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1. Introduction

We are interested in the discretization of the followingteys set in a bounded open setn R?
with a Lipschitz-continuous boundary:

—p1 Auy — A= fi inw,

— 2 Aug + X = fy inw,

up—ug >0, A>0, (up—ux)A=0 inw, (1.2)
up =g on Jw,

Uy =0 on dw.

\

Indeed, such a system is a model for the contact between twibna@es and can easily be derived
from the fundamental laws of elasticity (more details aneegiin [2, §2]). In this model, the
unknowns are the displacementsandu, of the two membranes and the Lagrange multipher
which represents the action of the second membrane on therieqso that- )\ is the reaction).
The coefficients:; andu, are positive constants corresponding to the tension of gmalonanes.
The data are the external forc¢gsand f, and also the boundary datum Indeed the boundary
conditions in system (1.1) mean that the first membrane id fixedw at the heighy, whereg is

a nonnegative function, and the second one is fixed at zeiie .Kirid of system appears in a large
number of problems in elasticity, such as the obstacle ard@igi problems, see [6, Chap. 5] and
[7] among others. Finite element discretizations of vaoral inequalities have also been analyzed
in a number of works, see [5], [9], [10], and the referencesdim.

The analysis of problem (1.1) is performed in [2] in the caSBamogeneous boundary data
g = 0, where the action is implicitly linked to a displacement. Here, we consider dase where
g # 0. Thus, we are led to write a new variational formulation foolgem (1.1), where\ is
explicitly taken into account, which requires more regityatio give sense to the complementarity
equation(u; — us)A = 0. As standard for mixed problems, the displacementsand u, are
the solution of a reduced variational inequality. We prdwe well-posedness successively of the
reduced problem, next of the full problem.

The discretization of problem (1.1) is made in two steps. fivst step, we propose a finite
element discretization of the reduced problem, prove tatiscrete problem is well-posed, and
establish optimal a priori estimates under minimal regglassumptions. The discretization of the
full problem relies on the reduced discrete problem but isel@@mplex. We propose a discrete
problem that requires the introduction of a dual mesh andbeamterpreted as a finite volume
scheme. The corresponding discrete problem is well-pcasdl optimal a priori error estimates
are also derived.

The a posteriori analysis of our discrete problem is undesicteration, together with some
numerical experiments.

An outline of the paper is as follows.
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e Section 2 is devoted to the analysis of system (1.1).
e Sections 3 and 4 deal with the reduced and full discrete prob) respectively. In both cases,
we check their well-posedness and prove a priori error egém

2. Analysis of the continuous problem

We first write a variational formulation of system (1.1). Irder to do this, we consider the full
scales of Sobolev spacéf’(w) and H*(0w), s > 0, equipped with the usual norms (and semi-
norms whens is a positive integer). We also need the spagéw) of functions in*(w) which

vanish orndw and, for any functiory in H: (Ow), the space
H1 ={ve H'(w); v=gondw}. (2.1)
Next, we introduce the convex subset
A={xeLl*(w);x>0ac inw}, (2.2)

and, in order to take into account the nonnegativity of theralary conditiory, the cones defined
for eachs > 0 by
H (0w) = {k € H*(0w); k > 0 a.e. in dw}. (2.3)

So we consider the following variational problem, for anyadd, f>) in H*(w) x H ! (w)

andg in H%(aw):
Find (uy,us, \) in Hy(w) x Hy(w) x A such that

V(v1,v2) € Hy(w) Z“Z / grad u;)(x) - (gradv;)(z) de

Vx € A, /(X —A)(x)(u; — ug)(x)dx > 0.

We must now check the equivalence of this problem with sygtef).

Proposition 1. Problems(1.1) and (2.4) are equivalent, in the sense that any triplg, us, ) in
H'(w) x H'(w) x L*(w) is a solution of(1.1) if and only if it is a solution of2.4).

Proof: Since the fourth and fifth lines in (1.1) are obviously eqlewato the fact that,; andu,
belong tngl(w) andH;(w), respectively, we now verify the equivalence of the otheedi

1) LetD(w) be the space of infinitely differentiable functions with argeact support iw. Multi-
plying the first line of (1.1) by a functiom, in D(w) and the second line by a functiogin D(w),
summing these two equations, and integrating by parts yigtthe first equation in (2.4) is sat-
isfied for all pairs(vy, v2) in D(w)?. Thus, it follows from the density db(w) in H;(w) that this
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line is satisfied for allvy, v,) in H{(w)?. Conversely, by letting; run throughD(w) and taking

ve equal to zero, next by taking equal to zero and letting, run throughD(w), we observe that
the first line of (2.4) implies the first two lines of (1.1) ingtlsense of distributions.

2) Let (uq,us, \) satisfy the third line of (1.1). Thus) belongs toA and it follows from the

definition of A that, for ally in A,

/(X ) @) (s — ) () da = / (@) (11 — us)(@) das > 0.

w

Conversely, ifA belongs to\ and(uy, us, A) satisfies the second line of (2.4), takipgqual to the
sum of\ and of the characteristic functiof, of any measurable subsBtof w (this x» obviously
belongs ta\) yields that

[ = w@)da >0,

whence the nonnegativity af, — u,. Finally, takingy equal to zero yields that

/)\(a:)(ul —ug)(x)de <0,

and combining this with the previous properties gives theaéity (u; — us)A = 0.

