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GUARANTEED, LOCALLY SPACE-TIME EFFICIENT, AND
POLYNOMIAL-DEGREE ROBUST A POSTERIORI ERROR
ESTIMATES FOR HIGH-ORDER DISCRETIZATIONS OF

PARABOLIC PROBLEMS∗

ALEXANDRE ERN† , IAIN SMEARS‡ , AND MARTIN VOHRALÍK‡

Abstract. We consider the a posteriori error analysis of approximations of parabolic problems
based on arbitrarily high-order conforming Galerkin spatial discretizations and arbitrarily high-order
discontinuous Galerkin temporal discretizations. Using equilibrated flux reconstructions, we present
a posteriori error estimates for a norm composed of the L2(H1)∩H1(H−1)-norm of the error and the
temporal jumps of the numerical solution. The estimators provide guaranteed upper bounds for this
norm without unknown constants. Furthermore, the efficiency of the estimators with respect to this
norm is local in both space and time, with constants that are robust with respect to the mesh-size,
time-step size, and the spatial and temporal polynomial degrees. We further show that this norm,
which is key for local space-time efficiency, is globally equivalent to the L2(H1) ∩ H1(H−1)-norm of
the error, with polynomial-degree robust constants. The proposed estimators also have the practical
advantage of being robust with respect to refinement and coarsening between the time steps.
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1. Introduction. We consider the heat equation

(1.1)
∂tu−∆u = f in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),
u(0) = u0 in Ω,

where Ω ⊂ Rd, 1 ≤ d ≤ 3, is a bounded, connected, polyhedral open set with Lipschitz
boundary, and T > 0 is the final time. We assume that f ∈ L2(0, T ;L2(Ω)), and that
u0 ∈ L2(Ω). We are interested here in developing a posteriori error estimates for a class
of high-order discretizations of (1.1). In particular, we consider a conforming finite
element method (FEM) in space on unstructured shape-regular simplicial meshes,
and a discontinuous Galerkin discretization in time, where one is free to vary the
approximation orders p in space and q in time, as well as the mesh size h and time-step
size τ , leading to what we call an hp-τq method. These methods are highly attractive
from the point of view of flexibility, accuracy, and computational efficiency, since it
is known from a priori analysis that judicious local adaptation of the discretization
parameters can lead to exponential convergence rates with respect to the number of
degrees of freedom, even for solutions with singularities near domain corners, edges,
and at initial times [37, 39, 47]. In practice, it is desirable to determine the adaptation
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algorithmically, which requires rigorous and high-quality a posteriori error control in
order to exploit the potential for high accuracy and efficiency of hp-τq discretizations.
We recall that a posteriori error estimates should ideally give guaranteed upper bounds
on the error, i.e., without unknown constants, should be locally efficient, meaning that
the local estimators should be bounded from above by the error measured in a local
neighborhood, and, moreover, should be robust, with all constants in the bounds
being independent of the discretization parameters; we refer the reader to [46] for an
introduction to these concepts.

In the context of parabolic problems, the a posteriori error analysis for low- and
fixed-order methods has received significant attention over the past decade, with ef-
forts mostly concentrated on fixed-order FEM in space coupled with an implicit Euler
or Crank–Nicolson time-stepping scheme, leading to estimates for a wide range of
norms. These include estimates for the L2(H1)-norm of the error considered inde-
pendently by Picasso [35] and Verfürth [44], with efficiency bounds typically requiring
restrictions on the relation between the sizes of the time steps and the meshes. Es-
timates for the L2(H1) ∩ H1(H−1)-norm were first considered by Verfürth in [45],
who crucially proved local-in-time yet global-in-space efficiency of estimators with-
out restrictions between time-step and mesh sizes; see also Bergam, Bernardi, and
Mghazli [1]. Guaranteed upper bounds for a large family of spatial discretizations
were later obtained by Ern and Vohraĺık in [15], with similar efficiency results as in
[45]. There are also upper bounds in L2(L2), L∞(L2), and L∞(L∞) and higher-order
norms, based on either duality techniques as in Eriksson and Johnson [12] or the ellip-
tic reconstruction technique originally due to Makridakis and Nochetto [30] and later
considered in the fully discrete context by Lakkis and Makridakis [27]; see also [28]
and the references therein. Repin [36] studied so-called functional estimates. Finally,
a posteriori error estimates developed in the context of the heat equation often serve
as a starting point for extensions to diverse applications, including nonlinear prob-
lems and spatially nonconforming methods among others [8, 9, 22, 25, 34]. Adaptive
algorithms for parabolic problems are studied in [5, 21, 26].

It is apparent from the literature that, even for low- and fixed-order methods,
there are remaining outstanding issues, particularly in terms of the efficiency of the
estimators. The efficiency of the estimators is significantly influenced by the choice of
norm to be estimated, with the strongest available results being attained by Y -norm
estimates, where, henceforth, Y := L2(H1

0 ) ∩H1(H−1). However, even in this norm,
the full space-time local efficiency of the estimators is not known. It is helpful to
examine here more closely this issue in order to motivate the approach adopted in
this work. For example, let us momentarily consider an implicit Euler discretization
in time and a conforming FEM in space, recalling that the implicit Euler method
corresponds to the lowest-order discontinuous Galerkin time-stepping method, which
uses piecewise constant approximations with respect to time. The resulting numerical
solution uhτ is discontinuous with respect to time, so it is not possible to estimate
‖u−uhτ‖Y . Therefore, it is usual to consider a reconstruction, denoted by Iuhτ ∈ Y ,
obtained by piecewise linear interpolation at the time-step nodes, and it is seemingly
natural to seek a posteriori error estimates for ‖u−Iuhτ‖Y , where ‖·‖Y is defined in
(2.1) below, and where u is the solution of (1.1); for instance, this corresponds to the
approach adopted in [45]. However, the main issue in estimates for ‖u − Iuhτ‖Y is
that Iuhτ fails to satisfy the Galerkin orthogonality property: instead, Iuhτ satisfies

