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François Févotte‡ Ari Rappaport∗† Martin Vohralík∗†

October 31, 2023

Abstract

Richards equation is ubiquitous in the modelling of flows in porous media. It serves as a model
in its own right, but also as a stepping stone to more complex models of multiphase flows. Despite
its relative simplicity, it features many challenges from a computational point of view due to the
nonsmooth and degenerate nature of the functions. In this paper, we replace these functions with
regularized (smooth and nondegenerate) counterparts where the amount of added regualrization is
controlled by a single regularization parameter. We introduce a set of a simple a posteriori error
estimators that we use to adaptively steer regularization and linearization. In particular, we use
a stopping criterion for linerarization and adaptively choose the regularization parameter. The full
adaptive algorithm is tested on a suite of numerical examples adapted from recent works on improving
the robustness of solvers for the Richards equation.
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1 Introduction
One of the most fundamental equations for modeling flows in porous media is the Richards equation. It
can be viewed as a simplified two-phase model, e.g., for water and air, where one of the phases is assumed
to be of constant pressure. For a detailed review of the role of the Richards equation in porous media
modeling see, e.g., [11, 12]. The equation describes the evolution in space and in time of the pressure p
and saturation s for a fluid in a porous medium. Given a domain Ω ⊂ Rd, for d = 1, 2, 3, and a final time
T > 0, the Richards equation is given by

∂s −∇·[Kκ(s)(∇p+ g)] = f, in Ω× [0, T ] (1)

where the constant vector −g represents the force of gravity, K : Ω → Rd×d is the absolute permeability
tensor, κ : [0, 1] → [0, 1] is the relative permeability function, and f : Ω × [0, T ] → R a forcing term, all
considered as data. Suitable initial and boundary conditions need to be added. The system is closed
by an algebraic relationship expressing the saturation as a function of the pressure, i.e., there exists a
function S : R → [0, 1] such that

s = S(p). (2)

For the well-posedness of this initial boundary value problem see, e.g., [1].
Realistic choices for the saturation function S of (2) and relative permeability κ are nonlinear cf.

Figures 1 and 2. This means that once the equation (1) is discretized with an implicit time-stepping
scheme, a linearization procedure must be applied at each timestep. Moreover, these functions are
typically nonsmooth and degerenate, which is the central bottleneck.

The design of robust and efficient linearization schemes for the Richards equation is an active area of
research. Newton’s method [26, 27, 14] is an attractive choice due to its potentially quadratic convergence.
A sufficient condition for the convergence of Newton’s method in the context of the Richards equation
was derived in [20]. In particular, the authors of [20] considered the lowest order continuous Galerkin
finite element method (FEM) as a spatial discretization and an implicit Euler time discretization and
derived a condition of the form

τ < CS
2+r
r

m hd, (3)
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where τ is the time step size, h is the mesh size, Sm := inf S′ ≥ 0, and C, r > 0 depends on the
functions S and κ. In practice, satisfying this condition may render the timestep τ prohibitively small,
or the condition may even be impossible to satisfy if the derivative S′ = 0 (elliptic degeneracy). Other
linearization schemes include the modified Picard method [10], L-schemes [35, 27, 30, 28], and the Jäger–
Kačur method [21, 22]. These methods are generally more robust than Newton’s method at the cost
of slower convergence. In particular, the L-scheme was shown to be unconditionally convergent in [34],
though it only converges linearly. The tradeoff between the robustness of the linearly-converging methods
and the speed of Newton’s method have motivated hybrid methods such as those studied in [27] where
the authors apply several iterations of the slower scheme to provide an initial guess to Newton. More
recently, this strategy was taken further in [36], where an a posteriori error estimator was designed to
provide a criteria to switch between the L-scheme and Newton’s method.

The degenerate nature of the Richards equation (see §3) partially explains the difficulty encountered
by Newton’s method. One way to address the degeneracy involves the choice of the unknown in (1). In
particular, whenever the function S in (2) is invertible, one has the choice of whether to solve for the
pressure p or the saturation s in (1). This idea led to the so-called primary variable switching methods
[19, 15]. Initially, these methods required a local choice (by looping over degrees of freedom in the
context of a Galerkin method) for which variable to solve for. This idea was elegantly adapted in [7],
where the authors achieved a continuous variable switch by introducing a global C1 parameterization of
the saturation curve (2). The parameter is chosen so that it is proportional to the saturation in the dry
regions (where s � 1) and otherwise it is proportional to the pressure. The continuous variable switching
was recently generalized in [5] as well as in the PhD thesis [3] where the authors consider an additional
switch that aids in the case of heterogeneous media.

