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Abstract. The contact between two membranes can be described by a system of variational in-
equalities, where the unknowns are the displacements of themembranes and the action of a mem-
brane on the other one. We first perform the analysis of this system. We then propose a discretiza-
tion, where the displacements are approximated by standardfinite elements and the action by a
local postprocessing. Such a discretization admits an equivalent mixed reformulation. We prove
the well-posedness of the discrete problem and establish optimal a priori error estimates.
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1. Introduction

We are interested in the discretization of the following system, set in a bounded open setω in R
2

with a Lipschitz-continuous boundary:
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−µ1 ∆u1 − λ = f1 in ω,

−µ2 ∆u2 + λ = f2 in ω,

u1 − u2 ≥ 0, λ ≥ 0, (u1 − u2)λ = 0 in ω,

u1 = g on ∂ω,

u2 = 0 on ∂ω.

(1.1)

Indeed, such a system is a model for the contact between two membranes and can easily be derived
from the fundamental laws of elasticity (more details are given in [2, §2]). In this model, the
unknowns are the displacementsu1 andu2 of the two membranes and the Lagrange multiplierλ

which represents the action of the second membrane on the first one (so that−λ is the reaction).
The coefficientsµ1 andµ2 are positive constants corresponding to the tension of the membranes.
The data are the external forcesf1 andf2 and also the boundary datumg: Indeed the boundary
conditions in system (1.1) mean that the first membrane is fixed on∂ω at the heightg, whereg is
a nonnegative function, and the second one is fixed at zero. This kind of system appears in a large
number of problems in elasticity, such as the obstacle or Signorini problems, see [6, Chap. 5] and
[7] among others. Finite element discretizations of variational inequalities have also been analyzed
in a number of works, see [5], [9], [10], and the references therein.

The analysis of problem (1.1) is performed in [2] in the case of homogeneous boundary data
g = 0, where the actionλ is implicitly linked to a displacement. Here, we consider the case where
g 6= 0. Thus, we are led to write a new variational formulation for problem (1.1), whereλ is
explicitly taken into account, which requires more regularity to give sense to the complementarity
equation(u1 − u2)λ = 0. As standard for mixed problems, the displacementsu1 andu2 are
the solution of a reduced variational inequality. We prove the well-posedness successively of the
reduced problem, next of the full problem.

The discretization of problem (1.1) is made in two steps. In afirst step, we propose a finite
element discretization of the reduced problem, prove that the discrete problem is well-posed, and
establish optimal a priori estimates under minimal regularity assumptions. The discretization of the
full problem relies on the reduced discrete problem but is more complex. We propose a discrete
problem that requires the introduction of a dual mesh and canbe interpreted as a finite volume
scheme. The corresponding discrete problem is well-posed,and optimal a priori error estimates
are also derived.

The a posteriori analysis of our discrete problem is under consideration, together with some
numerical experiments.

An outline of the paper is as follows.
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• Section 2 is devoted to the analysis of system (1.1).
• Sections 3 and 4 deal with the reduced and full discrete problems, respectively. In both cases,
we check their well-posedness and prove a priori error estimates.

2. Analysis of the continuous problem

We first write a variational formulation of system (1.1). In order to do this, we consider the full
scales of Sobolev spacesHs(ω) andHs(∂ω), s ≥ 0, equipped with the usual norms (and semi-
norms whens is a positive integer). We also need the spaceH1

0 (ω) of functions inH1(ω) which
vanish on∂ω and, for any functiong in H

1

2 (∂ω), the space

H1
g (ω) =

{

v ∈ H1(ω); v = g on ∂ω
}

. (2.1)

Next, we introduce the convex subset

Λ =
{

χ ∈ L2(ω); χ ≥ 0 a.e. in ω
}

, (2.2)

and, in order to take into account the nonnegativity of the boundary conditiong, the cones defined
for eachs ≥ 0 by

Hs
+(∂ω) =

{

k ∈ Hs(∂ω); k ≥ 0 a.e. in ∂ω
}

. (2.3)

So we consider the following variational problem, for any data (f1, f2) in H−1(ω) × H−1(ω)

andg in H
1

2

+(∂ω):
Find (u1, u2, λ) in H1

g (ω) × H1
0 (ω) × Λ such that

∀(v1, v2) ∈ H1
0 (ω) × H1

0 (ω),
2

∑

i=1

µi

∫

ω

(grad ui)(x) · (grad vi)(x) dx

−

∫

ω

λ(x)(v1 − v2)(x) dx =
2

∑

i=1

〈fi, vi〉,

∀χ ∈ Λ,

∫

ω

(χ − λ)(x)(u1 − u2)(x) dx ≥ 0.

(2.4)

We must now check the equivalence of this problem with system(1.1).

Proposition 1. Problems(1.1) and(2.4) are equivalent, in the sense that any triple(u1, u2, λ) in
H1(ω) × H1(ω) × L2(ω) is a solution of(1.1) if and only if it is a solution of(2.4).

Proof: Since the fourth and fifth lines in (1.1) are obviously equivalent to the fact thatu1 andu2

belong toH1
g (ω) andH1

0 (ω), respectively, we now verify the equivalence of the other lines.
1) LetD(ω) be the space of infinitely differentiable functions with a compact support inω. Multi-
plying the first line of (1.1) by a functionv1 in D(ω) and the second line by a functionv2 in D(ω),
summing these two equations, and integrating by parts yieldthat the first equation in (2.4) is sat-
isfied for all pairs(v1, v2) in D(ω)2. Thus, it follows from the density ofD(ω) in H1

0 (ω) that this
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line is satisfied for all(v1, v2) in H1
0 (ω)2. Conversely, by lettingv1 run throughD(ω) and taking

v2 equal to zero, next by takingv1 equal to zero and lettingv2 run throughD(ω), we observe that
the first line of (2.4) implies the first two lines of (1.1) in the sense of distributions.
2) Let (u1, u2, λ) satisfy the third line of (1.1). Thus,λ belongs toΛ and it follows from the
definition ofΛ that, for allχ in Λ,

∫

ω

(χ − λ)(x)(u1 − u2)(x) dx =

∫

ω

χ(x)(u1 − u2)(x) dx ≥ 0.

Conversely, ifλ belongs toΛ and(u1, u2, λ) satisfies the second line of (2.4), takingχ equal to the
sum ofλ and of the characteristic functionχO of any measurable subsetO of ω (thisχO obviously
belongs toΛ) yields that

∫

O

(u1 − u2)(x) dx ≥ 0,

whence the nonnegativity ofu1 − u2. Finally, takingχ equal to zero yields that
∫

ω

λ(x)(u1 − u2)(x) dx ≤ 0,

and combining this with the previous properties gives the equality (u1 − u2)λ = 0.