(1.2)
∫
In

(f, vhτ )− (∂tIuhτ , vhτ )− (∇Iuhτ ,∇vhτ )dt =
∫
In

(∇(uhτ −Iuhτ ),∇vhτ )dt

for all discrete test functions vhτ ∈ Vhτ ; see section 3 for complete definitions. The lack
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of Galerkin orthogonality for Iuhτ is associated with the discrete residual on the right-
hand side of (1.2) that involves the L2(H1)-norm of uhτ −Iuhτ , and it is this discrete
residual that causes the loss of local spatial efficiency in previous analyses. This issue
is independent of the specific construction of the error estimators, whether they are
residual-type estimators as in [45] or equilibrated flux estimators as considered here.
It turns out that the discrete residual in (1.2) is related to the temporal jumps in
the numerical solution uhτ 6∈ Y , which is a form of error in itself since it is tied
to the nonconformity of the numerical scheme. This motivates the introduction of a
composite norm ‖u−uhτ‖EY that includes both ‖u−Iuhτ‖Y and the L2(H1)-norm of
uhτ−Iuhτ . Our analysis is then centered on the error estimation of ‖u−uhτ‖EY instead
of ‖u − Iuhτ‖Y , and this allows us to recover the fully space-time local efficiency of
the estimators: see (1.4) below, and see Theorem 5.2 of section 5.

For hp-FEM discretizations, one of the key issues concerns the robustness of
the estimators with respect to the polynomial degree; this issue appears already in
the context of elliptic problems, where Melenk and Wohlmuth [33] and Melenk [32]
showed that the well-known residual estimators fail to be polynomial-degree robust.
In a breakthrough work, Braess, Pillwein, and Schöberl [3] established the polynomial-
degree robustness of estimators based on equilibrated fluxes, in the context of elliptic
diffusion problems. These estimators are based on a globally H(div)-conforming
flux computed by solving independent local mixed finite element problems. The
polynomial-degree robustness of these estimators was recently generalized to non-
conforming and mixed methods in [16], to which we refer the reader for further ref-
erences on elliptic problems. For parabolic problems, there is the additional question
of robustness of the estimators with respect to the temporal polynomial degrees. In
comparison to low- and fixed-order methods, there are comparatively few works on a
posteriori error estimates for high-order discretizations of parabolic problems. Build-
ing on the earlier work of Makridakis and Nochetto [31], Schötzau and Wihler [38]
studied the effect of the temporal approximation order of a posteriori estimates for
a composite norm of L∞(L2) ∩ L2(H1)-type, in the context of high-order temporal
semidiscretizations of abstract evolution equations. Otherwise, a posteriori error es-
timates for hp-τq discretizations of parabolic problems remain essentially untouched.

In this work, we present guaranteed, locally space-time efficient, and polynomial-
degree robust a posteriori error estimators for hp-τq discretizations of parabolic prob-
lems. This is by no means simple, as it requires the treatment of the challenges
that have been outlined above. Our main results are the following. Let the spaces
Y := L2(H1

0 )∩H1(H−1) and X := L2(H1
0 ) be, respectively, equipped with their stan-

dard norms ‖·‖Y and ‖·‖X defined in (2.1) below. Let Y +Vhτ be the sum of the contin-
uous and approximate solution spaces, recalling that Vhτ ⊂ X and that uhτ ∈ Vhτ 6⊂ Y
due to the temporally discontinuous approximation. Let I : Y + Vhτ → Y be the re-
construction operator defined in section 3.5 below, where we note that Iv = v if and
only if v ∈ Y . Let the norm ‖·‖EY be defined by ‖v‖2EY := ‖Iv‖2Y + ‖v − Iv‖2X for all
v ∈ Y +Vhτ . In particular, Iu = u, so ‖u−uhτ‖2EY = ‖u−Iuhτ‖2Y + ‖uhτ −Iuhτ‖2X .
Hence ‖·‖EY has the natural functional interpretation as an extension of the Y -norm
to the discrete approximation space.

Guaranteed upper bounds. In Theorem 5.2 of section 5, we show a posteriori
estimates in the norm ‖·‖EY . In the absence of data oscillation, our bound takes the
simple form

(1.3) ‖u− uhτ‖2EY ≤
N∑
n=1

∑
K∈T n

{∫
In

‖σhτ +∇Iuhτ‖2K + ‖∇(uhτ − Iuhτ )‖2K dt
}
,
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where σhτ is the H(div)-conforming reconstruction; see sections 3 and 4 for full
definitions of the notation and construction of the estimators.

Polynomial-degree robustness and local space-time efficiency. We establish local
space-time efficiency of our estimators with polynomial-degree robust constants, ex-
pressed by the lower bound

(1.4)
∫
In

‖σhτ +∇Iuhτ‖2K + ‖∇(uhτ −Iuhτ )‖2Kdt .
∑

a∈VK

|u−uhτ |2Ea,nY + oscillation,

where K is an element of the mesh T n for time step In, where VK denotes the set of
vertices of K, and where |u− uhτ |Ea,nY is the local component of ‖u− uhτ‖EY on the
patch associated with the vertex a and time interval In. Here, and in the following,
the notation a . b means that a ≤ Cb with a constant C that depends possibly on
the shape regularity of the spatial meshes, but is otherwise independent of the mesh
size, time-step size, as well as the spatial and temporal polynomial degrees. We stress
that this efficiency bound does not require any relation between the sizes of the time
step and the mesh. The full bound is stated in Theorem 5.2 below. In addition to the
above results, the estimators proposed here are advantageous in terms of flexibility,
since they do not require restrictions on coarsening or refinement between time steps
that appeared in earlier works, such as the transition condition used in [45, pp. 196,
201]. The main tool to avoid this condition is Lemma 8.1 below.