On top of difficulties related to degeneracy, the specific forms of the nonlinearities for the most common
models (Brooks–Corey and van Genuchten–Mualem see §2) also suffer from low regularity. Approaches
to address this while keeping good convergence of Newton’s method include the line search or trust
region methods, where the step size of Newton is limited in certain critical zones of the nonlinearity, see,
e.g., [23, 40, 4] and the references therein. Another alternative to handle low regularity is the so-called
semismooth Newton method [24, 33], where the main tenant is to work with elements of the subdifferential
to a nonsmooth function.

A useful tool in the context of the Richards equation, both theoretically and practically, is regular-
ization, i.e, considering an auxiliary perturbed problem to obtain some desired properties. The authors
of [31] rely on regularization to prove well-posedness of a certain case of the Richards equation. Regu-
larization has already been explored for improving the performance of iterative schemes in, for example,
[22, 4]. In [22], regularized versions of the nonlinear functions are introduced to control the degeneracy
whereas in [4] a kind of slope limiting method was proposed to handle the case where the derivative of
the relative permeability κ tends to infinity. However, in practice, a natural question to ask is how much
regularization should be added to obtain a tradeoff between model error and performance.

In this work, we seek to provide a possible answer to the above questions by introducing regularization
and adaptively updating a regularization parameter. In particular, the adaptive choice is steered by a
posteriori error estimators. Our a posteriori estimators follow the spirit of those derived in [29] in the
context of the fully degenerate the Richards equation, where a rigorous a posteriori analysis leads to a
reliable and efficient estimator.

We also take inspiration from our recent work [18], where we introduced an adaptive algorithm for
regularizing a nonsmooth nonlinearity based on an additive decomposition of an estimator. The central
observation is that regularization (model) error is often dominated by the discretization error and hence
does not impact the overall accuracy of the scheme. In the setting of [18], we were able to recover the
optimal rate of convergence with respect to total degrees of freedom by solving a sequence of regularized
problems without ever sending the regularization parameter to 0. We seek to apply this same strategy
to this setting, where component estimators will guide an adaptive algorithm and in particular ensure
that the regularization component estimator remains sufficiently below that of discretization. Iterative
linearization error is then made subordinate to the regularization one.

Our scheme has several advantages to those already mentioned. Firstly, it does not require the
modification of the underlying linearization solver and allows for the Newton one. For the test cases we
consider, the regularization allows Newton to converge where it takes hundreds of iterations or does not
converge without. Finally, by adaptively lowering the level of regularization, we are able to produce a
solution that matches well visually with a solution obtained without regularization.

The rest of the paper is organized as follows. In §2, we introduce the necessary notation as well as the
assumptions on the data. In §3, we discuss the various difficulties for a nonlinear solver and introduce
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our proposed regularization. In §4, we present the backward Euler–finite element discretization of the
the Richards equation with its corresponding regularized and linearized problems. In §5 we detail our
adaptive algorithm. In §6, we present numerical experiments and we conclude in §7 where we also give
an outlook on future research.

2 Setting and specification of the data
In this section we detail the necessary information to describe precisely the problem under consideration.
We use the standard notation from functional analysis. Let Ω ⊂ Rd, d = 1, 2, 3 be a domain with polygonal
boundary. For ω ⊆ Ω, let (·, ·)ω and ‖ · ‖ω correspond to the L2(ω) inner product and norm respectively.
We drop the subscripts when ω = Ω. Let H1(Ω) be the Sobolev space of functions defined on Ω with first-
order weak derivatives in L2(Ω). We also introduce the space H(div,Ω) := {v ∈ [L2(Ω)]d : ∇·v ∈ L2(Ω)}.

We now specify the initial and boundary conditions for the problem (1). We consider a partition of
the boundary ∂Ω = ΓD ∪ ΓN into Dirichlet and Neumann boundaries, where ΓD has strictly positive
measure. The boundary conditions are specified as

p = pD on ΓD × (0, T ], (4a)
Kκ(s)(∇p+ g) · n = 0 on ΓN × (0, T ], (4b)

and the corresponding space incorporating the Dirichlet boundary condition is given by

H1
D(Ω) := {v ∈ H1(Ω) : v|ΓD

= pD}. (5)

The initial condition is imposed on the saturation,

s(x, 0) = s0(x), x ∈ Ω. (6)

We introduce a conforming triangulation Th of Ω, i.e., Th = ∪KK where the intersection of (the
closure of) two simplices K,K ′ ∈ Th are either disjoint or an l-dimensional simplex for 0 ≤ l ≤ d − 1.
We consider uniform time stepping with N time steps so that the interval (0, T ) is partitioned with fixed
step size τ = T/N and the time points {tn}Nn=0 are given by tn = nτ for all n = 0, . . . , N .

We consider the following assumptions on the data of problem (1)–(6).