Settingu = (uy, uy) andv = (vy, v5), we consider the bilinear form defined by

a(u,v) = Z,ui /(grad u;)(x) - (gradv;)(x) de. (2.5)

Its continuity on H'(w)? x H'(w)? is obvious and its ellipticity onf/}(w)? follows from the
Poincaré—Friedrichs inequality: There exists a constant 0 only depending o and on the
1; such that

Yo € Hy(w)?,  a(v,v) > a v e (2.6)

With the same notation, we also introduce the bilinear form
o) == [ x(@)(on - w)(a) da, (2.7)

which is continuous o (w)? x L?(w).
Problem (2.4) fits the abstract framework introduced in [b8jvever the inf-sup condition on
the formo(-, -) fails. So we have rather study it by hand. For this, we intoedine new convex set
Ky = {(v1,v2) € Hy(w) x Hy(w); v1 — v > 0 ae. inw}. (2.8)

Since the functiom is nonnegative, this last set is not empty. We then consigenetduced problem
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Find (uy,us) in IC, such that

V(v1,02) € Ky, Z,ui /(grad w;)(x) - (grad (v; — w;)) (x) de

) (2.9)
> Z<f'w v — ;).

The reason for this is stated in the next lemma.

Lemma 2. For any solution(u;, us, A) of problem(2.4), the pair(u, us) is a solution of problem
(2.9).

Proof: Let (uy,us, A) be a solution of problen2.4). Owing to Proposition 1, it satisfies the third
line of (1.1), so thatu,, us) belongs to,. On the other hand, sinckis a closed convex cone,
we have

/ M) (11 — us)(@) d = 0.

Finally, it can be noted that, for arfy;, v5) in K,, the pair(v; — uy, v — uy) belongs toH; (w) x
H{(w). Thus, replacing each by v; — u; in problem (2.4) and using the previous inequalities lead
to (2.9).

Owing to the ellipticity property (2.6), the existence amdqueness of a solution for problem
(2.9) is now a direct consequence of the Lions—Stampacka@mem [11].

Proposition 3. For any data(f1, f>) in H'(w) x H'(w) andgin H%(@w), problem(2.9) has a
unique solutior(uy, us) in .

We now prove a further regularity of the soluti¢m,, u,). The arguments are the same as in
[4] but simpler, so that we prefer to give a direct proof. Foy functionv in H'(w), we denote by
v_ the functionmin{v, 0}.

Proposition 4. For any data(fy, f») in L?*(w) x L?(w), the solution(uy, u,) of problem(2.9) is
such that(—Aw,, —Aus,) belongs toL?(w) x L?(w). Moreover, the following property holds

p [ Aur || p2 ) + p2 [[Augl[ 2wy < e (Hf1||L2(w) + ||f2HL2(w))- (2.10)
Proof: For anye > 0, the problem: Find..; in H; (w) andu., in H}(w) such that
Ugg — € Augy = u;, 1=1,2, (2.11)

has a unique solution. Moreover, it admits the followingatonal formulation

Yo € Hi(w), /w usi(@)v(z) dz + e /w (grad u.;)()(grad v)(x) dz (2.12)
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1) Choosing equal to(u.; —u.2)_ in these equations (singas nonnegative, this function belongs
to H,(w)) and subtracting the equation for= 2 from the equation fof = 1, we derive

[ (uer — Ua%”%z(w) + el (uer — uE?)*ﬁ{l(w) = /(Ul — Ug) (@) (U1 — Ueo) - () dex.

w

Since the right-hand side of this equation is nonpositive derive thatu.; — u.2)_ is zero, so
that the pair(u.;, u.2) belongs toC,.
2) When takingy; equal tou,; in problem (2.9), we observe that

Z,ui /(grad w;)(x) - (grad (u; — um))(a}) de < Z(fi, Ui — Ugj),

or equivalently

2

Z,ui <\ul — ugi\%—l(w) + /(grad Ug) () - (grad (u; — um))(af:) d:l:) < Z<fi’ Ui — Ugy).

i=1

It thus follows from the variational formulation (2.12) tha

2 2
e il — veill ey < ¢ > I fillza)-
i=1 =1

So, theu,; tend tou; strongly inL?(w) whene tends to zero.
3) On the other hand, it follows from the previous estimag# th

2 2
Dt | Al 2y < ¢ Y fill2)-
i=1 i=1

Therefore, there exists a subsequence ofitheuch thatAu.; converges weakly ih?(w). Since
its limit is necessarilyAu;, eachAu; belongs toL?*(w). Moreover, by combining the previous
inequality with the convexity of the norm- || 2.y, we obtain (2.10).

Thanks to Proposition 4, we are in a position to prove the mesnlt of this section.

Theorem 5. For any data( f1, f») in L*(w) x L*(w) andg in H%(@w), problem(2.4) has a unique
solution(uy, ug, A) in Hj(w) x Hy(w) x A.