Settingu = (u1, u2) andv = (v1, v2), we consider the bilinear form defined by

a(u, v) =

2
∑

i=1

µi

∫

ω

(grad ui)(x) · (grad vi)(x) dx. (2.5)

Its continuity onH1(ω)2 × H1(ω)2 is obvious and its ellipticity onH1
0 (ω)2 follows from the

Poincaré–Friedrichs inequality: There exists a constantα > 0 only depending onω and on the
µi such that

∀v ∈ H1
0 (ω)2, a(v, v) ≥ α ‖v‖2

H1(ω)2 . (2.6)

With the same notation, we also introduce the bilinear form

b(v, χ) = −

∫

ω

χ(x)(v1 − v2)(x) dx, (2.7)

which is continuous onH1(ω)2 × L2(ω).
Problem (2.4) fits the abstract framework introduced in [13]; however the inf-sup condition on

the formb(·, ·) fails. So we have rather study it by hand. For this, we introduce the new convex set

Kg =
{

(v1, v2) ∈ H1
g (ω) × H1

0 (ω); v1 − v2 ≥ 0 a.e. in ω
}

. (2.8)

Since the functiong is nonnegative, this last set is not empty. We then consider the reduced problem
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Find (u1, u2) in Kg such that

∀(v1, v2) ∈ Kg,

2
∑

i=1

µi

∫

ω

(grad ui)(x) ·
(

grad (vi − ui)
)

(x) dx

≥
2

∑

i=1

〈fi, vi − ui〉.

(2.9)

The reason for this is stated in the next lemma.

Lemma 2. For any solution(u1, u2, λ) of problem(2.4), the pair(u1, u2) is a solution of problem
(2.9).

Proof: Let (u1, u2, λ) be a solution of problem(2.4). Owing to Proposition 1, it satisfies the third
line of (1.1), so that(u1, u2) belongs toKg. On the other hand, sinceΛ is a closed convex cone,
we have

∫

ω

λ(x)(u1 − u2)(x) dx = 0.

Finally, it can be noted that, for any(v1, v2) in Kg, the pair(v1 − u1, v2 − u2) belongs toH1
0 (ω) ×

H1
0 (ω). Thus, replacing eachvi by vi−ui in problem (2.4) and using the previous inequalities lead

to (2.9).

Owing to the ellipticity property (2.6), the existence and uniqueness of a solution for problem
(2.9) is now a direct consequence of the Lions–Stampacchia theorem [11].

Proposition 3. For any data(f1, f2) in H−1(ω)×H−1(ω) andg in H
1

2

+(∂ω), problem(2.9) has a
unique solution(u1, u2) in Kg.

We now prove a further regularity of the solution(u1, u2). The arguments are the same as in
[4] but simpler, so that we prefer to give a direct proof. For any functionv in H1(ω), we denote by
v− the functionmin{v, 0}.

Proposition 4. For any data(f1, f2) in L2(ω) × L2(ω), the solution(u1, u2) of problem(2.9) is
such that(−∆u1,−∆u2) belongs toL2(ω) × L2(ω). Moreover, the following property holds

µ1 ‖∆u1‖L2(ω) + µ2 ‖∆u2‖L2(ω) ≤ c
(

‖f1‖L2(ω) + ‖f2‖L2(ω)

)

. (2.10)

Proof: For anyε > 0, the problem: Finduε1 in H1
g (ω) anduε2 in H1

0 (ω) such that

uεi − ε ∆uεi = ui, i = 1, 2, (2.11)

has a unique solution. Moreover, it admits the following variational formulation

∀v ∈ H1
0 (ω),

∫

ω

uεi(x)v(x) dx + ε

∫

ω

(grad uεi)(x)(grad v)(x) dx

=

∫

ω

ui(x)v(x) dx, i = 1, 2.

(2.12)
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1) Choosingv equal to(uε1−uε2)− in these equations (sinceg is nonnegative, this function belongs
to H1

0 (ω)) and subtracting the equation fori = 2 from the equation fori = 1, we derive

‖(uε1 − uε2)−‖
2
L2(ω) + ε|(uε1 − uε2)−|

2
H1(ω) =

∫

ω

(u1 − u2)(x)(uε1 − uε2)−(x) dx.

Since the right-hand side of this equation is nonpositive, we derive that(uε1 − uε2)− is zero, so
that the pair(uε1, uε2) belongs toKg.
2) When takingvi equal touεi in problem (2.9), we observe that

2
∑

i=1

µi

∫

ω

(grad ui)(x) ·
(

grad (ui − uεi)
)

(x) dx ≤
2

∑

i=1

〈fi, ui − uεi〉,

or equivalently

2
∑

i=1

µi

(

|ui − uεi|
2
H1(ω) +

∫

ω

(grad uεi)(x) ·
(

grad (ui − uεi)
)

(x) dx

)

≤
2

∑

i=1

〈fi, ui − uεi〉.

It thus follows from the variational formulation (2.12) that

ε−1

2
∑

i=1

µi ‖ui − uεi‖L2(ω) ≤ c

2
∑

i=1

‖fi‖L2(ω).

So, theuεi tend toui strongly inL2(ω) whenε tends to zero.
3) On the other hand, it follows from the previous estimate that

2
∑

i=1

µi ‖∆uεi‖L2(ω) ≤ c

2
∑

i=1

‖fi‖L2(ω).

Therefore, there exists a subsequence of theuεi such that∆uεi converges weakly inL2(ω). Since
its limit is necessarily∆ui, each∆ui belongs toL2(ω). Moreover, by combining the previous
inequality with the convexity of the norm‖ · ‖L2(ω), we obtain (2.10).

Thanks to Proposition 4, we are in a position to prove the mainresult of this section.

Theorem 5. For any data(f1, f2) in L2(ω)×L2(ω) andg in H
1

2

+(∂ω), problem(2.4) has a unique
solution(u1, u2, λ) in H1

g (ω) × H1
0 (ω) × Λ.

Proof: Let (u1, u2) be the solution of problem (2.9). We set:

λ1 = −µ1 ∆u1 − f1, λ2 = µ2 ∆u2 + f2. (2.13)

1) It follows from Proposition 4 thatλ1 and λ2 belong toL2(ω). The variational form of the
previous system reads, for allv1 andv2 in H1

0 (ω),
∫

ω

λ1(x)v1(x) dx = µ1

∫

ω

(grad u1)(x) · (grad v1)(x) dx −

∫

ω

f1(x)v1(x) dx,

∫

ω

λ2(x)v2(x) dx = −µ2

∫

ω

(grad u2)(x) · (grad v2)(x) dx +

∫

ω

f2(x)v2(x) dx.

(2.14)
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Subtracting the second equation from the first one and replacing eachvi by vi−ui for a pair(v1, v2)
in Kg lead to

∫

ω

λ1(x)(v1 − u1)(x) dx −

∫

ω

λ2(x)(v2 − u2)(x) dx

=

2
∑

i=1

µi

∫

ω

(grad ui)(x) ·
(

grad (vi − ui)
)

(x) dx −

2
∑

i=1

∫

ω

fi(x)(vi − ui)(x) dx.