Assumption 2.1 (Assumptions on the data). The following holds for a given mesh Th and time points
{tn}Nn=0:

(A1) The absolute permeability tensor K : Ω → Rd×d is piecewise constant with respect to Th and satisfies
the ellipticity and boundedness conditions, i.e., there exists constants Km,KM > 0 such that, for
almost every x ∈ Ω, there holds

Km|x|2 ≤ xTK(x)x ≤ KM|x|2

(A2) The boundary condition pD is affine and continuous in space and constant in time.

(A3) The initial saturation s0 is piecewise constant on Th.

(A4) The source function f is piecewise constant on Th in space and piecewise constant in time.

The two most common equations of state for the nonlinear functions S and κ are the Brooks–Corey
model [9]

κ(s) = s
2+3λ1

λ1 (7a)

S(p) =

{
(−p/pM)−λ1 p ≤ pM,

1 otherwise,
(7b)

for parameters pM < 0, λ1 ∈ (0, 1) and the van Genuchten–Mualem model [37], for pM ∈ R,

κ(S (s)) = κc

√
S (s)(1− (1− S (s)1/λ2)λ2)2, (8a)

S(p) =

{
Sleft(p) p ≤ pM,

SV otherwise,
(8b)

(8c)
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Figure 1: [pM = −0.2, λ1 = 0.66] Saturation and relative permeability functions for the Brooks–Corey
equation of state (7a).
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Figure 2: [pM = 0, λ2 = 0.66, SR = 0, SV = 1, α = 0.551] Saturation and relative permeability functions
for the van Genuchten–Mualem equation of state (8).

where
Sleft(p) = SR + (SV − SR)

[
(1 + (−αp)

1
1−λ2

]−λ2

and
S (s) =

s− SR

SV − SR
, (9)

with SV the water content, SR the residual water content, and κc the hydraulic conductivity.

3 Difficulties related to the nonlinearities and proposed regular-
ization

We first outline the possible difficulties a nonlinear solver can encounter in the context of the Richards
equation. We summarize them in the following list:

1. Hyperbolic degeneracy: if κ = 0, the terms containing spatial derivatives vanish and the PDE
changes type from parabolic to an ODE.

2. Elliptic degeneracy: If S′ = 0, the PDE changes type from parabolic to elliptic. This is typically
not a serious problem for solvers in the pressure formulation that we have chosen.

3. For the van Genuchten–Mualem model (8), the derivative of the relative permeability function blows
up, i.e., κ′(S (s)) → ∞ as s → SV.
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4. For the Brooks–Corey model (7a), the saturation function S(p) is non-differentiable at p = pM.

We thus replace the saturation function S and the relative permeability function κ by their regularized
counterparts denoted by Sε and κε, respectively. The parameter ε > 0 determines the amount of added
regularization, and is adaptively updated to balance the incurred model error (see §5) with the discretiza-
tion error. The regularization is designed with the intention of alleviating the problems mentioned in the
previous list. We now state our conditions on the regularization.

Assumption 3.1 (Assumptions on the regularization). The approximations Sε to the saturation function
S and κε to the relative permeability κ satisfy the following.

(A1) The regularized relative permeability function satisfies limε→0 κε(s) = κ(s) for all s ∈ [0, 1]

(A2) The regularized saturation function satisfies limε→0 Sε(p) = S(p) for all p ∈ R

(A3) There exists a constant κε > 0 such that κε(s) > κε for all s ∈ [0, 1].

(A4) The regularized saturation function satisfies Sε ∈ C1(R)

(A5) The regularized composite function satisfies κε ◦ Sε ∈ C1(R).

Assumptions (A1) and (A2) ensure that the regularized functions are good pointwise approximations
of the true functions S and κ. The Assumption (A3), ensures that the regularized function κε does not
induce a hyperbolic degeneracy. The last two assumptions are smoothness requirements that appear
whenever the derivatives of Sε and κε ◦ Sε are employed in the nonlinear solver, as we will see below in
§4.3.

We now introduce our choices of regularization which satisfy Assumption 3.1. The choices depend on
the chosen models, namely the Brooks–Corey model (7a) and van Genuchten–Mualem (8). First, in the
case of the Brooks–Corey model, the regularization of the relative permeability is simply

κε(s) = κ(s) + ε. (10)

This ensures that κε > 0 for all s ∈ [0, 1] and the smoothness requirements are already satisfied. The
regularized saturation for the Brooks–Corey model is given by

Sε(p) =

{
Sk
ε (p) if |p− pM| < ε,

S(p) otherwise,
(11)

where Sk
ε (p) is determined by polynomial interpolation so that Sε ∈ Ck(R) is k-times continuously

differentiable. In particular we choose k = 2, over satisfying Assumption (A4) but advantageous to the
Newton linearization. A plot is given in Figure 3 for several values of ε. For the van Genuchten–Mualem
model, to satisfy Assumption (A5) we follow the approach in [4] where the relative permeability (8a) is
replaced by a second degree polynomial near the critical point S (s) = 1:

κε(S ) =

{
κ(s) + ε, if s ≤ 1− ε,

κ̃(s) + ε, otherwise,
(12)

where

κ̃(s) =
κ′′(1− ε)

2
(s− (1− ε))2

+ κ′(1− ε)(s− (1− ε)) + κ(1− ε),

see Figure 4 for a plot with a range of values of ε.

