing step. In the middle
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Figure 7: [Adaptive inexact smoothing Newton method, smoothed F-B function (3.2), Algorithm 1| Estimators
(3.10) as a function of smoothing iterations j at convergence of the algebraic and linearization solvers, left. Esti-
mators as a function of cumulated Newton iterations at convergence of the algebraic solver, middle. Estimators as
a function of cumulated GMRES iterations during the first two smoothing iterations (j = 1 and j = 2), right.

part of Figure 7, we can observe the behavior of the estimators at the end of the algebraic iterations, during the
linearization iterations. We present 8 curves, each one corresponding to a specific value of p/. We can see that at
each smoothing iteration j, the smoothing estimator ngr’i’ZISN stagnates after about two iterations. The linearization
estimator nﬂfiISN decreases until becoming smaller than the smoothing estimator, satisfying the stopping criterion
(3.11b). Finally, the detected behavior in terms of all smoothing iterations j, linearization iterations k, and algebraic
solver iterations ¢ is presented in Figure 7, right, for j < 2. The overall results are collected in Table 2. We present
in particular the number of linearization and cumulated algebraic iterations per smoothing step j, Niter and Giter
respectively, as well as the estimators (3.10) and the relative norm of the total residual vector (2.6) at the end of
each smoothing step j. Using the adaptive stopping criteria (3.11), 8 smoothing iterations, 39 cumulated Newton
iterations, and 5999 cumulated GMRES iterations are needed to ensure convergence. Figure 8 illustrates the
performance of the adaptive inexact smoothing Newton method. It represents the ratio between: 1) the number
of algebraic iterations (left) and the CPU time (right) using the classical GMRES stopping criterion (6.7) and 2)
the number of algebraic iterations and the CPU time using the adaptive stopping criterion (3.11a) for GMRES, as
a function of the number of elements. For larger systems, 20-times fewer iterations and 18-times faster execution
time are achieved.
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. . . % z k i 1 E,E i ki
W Niter | Giter lem AISN ng ,AISN niig,AISN HR(XM’ ) X
1le+00 1 8 2.16e+03 | 4.24e+03 | 1.80e+00 2.19e+03
le-01 4 34 5.95e+01 | 2.31e+02 1.89e-02 1.80e+02

le-02 3 391 | 1.54e+01 | 1.73e+01 | 1.41e-02 6.75e+00
le-03 4 198 5.04e-01 | 8.16e-01 | 4.60e-04 5.95e-01
le-04 10 796 7.99e-03 | 3.53e-02 | 5.58e-06 3.43e-02
1le-05 10 684 8.54e-04 | 2.12e-03 | 7.61e-07 1.94e-03
1e-06 4 513 9.03e-05 | 1.48e-04 | 7.42e-08 1.05e-04
1le-07 3 3375 | 6.04e-06 | 8.14e-06 | 4.27e-09 4.26e-06

Table 2: [Adaptive inexact smoothing Newton method, smoothed F-B function (3.2), Algorithm 1] Number of
Newton iterations and cumulated GMRES iterations, estimators (3.10), and relative norm of the total residual
vector (2.6) at each smoothing iteration j, at convergence of the algebraic and linearization solvers.
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Figure 8: [Adaptive inexact smoothing Newton method, smoothed F-B function (3.2), Algorithm 1| Ratio between:
the number of algebraic iterations (left) and CPU time (right) needed by the classical stopping criterion (6.7) to
converge to the number and time needed by the adaptive stopping criterion (3.11a), as a function of the number of
mesh elements.

6.6 Nonparametric interior-point method

We consider here the nonparametric interior-point approach of Section 4, where the dimension of the corresponding
problem is n = 3N + 1. The value of the constant 6 in the additional equation (4.2) is 10~!. The stopping criterion
is on the relative norm of the linearization residual vector

IR™ (X)), = |IR™ (X")]I/| R (x°)] < 1075, (6.8)
with
F —EX*
RP (X" .= | p- K(X"G(XF)
—0u* — (1)

Using this method, 19 Newton iterations (CPU time: 6.7s) are needed to reach the end of the simulation. Figure 9

shows that ‘ ‘RIP(X k) ‘ ‘ decreases during the Newton interior-point iterations until satisfying the stopping criterion
r

(6.8).