Proof: Let (u;, u2) be the solution of problem (2.9). We set:
A= —p1 Aug — fi, Ao = fig Aug + fo. (2.13)

1) It follows from Proposition 4 thah; and A\, belong toZ?(w). The variational form of the
previous system reads, for all andu, in Hj(w),
/)\1(:1:)1)1(:1:) de = ul/(gradul)(m) - (grad vy)(x) da:—/fl(a:)vl(a:) de,
w w w (214)
/)\g(a:)vg(a:) de = —,ug/(graduQ)(a:) - (grad vy)(x) da:+/f2(a:)v2(a:) da.
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Subtracting the second equation from the first one and rieggj@achv; by v; — u; for a pair(v;, vs)
in IC, lead to

/w)\l(az)(vl —uy)(x) de — / Ao(x)(vg — ug)(x) de

w

2 2 (2.15)
= Zui /(grad w;)(x) - (grad (v; — u;))(z) de — Z / fi(x)(v; — u;)(x) de.
It follows from problem (2.9) that
/ A(x) (v —w)(x) de — / Xo(x)(vy — ug)(x) dae > 0. (2.16)

2) Let ¢ be any function inH; (w). Then, the pair§v; = u; + p,v2 = uy + ) belong tok,.
Making this choice in (2.16) gives

/Qy—&ﬂ@@@ﬁmza

It follows from the density ofD(w) in L?(w) that there exists a sequengs,),, in H}(w) which
converges to\; — \, in L?(w). Replacingy by ¢, in the equation above and passing to the limit
yield that ||\, — )‘2“%2(@ is zero. So, the functions; and\, coincide with a unique function.

Thus, the triplgu,, us, A) satisfies the first line of problem (2.4).
3) We now consider a nonnegative functipnin H}(w). Using once more (2.16) wittv;, =
uy + @, vy = us) implies

/)\(a:)cp(a:) dx > 0.

For any closed subsé? of w with positive measure, there exists a sequéngg,, of nonnegative
functions inH} (w) which converges to the characteristic function»fn L?(w). Takingy equal
to i, in the previous inequality and passing to the limit yield

/ AMx)dx > 0.

@]

Thus,\ is nonnegative and belongsto

4) Let (v, ), be a sequence of smooth functions with value§ jn], equal tol in a neighbourhood

of 0w and such that the measure of the supporp,pfs < % By taking (v, = ¢,u1,v2 = @, us),
we derive from (2.16) that

/ M) (n — 1)(@)(ur — us)(@) dz > 0,

whence, by letting: tend to+oo,
—/M@wrﬂ@@mwzo
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On the other hand it follows from the definitions &dfand/C, that, for ally in A,

/X(w)(ul — ug)(x) dx > 0.

Summing the last two inequalities gives the second line @f)(2As a consequence of all this, the
triple (uy, us, A) is @ solution of (2.4).

5) Let (uy, us, \) and (i, @iy, A) be two solutions of problem (2.4). Thus, owing to Lemma 2,
(u1,us) and(ay, uy) are solutions of problem (2.9) and it follows from Propasiti3 that they
coincide. Then, we deduce from problem (2.4) the equation

Vo € Hl(w), /Q()\ ~ N (@)o() da = 0.

Using the density of/}(w) in L?*(w) yields that) is equal to), whence the uniqueness of the
solution of problem (2.4).

We also prove a stability estimate for this solution.

Corollary 6. For any data(f1, f>) in L?(w) x L*(w) andg in H% (Ow), the solution(uy, ug, A) of
problem(2.4) satisfies

luallarr ) + uallme) + M2 < e (fillzee) + 1 f2llzze) + 1914 60)- (2.17)

Proof: We proceed in two steps.
1) Letg denote the harmonic lifting of the functign The functiong is the solution inf!(w) of
the problem
Ag=0 inuw, g=g¢g O0Nnow,
and satisfies
19l < ellgl, b (2.18)

Moreover, thanks to the maximum principigis nonnegative ow. Next, we taker, = u; —g and
vy = uy In the first line of problem (2.4). This yields

2 2
Zui|uiﬁ{1(w) < Z [ fill o luill 2wy + 11l 22 19l 22wy + pa [u| 1) 91 )
=1 =1

+/w)\(a:)(u1—u2)(£1:) d:l:—/w)\(w)ﬁ(w) de.

It follows from the second line of (2.4) witly = 0, together with the definition of\ and the
nonnegativity ofg, that the last two integrals in this inequality are nonpesitOn the other hand,
we use the Poincaré—Friedrichs inequalities
Nutll 22wy < lur = Gl 2wy + 19l 22wy < elur — larw) + 19l 22 @)
< C|u1|Hl(w) +(1+C) ||§||H1(w)7 (219)

|l £2(w) < € |ua|m(w)-
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Combining all this yields

2

> wiluiliy < e (Uil + i [glme) il e
i=1

+ Il luslme + il llme )

Using an appropriate Young’s inequality together with 8.4and (2.19) gives the estimate for the
HUiHHl(w)-

2) Finally, the estimate fof\|| .2(., is a direct consequence of (2.10) and the fact thedincides
with the functions\; and )\, defined in (2.13).

Since\ belongs tol?(w), the next proposition is easily derived from the regulapityperties
of the Laplace operator, see [8, Thm 3.2.1.2] and4{83] for instance.

Proposition 7. For any data( f1, f») in L?*(w) x L?(w) andg in Hf% (Ow), the solution(uy, ug, )
of problem(2.4) belongs toH**!(w) x H*(w) x L?(w), with

(i) s = 5 in the general case,

(i) s = 1 whenw is convex or of clas€!:!.

3. The reduced discrete problem and its a priori analysis

In view of Section 2, we first propose a discretization of peab(2.9) and perform its numerical
analysis. In particular, we prove a priori error estimates.

From now on, we assume thatis a polygon. Let7,);, be a regular family of triangulations
of w (by triangles), in the usual sense that:
e For eachh, w is the union of all elements &f;;
e The intersection of two different elements®f, if not empty, is a vertex or a whole edge of both
of them:;
e The ratio of the diametéeli of any element of 7, to the diameter of its inscribed circle is
smaller than a constant independent.of
As usual stands for the maximum of the diametéss, K € 7. In what follows,c, ¢/, . . ., stand
for generic constants which may vary from line to line but@ieays independent df.