4 Discrete problem and solution method
In this section we give details about the discretization strategy we employ to solve the Richards equation
(1). We define the lowest order continuous finite element trial space by

V D
h = {uh ∈ H1

D(Ω) : uh|K ∈ P1(K) ∀K ∈ Th} (13)

as well as the test space

V 0
h =

{
uh ∈ H1

0 (Ω), uh|K ∈ P1(K) ∀K ∈ Th
}
. (14)
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Figure 3: [λ1 = 2, pM = −0.2, k = 2] Regularization of the relative permeability (left) (10) and of the
saturation (11) (right) for the Brooks–Corey model (7a).
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4.1 Discretization
For the time discretization we use the lowest order implicit method, i.e., the backward Euler method.
For each n ∈ {1, . . . , N} and a given pn−1,h ∈ V D

h , we need to find the approximate pressure pn,h ∈ V D
h

satisfying
1
τ (S(pn,h)− S(pn−1,h), ϕh) + (F (pn,h),∇ϕh) = (f(·, tn), ϕh) ∀ϕh ∈ V 0

h , (15)

where the flux function is defined as

F (q) := Kκ(S(q))[∇q + g]. (16)

For n = 1, we use directly s0 in place of S(p0,h).

4.2 Regularization
We also consider a regularized version of problem (15). First, for a given timestep tn, we introduce a
positive sequence {εjn}j≥1 such that ε1n is independent of n (see §5). The regularized problem is then:
given pj̄n−1,h ∈ V D

h find pjn,h ∈ V D
h satisfying

1
τ (Sεjn

(pjn,h)− Sεjn
(pj̄n−1,h), ϕh) + (Fεjn

(pjn,h),∇ϕh) = (f(·, tn), ϕh) ∀ϕh ∈ V 0
h , (17)

where the corresponding regularized flux is given by

Fεjn
(q) := Kκεjn

(Sεjn
(q))[∇q + g], (18)

and j̄ is a stopping index that will be defined in §5. For n = 1, we still use s0 in place of S(pj0,h).

4.3 Linearization
Due to the nonlinear nature of problem (17), iterative linearization is usually used to approximate pjn,h.
To this end, we consider the following linearized problem: given an initial guess pj,k−1

n,h , find pj,kn,h ∈ V D
h

such that

1
τ (Sεjn

(pj,k−1
n,h )−Sεjn

(pj̄,k̄n−1,h), ϕh)+
1
τ (L(p

j,k
n,h−pj,k−1

n,h ), ϕh)+(F k
εjn
,∇ϕh) = (f(·, tn), ϕh) ∀ϕh ∈ V 0

h , (19)

where j̄ and k̄ are stopping indices that will be defined in §5 and the linearized flux is given by

F k
εjn

:= Kκεjn
(Sεjn

(pj,k−1
n,h ))[∇pj,kn,h + g] + ξ(pj,kn,h − pj,k−1

n,h ). (20)

Here, (L, ξ) ∈ L∞(Ω;Rd+1) depends on the specific linearization used. For the case of the modified
Picard iteration [10], we set

L := S′
εjn
(pj,k−1

n,h ), ξ := 0. (21)

For Newton’s method, we set

L := S′
εjn
(pj,k−1

n,h )

ξ := K(κεjn
◦ Sεjn

)′(pj,k−1
n,h )[∇pj,k−1

n,h + g].
(22)

As before, for n = 1, we use s0 in place of S(pj̄,k̄0,h).

Remark 4.1 (Appearance of derivatives in the linearization). We note that the for both the modified
Picard scheme and Newton’s method, the derivative S′(pj,k−1

n,h ) appears. Additionally, in the case of
Newton’s method, the derivative of the composite function (κεjn

◦ Sεjn
)′(pj,k−1

n,h ) appears. This is the
motivation for the regularity requirements we impose on the regularization, i.e., Assumptions (A4) and
(A5).
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4.4 A posteriori component error estimators by flux reconstruction
The key to our a posteriori error estimators will be a postprocessed approximation σj,k

n,h of the flux F k
εjn

(20) that satisfies σj,k
n,h ⊂ H(div,Ω). The main tool to achieve this is the Raviart–Thomas–Nédélec

(RTN) finite element space [8]. We first introduce the lowest order broken RTN space,

RT0(Th) := {vh ∈ [L2(ω)]d : vh|K ∈ [P0]
d + xP0,∀K ∈ Th}, (23)

and the H(div,Ω)-conforming space

RT0(Ω) := RT0(Th) ∩H(div,Ω). (24)

Our general approach is in the spirit of equilibrated flux reconstruction. The method of flux reconstruction
in the context of a posteriori error analysis has origins in the works of Prager and Synge [32] as well as in
Ladevèze and Leguillon [25], Destuynder and Métivet [13], Braess and Schöberl [6], and Ern and Vohralík
[17]. However, in this work we do not consider a full equilibration by solving local minimization problems,
but rather a flux based on averaging and prescription of the degrees of freedom in H(div,Ω) as in [39, 16].
In general this type of estimator satisfies the equilibration with the external load in a weak sense.