Relation between ‖u−uhτ‖EY and ‖u−Iuhτ‖Y . The a posteriori analysis in this
work concerns the estimation of ‖u− uhτ‖EY . Independently of the error estimation,
we also consider the question of the relation between the new norm ‖u− uhτ‖EY and
the previously considered norm ‖u − Iuhτ‖Y . Specifically, for arbitrary polynomial
degrees, we show the global equivalence result

(1.5) ‖u− Iuhτ‖Y ≤ ‖u− uhτ‖EY ≤ 3‖u− Iuhτ‖Y + oscillation.

The oscillation term in (1.5) is the minimum between the source term data oscillation
and the coarsening error, as fully detailed in Theorem 5.1 of section 5.1 below. Notice
that the constant in the equivalence is therefore robust with respect to all parameters.
The proof is based on a simplification and generalization to the higher-order case of
a key result of Verfürth [45], namely, that the jumps in the numerical solution can be
controlled locally-in-time and globally-in-space by the Y -norm of u− Iuhτ . The key
implication of (1.5) is that the global space-time norms ‖u−uhτ‖EY and ‖u−Iuhτ‖Y
are essentially equivalent, although we stress that their local (spatial) distributions
may differ.

This paper is organized as follows. First, in section 2 we introduce a functional
setting for the a posteriori error analysis. We find it worthwhile to provide a complete
derivation of the inf-sup analysis of the problem, as we give here quantitatively sharp
results that are advantageous for the efficiency of the estimators in practice. Section 3
defines the setting in terms of notation, finite element approximation spaces, and the
numerical scheme. Then, in section 4, we define the equilibrated flux reconstruction
used in the a posteriori error estimates. In section 5 we gather our main results
underlying (1.3), (1.4), and (1.5). The proofs of the main results are treated in
the subsequent sections: section 6 establishes the relation between ‖u − uhτ‖EY and
‖u− Iuhτ‖Y ; the proof of the guaranteed upper bound is given in section 7; and the
efficiency of the estimators is the subject of section 8.

2. Inf-sup theory. Recall that Ω ⊂ Rd, 1 ≤ d ≤ 3, is a bounded, connected,
polyhedral open set with Lipschitz boundary. For an arbitrary open subset ω ⊂ Ω,
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we use (·, ·)ω to denote the L2-inner product for scalar- or vector-valued functions on
ω with associated norm ‖·‖ω. In the special case where ω = Ω, we drop the subscript
notation, i.e., ‖·‖ := ‖·‖Ω. Following [29, Chap. 3], we consider the function spaces
X := L2(0, T ;H1

0 (Ω)) and Y := L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)), with norms

(2.1)
‖ϕ‖2Y :=

∫ T

0
‖∂tϕ‖2H−1(Ω) + ‖∇ϕ‖2 dt+ ‖ϕ(T )‖2 ∀ϕ ∈ Y,

‖v‖2X :=
∫ T

0
‖∇v‖2 dt ∀ v ∈ X.

Define the bilinear form BY : Y ×X → R by

(2.2) BY (ϕ, v) :=
∫ T

0
〈∂tϕ, v〉+ (∇ϕ,∇v) dt,

where ϕ ∈ Y and v ∈ X are arbitrary functions, and 〈·, ·〉 denotes here the duality
pairing between H−1(Ω) and H1

0 (Ω). Then, the problem (1.1) admits the following
weak formulation: find u ∈ Y such that u(0) = u0 and such that

(2.3) BY (u, v) =
∫ T

0
(f, v) dt ∀ v ∈ X.

The well-posedness of (2.3) is well known and can be shown by inf-sup arguments in
the above functional setting [13]; it can also be shown by Galerkin’s method [20, 48].
The inf–sup stability result presented here has the interesting and important property
of taking the form of an identity, which is advantageous for the sharpness of a posteriori
error analysis. The fact that the constant equals 1 in (2.4) below can also be found
in [42, 43]; it can also be seen from [24, p. 249].

Theorem 2.1 (inf–sup identity). For every ϕ ∈ Y , we have

(2.4) ‖ϕ‖2Y =

[
sup

v∈X\{0}

BY (ϕ, v)
‖v‖X

]2

+ ‖ϕ(0)‖2.

Proof. For a fixed ϕ ∈ Y , let w∗ ∈ X be defined by (∇w∗,∇v) = 〈∂tϕ, v〉 for
all v ∈ H1

0 (Ω), a.e. in (0, T ), which implies the identity ‖∇w∗‖2 = ‖∂tϕ‖2H−1(Ω) a.e.
in (0, T ). Furthermore, we have BY (ϕ, v) =

∫ T
0 (∇(w∗+ϕ),∇v) dt, thus implying that

supv∈X\{0} BY (ϕ, v)/‖v‖X = ‖w∗ + ϕ‖X . We then obtain the desired identity (2.4)
by expanding the square[

sup
v∈X\{0}

BY (ϕ, v)
‖v‖X

]2

=
∫ T

0
‖∇(w∗ + ϕ)‖2 dt

=
∫ T

0
‖∇w∗‖2 + 2(∇w∗,∇ϕ) + ‖∇ϕ‖2 dt

=
∫ T

0
‖∂tϕ‖2H−1(Ω) + 2〈∂tϕ,ϕ〉+ ‖∇ϕ‖2 dt

= ‖ϕ‖2Y − ‖ϕ(0)‖2,

(2.5)

where we note that we have used the identity
∫ T

0 2〈∂tϕ,ϕ〉dt = ‖ϕ(T )‖2−‖ϕ(0)‖2.
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In order to estimate the error between the solution u of (1.1) and its approxima-
tion, we define the residual functional RY : Y → X ′ by

(2.6) 〈RY (ϕ), v〉 := BY (u− ϕ, v) =
∫ T

0
(f, v)− 〈∂tϕ, v〉 − (∇ϕ,∇v) dt,

where v ∈ X and ϕ ∈ Y . The dual norm of the residual is naturally defined by
‖RY (ϕ)‖X′ := supv∈X\{0}〈RY (ϕ), v〉/‖v‖X . Theorem 2.1 implies the following equiv-
alence between the error and dual norm of the residual: for all ϕ ∈ Y , we have

(2.7) ‖u− ϕ‖2Y = ‖RY (ϕ)‖2X′ + ‖u0 − ϕ(0)‖2.