(2.15)

It follows from problem (2.9) that
∫

ω

λ1(x)(v1 − u1)(x) dx −

∫

ω

λ2(x)(v2 − u2)(x) dx ≥ 0. (2.16)

2) Let ϕ be any function inH1
0 (ω). Then, the pairs(v1 = u1 ± ϕ, v2 = u2 ± ϕ) belong toKg.

Making this choice in (2.16) gives
∫

ω

(λ1 − λ2)(x)ϕ(x) dx = 0.

It follows from the density ofD(ω) in L2(ω) that there exists a sequence(ϕn)n in H1
0 (ω) which

converges toλ1 − λ2 in L2(ω). Replacingϕ by ϕn in the equation above and passing to the limit
yield that‖λ1 − λ2‖

2
L2(ω) is zero. So, the functionsλ1 andλ2 coincide with a unique functionλ.

Thus, the triple(u1, u2, λ) satisfies the first line of problem (2.4).
3) We now consider a nonnegative functionϕ in H1

0(ω). Using once more (2.16) with(v1 =
u1 + ϕ, v2 = u2) implies

∫

ω

λ(x)ϕ(x) dx ≥ 0.

For any closed subsetO of ω with positive measure, there exists a sequence(ϕn)n of nonnegative
functions inH1

0 (ω) which converges to the characteristic function ofO in L2(ω). Takingϕ equal
to ϕn in the previous inequality and passing to the limit yield

∫

O

λ(x) dx ≥ 0.

Thus,λ is nonnegative and belongs toΛ.
4) Let(ϕn)n be a sequence of smooth functions with values in[0, 1], equal to1 in a neighbourhood
of ∂ω and such that the measure of the support ofϕn is ≤ 1

n
. By taking(v1 = ϕnu1, v2 = ϕnu2),

we derive from (2.16) that
∫

ω

λ(x)(ϕn − 1)(x)(u1 − u2)(x) dx ≥ 0,

whence, by lettingn tend to+∞,

−

∫

ω

λ(x)(u1 − u2)(x) dx ≥ 0.
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On the other hand it follows from the definitions ofΛ andKg that, for allχ in Λ,
∫

ω

χ(x)(u1 − u2)(x) dx ≥ 0.

Summing the last two inequalities gives the second line of (2.4). As a consequence of all this, the
triple (u1, u2, λ) is a solution of (2.4).
5) Let (u1, u2, λ) and (ũ1, ũ2, λ̃) be two solutions of problem (2.4). Thus, owing to Lemma 2,
(u1, u2) and (ũ1, ũ2) are solutions of problem (2.9) and it follows from Proposition 3 that they
coincide. Then, we deduce from problem (2.4) the equation

∀v ∈ H1
0 (ω),

∫

Ω

(λ − λ̃)(x)v(x) dx = 0.

Using the density ofH1
0 (ω) in L2(ω) yields thatλ is equal toλ̃, whence the uniqueness of the

solution of problem (2.4).

We also prove a stability estimate for this solution.

Corollary 6. For any data(f1, f2) in L2(ω) × L2(ω) andg in H
1

2

+(∂ω), the solution(u1, u2, λ) of
problem(2.4) satisfies

‖u1‖H1(ω) + ‖u2‖H1(ω) + ‖λ‖L2(ω) ≤ c
(

‖f1‖L2(ω) + ‖f2‖L2(ω) + ‖g‖
H

1
2 (∂ω)

)

. (2.17)

Proof: We proceed in two steps.
1) Let g denote the harmonic lifting of the functiong: The functiong is the solution inH1(ω) of
the problem

∆g = 0 in ω, g = g on ∂ω,

and satisfies
‖g‖H1(ω) ≤ c ‖g‖

H
1

2 (∂ω)
. (2.18)

Moreover, thanks to the maximum principle,g is nonnegative onω. Next, we takev1 = u1−g and
v2 = u2 in the first line of problem (2.4). This yields

2
∑

i=1

µi|ui|
2
H1(ω) ≤

2
∑

i=1

‖fi‖L2(ω)‖ui‖L2(ω) + ‖f1‖L2(ω)‖g‖L2(ω) + µ1 |u1|H1(ω)|g|H1(ω)

+

∫

ω

λ(x)(u1 − u2)(x) dx −

∫

ω

λ(x)g(x) dx.

It follows from the second line of (2.4) withχ = 0, together with the definition ofΛ and the
nonnegativity ofg, that the last two integrals in this inequality are nonpositive. On the other hand,
we use the Poincaré–Friedrichs inequalities

‖u1‖L2(ω) ≤ ‖u1 − g‖L2(ω) + ‖g‖L2(ω) ≤ c |u1 − g|H1(ω) + ‖g‖L2(ω)

≤ c |u1|H1(ω) + (1 + c) ‖g‖H1(ω),

‖u2‖L2(ω) ≤ c |u2|H1(ω).

(2.19)
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Combining all this yields

2
∑

i=1

µi|ui|
2
H1(ω) ≤ c

(

(

‖f1‖L2(ω) + µ1 |g|H1(ω)

)

|u1|H1(ω)

+ ‖f2‖L2(ω)|u2|H1(ω) + ‖f1‖L2(ω)‖g‖H1(ω)

)

.

Using an appropriate Young’s inequality together with (2.18) and (2.19) gives the estimate for the
‖ui‖H1(ω).
2) Finally, the estimate for‖λ‖L2(ω) is a direct consequence of (2.10) and the fact thatλ coincides
with the functionsλ1 andλ2 defined in (2.13).

Sinceλ belongs toL2(ω), the next proposition is easily derived from the regularityproperties
of the Laplace operator, see [8, Thm 3.2.1.2] and [8,§4.3] for instance.

Proposition 7. For any data(f1, f2) in L2(ω)×L2(ω) andg in H
s+ 1

2

+ (∂ω), the solution(u1, u2, λ)
of problem(2.4) belongs toHs+1(ω) × Hs+1(ω) × L2(ω), with
(i) s = 1

2
in the general case,

(ii) s = 1 whenω is convex or of classC1,1.

3. The reduced discrete problem and its a priori analysis

In view of Section 2, we first propose a discretization of problem (2.9) and perform its numerical
analysis. In particular, we prove a priori error estimates.

From now on, we assume thatω is a polygon. Let(Th)h be a regular family of triangulations
of ω (by triangles), in the usual sense that:
• For eachh, ω is the union of all elements ofTh;
• The intersection of two different elements ofTh, if not empty, is a vertex or a whole edge of both
of them;
• The ratio of the diameterhK of any elementK of Th to the diameter of its inscribed circle is
smaller than a constant independent ofh.
As usual,h stands for the maximum of the diametershK , K ∈ Th. In what follows,c, c′, . . ., stand
for generic constants which may vary from line to line but arealways independent ofh.