First, we introduce some additional notation for the mesh. Let F denote the set of faces in the mesh
and for a face F ∈ F let TF denote the edge patch of F , i.e.,

TF := {K ∈ Th : F ⊂ K}. (25)

Then we define the reconstructed flux σj,k
n,h ∈ RT0(Ω) by

1

|F |

∫
F

σj,k
n,h · nF dS =

1

|TF ||F |
∑

K∈TF

∫
F

−F k
εjn

· nF dS ∀F ∈ F , (26)

where |TF | denotes the cardinality of TF .
The conditions in (26) totally determine the function σj,k

n,h, see, e.g., [8]. We thus define the following
estimators with the help of the reconstructed flux (26):

ηn,j,kdis := ‖F k
εjn

+ σj,k
n,h‖ (discretization), (27a)

ηn,j,klin := ‖Fεjn
(pj,kn,h)− F k

εjn
‖ (linearization), (27b)

ηn,j,kreg := ‖F (pj,kn,h)− Fεjn
(pj,kn,h)‖ (regularization). (27c)

Remark 4.2 (Choice of estimators). We take inspiration for the discretization estimator from [17, 18, 29],
where our estimator can be thought of a simplified version of ηF. We make this choice because the
current definition is very cheap to compute as it does not require the solution of local problems. The
decomposition into component estimators is very much inspired by those established in [17, 18]. In [17],
a decomposition was established that identified errors associated with the discretization, linearization,
algebra, and quadrature. These estimators were then used to define stopping criteria for the nested
nonlinear and linear solvers. More recently in [18], we consider a regularized problem and introduce a
corresponding regularization estimator, leading to the same (at least in spirit) choice of estimators as in
(27). In [18] we rigorously prove that the estimators tend to zero in their respective limits, i.e., ηn,j,klin

tends to zero as k → ∞ and ηn,j,kreg tends to zero as j, k → ∞.

5 Adaptive algorithm
In this section we present an adaptive algorithm for iteratively solving the system of nonlinear algebraic
equations (15), Algorithm 1. For a given timestep tn, the algorithm constructs a sequence of regular-
ized problems, with regularization parameter εjn, and linearization iterations indexed by k, producing
intermediate solutions pj,kn,h as per §4.2 and §4.3. The algorithm takes some user-specified parameters,
starting with an initial regularization parameter ε̄1 > 0 and an initial contraction factor C̄1 ∈ (0, 1). We
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take inspiration from Algorithm 1 in [18] to define the following stopping criteria, where bars denote the
stopping indices,

ηn,j,k̄lin < γlinη
n,j,k̄
reg , (28a)

ηn,j̄,k̄reg < γregη
n,j̄,k̄
dis , (28b)

where γreg, γlin > 0 are further user-specified parameters. The first criterion (28a) states that the lin-
earization procedure should not continue on a given regularized problem if it has sufficiently converged.
The second criterion (28b) states that, on a given timestep tn, the error introduced by regularization
should only be γreg-times smaller than the inherent error due to discretization.

In more details, the algorithm proceeds as follows: we start on a given timestep tn with the initial
regularization parameter εjn := ε̄1 and contraction factor Cj

n := C̄1. We proceed to iterate in the
linearization until the first stopping criterion (28b) is satisfied. However, we also have a safety measure
(line 12 of the algorithm) to check whether the linearization error does not increase between the previous
and current linearization iterates k − 1 and k. If this is the case, we revert the regularization parameter
and reset the approximate pressure, with the help of pprev. Indeed, pprev acts as a checkpoint, as it is
initialized with the initial guess, and then updated to store pj,k̄n,h every time the linearization has converged
successfully on line 22. After this reset, we increase the current contraction factor Cj

n which limits the
amount we decrease the regularization parameter between the steps j and j + 1. This strategy has
some common aspects to the usual practice of cutting the timestep to provide a better initial guess, but
the advantage here is that we only “go back” one value of the regularization parameter and not to the
beginning of the timestep.

We also remark that the initial guess can be taken as p0,00,h := S−1(s0) in the regime where S is
invertible, namely s0 < 1. For the points x ∈ Ω where s0(x) = 1, we simply take the initial guess
p0,00,h(x) := pM(x).