3. Finite element approximation. Consider a partition of the interval (0, T )
into time-step intervals In := (tn−1, tn) with 1 ≤ n ≤ N , where it is assumed that
[0, T ] =

⋃N
n=1 In, and that {tn}Nn=0 is strictly increasing with t0 = 0 and tN = T .

For each interval In, we let τn := tn − tn−1 denote the local time-step size. We will
not need any special assumptions about the relative sizes of the time steps to each
other. We associate a temporal polynomial degree qn ≥ 0 with each time step In,
and we gather all the polynomial degrees in the vector q = (qn)Nn=1. For a general
vector space V , we shall write Qqn (In;V ) to denote the space of V -valued univariate
polynomials of degree at most qn over the time-step interval In.

3.1. Meshes. We consider a matching simplicial mesh T n of the domain Ω
for each 0 ≤ n ≤ N , where we assume shape regularity of the meshes uniformly
over all time steps. This allows us to treat many applications where the meshes
are obtained by refinement or coarsening between time steps. We consider here only
matching simplicial meshes for simplicity, although we indicate that mixed simplicial–
parallelepiped meshes, possibly containing hanging nodes, can be also be treated; see
[10] for instance. The mesh T 0 will be used to approximate the initial datum u0. For
each element K ∈ T n, let hK := diamK denote the diameter of K. We associate a
local spatial polynomial degree pK ≥ 1 with each K ∈ T n, and we gather all spatial
polynomial degrees in the vector pn = (pK)K∈T n . In order to keep our notation
sufficiently simple, the dependence of the local spatial polynomial degrees pK on the
time step is kept implicit, although we bear in mind that the polynomial degrees may
change between time steps.

3.2. Approximation spaces. For a general matching simplicial mesh T with
associated vector of polynomial degrees p = (pK)K∈T , pK ≥ 1 for all K ∈ T , the
H1

0 (Ω)-conforming hp-finite element space Vh(T ,p) is defined by

(3.1) Vh(T ,p) :=
{
vh ∈ H1

0 (Ω), vh|K ∈ PpK (K) ∀K ∈ T
}
,

where PpK (K) denotes the space of polynomials of total degree at most pK on K.
For shorthand, we denote V nh := Vh(T n,pn) for each 0 ≤ n ≤ N . Let Πhu0 ∈ V 0

h

denote an approximation to the initial datum u0, a typical choice being the L2-
orthogonal projection onto V 0

h . Given the collection of time steps {In}Nn=1, the vector
q of temporal polynomial degrees, and the hp-finite element spaces {V nh }Nn=1, the
spatio-temporal finite element space Vhτ is defined by

(3.2) Vhτ :=
{
vhτ |(0,T ) ∈ X, vhτ |In ∈ Qqn(In;V nh ) ∀n = 1, . . . , N, vhτ (0) ∈ V 0

h

}
.

Functions in Vhτ are generally discontinuous with respect to the time variable at the
partition points, although we take them to be left-continuous: for all 1 ≤ n ≤ N ,
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we define vhτ (tn) as the trace at tn of the restriction vhτ |In . Functions in Vhτ are
thus left-continuous; moreover, they also have a well-defined value at t0 = 0. For
all 0 ≤ n < N , we denote the right-limit of vhτ ∈ Vhτ at tn by vhτ (t+n ). Then, the
temporal jump operators L·Mn, 0 ≤ n ≤ N − 1, are defined on Vhτ by

(3.3) Lvhτ Mn := vhτ (tn)− vhτ (t+n ), 0 ≤ n ≤ N − 1.

3.3. Refinement and coarsening. Similary to other works, e.g., [45, p. 196],
we assume that we have at our disposal a common refinement mesh T̃ n of T n−1 and
T n for each 1 ≤ n ≤ N , as well as associated polynomial degrees p̃n = (pK̃)

K̃∈T̃ n ,
such that V n−1

h +V nh ⊆ Ṽ nh := Vh(T̃ n, p̃n). For a function vhτ ∈ Vhτ , we observe that
Lvhτ Mn−1 ∈ Ṽ nh for each 1 ≤ n ≤ N since vhτ (tn−1) ∈ V n−1

h , vhτ (t+n−1) ∈ V nh , and
V n−1
h + V nh ⊆ Ṽ nh . It is assumed that T̃ n has the same shape regularity as T n−1 and
T n, and that every element K̃ ∈ T̃ n is wholly contained in a single element K ′ ∈ T n−1

and a single element K ′′ ∈ T n. We emphasize that we do not require any assumptions
on the relative coarsening or refinement between successive spaces V n−1

h and V nh .
We note that in the present context, refinement and coarsening can be obtained by
modification of the meshes as well as change in the polynomial degrees. Concerning
the polynomial degrees, we may choose, for example, pK̃ = max(pK′ , pK′′). In the
case where V nh is obtained from V n−1

h by refinement without coarsening, then we
may choose T̃ n := T n and p̃n := pn so that Ṽ nh = V nh . However, we do not need
the transition condition assumption from [45, pp. 196, 201], which requires a uniform
bound on the ratio of element sizes between T̃ n and T n.

3.4. Numerical scheme. The numerical scheme for approximating the solution
of the parabolic problem (1.1) consists of finding uhτ ∈ Vhτ such that uhτ (0) = Πhu0,
and, for each time-step interval In,

(3.4)
∫
In

(∂tuhτ , vhτ ) + (∇uhτ ,∇vhτ ) dt−
(
Luhτ Mn−1, vhτ (t+n−1)

)
=
∫
In

(f, vhτ ) dt ∀ vhτ ∈ Qqn(In;V nh ).

Here the time derivative ∂tuhτ is understood as the piecewise time-derivative on each
time-step interval In. The numerical solution uhτ ∈ Vhτ can thus be obtained by
solving the fully discrete problem (3.4) on each successive time step. At each time
step, this requires solving a linear system that is symmetric only in the lowest-order
case; this can be performed efficiently in practice for arbitrary orders; see [40] and the
references therein.