6.7 Adaptive interior-point method

Next, we consider the adaptive interior-point method, which is the method presented in Section 5, Algorithm 2
without applying an algebraic iterative solver to approximate the solution of the linear system (5.2). In this case,
we can define the linearization and smoothing estimators respectively by

nljif,AIP = ||H S (X7F) ||r, (6.9a)
Wgr’f,AIP = |||l (6.9b)
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Figure 9: [Nonparametric interior-point method, stopping criterion (6.8)] Relative norm of the linearization residual
vector (6.8) as a function of Newton iterations.

where H,;(-) is defined in (5.1b), and the total estimator by nfgfp = ng;:’AIP + nf‘i’f’AIP. Recall from (5.8) the

definition of the total residual vector for V € R" as

F-EV
ATP —
where H (+) is defined in (5.7). The adaptive stopping criterion
nljif,AIP < alinngﬁ,AIP (6.11)

is used to stop the nonlinear solver and a criterion on the relative norm of the total residual vector is applied to
stop the smoothing iterations

| RAMP (X7R)|| < 1078, (6.12)
The initial smoothing vector is pu! = [1,...,1]7 € RY and aj;, = 1. Concerning the update of the smoothing
parameter u, we set « = 107!. Table 3 summarizes the results. To achieve the stopping criterion (6.12), 11

smoothing iterations and 20 cumulated Newton iterations are needed (CPU time: 5.0s). In Figure 10, we plot
the estimators (6.9) as a function of the cumulated Newton iterations (left), the smoothing iterations (middle),
and the relative norm of the residual vector as a function of the smoothing iterations (right). The behavior of
‘ ‘RAIP (Xj,E)
the relative norm of the total residual given by (2.6) includes C(X) in the adaptive smoothing Newton method,

whereas in this adaptive interior-point method, the relative norm of the total residual given by (6.10) includes
K(X)G(X).

’ in Figure 10 appears a bit different from its behavior in Figure 4. This is related to the fact that
r

W Niter nﬂf,AIP Ugr}]f,AIP ‘ ’RAIP(Xj’k) .
le+-00 2 1.11e+01 | 2.00e+01 3.00e+01
le-01 2 1.24e+00 | 2.00e+00 3.20e+00
le-02 2 1.15e-01 2.00e-01 3.11e-01
le-03 2 6.51e-03 2.00e-02 2.43e-02
le-04 2 3.38e-04 2.00e-03 2.14e-03
le-05 1 1.58e-04 2.00e-04 2.82e-04
1le-06 2 3.67e-06 2.00e-05 2.10e-05
1e-07 2 1.00e-07 2.00e-06 2.02e-06
1e-08 1 1.86e-07 2.00e-07 3.84e-07
1le-09 2 9.33e-10 2.00e-08 2.01e-08
le-10 2 2.55e-11 2.00e-09 2.00e-09

Table 3: [Adaptive interior-point method] Number of Newton iterations, estimators (6.9), and relative norm of the
total residual vector (6.10) at each smoothing step j, at convergence of the linearization solver.
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Figure 10: [Adaptive interior-point method| Estimators (6.9) as a function of cumulated Newton iterations (left).
Estimators (6.9) (middle) and relative norm of the total residual vector (6.10) (right) as a function of smoothing
iterations j at convergence of the linearization solver.

6.8 Adaptive inexact interior-point method

Let us now present the numerical results of the adaptive inexact interior-point method, detailed in Section 5. We
employ Algorithm 2 with the GMRES algebraic solver and an ILU preconditioner. The parameters in Algorithm 2
are set as ul =[1,..., 1]T eRYN, e =10"5, Oalg = 1, anin = 1, and a = 0.1. The restart parameter of restarted
GMRES is chosen equal to 300. From Table 4, we can see that the method converged after 8 smoothing iterations,
20 cumulated linearization iterations, and 760 cumulated GMRES iterations. Figure 11, left, displays the curves of
the estimators (5.9) as a function of the smoothing iteration. One can see that the estimators satisfy the adaptive
stopping criteria incorporated in Algorithm 2. In Figure 11, right, the estimators are shown as a function of
cumulated Newton iterations, at convergence of the linear solver.