We will use the discrete spaces given as

Xh =
{

vh ∈ H1(ω); ∀K ∈ Th, vh|K ∈ P1(K)
}

, X0h = Xh ∩ H1
0 (ω), (3.1)

whereP1(K) denotes the space of restrictions toK of affine functions.
Next, in order to take into account the nonhomogeneous boundary condition onu1, we assume

that the datumg belongs toHs+ 1

2 (∂ω) for somes > 0. Thus, we define an approximationgh of
g by Lagrange interpolation: The functiongh is affine on each edgee of elements ofTh which is
contained in∂ω and equal tog at each vertex of elements ofTh which belong to∂ω. Thus, we
define the affine space

Xgh =
{

vh ∈ Xh; vh = gh on ∂ω
}

, (3.2)
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together with the convex set

Kgh =
{

(v1h, v2h) ∈ Xgh × X0h; v1h − v2h ≥ 0 in ω
}

. (3.3)

The reduced discrete problem is now derived from problem (2.9) by the Galerkin method. It
reads:

Find (u1h, u2h) in Kgh such that

∀(v1h, v2h) ∈ Kgh,

2
∑

i=1

µi

∫

ω

(grad uih)(x) ·
(

grad (vih − uih)
)

(x) dx

≥
2

∑

i=1

〈fi, vih − uih〉.

(3.4)

The arguments for proving its well-posedness are exactly the same as for Proposition 3.

Proposition 8. For any data(f1, f2) in H−1(ω) × H−1(ω) andg in H
s+ 1

2

+ (∂ω), s > 0, problem
(3.4) has a unique solution(u1h, u2h) in Kgh.

Proof: It follows from the previous assumptions thatgh is affine on each edge of elements ofTh

which is contained in∂ω and nonnegative at the endpoints of this edge. So it is nonnegative on∂ω.
Therefore,Kgh is a nonempty closed convex set. Since the ellipticity property (2.6) is still valid on
X0h × X0h, the result is easily derived from the Lions–Stampacchia theorem.

Theorem 9. Assume that the domainω is convex, that the data(f1, f2) belong toL2(ω) × L2(ω)

and that the datumg belongs toH
3

2

+(∂ω). Then, the following a priori error estimate holds between
the solutions(u1, u2) of problem(2.9) and(u1h, u2h) of problem(3.4)

‖u1 − u1h‖H1(ω) + ‖u2 − u2h‖H1(ω) ≤ c h
(

‖f1‖L2(ω) + ‖f2‖L2(ω) + ‖g‖
H

3

2 (∂ω)

)

. (3.5)

Proof: We establish this result in several steps, following the approach in [7].
1) Letvh = (v1h, v2h) be any element ofKgh. We derive by using problem (3.4) that

2
∑

i=1

µi|uih − vih|
2
H1(ω)

≤
2

∑

i=1

(

−µi

∫

ω

(grad vih)(x) ·
(

grad (uih − vih)
)

(x) dx + 〈fi, uih − vih〉
)

,

whence, from problem (2.4),

2
∑

i=1

µi |uih − vih|
2
H1(ω)

≤
2

∑

i=1

(

µi

∫

ω

(

grad (ui − vih)
)

(x) ·
(

grad (uih − vih)
)

(x) dx + b(uh − vh, λ)
)

.

(3.6)
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To evaluate this last term, we note from the definitions of theform b(·, ·), and also ofΛ andKgh

that

b(uh, λ) = −

∫

ω

λ(x)(u1h − u2h)(x) dx ≤ 0.

On the other hand, it follows from the second line of problem (2.4) by taking successivelyχ = 0
andχ = 2λ thatb(u, λ) is zero. Thus, we obtain

b(uh − vh, λ) ≤ b(u − vh, λ) ≤ ‖u − vh‖L2(ω)2‖λ‖L2(ω).

Going back to (3.6) and using appropriate Young’s and triangle inequalities lead to

|u − uh|
2
H1(ω)2 ≤ c

(

|u − vh|
2
H1(ω)2 + ‖u − vh‖L2(ω)2‖λ‖L2(ω)

)

. (3.7)

2) On the other hand, we derive from Proposition 4, the formula λ = (−1)i (∆ui + fi), and the
regularity properties of the Laplace operator [8, Thm 3.2.1.2] in a convex domain thatu belongs
to H2(ω)2 (see also Proposition 7), together with

‖u1‖H2(ω) + ‖u2‖H2(ω) + ‖λ‖L2(ω) ≤ c
(

‖f1‖L2(ω) + ‖f2‖L2(ω) + ‖g‖
H

3

2 (∂ω)

)

. (3.8)

3) Let Ih denote the Lagrange interpolation operator at all verticesof elements ofTh with values
in Xh. The following approximation properties are standard [3, Lemmes IX.1.1 & IX.1.2]

‖v − Ihv‖L2(ω) ≤ c h2 ‖v‖H2(ω), |v − Ihv|H1(ω) ≤ c h ‖v‖H2(ω). (3.9)

Furthermore, it is readily checked that, since(u1, u2) belongs toKg,
• the trace ofIhu1 on∂ω coincides withgh, while the trace ofIhu2 is zero;
• on each elementK of Th, Ihu1 − Ihu2 is affine and equal to(u1 − u2)(a) at each vertexa of
K, hence is nonnegative onK.
Thus,(Ihu1, Ihu2) belongs toKgh. Takingvh equal to(Ihu1, Ihu2), inserting (3.9) into (3.7), and
using (3.8) give the desired estimate for|u − uh|H1(ω)2 .
4) Evaluating‖u2 − u2h‖L2(ω) thus follows from the Poincaré–Friedrichs inequality

‖u2 − u2h‖L2(ω) ≤ c |u2 − u2h|H1(ω).

To bound‖u1−u1h‖L2(ω), we introduce a liftingg∗ of g which now belongs toH2(ω) and satisfies

‖g∗‖H2(ω) ≤ c ‖g‖
H

3
2 (∂ω)

.

Thus, we derive by the same arguments as for (2.19)

‖u1 − u1h‖L2(ω) ≤ c |u1 − u1h|H1(ω) + (1 + c) ‖g∗ − Ihg
∗‖H1(ω).

Thus, using once more (3.9) gives the desired estimate.

Estimate (3.5) is fully optimal, since the discretization that we propose is of order1.

Remark 10. Whenω is not convex or for less smooth data, standard arguments yield estimate
(3.5), withh replaced byhs for 0 < s ≤ 1. Optimal estimates can also be obtained when the mesh
is refined in an exponential way near the re-entrant corners.
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4. The full discrete problem and its a priori analysis

We first show how to obtain a discrete actionλh from the finite element discrete displacementsu1h

andu2h by a local postprocessing. We next prove that the triple(u1h, u2h, λh) in fact corresponds to
a discretization of the full problem (2.4), where the displacements are discretized by finite elements
on the given grid and the action by a finite volume-like schemeon a dual grid. This last property
then allows us to obtain optimal a priori error estimates forthe discrete action.