3.5. Reconstruction operator. For each time-step interval In and each non-
negative integer q, let Lnq denote the polynomial on In obtained by mapping the
standard qth Legendre polynomial under an affine transformation of (−1, 1) to In. It
follows that Lnq (tn) = 1 for all q ≥ 0, and Lnq (tn−1) = (−1)q, and that the mapped Leg-
endre polynomials {Lnq }q≥0 are L2-orthogonal on In, and satisfy

∫
In
|Lnq |2 dt = τn

2q+1
for all q ≥ 0. We introduce the Radau reconstruction operator I defined on Vhτ by

(3.5) (Ivhτ )|In := vhτ |In +
(−1)qn

2
(
Lnqn − L

n
qn+1

)
Lvhτ Mn−1 ∀ vhτ ∈ Vhτ .

It is clear that I is a linear operator on Vhτ . It follows from the properties of the Leg-
endre polynomials that Ivhτ |In (tn) = vhτ (tn), and that Ivhτ |In (t+n−1) = vhτ (tn−1)



2818 ALEXANDRE ERN, IAIN SMEARS, AND MARTIN VOHRALÍK

for all 1 ≤ n ≤ N . Therefore, Ivhτ is continuous with respect to the temporal variable
at the interval partition points {tn}N−1

n=0 , and thus we have

(3.6) Ivhτ ∈ H1 (0, T ;H1
0 (Ω)

)
⊂ Y, Ivhτ |In ∈ Qqn+1

(
In; Ṽ nh

)
∀ vhτ ∈ Vhτ ,

where we recall that V n−1
h + V nh ⊆ Ṽ nh . We easily deduce the following property of

the reconstruction operator I from integration by parts and the orthogonality of the
polynomials Lnqn and Lnqn+1 to all polynomials of degree strictly less than qn on the
time-step interval In:

(3.7)
∫
In

∂tIvhτ φ dt =
∫
In

∂tvhτ φ dt− Lvhτ Mn−1φ
(
t+n−1

)
∀φ ∈ Qqn(In; R),

where equality holds in the above equation in the sense of functions in Ṽ nh . We may
therefore use (3.7) to rewrite the numerical scheme (3.4) as

(3.8)
∫
In

(∂tIuhτ , vhτ ) + (∇uhτ ,∇vhτ ) dt =
∫
In

(f, vhτ ) dt ∀ vhτ ∈ Qqn(In;V nh ).

Note also that Iuhτ (0) = Πhu0.

Remark 3.1 (alternative equivalent definitions). The operator I is the Radau re-
construction operator commonly used in the a posteriori error analysis of the discon-
tinuous Galerkin time-stepping method [31] and in the a priori error analysis of time-
dependent first-order PDEs [14]. Several equivalent definitions of I have appeared
in the literature, although it will be particularly advantageous for our purposes to
use the definition (3.5) of I; see [23, 40] for further details on the equivalence of the
various definitions.

Remark 3.2 (extensions of I to Y + Vhτ ). In what follows, it will be helpful to
extend I to a linear operator over Y + Vhτ . Note that the definition of the jump
operators (3.3) can be naturally extended to Y + Vhτ and, therefore, the definition
(3.5) also extends naturally to Y + Vhτ . In particular, I : Y + Vhτ → Y , and we have
Iϕ = ϕ if and only if ϕ ∈ Y , since the jumps of any ϕ ∈ Y vanish identically.

Remark 3.3 (a priori analysis in the Y -norm). Although we focus here on the
a posteriori analysis of the error, it is helpful to briefly mention some results from
a priori analysis in the current functional framework. An important yet perhaps
nonobvious point is that the inclusion of the time derivative in the Y -norm does
not necessarily decrease the convergence order with respect to the time-step size in
comparison to other norms, such as the X-norm. Indeed, since this is primarily
related to the temporal discretization, let us show this by momentarily considering a
temporal semidiscretization with solution uτ obtained by replacing all discrete spaces
V nh by H1

0 (Ω) in (3.2) and in (3.4). Then, with fτ as defined in section 4.2, we have∫ T
0 〈∂t(u− Iuτ ), v〉dt =

∫ T
0 (f − fτ , v)− (∇(u− uτ ),∇v) dt for all v ∈ X. Therefore,

we deduce that∫ T

0
‖∂t(u− Iuτ )‖2H−1(Ω) dt ≤ {‖u− uτ‖X + ‖f − fτ‖X′}2 .

This explains in a nusthell why the time derivative error is not necessarily worse
than the other terms. There are some works on Y -norm-type estimates for the fully
discrete case, going back to Dupont [6]. We also mention the recent analysis on quasi-
optimality in the spatially semidiscrete case by Tantardini [41] and Tantardini and
Veeser [42].
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4. Construction of the equilibrated flux. The a posteriori error estimates
presented in this paper are based on a discrete and locally computable H(div)-
conforming flux σhτ that satisfies the key equilibration property

(4.1) ∂tIuhτ +∇·σhτ = fhτ in Ω× (0, T ),

where Iuhτ is defined in section 3.5, and fhτ ≈ f is a data approximation defined
in (4.4) below. We call σhτ an equilibrated flux. We consider here the natural
extension of existing flux reconstructions for elliptic problems [3, 4, 7, 16] to the
parabolic setting; see also [11]. In particular, for each time step, σhτ is obtained as
a sum of fluxes computed by solving local mixed finite element problems over the
vertex-based patches of the current mesh; see Definition 4.1 of section 4.3 below.

4.1. Local mixed finite element spaces. We now define the mixed finite
element spaces that are required for the construction of the equilibrated flux. For each
1 ≤ n ≤ N , let Vn denote the set of vertices of the mesh T n, where we distinguish the
set of interior vertices Vnint and the set of boundary vertices Vnext. For each a ∈ Vn,
let ψa denote the hat function associated with a, and let ωa denote the interior of
the support of ψa with associated diameter hωa . Furthermore, let T̃ a,n denote the
restriction of the mesh T̃ n to ωa. Recalling that the common refinement spaces Ṽ nh
were obtained with a vector of polynomial degrees p̃n = (pK̃)

K̃∈T̃ n , we associate with
each a ∈ Vn the fixed polynomial degree

(4.2) pa := max
K̃∈T̃ a,n

(pK̃ + 1).