6 Numerical experiments
In this section we detail numerical experiments using our adaptive regularization of Algorithm 1. In
particular, we consider three rather involved examples where a plain Newton solver struggles to converge.
In all cases our adaptive algorithm succeeds. All numerical experiments are conducted with the help of
the Gridap.jl library [2, 38] in the Julia programming language. For all the experiments, we take the
linearization parameters γreg = 0.2, γlin = 0.3, C̄1 = 0.1, and ε̄1 = 0.1. For comparison, we also test
the unregularized Newton’s method (corresponding to taking ε̄1 = 0 in Algorithm 1), and the modified
Picard scheme (21) In the unregularized case, instead of criterion (28a), we ensure that

ηn,j,klin < 1e−6. (29)

Remark 6.1 (Choice of the stopping criterion in the unregularized case). We use a fixed stopping
criterion for the linearization in (29) because we would like to compare our adaptive strategy with a
nonadaptive one, which is the much more common approach. For example, even in [36] where the solver
is chosen adaptively, the authors use a fixed stopping criterion for terminating the linearization procedure.
Namely, their criterion ensures that the difference of two consecutive iterates of the approximate measured
in a iteration dependent norm is less than 1e-7. Moreover, our choice of the value 1e-6 is partially related
to the observation that in Figure 6 (described in detail below in §6.1), the linearization estimator ηn,j,klin is
on the order of 1e-5 at the end of the iterations. Thus, we choose a value that at least ensures this level
of accuracy for all the numerical experiments.

6.1 Strictly unsaturated medium
In this test case, we seek to reproduce the results obtained in [36, §4.1]. This means we have the following
data:

• Ω = Ω1 ∪ Ω2, Ω1 = (0, 1)× (0, 1/4],Ω2 = (0, 1)× (1/4, 1)

• Uniform mesh with 40× 40× 2 elements

• T = 1

9



Algorithm 1: Adaptive regularization for the Richard equation
Initialization: Choose an initial guess p0,00,h ∈ V D

h and initialize the time step counter n := 0

Parameters : γreg, γlin, ε̄1, C̄1 ∈ (0, 1)

1 pprev := p0,00,h

2 while tn < T do
3 Update n := n+ 1
4 Initialize j := 0, k̄ := 0, j̄ := 0
5 Reset C1

n := C̄1, ε1n := ε̄1

6 Loop for regularization
7 Increment j := j + 1
8 Initialize k := 0

9 ηn,j,klin := ∞
10 Loop for linearization
11 Increment k := k + 1

12 Solve for pj,kn,h in (19)
13 Compute the estimators (27)
14 if ηn,j,klin > ηn,j,k−1

lin then
15 Reset pj,kn,h := pprev
16 Increase εj+1

n := εjn/C
j
n

17 Increase Cj+1
n :=

√
Cj

n

18 go to line 6
19 end
20 until ηn,j,klin < γlinη

n,j,k
reg

21 Update k̄ := k

22 pprev := pj,k̄n,h

23 Decrease εj+1
n := Cj

n ε
j
n

24 Update Cj+1
n := Cj

n

25 until ηn,j,k̄reg < γregη
n,j,k̄
dis

26 Update j̄ := j

27 p0,0n,h := pj̄,k̄n,h

28 end
29 return {pj̄,k̄n,h}Nn=1

• τ = 1

• ΓD = ∂Ω ∩ {y = 1}

• ΓN = ∂Ω \ ΓD

• g = (0, 1)T

• f(x, y) =

{
0 (x, y) ∈ Ω1

0.06 cos( 43πy) sin(x) (x, y) ∈ Ω2

• p0(x, y) =

{
−y − 1/4 (x, y) ∈ Ω1

−4 (x, y) ∈ Ω2,

• s0 = S(p0)

• pD = p0|ΓD

We use the van Genuchten–Mualem model (8) with the parameters specified in Figure 5. Please note
that there is only 1 timestep. We first plot the approximate pressure at the final step of both Algorithm 1,
as well as the modified Picard iteration with no regularization, see Figure 5. We observe that the two

10



Figure 5: [§6.1, van Genuchten–Mualem model (8) with pm = 0, SR = 0.026, SV = 0.42, κc = 0.12, α =

0.551, λ2 = 0.655, solver parameters: γreg = 0.2, γlin = 0.3, C̄1 = 0.1] Approximate pressure pj̄,k̄n,h for the
problem in §6.1 using Algorithm 1 with Newton’s method and adaptive regularization ε̄1 = 0.1 (left) and
modified Picard with no regularization ε̄1 = 0 (right).

not only match well but are also comparable with the results in [36, §4.1]. In this case, Newton’s method
without regularization diverged, which is consistent with what is reported in [36, §4.1].