1 Niter | Giter nfiﬁ’f\llp ngr’:,’j&HP ngi’gcfmp ’ }RAHP (X707 .
1le+00 3 7 1.15e+01 | 2.00e+01 | 3.36e+00 5.59e+00
le-01 2 12 5.44e-01 2.00e+00 1.78e-02 2.00e+00
le-02 3 20 9.75e-02 2.00e-01 2.80e-02 2.04e-01
le-03 3 29 4.82¢e-03 2.00e-02 1.74e-03 2.01e-02
le-04 3 56 2.52e-04 2.00e-03 2.19e-04 2.01e-03
le-05 2 62 1.77e-04 2.00e-04 1.08e-04 2.29e-04
1e-06 2 110 1.49e-05 2.00e-05 1.42e-05 2.46e-05
le-07 2 464 1.34e-06 2.00e-06 1.16e-06 2.31e-06

Table 4: [Adaptive inexact interior-point method, Algorithm 2] Number of cumulated Newton and GMRES it-
erations, estimators (5.9), and relative norm of the total residual vector (5.8) at each smoothing iteration j, at
convergence of the algebraic and linearization solvers.

6.9 Comparison of the methods

This section is devoted to compare the semismooth Newton method (SSN), semismooth Newton method with path-
following (SSN-pf), nonparametric interior-point method (IP), adaptive smoothing Newton method (ASN), and
adaptive interior-point method (AIP). For this purpose, we introduce a unified residual vector, for V' € R™

F—-EV
Runt(V) = | 00 &V | (6.13)

K(V)-G(V)

18



102 ‘: E -

100
100 |- .
12 17}
8 0 g :KEE
= 1072 7 R
e g 10 .
104 |

——4 3.k0
Tsm, AITP

—a ki
Thin,ATIP

—6 [ —e— d.ki
10 Malg, ALIP

A gk
MMiin, A1IP

’ —4 | jokyi X
07 [ i e X‘ &

J 6 || o ki
‘ 107 n;lg‘,LAIIP
2 4 6 8 5 10 15 20

Smoothing iteration Cumulated Newton iteration

Figure 11: [Adaptive inexact interior-point method, Algorithm 2| Estimators (5.9) as a function of smoothing
iterations j at convergence of the algebraic and linearization solvers (left). Estimators as a function of cumulated
Newton iterations k at convergence of the algebraic solver (right).

independent of the way the nonlinear complementarity constraints are reformulated. The stopping criterion of
the nonlinear solver for the classical methods (SSN, SSN-pf, IP) is on the relative unified residual || Ruynit(X")]|,
lying below 10~%. Regarding the adaptive methods (ASN, AIP), to stop the nonlinear solver, we use the adaptive
stopping criteria given respectively in (6.5) and (6.11). To stop the smoothing iterations, || Runit(X?*)|, is requested
to become smaller than 1078,

102 w
—A— SSN-F-B

—%— SSN-pf
s P

4 —m—  AIP
2 r || —— ASN-F-B J
g =
=107 2 10 F |
3 r —4— ASN-F-B =) F 9
5 i & i ]
z - | o i 1
= . e F———% B | |
5 L A
Z, L
[E! = = = g 10° F B
10' L I I I ! [ L I ! ! ! [
0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
Number of mesh elements (%) 10 Number of mesh elements (%) 101

Figure 12: [Semismooth Newton method (F-B function (2.2)), semismooth Newton method with a path-following
strategy, nonparametric interior-point method, adaptive interior-point method, and adaptive smoothing Newton
method (smoothed F-B function (3.2))] Number of cumulated Newton iterations (left) and CPU time (right) as a
function of the number of mesh elements, employing a stopping criterion on the relative norm of the unified residual
vector (6.13).