Observe that ψa∂tIuhτ |K̃×In is a polynomial function with degree at most qn in time
and at most pa in space for each K̃ ∈ T̃ a,n, 1 ≤ n ≤ N .

For a polynomial degree p ≥ 0, let the local spaces Pp(T̃ a,n) and RTNp(T̃ a,n)
be defined by

Pp(T̃ a,n) := {qh ∈ L2(ωa), qh|K̃ ∈ Pp(K̃) ∀ K̃ ∈ T̃ a,n},

RTNp(T̃ a,n) := {vh ∈ L2(ωa; Rd), vh|K̃ ∈ RTNp(K̃) ∀K̃ ∈ T̃ a,n},

where RTNp(K̃) := Pp(K̃; Rd)+Pp(K̃)x denotes the Raviart–Thomas–Nédélec space
of order p on K̃. It is important to notice that, whereas the patch ωa is subordinate
to the vertices of the mesh T n, the spaces Pp(T̃ a,n) and RTNp(T̃ a,n) are subordinate
to the submesh T̃ a,n; of course, in the absence of coarsening, this distinction vanishes.

We now introduce the local spatial mixed finite element spaces V a,n
h and Qa,n

h ,
defined by

V a,n
h :=


{
vh ∈H(div, ωa) ∩RTNpa(T̃ a,n), vh · n = 0 on ∂ωa

}
if a ∈ Vnint,{

vh ∈H(div, ωa) ∩RTNpa(T̃ a,n), vh · n = 0 on ∂ωa \ ∂Ω
}

if a ∈ Vnext,

Qa,n
h :=


{
qh ∈ Ppa(T̃ a,n), (qh, 1)ωa = 0

}
if a ∈ Vnint,

Ppa(T̃ a,n) if a ∈ Vnext.

We then define the following space-time mixed finite element spaces

(4.3) V a,n
hτ := Qqn (In;V a,n

h ) , Qa,n
hτ := Qqn (In;Qa,n

h ) .
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4.2. Data approximation. Our a posteriori error estimates given in section 5
involve certain approximations of the source term f appearing in (1.1). It is helpful
to define these approximations here. First, we define the semidiscrete approximation
fτ of f by an L2-orthogonal projection in time. In particular, the approximation
fτ ∈ Qqn(In;L2(Ω)) is defined on each interval In by

∫
In

(f − fτ , v) dt = 0 for all
v ∈ Qqn(In;L2(Ω)). Next, for each 1 ≤ n ≤ N and for each a ∈ Vn, let Πa,n

hτ be the
L2
ψa

-orthogonal projection from L2(In;L2
ψa

(ωa)) onto Qqn(In;Ppa−1(T̃ a,n)), where
L2
ψa

(ωa) is the space of measurable functions v on ωa such that
∫
ωa
ψa|v|2 dx < ∞.

In other words, the projection operator Πa,n
hτ is defined by

∫
In

(ψaΠa,n
hτ v, qhτ )ωa dt =∫

In
(ψav, qhτ )ωa dt for all qhτ ∈ Qqn(In;Ppa−1(T̃ a,n)). We adopt the convention that

Πa,n
hτ v is extended by zero from ωa × In to Ω × (0, T ) for all v ∈ L2(In;L2

ψa
(ωa)).

Then, we define fhτ by

(4.4) fhτ :=
N∑
n=1

∑
a∈Vn

ψa Πa,n
hτ f.

Remark 4.1 (definition of fhτ ). The somewhat technical appearance of the defini-
tion of fhτ is due to the possible variation in polynomial degrees across the mesh and
the particular requirements of the analysis of efficiency, in particular, the hypotheses
of Lemma 8.1 below. Nevertheless, fhτ has several important approximation proper-
ties. First, for any 1 ≤ n ≤ N , any K̃ ∈ T̃ n, and any real-valued polynomial φ of
degree at most qn, we have

(4.5)
∫
In

(f − fhτ , 1)K̃φ dt =
∑

a∈VK

∫
In

(ψa (f −Πa,n
hτ f) , φ1)

K̃
dt = 0,

where VK denotes the set of vertices of K, and where we use the fact that the hat
functions {ψa}a∈Vn form a partition of unity on Ω. Furthermore, using the orthogo-
nality of the projector Πa,n

hτ and the fact that 0 ≤ ψa ≤ 1 in Ω, it is straightforward
to show that

(4.6) ‖f − fhτ‖L2(In;L2(K̃)) ≤
√
d+ 1 inf

whτ∈Qqn (In;Pp
K̃

(K̃))
‖f − whτ‖L2(In;L2(K̃)).

This shows that fhτ defines an approximation of f that is at least of the same order as
the one associated with the finite element approximation. Furthermore, the approx-
imations are exact, i.e., f = fτ = fhτ , if f is a piecewise polynomial of appropriate
degrees with respect to the time steps and the common refinement meshes.