We will use the discrete spaces given as

Xy = {v, € H'(w); VK € T, vy|x € P1(K)}, Xon = Xp, N Hy (w), (3.1)

whereP; (K') denotes the space of restrictions/foof affine functions.

Next, in order to take into account the nonhomogeneous layrmdndition onu;, we assume
that the datuny belongs toH“%(aw) for somes > 0. Thus, we define an approximatigp of
g by Lagrange interpolation: The functigp is affine on each edgeof elements of7;, which is
contained indw and equal tgy at each vertex of elements @}, which belong todw. Thus, we
define the affine space

Xgh = {Uh € Xh; vy, = gp 0N 8w}, (32)
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together with the convex set
Kgn = {(Ulh,vgh) € Xgn x Xop; v1p — v2p, > 0 in w}. (3.3)

The reduced discrete problem is now derived from proble®) [y the Galerkin method. It
reads:
Find (uyp,, uap) in Ky, such that

V(v1n, von) € Kgn, Z,u,» /(grad win)(x) - (grad (vin, — u,h))(a:) dx
=t (3.4)

2
> Z<fi7 Vi, — Ui
=1
The arguments for proving its well-posedness are exaatlpé#me as for Proposition 3.

Proposition 8. For any data(fy, f2) in H '(w) x H '(w) andg in Hf%(aw), s > 0, problem
(3.4) has a unique solutiotu,,, usy) N Ky,

Proof: It follows from the previous assumptions thatis affine on each edge of elementsif
which is contained ilWw and nonnegative at the endpoints of this edge. So it is n@tivegnow.
Therefore ICyy, is a nonempty closed convex set. Since the ellipticity priyp@.6) is still valid on
Xon X Xop, the result is easily derived from the Lions—Stampaccleatém.

Theorem 9. Assume that the domainis convex, that the datgf;, f») belong toL?(w) x L*(w)

and that the datum belongs tcH% (Ow). Then, the following a priori error estimate holds between
the solutiongu;, us) of problem(2.9) and (wuyy, uap,) of problem(3.4)

lur = winllarr ) + luz = vanllmw) < eh (1fill2w + 1f2llzzw) + 19145 0,,)- (3.5)

Proof: We establish this result in several steps, following theraggh in [7].
1) Letv,, = (v1n, v2s) be any element of ;. We derive by using problem (3.4) that

2
Z phi|win — Uz‘hﬁ{l(w)
=1

< Z( / (grad vy,)(x) - (grad (uip, — v,h))(az) dx + (fi, wip — Uih>>7

whence, from problem (2.4),

2

Z i |uin — Uz‘hﬁ{l(w)
=1 (3.6)

i( / grad (u; — vin))(z) - (grad (um — vin)) () dz + b(uy — v, A)).
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To evaluate this last term, we note from the definitions offthen (-, -), and also ofA and/C,,
that

b(up, \) = — / M) (uyp, — ugp) () dae < 0.

On the other hand, it follows from the second line of probl@w) by taking successively = 0
andy = 2\ thatb(u, \) is zero. Thus, we obtain

b(up — vp, A) < b(u —vp, A) < |lu— v 22| Al L2(w)-
Going back to (3.6) and using appropriate Young's and ttexngequalities lead to
[u = wn [ty < ¢ (Ju—vnlEne + lu = vall2epe M 2) - (3.7)

2) On the other hand, we derive from Proposition 4, the foauk= (—1)" (Au; + f;), and the
regularity properties of the Laplace operator [8, Thm 32.Ih a convex domain thai belongs
to H*(w)? (see also Proposition 7), together with

lwillm2e) + luall ) + X220y < e (1fill2e) + 1 f2ll 2w + H9||Hg(aw))‘ (3.8)

3) LetZ,, denote the Lagrange interpolation operator at all vertadfedements ofZ;, with values
in X;. The following approximation properties are standard [@nmes IX.1.1 & 1X.1.2]

v = Thollizw) < ch? [ollmew), 10 =Tl < chllvllmw.- (3.9)

Furthermore, it is readily checked that, sireg, u») belongs toC,,
e the trace ofZ,u; on dw coincides withg;, while the trace of,u is zero;
e on each elemenk of 7, Z,u; — Z,u, is affine and equal téu; — us)(a) at each vertexs of
K, hence is nonnegative dx.
Thus,(Z,uy, I,us) belongs tdC,yy,. Takingv,, equal to(Z,uy, Z,us), inserting (3.9) into (3.7), and
using (3.8) give the desired estimate far— w;,| 1.2
4) Evaluating||us — uap|| 2. thus follows from the Poincaré—Friedrichs inequality
|ty — ton|| £2(w) < € |u2 — Uon | (w).-

To bound|uy — w1y | 12(.), We introduce a lifting;* of g which now belongs td7?(w) and satisfies
9"l < lgly3
Thus, we derive by the same arguments as for (2.19)
w1 — winl|22(0) < ¢lur — van|miw) + (14 ¢) |¢" = Zng™ | o1 (w)-

Thus, using once more (3.9) gives the desired estimate.
Estimate (3.5) is fully optimal, since the discretizatibatwe propose is of ordét

Remark 10. Whenw is not convex or for less smooth data, standard argumentd g&timate
(3.5), with / replaced byh® for 0 < s < 1. Optimal estimates can also be obtained when the mesh
is refined in an exponential way near the re-entrant corners.
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4. The full discrete problem and its a priori analysis

We first show how to obtain a discrete actignfrom the finite element discrete displacements
andusyy, by a local postprocessing. We next prove that the tiiplg, uop, A,) in fact corresponds to

a discretization of the full problem (2.4), where the displaents are discretized by finite elements
on the given grid and the action by a finite volume-like schema dual grid. This last property
then allows us to obtain optimal a priori error estimatesierdiscrete action.