In Figure 12, we plot the cumulated number of the Newton iterations (left) and the CPU time (right) required by
each method, as a function of the number of mesh elements. It is clearly seen that the semismooth Newton method
(green curve) is typically more costly, both in terms of the required number of iterations and the CPU time, in
comparison with the other methods. Precisely, we can observe an important gain between the semismooth Newton
method (green curve) and the adaptive smoothing Newton method (purple curve). Moreover, as we can remark
from the red curve, the combination of a path-following strategy to the semismooth Newton method seems to be
efficient. Finally, one does not see a remarkable difference between the results of the nonparametric interior-point
method (cyan curve) and the adaptive interior-point method (black curve) in this test case.
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7 Numerical experiments: Two-phase flow with phase transition

The second model problem that we consider in our numerical tests is a two-phase flow model (liquid-gas) with
phase transition in porous media following [6, 13, 9]. Each of the liquid phase, denoted by 1, and the gas phase,
denoted by g, is composed of two components, water and hydrogen, denoted respectively by w and h.

7.1 Problem statement

The problem at hand can be formulated as a system of nonlinear partial differential equations with nonlinear
complementarity constraints at each time step 7,,. Let 7, be the spatial mesh, we denote respectively by Si., Py, and
X% the discrete elementwise unknowns approximating the values of the saturation S', the pressure P', and the molar
fraction of hydrogen in the liquid phase XL in the element K € 7}, and on time step 1 < v < N;. Let N be the number
of elements in the mesh 7. If one introduces the appropriate nonlinear function HY  : R3N — R, ¢ € {w,h}, and
suitable functions F : R® — R and G : R® — R, the discrete problem written elementwise consists in finding
X" = (Xk)ger, € R, where n = 3N, and Xj := [Sk, Pk, X% € R?, such that for all K € 7j,

ex(XY) =0, ce{w,h}, (7.1a)
Fr(Xk) >0, Gr(Xk)>0, Fx(Xi)Gr(Xk)=0. (7.1b)
The formulation (7.1) allows to model the transition from a single-phase flow to a two-phase flow during the

appearance and disappearance of the gas phase and vice versa. As an example, a detailed finite volume discretization
can be found in [7, Section 3.2]. The first 2V lines of system (7.1) can be written globally as

HY(X") =0,
where H" : R3" — R2¥ is defined elementwise by (7.1a).
Considering a C-function C¥, for 1 < v < Ny, we define a function C¥ : R3" — RN as

CY(XY) =C" ((Fx(X¥%)) ke, (Gr(X¥%))keT,) - This leads us to apply a semismooth Newton method to find a
solution for problem (7.1) written as

H(X") = 0,
cY(Xr) = 0. (7.2)

The total residual vector R(V') of problem (7.2) is thus given by
R(V) = [ ‘_?V((“//)) ] . VVER™ (7.3)

7.2 Adaptive smoothing Newton method

We introduce a function C; : R*N — RN defined as C;(X") = C (Fx(X%))keT,, (Gr (X)) keT,), for 1 <
v < Ni, where C}/ is a smoothed C-function. Line (7.1b) can be approximated as a smoothed nonlinear equation
CZ(X ¥) = 0, making it possible to apply the standard Newton method to solve the resulting nonlinear system in
the form: Find X*7 € R3V at each time step v, 1 < v < Ny, satisfying
HY(X™) = 0,
cv,, (Xv9)y = 0.

pniv

(7.4)

At each time step 1 < v < N, each smoothing step j > 1, and each linearization step k > 1, fixing X*° € R", we
try to approach the solution of problem (7.4) by finding a solution X*/** € R™ such that

AIJ,j,k}lel/,jJC — BV)-j’k717 (75)

v v

where the Jacobian matrix A:}{jk*l € R™™ and the right-hand side vector B;fy #=1 ¢ R™ are defined by