4.3. Flux reconstruction. For each 1 ≤ n ≤ N and each a ∈ Vn, let the scalar
function ga,nhτ ∈ Qqn(In;Ppa(T̃ a,n)) and vector field τ a,n

hτ ∈ Qqn(In; RTNpa(T̃ a,n)) be
defined by

τ a,n
hτ := −ψa∇uhτ |ωa×In ,(4.7a)
ga,nhτ := ψa (Πa,n

hτ f − ∂tIuhτ ) |ωa×In −∇ψa · ∇uhτ |ωa×In .(4.7b)

We claim that for all a ∈ Vnint,

(4.8) (ga,nhτ (t), 1)
ωa

= 0 ∀ t ∈ In,



A POSTERIORI ERROR ANALYSIS FOR PARABOLIC PROBLEMS 2821

which is equivalent to showing that ga,nhτ ∈ Qa,n
hτ for all a ∈ Vn. Indeed, we first

observe that the construction of the numerical scheme, in particular, identity (3.8),
implies that, for any univariate real-valued polynomial φ of degree at most qn on In,∫
In

(ga,nhτ , φ1)
ωa

dt =
∫
In

(
f, φψa

)
ωa
−
(
∂tIuhτ , φ ψa

)
ωa
−
(
∇uhτ ,∇(φψa)

)
ωa

dt = 0,

where we have used the orthogonality of the projection Πa,n
hτ and the fact that φψa ∈

Qqn(In;V nh ) is a valid test function in (3.8). Since the function ga,nhτ is polynomial in
time with degree at most qn, i.e., ga,nhτ ∈ Qqn(In;Ppa(T̃ a,n)), we deduce (4.8).

Definition 4.1 (flux reconstruction). Let uhτ ∈ Vhτ be the numerical solution
of (3.4). For each time-step interval In and for each vertex a ∈ Vn, let the space-time
mixed finite element spaces V a,n

hτ and Qa,n
hτ be defined by (4.3). Let ga,nhτ and τ a,n

hτ be
defined by (4.7). Let σa,n

hτ ∈ V
a,n
hτ be defined by

(4.9) σa,n
hτ := argmin

vhτ∈V a,n
hτ

∇·vhτ=ga,nhτ

∫
In

‖vhτ − τ a,n
hτ ‖

2
ωa

dt.

Then, after extending σa,n
hτ by zero from ωa × In to Ω × (0, T ) for each a ∈ Vn and

for each 1 ≤ n ≤ N , we define

(4.10) σhτ :=
N∑
n=1

∑
a∈Vn

σa,n
hτ .

Note that σa,n
hτ ∈ V

a,n
hτ is well-defined for all a ∈ Vn; in particular, for interior

vertices a ∈ Vnint, we use (4.8) to guarantee the compatibility of the datum ga,nhτ with
the constraint ∇·σa,n

hτ = ga,nhτ .
The following key result shows that σhτ from Definition 4.1 leads to an equili-

brated flux.

Theorem 4.2 (equilibration). Let the flux reconstruction σhτ be defined by (4.10)
of Definition 4.1. Then σhτ ∈ L2(0, T ;H(div,Ω)) and we have (4.1), where the dis-
crete approximation fhτ is defined in (4.4).

Proof. After extending each σa,n
hτ by zero from ωa×In to Ω×(0, T ), we have σa,n

hτ ∈
L2(0, T ;H(div,Ω)) as a consequence of the boundary conditions included in the def-
inition of the space V a,n

h . This immediately implies that σhτ ∈ L2(0, T ;H(div,Ω)).
To show (4.1), the definition of the flux reconstruction σhτ in (4.10) implies that for
any time-step interval In and any K ∈ T n,

∇·σhτ |K×In =
∑

a∈VK

∇·σa,n
hτ |K×In =

∑
a∈VK

ga,nhτ |K×In

=
∑

a∈VK

(
ψaΠa,n

hτ f − ψa∂tIuhτ −∇ψa · ∇uhτ
)
|K×In

= (fhτ − ∂tIuhτ )|K×In ,

(4.11)

where VK denotes the set of vertices of K, where we use the fact that the hat functions
{ψa}a∈Vn form a partition of unity in order to pass to the last line of (4.11), and where
we have used the definition of fhτ in (4.4). This yields (4.1) as required.
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For the purposes of practical implementation, it is easily seen that, for each time-
step interval In, the fluxes σa,n

hτ can be computed by solving qn + 1 independent
spatial mixed finite element problems, provided only that an orthogonal or orthonor-
mal polynomial basis is used in time over In. Moreover, the qn + 1 linear systems
each share the same matrix, which helps to simplify the implementation and reduce
the computational cost.

Lemma 4.3 (decoupling). Let σa,n
hτ ∈ V

a,n
hτ be defined by (4.9). Then σa,n

hτ is
equivalently uniquely defined as the first component of the pair (σa,n

hτ , r
a,n
hτ ) ∈ V a,n

hτ ×
Qa,n
hτ that solves

(4.12a)∫
In

(σa,n
hτ ,vhτ )

ωa
− (∇·vhτ , ra,nhτ )

ωa
dt =

∫
In

(τ a,n
hτ ,vhτ )

ωa
dt ∀vhτ ∈ V a,n

hτ ,∫
In

(∇·σa,n
hτ , qhτ )

ωa
dt =

∫
In

(ga,nhτ , qhτ )
ωa

dt ∀ qhτ ∈ Qa,n
hτ .(4.12b)

Furthermore, for each 1 ≤ n ≤ N , let {φnj }
qn
j=0 be an L2(In)-orthonormal basis for

the space of univariate real-valued polynomials of degree at most qn. For each a ∈ Vn,
define the functions {ga,nh,j }

qn
j=0 and {τ a,n

h,j }
qn
j=0 over the patch ωa by

(4.13) ga,nh,j :=
∫
In

ga,nhτ φ
n
j dt, τ a,n

h,j :=
∫
In

τ a,n
hτ φ

n
j dt.

Then, the solution (σa,n
hτ , r

a,n
hτ ) of (4.12) can be obtained by solving the following spatial

problems: for each 0 ≤ j ≤ qn, find σa,n
h,j ∈ V

a,n
h and ra,nh,j in Qa,n

h such that(
σa,n
h,j ,vh

)
ωa

−
(
∇·vh, ra,nh,j

)
ωa

=
(
τ a,n
h,j ,vh

)
ωa

∀vh ∈ V a,n
h ,(4.14a) (

∇·σa,n
h,j , qh

)
ωa

=
(
ga,nh,j , qh

)
ωa

∀ qh ∈ Qa,n
h ,(4.14b)

and then by defining σa,n
hτ :=

∑qn
j=0 σ

a,n
h,j φ

n
j and ra,nhτ :=

∑qn
j=0 r

a,n
h,j φ

n
j .