4.1. Construction of the discrete action by local postprocessing

We first describe the full discrete problem in a rather abstract way. LetVh denote the set of vertices
of elements ofTh which do not belong to∂ω. We thus introduce the Lagrange functions associated
with the elements ofVh: For eacha in Vh, ϕa belongs toX0h and satisfies

ϕa(a) = 1 and ∀a′ ∈ Vh, a
′ 6= a, ϕa(a′) = 0. (4.1)

We also denote byTa the set of elements ofTh that containa and byha the maximum of the
diameters of the elements ofTa. Finally,∆a stands for the support ofϕa.

To go further, we introduce a new set of nonnegative functions χa, a ∈ Vh, in L2(ω), with
support in a neighbourhood ofa, and defineYh as the space spanned by these functions (so that
the dimension ofYh is equal to the dimension ofX0h if the χa are linearly independent). Thus, it
is readily checked that the set

Λh =
{

ρh =
∑

a∈Vh

ρa χa; ρa ≥ 0
}

, (4.2)

is a convex cone contained inΛ. We also introduce a duality pairing betweenYh andXh by

∀ρh =
∑

a∈Vh

ρa χa ∈ Yh, ∀vh ∈ X0h,

〈ρh, vh〉h =
∑

a∈Vh

ρavh(a)
∑

K∈Ta

∫

K

ϕa(x) dx.
(4.3)

Remark 11. It follows from the previous definition that, with the same notation,

〈ρh, ϕa〉h = ρa

∑

K∈Ta

∫

K

ϕa(x) dx. (4.4)

So, since theϕa, a ∈ Vh, form a basis ofX0h, any functionρh in Yh is perfectly defined by the
products〈ρh, vh〉h, vh ∈ X0h.

In analogy with (2.14), we can now define functionsλ1h andλ2h in Yh by the equations, where
v1h andv2h run throughX0h,

〈λ1h, v1h〉h = µ1

∫

ω

(grad u1h)(x) · (grad v1h)(x) dx − 〈f1, v1h〉,

〈λ2h, v2h〉h = −µ2

∫

ω

(grad u2h)(x) · (grad v2h)(x) dx + 〈f2, v2h〉.

(4.5)
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Note that the practical construction ofλ1h and λ2h is fully local, since, owing to the previous
remark, we can equivalently replacev1h andv2h by ϕa, a ∈ Vh, in (4.5). Moreover, we have the
following result.

Proposition 12. The functionsλ1h andλ2h defined in(4.5) coincide.

Proof: Subtracting the second equation in (4.5) from the first one, replacing eachvih by vih − uih

for a pair(v1h, v2h) in Kgh, and using problem (3.4) yield that

〈λ1h, u1h − v1h〉h − 〈λ2h, u2h − v2h〉h ≤ 0. (4.6)

Let nowϕh be any function inX0h. Then, the pairs(v1h = u1h ± ϕh, v2h = u2h ± ϕh) belong to
Kgh. Making this choice in (4.6) yields

〈λ1h − λ2h, ϕh〉h = 0.

It thus follows from Remark 11 that the functionsλ1h andλ2h coincide.

In view of Proposition 12, we now write a discrete problem which, up to the replacement of
the scalar product ofL2(ω) by the new duality pairing〈·, ·〉h, is constructed from problem (2.4) by
the Galerkin method. It reads:

Find (u1h, u2h, λh) in Xgh × X0h × Λh such that

∀(v1h, v2h) ∈ X0h × X0h,

2
∑

i=1

µi

∫

ω

(grad uih)(x) · (grad vih)(x) dx

− 〈λh, v1h − v2h〉h =
2

∑

i=1

〈fi, vih〉,

∀χh ∈ Λh, 〈χh − λh, u1h − u2h〉h ≥ 0.

(4.7)

Note that this problem is not interesting for the implementation, but it is needed for the analysis.
Indeed, we have the next result.

Lemma 13. For any solution(u1h, u2h, λh) of problem(4.7), the pair(u1h, u2h) is a solution of
problem(3.4). Conversely, for any solution(u1h, u2h) of problem(3.4), the functionλh = λih,
i = 1, 2, defined by(4.5) gives rise to a solution(u1h, u2h, λh) of problem(4.7).

Proof: It is performed in two steps.
1) Let (u1h, u2h, λh) be a solution of problem(4.7). Replacingχh by χh + λh in the second line of
(4.7) gives

∀χh ∈ Λh, 〈χh, u1h − u2h〉h ≥ 0.

Thus, takingχh equal toχa in the previous line yields that, for anya in Vh, (u1h − u2h)(a) is
nonnegative. On each vertexa of elementsK which belongs to∂ω, (u1h − u2h)(a) is equal to
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g(a), hence is nonnegative. Thus the pair(u1h, u2h) belongs toKgh. On the other hand, using the
definition ofΛh, we derive that, for any(v1h, v2h) in Kgh,

−〈λh, v1h − v2h〉h ≤ 0.

By takingχh equal to0 in the second line of (4.7), we also obtain that〈λh, u1h − u2h〉h ≤ 0. Thus,
by replacing eachvih in the first line of (4.7) byvih − uih and using the two previous inequalities,
we obtain (3.4).
2) Conversely, let(u1h, u2h) be the solution of problem (3.4). Noting from Proposition 12that the
functionsλ1h andλ2h defined in (4.5) coincide, we denote them byλh. We thus observe that the
triple (u1h, u2h, λh) satisfies the first line of problem (4.7). On the other hand, for eacha in Vh,
using (4.6) with(v1h = u1h + ϕa, v2h = u2h) implies

〈λh, ϕa〉h ≥ 0.

It thus follows from (4.2) and (4.4) thatλh belongs toΛh. Finally, we now take in (4.6)

v1h = u1h −
∑

a∈Vh

u1h(a) ϕa, v2h = 0,

so thatv1h is equal tou1h on ∂ω but vanishes outside a small neighborhood of∂ω. As hinted in
Remark 11, we have

〈λh, u1h〉h =
〈

λh,
∑

a∈Vh

u1h(a) ϕa

〉

h
.

So, we derive
−〈λh, u1h − u2h〉h ≥ 0.

Using the definitions ofΛh andKgh also yields that, for allχh in Λh,

〈χh, u1h − u2h〉h ≥ 0.

Summing the last two inequalities gives the second line of (4.7). As a consequence, the triple
(u1h, u2h, λh) is a solution of (4.7).

Remark 14. An important property of problem(4.7) can be derived as follows. By takingχh

successively equal to0 and to2λh in the second line of this problem, we have

〈λh, u1h − u2h〉h = 0.

Thus, combining(4.3) with the definitions ofKgh andΛh yields the discrete analogue of the com-
plementary equality in the third line of problem(1.1):

∀a ∈ Vh, λa(u1h − u2h)(a) = 0. (4.8)

This proves the consistency of our approach.
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The well-posedness of problem (4.7) is now a direct consequence of Lemma 13.

Theorem 15. For any data(f1, f2) in L2(ω) × L2(ω) andg in H
s+ 1

2

+ (∂ω), s > 0, problem(4.7)
has a unique solution(u1h, u2h, λh) in Xgh × X0h × Λh.