We now look more carefully at the evolution of the estimators in the adaptive algorithm for this
example. In Figure 6, we plot the component estimators as a function of cumulative linearization steps.
The components are all of the order of 0.1 on the first iteration. We see that the linearization estimator
converges very rapidly for a given value of the regularization parameter εj := ε̄1 = 0.1, then εj :=
0.01, 0.001 and 0.0001. Furthermore, once we lower the regularization parameter, the regularization
component estimator clearly decreases. On the final iteration, we see the discretization and regularization
estimators stabilize with a constant gap between the two.

6.2 Injection test
This test is inspired by the one presented in [7, §4.1]. In particular, we use the following model parameters:

• Ω = (0, 1)2

• T = 1.0

• τ = 2.82e−2

• Quasi uniform mesh with h = 2.82e−2

• ΓD = {(x1, x2)|x1 ∈ (0, 0.3), x2 = 1}

• ΓN = ∂Ω \ ΓD

• g = (0,−1)T

• f = 0

• p0 = −1, s0 = S(p0)

• pD = 1

We use the Brooks–Corey model (7a) with parameters specified in Figure 8. We note firstly that there
is an inconsistency between the trace of p0 and the imposed boundary condition pD at t = 0. This
is mathematically valid, but can cause problems for the solver as we shall see shortly. The domain is
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Figure 6: [§6.1, van Genuchten–Mualem model (8) with pm = 0, SR = 0.026, SV = 0.42, κc = 0.12, α =
0.551, λ2 = 0.655, solver parameters: γreg = 0.2, γlin = 0.3, C̄1 = 0.1, ε̄1 = 0.1] Evolution of the
component estimators (27) for the Algorithm 1 with Newton’s method and adaptive regularization with
ε̄1 = 0.1 applied to the test problem in §6.1.
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Figure 7: §6.2, Brooks–Corey model (7a) with pM = −0.2, λ1 = 2.239, solver parameters γreg = 0.2, γlin =
0.3] Comparison of the total cumulative and stepwise iterations for the three strategies.

initially “mildly dry” with S(p0) = s0 = 0.027. We remark that we were not able to consider a smaller
value of s0 as was done in, e.g., [7, 4]. It would likely be necessary to implement their variable switching
strategy for this, which we discuss in §7. However, the current test still remains challenging for Newton’s
method.

In Figure 7, the total stepwise and cumulative iterations are plotted for Algorithm 1 using Newton’s
method with and without regularization as well as modified Picard without regularization. First of all,
it is clear that Newton’s method without regularization is not feasible and we cut the solver after 300
iterations on the first step. Next, we note that Modified Picard takes consistently more iterations than
Newton solver with regularization, resulting in an approximate 3.3x speedup at the end of the simulation
(1004 iterations for modified Picard vs 297 for the regularized Newton solver). We also note that the
number of iterations is somewhat less stable for modified Picard with peaks of 56 iterations at t = 0.42,
and 48 iterations at t = 0.22. In contrast the regularized Newton solver takes no more than 13 iterations
per timestep. In fact, this only occurs at the beginning of the simulation.

In Figure 8 we see that Newton’s method has trouble converging for the regularization parameter
εjn = 0.1 and the linearization estimator increases during the second and third timesteps, thus triggering
the if statement on line 14 of Algorithm 1. Indeed, we see consequently the algorithm recovers by
simultaneously increasing the regularization parameter to ε2n := ε1n/C

1
n and then increasing the contraction

factor C1
n =

√
C1

n. This combination allows the estimator to converge on the following series of regularized
problem until the stopping criterion (28b) is achieved and the solver advances to the next timestep.

We now consider the effect of the regularization on the solution. In particular, in Figure 9, we compare
side by side plots of the saturation profile for the regularized and unregularized solutions. The profiles
match well, and we also note that the regularized profile appears smoother at the interface.

6.3 Realistic test
In this test, we take inspiration from [29, §6.3] by using the following model parameters:

• Ω = (0, 1)2

• T = 1

• τ = 2.02e−2

• Quasi uniform mesh with h = 2.02e−2

• g = (−1, 0)T

• pL(x) =
(
pout−pin

0.5

)
x

• Q =

(
cos θ − sin θ
sin θ cos θ

)

13



5 10 15 20 25 30

10−3

10−2

10−1

100
t = 0.028 t = 0.057 t = 0.085

ε = 0.316

ε = 0.1

ε = 0.032

ε = 0.01

ε = 0.003

ε = 0.316

ε = 0.1

ε = 0.032

ε = 0.01

ε = 0.003

Cumulative Newton steps

ηn,j,k
dis

ηn,j,k
reg

ηn,j,k
lin

40 45 50 55 60 65

10−4

10−3

10−2

10−1

100
t = 0.113 t = 0.141 t = 0.17 t = 0.198

ε = 0.01
ε = 0.001

ε = 0.01
ε = 0.001

ε = 0.01
ε = 0.001

Cumulative Newton steps

Figure 8: [§6.2, Brooks–Corey model (7a) with pM = −0.2, λ1 = 2.239, solver parameters γreg = 0.2, γlin =
0.3, C̄1 = 0.1, ε̄1 = 0.1] Plots of the evolution of the estimators on the second and third timesteps (left)
and of the fifth, sixth and seventh timesteps (right).