4.1. Construction of the discrete action by local postprocesing

We first describe the full discrete problem in a rather alostray. Let),, denote the set of vertices
of elements of7;, which do not belong téw. We thus introduce the Lagrange functions associated
with the elements o¥,: For eacha in V), ¢, belongs taX,;, and satisfies

vala) =1 and Va' €V,,a' #a, ¢.(a)=0. (4.1)

We also denote by, the set of elements df, that containa and byh, the maximum of the
diameters of the elements 6. Finally, A, stands for the support of,.

To go further, we introduce a new set of nonnegative funstigp a € V,, in L?*(w), with
support in a neighbourhood af, and defin€Y; as the space spanned by these functions (so that
the dimension ofY}, is equal to the dimension &, if the x, are linearly independent). Thus, it
is readily checked that the set

M=o =Y paxas pa =0}, (4.2)

acVy,

is a convex cone contained in We also introduce a duality pairing betwegp andX;, by

Von = Z Pa Xa € Yy, Vv, € Xop,

o (4.3)
oo = 3 pan(a) Y [ vala)da
GGVh KGTQ K
Remark 11. It follows from the previous definition that, with the saméation,
(s Path = Pa Y / Pa(z) d. (4.4)
K

KeT,
So, since theo,, a € V,, form a basis oX,, any functionp, in Y, is perfectly defined by the
products(ps, vp)n, i € Xop.

In analogy with (2.14), we can now define functiong and Xy, in Y, by the equations, where
vy, @andwyy, run throughXy,

(Mhs Vi) = 1 /(grad uiy)(x) - (gradvi,)(x) de — (f1, vin),
v (4.5)
(Aon; Vo) = — o /(grad ugn)(x) - (grad vy, )(z) da + (fo, van).

w
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Note that the practical construction af, and Xy, is fully local, since, owing to the previous
remark, we can equivalently replaeg, andvy, by ¢,, @ € V,, in (4.5). Moreover, we have the
following result.

Proposition 12. The functions\;;, and \,;, defined in(4.5) coincide.

Proof: Subtracting the second equation in (4.5) from the first ogy@acing each;;, by v;;, — u;,
for a pair(vip, vap) In Ky, and using problem (3.4) yield that

(Mhy Uth — Vin)n — (Aon, Uon — Vap)n < 0. (4.6)

Let nowy, be any function inXy,. Then, the pair$vy, = uy, £ pp, var, = ugy + ¢,) belong to
Kg4n- Making this choice in (4.6) yields

(Mn — Aap, on)n = 0.

It thus follows from Remark 11 that the functiohg, and\,;, coincide.

In view of Proposition 12, we now write a discrete problem ethiup to the replacement of
the scalar product af?(w) by the new duality pairing-, -)1,, is constructed from problem (2.4) by
the Galerkin method. It reads:

Find(ulh, Uop,, )\h) in Xgh X Xop X Ay, such that

2
V(v1n, van) € Xon X Xop, Zui /(grad uin)(x) - (gradvp)(z) de
i=1 w
2 4.7)
- <)\h, Uih — U2h>h = Z<fi7 Uih>7

i=1
Vxn € Apy (Xn — Ans Urp — uap)p > 0.

Note that this problem is not interesting for the implemé&aotg but it is needed for the analysis.
Indeed, we have the next result.

Lemma 13. For any solution(uy, uan, An) of problem(4.7), the pair (uyp,, ugy) is @ solution of
problem(3.4). Conversely, for any solutiof,, us,) of problem(3.4), the function\, = A,
i = 1,2, defined by(4.5) gives rise to a solutiofu,, usp, Ap,) Of problem(4.7).

Proof: It is performed in two steps.
1) Let (u1p, uspn, An) be a solution of problerfd.7). Replacingy, by x, + A, in the second line of
(4.7) gives

VXn € Ans (X, Uih — Ugn)p > 0.
Thus, takingy, equal toy, in the previous line yields that, for any in Vy, (u1, — uon)(a) is
nonnegative. On each vertexof elementsk” which belongs t@w, (uy, — ug)(a) is equal to
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g(a), hence is nonnegative. Thus the paif,, us;,) belongs ta,,. On the other hand, using the
definition of A, we derive that, for anyv;, vas) in Ky,

—{(An, 1 — vop)p < 0.

By taking x, equal to0 in the second line of (4.7), we also obtain that, uy, — uan), < 0. Thus,
by replacing each;;, in the first line of (4.7) by;;, — u;;, and using the two previous inequalities,
we obtain (3.4).

2) Conversely, letuyy, uap,) be the solution of problem (3.4). Noting from Propositionttat the
functions\y;, and )y, defined in (4.5) coincide, we denote them ky We thus observe that the
triple (uip, uap, \p) satisfies the first line of problem (4.7). On the other handefcha in Vy,
using (4.6) with(vy, = u1p + @a, Van, = ugy) iIMplies

(Ans @a)n > 0.