Remark 16. LetΠh be the operator defined fromL2(ω) into Yh by

∀a ∈ Vh, 〈Πhρ, ϕa〉h =

∫

ω

ρ(x)ϕa(x) dx. (4.9)

If
(i) the following bound holds

∀ρh =
∑

a∈Vh

ρa χa ∈ Yh, ‖ρh‖H−1(ω) ≤ c

(

∑

a∈Vh

ρ2
a h4

a

)
1

2

, (4.10)

(ii) the following estimate holds for any functionρ in L2(ω)

‖ρ − Πhρ‖H−1(ω) ≤ c′ h ‖ρ‖L2(ω), (4.11)

and if moreover the assumptions of Theorem9 are satisfied, standard arguments yield the following
a priori error estimate for the discrete problem(4.7)

‖λ − λh‖H−1(ω) ≤ c h
(

‖f1‖L2(ω) + ‖f2‖L2(ω) + ‖g‖
H

3

2 (∂ω)

)

.

Assumptions(4.10) and(4.11) are likely but seem rather difficult to establish for the examples that
we have in mind.

4.2. An example of full discretization

We introduce the dual mesh of the triangulationTh, as standard for a finite volume approach. For
eacha in Vh and with eachK in Ta, we associate the quadrilateral with verticesa, the midpoints
of the two edges ofK that containa and the barycentre ofK. The union of these quadrilaterals
whenK runs throughTa is denoted byDa. This notation is illustrated in Figure 1, and it can be
observed that, ifa is shared byk elements ofTh, Da is a polygon with2k edges, and is always
contained in∆a.

The set of elementsDa, a ∈ Vh, is denoted byDh. It can be noted that the elements ofDh

form a partition ofω minus a “small” neighbourhood of∂ω. We denote this new domain byωh.
From now on, we choose to take the functionsχa introduced in Section 4.1 equal to the char-

acteristic functions of theDa, i.e., the functions equal to1 onDa and to zero elsewhere.

To investigate the convergence ofλh to λ when h tends to zero, we introduce aH(div)-
conforming reconstruction of the discrete diffusive flux, as previously used in [14] in the frame-
work of a posteriori error estimation:
(i) The intersection of eachDa with a triangleK of Ta is the union of two triangles with vertexa.
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We denote bySh the triangulation ofωh made by these triangles.
(ii) H(div, ωh) is the domain of the divergence operator inL2(ωh)

2, namely the space of functions
s in L2(ωh)

2 such thatdiv s belongs toL2(ωh).
(iii) Finally, we consider the space associated with Raviart–Thomas finite elements [12]

Zh =
{

sh ∈ H(div, ωh); ∀κ ∈ Sh, sh|κ ∈ RT (κ)
}

, (4.12)

whereRT (κ) stands for the space of restrictions toκ of polynomials of the formc + dx, c ∈ R
2,

d ∈ R. We recall from [12] that the linear forms:s 7→
∫

e
(s · n)(τ) dτ wheren is a unit normal

vector toe ande runs through the edges ofκ, areRT (κ)-unisolvent and that the functions ofZh

have a constant normal trace on each edge of elements ofSh.

Figure 1: The triangulationTh and its dual meshDh

It follows from the properties stated above and the fact thatthe gradient ofuih is constant on
each element ofTh that, fori = 1 and2, there exists a vector fieldtih in Zh such that, for any edge
e of an element ofSh which is contained in one elementK of Th (i.e., not contained in∂K),

(tih · n)|e = −µi ∂n(uih|K). (4.13)

The exact definition of thetih is made precise later on.

4.3. A priori error estimates for the discrete action

Establishing the error estimate between the exact and discrete actions relies on the functionstih

introduced above. The main properties of each auxiliary function tih are stated in the next lemma.
This requires the introduction of approximationsfih of the functionsfi defined as follows: For
i = 1 and2, fih is constant on each elementK of Th, defined by

∀K ∈ Th, fih|K =
1

meas(K)

∫

K

fi(x) dx. (4.14)
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The main arguments for the proof of this lemma can be found in [1, Lemma 3]; we recall them
only for completeness.

Lemma 17. The following equations are satisfied fori = 1 and2 and for anya in Vh
∫

Da

(

div tih + µi ∆ui − (−1)i(λ − λh)
)

(x) dx

=

∫

∆a

(fi − fih)(x)ϕa(x) dx −

∫

Da

(fi − fih)(x) dx.

(4.15)

Proof: We establish the result only fori = 1 since the arguments fori = 2 are exactly the same.
This is performed in several steps. Leta be any vertex inVh.
1) Noting from Proposition 4 and Theorem 5 that∆u1 andλ belong toL2(ω), we deduce from the
first line of (1.1) that

∫

Da

(µ1 ∆u1 + λ)(x) dx = −

∫

Da

f1(x) dx. (4.16)

2) We have
∑

K∈Ta

∫

K

f1h(x)ϕa(x) dx =
∑

K∈Ta

(f1h)|K

∫

K

ϕa(x) dx =
∑

K∈Ta

(f1h)|K
meas(K)

3
.

Since the line joining a vertex ofK to the midpoint of its opposite edge dividesK into two equal
parts, it is readily checked thatmeas(K)

3
is equal tomeas(K ∩ Da), whence

∑

K∈Ta

∫

K

f1h(x)ϕa(x) dx =

∫

Da

f1h(x) dx. (4.17)

3) On the other hand, we have by integration by parts,

µ1

∑

K∈Ta

∫

K

(grad u1h)(x) · (gradϕa)(x) dx = µ1

∑

K∈Ta

∫

∂K

(∂nu1h|K)(τ)ϕa(τ) dτ,

wheren here denotes the unit normal vector outward toK. We observe that∂K is the union of an
edge contained in∂∆a whereϕa vanishes and of two edgese1 ande2; on these edges,∂nu1h|K is
constant and

∫

ej

ϕa(τ) dτ =
meas(ej)

2
= meas(ej ∩ Da).

We also have

0 =

∫

K∩Da

(∆u1h)(x) dx =

∫

∂K∩Da

(∂nu1h|K)(τ) dτ +

∫

K∩∂Da

(∂nu1h|K)(τ) dτ,

whence

µ1

∑

K∈Ta

∫

K

(grad u1h)(x) · (gradϕa)(x) dx

= −µ1

∫

∂Da

(∂nu1h)(τ) dτ =

∫

∂Da

(t1h · n)(τ) dτ.
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This in turn yields

µ1

∑

K∈Ta

∫

K

(grad u1h)(x) · (gradϕa)(x) dx =

∫

Da

(div t1h)(x) dx. (4.18)

4) By takingv1h equal toϕa andv2h equal to0 in (4.7) and using (4.4), we derive

λa meas(Da) = µ1

∫

ω

(grad u1h)(x) · (grad ϕa)(x) dx −

∫

ω

f1(x)ϕa(x) dx.