. J V(Xl/,j,k}*l)
v, k— H
AWJU L. Joo (Xvik-1y | (7.6a)
uiv
. JHV(XV’j’k_l)XU’j’k_l _Hu(Xu,j,k—l)
BYIk—1 . ik b ke » Vi ke 7.6b
wiv JC:M (X 35k 1)X JJik—1 —Cﬂj,,(X Jsk 1) ) ( )

with J3» (XV9F=1) and Jev (X¥7*~1) the Jacobian matrices of the function H” and the smoothed function C”
wiv

pivo
Jik—1

respectively, at the point X" obtained by a Newton linearization.
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7.3 Adaptive smoothing Newton algorithm

Let € > 0 be the desired relative tolerance, ayi, € ]0, 1] be the desired relative size of the linearization error, and
a € 10, 1] the smoothing decrease parameter. The unsteady adaptive smoothing Newton algorithm reads as follows:

Algorithm 3 Unsteady adaptive smoothing Newton algorithm

Initialization: Fix ¢ > 0, « € ]0,1], and auin, € ]0,1]. Set v :=1 and ¢, := 0. Choose X*° € R".
Time loop
1. Fix p/» > 0 and set j := 1.
2. Smoothing loop
2.1 Set X930 := X0 and k := 1.
2.2 Newton linearization loop

2.2.1 From X¥7F~1 define A;”j’]“l € R™" and B/’j’-j’k*1 € R™ given by (7.6).

v v
2.2.2 Find X" solution to the linear system
vigik=1yvjk _ pvjk-1
Aujy X = B,m .

2.2.3 Compute the estimators and check the stopping criterion for the nonlinear solver

v,3,k LUk v,j,k
(nlin,ASN < almnsm,ASN) or (nlin,ASN < 5) . (7.7)

If satisfied, set k := k and stop. If not, set k := k + 1 and go to 2.2.1.

2.3 Check the stopping criterion for the smoothing iterations in the form:

R(X"7k)

} <e. (7.8)

v,j.k
max nsm,ASN’

If satisfied, set j := j and stop. If not, set j := j+1, X»30 := X¥i=Lk and pdv := au=1». Then set
k:=1 and go to 2.2.1.

If v = N, stop. If not, set v:=v+1, j=1, X"0 .= X”_l’j, and t, := 7, + t,_1. Then set p/» = ,ugvfl, k=1,
and go to 2.2.1.

Description of Algorithm 3 For the first time step v = 1, starting with an initial approximation X*° € R™ and
an initial smoothing parameter p*'! > 0, we solve the smoothed nonlinear system (7.5) by the Newton linearization
solver, and decrease the smoothing parameter ;7 at each smoothing step j, until the stopping criterion (7.8) on
the smoothing estimator or the relative norm of the total residual vector is satisfied at step j. Then, we continue
the time loop, for 2 < v < Ny, starting for j = 1 with X*/° := X¥~1J and p’» := pfv-1, until satisfying the
stopping criterion (7.8).

7.4 Numerical results

We consider a homogeneous porous medium in one dimension, supposed to be horizontal with length 2m, and a
uniform spatial mesh with N = 1000 elements. The final time of simulation is tp= 100s, and the time step is
constant 7, = 10s. We assume that the medium is initially saturated with liquid, S’ = 1, and containing no
hydrogen, !, = 0, on which we impose an injection of gas (hydrogen), constant in time, in the first cell of the mesh.
The initial conditions are $4*=0 = 1, PL»=0 = 10%Pa, and XZ’”:O = 0.

Semismooth Newton method. We begin by employing the semismooth Newton method presented in Section
2, with the min function (2.1) to solve the nonlinear system (7.2). On each time step v > 1, we request the relative
norm of the total residual vector R(X"*) given by (7.3) to drop below 10~%.
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In Figure 13, the evolution of ||R(X ””“)H1r is shown at each time step. 31 cumulated Newton iterations are
needed.
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Figure 13: [Semismooth Newton method, min function (2.1)] Relative norm of the total residual vector (7.3) as a
function of cumulated Newton iterations along the time steps v.