It thus follows from (4.2) and (4.4) that, belongs ta\,. Finally, we now take in (4.6)
U1p = Uih — Z Ulh(a) Pas vop, = 0,
acVy

so thatvyy, is equal touy;, on Ow but vanishes outside a small neighborhoodof As hinted in
Remark 11, we have

Ay Uin)n = <)\h, Z uip(a) cpa>h.

acVy

So, we derive
—(An, utp, — ugp)p > 0.

Using the definitions of\;, and/C,, also yields that, for alk;, in A,
{(Xn, u1h — ugn)p > 0.

Summing the last two inequalities gives the second line of)(4As a consequence, the triple
(u1p, uon, Ap) is @ solution of (4.7).

Remark 14. An important property of problery.7) can be derived as follows. By taking,
successively equal tband to2),, in the second line of this problem, we have

(Ans urp — ugp)p = 0.

Thus, combining4.3) with the definitions ok,, and A, yields the discrete analogue of the com-
plementary equality in the third line of problefh.1):

Va € Vi, Aa(uip — ugp)(a) = 0. (4.8)

This proves the consistency of our approach.
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The well-posedness of problem (4.7) is now a direct consempief Lemma 13.

Theorem 15. For any data(fy, f») in L*(w) x L(w) andgin H} *(0w), s > 0, problem(4.7)
has a unique solutiofuy, uap, A) IN Xy, x Xop X Ay,

Remark 16. Let I, be the operator defined fro?(w) into Y, by

Va e Vi (pva = [ p@)sale)da. (4.9)
If
(i) the following bound holds
n=3" paxa € Ya Hmmfmg§0<§:pyﬁ), (4.10)
acVy, acVy

(i) the following estimate holds for any functigrin L?(w)

lp = Tppllr-1(w) < ¢ Rlpllr2), (4.11)

and if moreover the assumptions of Theofeane satisfied, standard arguments yield the following
a priori error estimate for the discrete problef4.7)

1A= Al < eh (Mallzz + 1 fellzz + 1913 )

Assumption$4.10) and(4.11) are likely but seem rather difficult to establish for the epdan that
we have in mind.

4.2. An example of full discretization

We introduce the dual mesh of the triangulatifn as standard for a finite volume approach. For
eacha in V, and with eachi in 7,, we associate the quadrilateral with vertieceghe midpoints
of the two edges of that containa and the barycentre ok. The union of these quadrilaterals
when K runs throughZ, is denoted byD,. This notation is illustrated in Figure 1, and it can be
observed that, it: is shared by elements of7,, D, is a polygon with2k edges, and is always
contained inA\,.

The set of element®,, a € V, is denoted byD,,. It can be noted that the elementsTof
form a partition ofw minus a “small” neighbourhood @fw. We denote this new domain hy,.

From now on, we choose to take the functignsintroduced in Section 4.1 equal to the char-
acteristic functions of thé,,, i.e., the functions equal tbon D, and to zero elsewhere.

To investigate the convergence &f to A when i tends to zero, we introduce d(div)-
conforming reconstruction of the discrete diffusive flug, @eviously used in [14] in the frame-
work of a posteriori error estimation:

(i) The intersection of each, with a triangleK of 7, is the union of two triangles with vertex
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We denote bys, the triangulation ofv, made by these triangles.

(i) H(div,wy,) is the domain of the divergence operatoii{w;,)?, namely the space of functions
sin L?*(wy)? such thativ s belongs tal?(wy,).

(i) Finally, we consider the space associated with RaviElnomas finite elements [12]

Ly, = {sh € H(div,wp); Yk € Sh, Sils € RT(K,)}, (4.12)

whereRT'(x) stands for the space of restrictionsitof polynomials of the forne + dx, ¢ € R?,
d € R. We recall from [12] that the linear forms: — [ (s - n)(7) dr wheren is a unit normal
vector toe ande runs through the edges ef areR7T'(x)-unisolvent and that the functions @,
have a constant normal trace on each edge of elemejs of

Figure 1: The triangulatioff;, and its dual mesi®,,

It follows from the properties stated above and the fact thatgradient ofu;, is constant on
each element df, that, fori = 1 and2, there exists a vector field,, in Z,;, such that, for any edge
e of an element o&;, which is contained in one elemeht of 7, (i.e., not contained IWK),

(tin - M)|e = — 15 On(Uin| ). (4.13)
The exact definition of the;;, is made precise later on.

4.3. A priori error estimates for the discrete action

Establishing the error estimate between the exact andetigsactions relies on the functiohg
introduced above. The main properties of each auxiliargtion ¢;;, are stated in the next lemma.
This requires the introduction of approximatiofis of the functionsf; defined as follows: For
1 = 1and2, f; is constant on each elemefitof 7;, defined by

VK € 7T, finlx = m /Kfz(w) de. (4.14)
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The main arguments for the proof of this lemma can be found ji.gmma 3]; we recall them
only for completeness.

Lemma 17. The following equations are satisfied fo= 1 and2 and for anya in V,

/ (diven + e Auy — (“17 (A — ) (@) de
\ (4.15)
— [ G- m)@eal@) e~ [ (i fa)l) da.
Aq Dq

Proof: We establish the result only fér= 1 since the arguments for= 2 are exactly the same.
This is performed in several steps. leebe any vertex in/,.