Since the functionϕa has its support equal to∆a, inserting (4.17) and (4.18) into this equation
yields

∫

Da

λh(x) dx =

∫

Da

(div t1h − f1h)(x) dx −

∫

∆a

(f1 − f1h)(x)ϕa(x) dx.

Combining this with (4.16) yields the desired result.

Corollary 18. If the data(f1, f2) belong toL2(ω) × L2(ω), the following estimates are satisfied
for i = 1 and2:

‖div tih + µi ∆ui − (−1)i(λ − λh)‖H−1(ω)

≤ c h
(

‖f1‖L2(ω) + ‖f2‖L2(ω) + ‖div t1h‖L2(ωh) + ‖div t2h‖L2(ωh)

)

.
(4.19)

Proof: Denoting byρ the scalar functiondiv tih + µi ∆ui − (−1)i(λ − λh), we have

‖ρ‖H−1(ω) = sup
w∈H1

0
(ω)

∫

ω
ρ(x)w(x) dx

‖w‖H1(ω)

. (4.20)

In what follows, we write the integral onω as a sum on two subdomains:
∫

ω

ρ(x)w(x) dx =

∫

ω\ωh

ρ(x)w(x) dx +

∫

ωh

ρ(x)w(x) dx. (4.21)

1) Using the expansionλh =
∑

a∈Vh
λaχa and noting that the measure ofDa (and also that of∆a)

is bounded from above and below by a constant timesh2
a
, we derive from (4.15) that

|λa| h
2
a
≤ c ha

(

‖fi − fih‖L2(∆a) + ‖div tih‖L2(Da) + ‖∆ui‖L2(Da) + ‖λ‖L2(Da)

)

.

Thanks to the estimate
‖λh‖

2
L2(ωh) ≤ c

∑

a∈Vh

λ2
a
h2

a
,

we obtain

‖λh‖L2(ωh) ≤ c
(

‖fi − fih‖L2(ω) + ‖div tih‖L2(ωh) + ‖∆ui‖L2(ω) + ‖λ‖L2(ω)

)

.
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It follows from Proposition 4 and Corollary 6 that all terms in the right-hand side of this inequality
are bounded. This yields the estimate

‖ρ‖L2(ω) ≤ c
(

‖f1‖L2(ω) + ‖f2‖L2(ω) + ‖div t1h‖L2(ωh) + ‖div t2h‖L2(ωh)

)

. (4.22)

2) It can be noted thatω \ωh is contained in the union of elementsK of Th which have at least one
edge contained in∂ω. On each of these triangles, we derive by applying the Poincaré–Friedrichs
inequality that, for anyw in H1

0 (ω),

‖w‖L2(K) ≤ c hK |w|H1(K).

As a consequence, we have

∣

∣

∣

∫

ω\ωh

ρ(x)w(x) dx

∣

∣

∣
≤ c h ‖ρ‖L2(ω)‖w‖H1(ω). (4.23)

3) Letwh be the function equal towa on eachDa, with

wa =
1

meas(Da)

∫

Da

w(x) dx.

Denoting byw̃h the function
∑

a∈Vh
wa ϕa, we derive from (4.15) that

∫

ωh

ρ(x)w(x) dx =

∫

ωh

ρ(x)(w − wh)(x) dx +

∫

ω

(fi − fih)(x)w̃h(x) dx

−

∫

ωh

(fi − fih)(x)w(x) dx +

∫

ωh

(fi − fih)(x)(w − wh)(x) dx

It is well-known [3,§IX.3] that

‖w − wh‖L2(ωh) ≤ c h ‖w‖H1(ωh), ‖w̃h‖H1(ω) ≤ c ‖w‖H1(ω). (4.24)

On the other hand, since thefih are the images of thefi by the orthogonal projection operator from
L2(ω) onto piecewise constant functions, a standard duality argument yields

‖fi − fih‖H−1(ω) ≤ c h ‖fi‖L2(ω). (4.25)

Combining all this leads to

∣

∣

∣

∫

ωh

ρ(x)w(x) dx

∣

∣

∣
≤ c h

(

‖ρ‖L2(ω) + ‖f1‖L2(ω) + ‖f2‖L2(ω)

)

‖w‖H1(ω). (4.26)

Inserting (4.23) and (4.26) into (4.21) and finally using (4.20) and (4.22) give the desired result.

The arguments for the next lemma are nearly the same as above.

39



F. Ben Belgacem et al. On the unilateral contact between membranes

Lemma 19. If the assumptions of Theorem9 are satisfied, the following estimates hold fori = 1
and2:

‖div tih + µi ∆ui‖H−1(ω) ≤ c h
(

‖f1‖L2(ω) + ‖f2‖L2(ω) + ‖g‖
H

3

2 (∂ω)

+ ‖div t1h‖L2(ωh) + ‖div t2h‖L2(ωh)

)

.
(4.27)

Proof: We now denote byρ the functiondiv tih + µi ∆ui and use once more (4.20). The first term
in the right-hand side of (4.21) is evaluated as in (4.23). Tobound the second term, we use the
same approximationswh andw̃h as previously and deduce from (4.18) that

∫

ωh

ρ(x)w(x) dx =

∫

ωh

ρ(x)(w − wh)(x) dx

+ µi

∫

ω

(grad uih)(x) · (grad w̃h)(x) dx + µi

∫

ωh

(∆ui)(x)wh(x) dx.

By integration by parts, this yields
∫

ωh

ρ(x)w(x) dx =

∫

ωh

ρ(x)(w − wh)(x) dx

− µi

∫

ω

(

grad (ui − uih)
)

(x) · (grad w̃h)(x) dx + µi

∫

ω

(∆ui)(x)(w − w̃h)(x) dx

− µi

∫

ωh

(∆ui)(x)(w − wh)(x) dx − µi

∫

ω\ωh

(∆ui)(x)w(x) dx.

All these terms are evaluated from (4.24) (and an extension of it), Theorem 9 and the same argu-
ments as for (4.22).

In view of Corollary 18 and Lemma 19, we need to check that bothquantities‖div tih‖L2(ωh)

are bounded as a function of the data.

Lemma 20. Assume that the domainω is convex and that there exists a constantσ independent of
h such that

∀K ∈ Th, hK ≥ σ h. (4.28)

For i = 1 and2, there exists a functiontih in Zh satisfying(4.13) and such that

‖div tih‖L2(ωh) ≤ c
(

‖f1‖L2(ω) + ‖f2‖L2(ω) + ‖g‖
H

3

2 (∂ω)

)

. (4.29)

Proof: We set:ti = −µi grad ui and introduce the so-called Raviart–Thomas operatorπh [12]:
For each sufficiently smooth vector fieldϕ, πhϕ belongs toZh and satisfies for any edgee of an
element ofSh

∫

e

(πhϕ · n)(τ) dτ =

∫

e

(ϕ · n)(τ) dτ.