Adaptive smoothing Newton method. Next, we present the results obtained using the adaptive smoothing
Newton method, summarized in Algorithm 3, with the smoothed min function (3.1) to solve the smoothed nonlinear
problem (7.4) at each time step 7,, 1 < v < N;. The parameters are set as p/t = 107, ¢ = 1074, oy, = 1, and
a=0.1.
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Figure 14: [Adaptive smoothing Newton method, smoothed min function (3.1), Algorithm 3] Estimators (6.3) and
relative norm of the total residual vector (7.3) at the first time step v = 1 as a function of smoothing iterations j,
at convergence of the linearization solver (v = 1 fixed, j varies, k = k), left, and of cumulated Newton iterations,
right, (v =1 fixed, j and k vary).
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v | p | Niter nﬁg,1§SN W;/IﬁﬁSN ’ ’R(Xu’j’k) ‘ ‘
2 | le-05 3 2.15e-07 | 3.13e-07 2.86e-07
3 | le-05 3 3.13e-07 | 3.68e-07 4.24e-07
4 | 1e-05 3 3.93e-07 | 1.19e-07 3.47e-07
5 | 1le-05 3 4.62e-07 | 1.59e-07 4.01e-07
6 | le-05 3 5.04e-07 | 1.88e-06 1.87e-06
7 | le-05 3 5.58e-07 | 1.74e-07 4.94e-07
8 | le-05 3 5.94e-07 | 3.76e-07 7.08e-07
9 | 1e-05 3 6.64e-07 | 2.77e-07 7.50e-07
10 | 1e-05 3 7.01e-07 | 3.00e-07 7.89e-07

Table 5: [Adaptive smoothing Newton method, smoothed min function (3.1), Algorithm 3] Relative norm of the
total residual vector (7.3) and estimators (6.3) at each time step v, at convergence of the linearization solver.

From Figure 14, one can see that at the first time step v = 1 and at each smoothing step j < 4, the linearization
estimator decreases until lying below the smoothing estimator. The smoothing iterations are thus stopped in the first

possibility according to the stopping criterion (7.7). On the other hand, at the 5** smoothing step, nﬁrf ’ﬁSN is smaller

than the fixed tolerance but not smaller than nS”r’rljﬁSN. Even after additional Newton iterations at this smoothing
step, we will have the same observation. This justifies the modification applied in the adaptive stopping criterion
(7.7). In Figure 14, right, we report the estimators and ||[R(X )| as a function of cumulated Newton iteration
for v = 1. The stopping criterion (7.8) is satisfied after 5 cumulated smoothing iterations, and 10 cumulated Newton
iterations. Then, as presented in Table 5, starting at the second time step (v = 2) with p?» = 107, the smoothing
parameter does not decrease since the stopping criterion (7.8) is satisfied at each time step after one smoothing
step only. To reach the end of the simulation, 9 cumulated smoothing steps and 31 cumulated linearization steps
are needed.

As a conclusion, the results confirm the expected behavior of Algorithm 3 featuring an adaptive stopping criterion
for the nonlinear solver. In this case, though, the stopping criteria in the adative smoothing Newton method do
not bring the number of iterations down since the semismooth Newton method already behaves very well here.

8 Conclusion and outlook

In this work, we have considered nonlinear algebraic systems with inequalities in a form of complementarity con-
straints. We have considered some existing methods, like the semismooth Newton method, possibly combined with
a path-following strategy, or a nonparametric interior-point method. Our goal was to propose a systematic way to
drive such methods with adaptive stopping criteria and possibly inexact algebraic solvers. We have achieved this by
a reformulation of the complementarity constraints using a smoothed function and a posteriori error estimate that
enables to distinguish the different error components. Numerical experiments confirmed that the proposed adaptive
approaches yield significant computational savings compared to some standard approaches from literature. More-
over, their numerical performance seems to be notably good across a range of test problems. In [8], we also take
into account the discretization error of the considered problem, enabling to adaptively stop the outer smoothing
loop in Algorithm 1, and employ the method to solve more involved problems.
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