1) Noting from Proposition 4 and Theorem 5 that; and\ belong toL?(w), we deduce from the
first line of (1.1) that

(1 Auy + A) () de = — fi(x) de. (4.16)
Dg Dq
2) We have
fu@pa@ dz = 3 (il | val@)dz= 3 ()l 2]
KGZ,TQ/K WL )PalL i K;; h K/KQO T X K;; K 3

Since the line joining a vertex df’ to the midpoint of its opposite edge divid&sinto two equal
parts, it is readily checked thé@ is equal tomeas(K N D), whence

Z /Kflh(w)SOa(w) de = /Da fin(z) dx. (4.17)

KeT,

3) On the other hand, we have by integration by parts,

oy /K (grad uy)(z) - (grad o) (@) de = ) /8 K(ﬁnulhlx)(ﬂ%(ﬂ dr,

KeT, KeT,

wheren here denotes the unit normal vector outwardstoWe observe that K is the union of an
edge contained inA, wherey,, vanishes and of two edges ande,; on these edges),,u;,|x is
constant and
/ Ya(T)dT = Lea;(ej) = meas(e; N Dg).
We also have
0= / (Augy) (@) da / (Outian| i) (7) dr + / (Ontian| i) (7) dr.
KNDg OKNDg KNODg
whence

m Y [ (radun) (@) - (grad oo)(@) da

KeT,

N /a  (Gua)(r) dr = /8 (e m()dr
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This in turn ylelds
W EE a/ g Uy, g Pa /a h

4) By takingv,; equal top, andwvy, equal to0 in (4.7) and using (4.4), we derive

Agmeas(Dg) = 11 /

w

(grad uip)(x) - (grad ¢,)(x) de —/fl(a:)cpa(a:) de.

Since the functionp,, has its support equal t4,, inserting (4.17) and (4.18) into this equation
yields

/ Ap(x) de = / (div ty, — fin)(x) de —/ (fi — fin)(®)pa(x) da.
a a Aa
Combining this with (4.16) yields the desired result.

Corollary 18. If the data( fi, f») belong toL?(w) x L*(w), the following estimates are satisfied
fori=1and2:

||diV tin + 1 Auz — (—1)2()\ — )\h)HHA(w)

_ _ (4.19)
< ch (Ifill 2y + 1f2ll 2y + 1div et o, + [1div el r2e,))-
Proof: Denoting byp the scalar functiodiv ¢;, + p; Au; — (—1)*(A — \,), we have
L P(x)w(z)de
HPHH—I(w) = sup f ) (4.20)
weHL (W) HwHHl(w)
In what follows, we write the integral an as a sum on two subdomains:
/p(a:)w(a:) de = / p(x)w(x)dx +/ p(x)w(x) de. (4.21)
w w\wp, Wh

1) Using the expansiol;, = » ), AaXa @nd noting that the measure Bf, (and also that of\,)
is bounded from above and below by a constant tifesve derive from (4.15) that

Rl 12 < cha (11 = finllzzan + Idivtinlzon -+ IAullioa) + 1Al 200 )
Thanks to the estimate

||)\h’|%2(wh) <c Z Ao has

acVy

we obtain

Ml < e (1 = Finllzao + 19V Eanllzaay + 18ullze + N2 ).
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It follows from Proposition 4 and Corollary 6 that all ternmsthe right-hand side of this inequality
are bounded. This yields the estimate

lollz2w) < e (Il fillez) + [ foll ) + 1div a2, + 1div Eanll2,)) - (4.22)

2) It can be noted that \ wy, is contained in the union of elememtsof 7, which have at least one
edge contained iAw. On each of these triangles, we derive by applying the Pogr¢aiedrichs
inequality that, for anyv in H}(w),

[wllze) < ehi [w]m ).

As a consequence, we have
y/\mww@mﬂ5cwwmwmwm@. (4.23)
w\wh

3) Letw, be the function equal t@, on eachD,,, with

Wq = m /aw(a:) de.

Denoting by, the function)_, .\, wa ¢a, We derive from (4.15) that

/wh p(x)w(x) de = /wh p(x)(w — wy)(z) dz + /(fi — fu)(@)in(z) da

w

—/Xﬁ—ﬁmmw@Mw+/<ﬁ—mx@m—wwwa

Wh

It is well-known [3,§1X.3] that
lo = wallz < ehllwlmen,  [@ullme < ellwlme. (4.24)

On the other hand, since tlfg are the images of thg by the orthogonal projection operator from
L*(w) onto piecewise constant functions, a standard dualityraegu yields

i = finllg-1w) < el fill 2w (4.25)

Combining all this leads to

/ p(x)w(x) dw’ < ch (llpllzzw) + 1 fill 2y + [ follzz) 1wl - (4.26)
Inserting (4.23) and (4.26) into (4.21) and finally usin@2(®.and (4.22) give the desired result.
The arguments for the next lemma are nearly the same as above.
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Lemma 19. If the assumptions of Theoredrare satisfied, the following estimates hold for 1
and2:

Idivtin + i Auill 1) < b (Ll + 1 fallz2w) + 190 43 60 (4.27)
+ ldiv 1| 2 + iV Eonl| 22 ) -

Proof: We now denote by the functiondiv ¢, + 1; Au; and use once more (4.20). The first term
in the right-hand side of (4.21) is evaluated as in (4.23).b®and the second term, we use the
same approximations;, andw, as previously and deduce from (4.18) that

/wh plz)w(x)de = / p(x)(w — wy)(x) de

Wh

+ 1 /(grad win) () - (grad wy,)(x) de + / (Au;)(x)wy(x) de.

By integration by parts, this yields

| @@= [ o) - w)@)da

Wh

o / (grad (u; — um)) () - (grad @n)(@) de + i / (M) (@) (w — i) () da

o / () () (0 — wp) (&) d — g / (Auy)(@)w(x) de.