Figure 9: [§6.2, Brooks–Corey model (7a) with pM = −0.2, λ1 = 2.239, solver parameters γreg = 0.2, γlin =

0.3, C̄1 = 0.1] Two snapshots comparing the evolution of the saturation field s = S(pj̄,k̄n,h) using the
Algorithm 1 with Newton’s method and adaptive regularization ε̄1 = 0.1 (left) and modified Picard with
no regularization ε̄1 = 0 (right).
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Figure 10: Schematic of the boundary and initial conditions for the test problem considered in §6.3.

• Kφ = 0.1

• pout = −2.0

• pin = −0.2

• pD = p0|ΓD

where the initial condition and boundary conditions are fully specified with the help of the schema in
Figure 10. We use the Brooks–Corey model (7a) with parameters specified in Figure 12.

We begin by comparing the stepwise and cumulative number of iterations in Figure 11. We first
remark that Newton’s method without regularization takes an unreasonable number of iterations on the
first step (we stop the solver at 300 iterations). Modified Picard is able to finish the simulation but has
some big peaks namely 208 iterations for t = 0.82, 101 iterations at t = 0.54, and 77 iterations at t = 0.78.
In contrast, the number of iterations per step for the regularized Newton solver does not exceed 20. This
gain is reflected clearly when comparing the cumulative number of iterations where by the end, modified
Picard has taken almost 5-times as many iterations as the regularized Newton solver (2359 vs. 576).

To better understand how the adaptive algorithm works, we refer to Figure 12. In the left figure we
see that no problems are encountered at the timesteps t = 0 through t = 0.061. In the right figure we
plot the estimators around the time of the contact with the interface at t = 0.445–0.486 and we see that
the linearization estimator begin to increase on the first timestep for ε = 0.001. The condition of the if
statement on line 14 is then true, resetting to the result at the previous value of ε = 0.01, and increasing
the contraction factor Cj

n thereby decreasing the “distance” between the two consecutive regularized
problems. This allows the algorithm to proceed, albeit with more intermediate values of ε, to the end of
the timestep.

Finally, we compare snapshots of the saturation for two timesteps t = 0.40 and t = 0.95 in Figure 13.
As in the previous examples, the two profiles are comparable with the regularized version appearing
smoother at the boundary of the evolving interface.

7 Conclusions and future work
In this work, we introduced an adaptive regularization algorithm to iteratively solve the Richards equa-
tion. The algorithm works with regularized versions of the nonlinearities present in Richards equation
to improve the performance of Newton’s method in solving the resulting nonlinear system. The pro-
posed algorithm adaptively controls the level of regularization based on a posteriori error estimators.
The proposed adaptive algorithm is able to converge where the unregularized version takes excessively
many iterations. Furthermore, we compare the performance with the modified Picard scheme which is
specific to the Richards equation. In all test cases the adaptive algorithm with regularization outperforms
modified Picard and produces a perceptibly comparable solution.
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Figure 11: [§6.3, Brooks–Corey model (7a) with pM = −0.2, λ1 = 2, solver parameters γreg = 0.2, γlin =
0.3, C̄1 = 0.1, ε̄1 = 0.1] Comparison of the total cumulative and stepwise iterations for the three strategies.
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Figure 12: [§6.3, Brooks–Corey model (7a) with pM = −0.2, λ1 = 2, solver parameters γreg = 0.2, γlin =
0.3, C̄1 = 0.1, ε̄1 = 0.1] Evolution of the estimators on the first and second timesteps (upper) and of the
22nd, 23rd and 24th timesteps (lower).
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Figure 13: [§6.2, Brooks–Corey model (7a) with pM = −0.2, λ1 = 2, solver parameters γreg = 0.2, γlin =

0.3, C̄1 = 0.1] Two snapshots comparing the evolution of the saturation field s = S(pj̄,k̄n,h) using the
adaptive regularization Algorithm 1 with Newton’s method and ε̄1 = 0.1 (left) and modified Picard with
ε̄1 = 0 (right).
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In terms of future work, we note that our proposed algorithm is not able to converge in the dry
regime s � 1. This is a well known difficulty and has been shown to be ameliorated by variable switching
techniques, see [7] and references therein. We would like to emphasize that our strategy is not incompatible
with these methods, and that we would like to test a combination of regularization and variable switching
to tackle even more difficult benchmark problems. Another future direction would be to study two
independent regularization parameters for the functions κε and Sε in the case of the Brooks–Corey
model.
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