Thus, we have

‖div tih‖L2(ωh) ≤ ‖div πhti‖L2(ωh) + ‖div (tih − πhti)‖L2(ωh).
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As well-known,div πhti is the orthogonal projection ofdiv ti = −µi ∆ui onto piecewise constant
functions for the scalar product ofL2(Ω), so that the first term in the previous sum is bounded
as desired, see Proposition 4. On the other hand, there exists a unique functiontih in Zh which
satisfies(4.13) and such that, for any edgee of an element ofSh which is contained in the boundary
of an elementK of Th,

(tih · n)|e = −µi

1

meas(e)

∫

e

(∂nui)(τ) dτ,

(note that the previous integral makes sense; indeed, sinceω is convex,ui belongs toH2(ω)).
Thus,(tih − πhti) · n vanishes on such edges. Next, sincediv (tih − πhti) is constant on each
elementκ of Sh, we note that

‖div (tih − πhti)‖
2
L2(κ) =

∫

∂κ

(

div (tih − πhti)
)

|κ
(

(tih − πhti) · n
)

(τ) dτ

≤c h−1
K ‖div (tih − πhti)‖L2(κ)

∣

∣

∣

∫

∂κ

(

(tih − πhti) · n
)

(τ) dτ
∣

∣

∣
.

Let nowEκ denote the set of the two edges ofκ which are inside an elementK of Th. We deduce
from the previous lines that

‖div (tih − πhti)‖L2(κ) ≤ c h−1
κ

∑

e∈Eκ

‖∂n(ui − uih)‖L1(e). (4.30)

To go further, we introduce the Lagrange interpolateu∗
ih of ui onωh, with values in the space

X
∗
h =

{

vh ∈ H1(ωh); ∀κ ∈ Sh, vh|κ ∈ P1(κ)
}

,

and we use the triangle inequality

‖∂n(ui − uih)‖L1(e) ≤ ‖∂n(ui − u∗
ih|κ)‖L1(e) + ‖∂n(u∗

ih|κ − uih)‖L1(e). (4.31)

Next, by going to the reference element (with obvious notation) and noting that the Lagrange
interpolation operator introduced above preserves the polynomials inP1(κ), we derive

‖∂n(ui − u∗
ih|κ)‖L1(e) ≤ c ‖grad (ûi − û∗

ih)‖L1(ê)2 ≤ c′ ‖ûi − û∗
ih‖H2(κ̂) ≤ c′′ |ûi|H2(κ̂),

whence
‖∂n(ui − u∗

ih|κ)‖L1(e) ≤ c hκ ‖ui‖H2(κ). (4.32)

To evaluate the second term in the right-hand member of (4.31), we note that, for any functionϕ
in P0(κ),

‖ϕ‖L1(e) ≤ c hκ ‖ϕ̂‖L1(ê) ≤ c′ hκ ‖ϕ̂‖L2(κ̂) ≤ c′′ ‖ϕ‖L2(κ).

Since|∂n(u∗
ih|κ − uih)| is smaller than|grad (u∗

ih − uih)|, this yields

‖∂n(u∗
ih|κ − uih)‖L1(e) ≤ c

(

|ui − u∗
ih|H1(κ) + |ui − uih|H1(κ)

)

.
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The approximation properties of the Lagrange interpolation operator finally give

‖∂n(u∗
ih|κ − uih)‖L1(e) ≤ c

(

hκ ‖ui‖H2(κ) + |ui − uih|H1(κ)

)

. (4.33)

By inserting (4.32) and (4.33) into (4.31) and using (4.30),we obtain

‖div (tih − πhti)‖L2(κ) ≤ c
(

‖ui‖H2(κ) + h−1
κ |ui − uih|H1(κ)

)

.

We conclude by summing the square of this inequality on allκ in Sh, using estimate (3.5) and
finally assumption (4.28).

The final a priori estimate is now a direct consequence of Corollary 18 and Lemmas19 and 20.

Theorem 21. If the assumptions of Theorem9 are satisfied together with assumption(4.28), the
following a priori error estimate holds between the solutions (u1, u2, λ) of problem(2.4) and
(u1h, u2h, λh) of problem(4.7)

‖λ − λh‖H−1(ω) ≤ c h
(

‖f1‖L2(ω) + ‖f2‖L2(ω) + ‖g‖
H

3
2 (∂ω)

)

. (4.34)

Estimate (4.34) is fully optimal (and should hold with weaker norms of the data, however we
have no applications for that). However, assumption (4.28)is very restrictive in the context of
mesh adaptivity. Fortunately, if it is replaced by the more realistic one

∀K ∈ Th, hK ≥ σ h1+α, (4.35)

for a real numberα, 0 < α < 1, exactly the same arguments as previously yield a convergence of
‖λ − λh‖H−1(ω) of orderh1−α.

Remark 22. By replacing(4.20) by

‖ρ‖L2(ω) = sup
w∈L2(ω)

∫

ω
ρ(x)w(x) dx

‖w‖L2(ω)

,

and using the same arguments as previously, we can also provethat, if the assumptions of Theo-
rem21 are satisfied,

lim
h→0

‖λ − λh‖L2(ω) = 0. (4.36)

With further regularity assumptions on the data, an explicit estimate of‖λ−λh‖L2(ω) as a function
of h can also be derived: For instance, whenf1 |K andf2 |K belong toH1(K) for all K in Th, this
estimate is of orderh.

It follows from the previous results that the discretization that we propose is very efficient.
It is also of low cost since the total number of degrees of freedom is equal to three times the
cardinality ofVh. Moreover, the reduced problem (3.4) provides a natural algorithm for uncoupling
the unknowns and, once its solution(u1h, u2h) is known, computingλh consists in solving a linear
system with diagonal matrix.
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[9] J. Haslinger, I. Hlaváček, J. Nečas.Numerical methods for unilateral problems in solid me-
chanics. In: Handbook of Numerical Analysis, Vol. IV, P.G. Ciarlet &J.-L. Lions eds. North-
Holland, Amsterdam (1996), pp. 313–485.

[10] N. Kikuchi, J. T. Oden. Contact Problems in Elasticity:A Study of Variational Inequalities
and Finite Element Methods. Studies in Applied and Numerical Mathematics, Society for
Industrial and Applied Mathematics, 1988.

[11] J.-L. Lions, G. Stampacchia.Variational inequalities.Comm. Pure and Appl. Math., 20
(1967), 493–519.

[12] P.-A. Raviart, J.-M. Thomas.A mixed finite element method for second order elliptic prob-
lems.In: Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics,
606, Springer, 1977, pp. 292–315.

[13] L. Slimane, A. Bendali, P. Laborde.Mixed formulations for a class of variational inequali-
ties.Math. Model. Numer. Anal., 38 (2004), 177–201.

[14] M. Vohralı́k. A posteriori error estimation in the conforming finite element method based
on its local conservativity and using local minimization.C. R. Math. Acad. Sci. Paris, 346
(2008), 687–690.

43