\wh

All these terms are evaluated from (4.24) (and an extendid) dheorem 9 and the same argu-
ments as for (4.22).

In view of Corollary 18 and Lemma 19, we need to check that lopiémntities||div ¢,|| .2 ()
are bounded as a function of the data.

Lemma 20. Assume that the domainis convex and that there exists a constamdependent of
h such that

VK €7, hg>oh. (4.28)

For i = 1 and?2, there exists a functioty, in Z, satisfying(4.13) and such that
ldiv iz < e (Ll + ez + 19l 4 6)- (4.29)
Proof: We set:t; = —u, grad v, and introduce the so-called Raviart—Thomas operatdd 2]:

For each sufficiently smooth vector fiejgl 7, belongs taZ, and satisfies for any edgeof an
element ofS;,

/(ﬂhgo -n)(r)dr = /(go - m)(7)dr.
Thus, we have

||d1V tihHLQ(wh) S Hle ﬂ-htiHLQ(wh) + Hle (tzh - ﬂ-hti)HLQ(wh)‘
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As well-known,div 7, t; is the orthogonal projection efiv t; = —u; Au; onto piecewise constant
functions for the scalar product @f*(92), so that the first term in the previous sum is bounded
as desired, see Proposition 4. On the other hand, theres exigtique functior;;, in Z,; which
satisfieg4.13) and such that, for any edgef an element o0&, which is contained in the boundary
of an element of 7;,,

1

“ meas(e)

(tih : n)‘e = K

@) ar,

e

(note that the previous integral makes sense; indeed, siriseconvex,u; belongs toH?(w)).
Thus, (t;, — myt;) - m vanishes on such edges. Next, sidte(t;, — m,t;) is constant on each
elements of S;,, we note that

Hle (tzh — Whti)”%z(n) :/ (le (tzh - 7Thti)) |H<(t2h - ﬂ-hti) : n) (T> dr

Ok
/ ((tin — mat) - m) (1) dr‘.
Ok

<chy' ||div (En — mti) || 120

Let nowé&, denote the set of the two edges+oivhich are inside an elemet of 7,. We deduce
from the previous lines that

Hle (tzh — Whti)HLQ(;{) S Ch;l Z H@n(ul — uih)HLl(e). (430)

eeé'm

To go further, we introduce the Lagrange interpolajteof «; onw,, with values in the space
X = {v, € H'(wp); V& € Sh, valx € Pi(k)},
and we use the triangle inequality
100 (i — win)[|L1(e) < 100w — wipl) lLrce) + 10n(uiple — win)ll 21 (e)- (4.31)

Next, by going to the reference element (with obvious notgtiand noting that the Lagrange
interpolation operator introduced above preserves thgpohials inP, (), we derive
[0n (i — wiy )l ey < cllgrad (@ — @) |21y < ¢ |t — |2y < ¢ |l 2 ),
whence
[0n (s — uip )l 1) < € l|till 2 ey (4.32)

To evaluate the second term in the right-hand member of 4vBd note that, for any function
in ,Po(/i),
lollziey < chell@llie < ¢ i ll@llzei) < ¢ llellrze)-

Since|0,, (uf, |« — win)| is smaller thangrad (u}, — w;,)|, this yields
|00 (] — Uih)HLl(e) <c (\uz - U;kh‘Hl(n) + |u; — Uih\Hl(H)).
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The approximation properties of the Lagrange interpofatiperator finally give

100 (winlw — wir) [ £2e) < € (s Nwill 2y + s — win 1)) (4.33)
By inserting (4.32) and (4.33) into (4.31) and using (4.3@,0btain

[div (tin — mnti) || 220y < € (luall gy + b T — winl ) -

We conclude by summing the square of this inequality oncah S;,, using estimate (3.5) and
finally assumption (4.28).

The final a priori estimate is now a direct consequence of IiGoyol8 and Lemmas19 and 20.

Theorem 21. If the assumptions of Theoredrare satisfied together with assumptiph28), the
following a priori error estimate holds between the sola8du,, us, A) of problem(2.4) and
(w1p, uon, \p) OF problem(4.7)

1A= Malli-r) < el (Lllzee) + 1l + 191 ) (4.34)

Estimate (4.34) is fully optimal (and should hold with weakerms of the data, however we
have no applications for that). However, assumption (4i28)ry restrictive in the context of
mesh adaptivity. Fortunately, if it is replaced by the m@alistic one

VK € T,, hx >oh'™, (4.35)

for a real number, 0 < o < 1, exactly the same arguments as previously yield a conveegeh
|A = Apl| -1 () Of orderh! =,

Remark 22. By replacing(4.20) by

Y

- fw p(x)w(x)dx
ol 2) = sup
wel?(w) ||wHL2(W)

and using the same arguments as previously, we can also pratdf the assumptions of Theo-
rem21 are satisfied,
}Lir% A = Al z2@@) = 0. (4.36)

With further regularity assumptions on the data, an expéstimate of A — ;|| .2(., as a function
of h can also be derived: For instance, whén, and f, | belong to/*(K) for all K in 7, this
estimate is of ordeh.

It follows from the previous results that the discretizatibhat we propose is very efficient.
It is also of low cost since the total number of degrees ofdoee is equal to three times the
cardinality ofV,. Moreover, the reduced problem (3.4) provides a naturalréitgn for uncoupling
the unknowns and, once its solutiom ;,, usy,) is known, computing\, consists in solving a linear
system with diagonal matrix.
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