Remark 4.2 (implementation). Several techniques can be used to reduce the com-
putational cost of computing the flux equilibration. First, although the flux σhτ is
defined on the space-time region Ω× (0, T ) from a theoretical viewpoint, in practice it
is only its restriction to the current time step which is required, because values from
previous time steps do not need to be reevaluated or even stored. Second, at each
time step and at each vertex patch, a single matrix is shared by the decoupled local
problems in (4.14), so a single factorization is sufficient. Third, if a patch and its as-
sociated polynomial degrees are not changed at the next time step, this factorization
can simply be reused. Therefore there are ample opportunities for reuse of previous
computations to reduce the total cost. Turning to the cases of refined or coarsened
patches, the analysis in the subsequent sections shows that one particular advantage
of the equilibrated flux σhτ of Definition 4.1 is that it leads to estimators that are
robust with respect to coarsening (and refinement) between time steps. The price to
pay is that the size of the linear systems in (4.14) grows with the size of coarsening
between two successive time steps, as (4.14) are defined on the patches ωa partitioned
by the common refinement mesh T̃ n for each 1 ≤ n ≤ N . The analysis in [19, sec-
tion 6], though, shows that this computational cost can be significantly reduced to the
solution of two low-order systems over the patches ωa, followed by local high-order
corrections on the subpatches of T̃ a,n. We refer the reader to [19, section 6] for the
full details of this approach.
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5. Main results. In this section, we present the a posteriori error estimate
featuring guaranteed upper bounds, local space-time efficiency, and polynomial-degree
robustness. Let the norm ‖·‖EY : Y + Vhτ → R≥0 be defined by

(5.1) ‖v‖2EY := ‖Iv‖2Y + ‖v − Iv‖2X ∀ v ∈ Y + Vhτ ,

where we recall Remark 3.2 on the extension of the linear operator I to Y + Vhτ .
Since the exact solution u ∈ Y implies that Iu = u, we have the identities

‖u− uhτ‖2EY = ‖u− Iuhτ‖2Y + ‖uhτ − Iuhτ‖2X

= ‖u− Iuhτ‖2Y +
N∑
n=1

τn(qn+1)
(2qn+1) (2qn+3)‖∇Luhτ Mn−1‖2,

(5.2)

where we have simplified
∫
In
‖∇(uhτ − Iuhτ )‖2 dt = τn(qn+1)

(2qn+1) (2qn+3)‖∇Luhτ Mn−1‖2,
which is an identity easily deduced from (3.5) and from

∫
In
|Lnq |2 dt = τn

2q+1 for all
q ≥ 0; see also [38]. We also introduce the localized seminorms |·|Ea,nY for each
1 ≤ n ≤ N and each a ∈ Vn, defined by

(5.3) |v|2Ea,nY :=
∫
In

‖∂t Iv‖2H−1(ωa) + ‖∇Iv‖2ωa
+ ‖∇(v − Iv)‖2ωa

dt ∀ v ∈ Y + Vhτ .

Similarly to (5.2), we find that

|u− uhτ |2Ea,nY =
∫
In

‖∂t(u− Iuhτ )‖2H−1(ωa) + ‖∇(u− Iuhτ )‖2ωa
dt(5.4)

+ τn(qn+1)
(2qn+1) (2qn+3)‖∇Luhτ Mn−1‖2ωa

.

Although it might not be immediately obvious that ‖u− uhτ‖EY is equivalent to
the Hilbertian sum of the |u − uhτ |Ea,nY , up to data oscillation, this will come as a
consequence of the results shown here and in section 8.

Remark 5.1 (role of ‖uhτ − Iuhτ‖X). The error estimators in this work focus on
‖u− uhτ‖EY , which is based on the inclusion of the additional term ‖uhτ − Iuhτ‖X .
First, this term allows the extension of the Y -norm to the sum of the continuous and
discrete solution spaces Y + Vhτ . Thus it measures the lack of conformity of uhτ /∈ Y
coming from the jumps between time steps, as shown by (5.2). The second reason
to consider this term is that it is naturally connected to ‖u− Iuhτ‖Y . Indeed, recall
that uhτ −Iuhτ appears in the discrete residual from the right-hand side of (1.2), and
that the X ′ norm of this discrete component of the residual is simply ‖uhτ −Iuhτ‖X
by Theorem 2.1. Hence this term also has the role of bounding the lack of Galerkin
orthogonality of Iuhτ .

We are now ready to state our main results in Theorems 5.1 and 5.2 below.

5.1. Global equivalence of norms. It is helpful to denote the time-localized
dual norm of the residual by

(5.5) ‖RY (Iuhτ )|In‖X′ := sup
v∈X, ‖v‖X=1

∫
In

(f, v)− 〈∂tIuhτ , v〉 − (∇Iuhτ ,∇v) dt.

Note that ‖RY (Iuhτ )|In‖X′ can always be bounded from above by the restriction of
the Y -norm of the error u− Iuhτ to the time-step interval In.
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Theorem 5.1 (equivalence of norms). Let the norm ‖·‖EY be defined by (5.1)
and, for each 1 ≤ n ≤ N , let the temporal data oscillation ηnosc,τ and the coarsening
error ηnC be defined by

ηnC :=
√

τn(qn+1)
(2qn+1) (2qn+3)‖∇{uhτ (tn−1)− Pnh [uhτ (tn−1)]}‖,(5.6a)

[ηnosc,τ ]2 :=
∫
In

‖f(t)− fτ (t)‖2H−1(Ω) dt,(5.6b)

where Pnh : H1
0 (Ω)→ V nh denotes the elliptic orthogonal projection onto V nh defined by

(∇Pnh w,∇vh) = (∇w,∇vh) for all vh ∈ V nh . Then, we have

(5.7)
∫
In

‖∇(uhτ − Iuhτ )‖2dt ≤ 8‖RY (Iuhτ )|In‖2X′ + min
{

[ηnC]2, 8[ηnosc,τ ]2
}
,

where ‖RY (Iuhτ )|In‖X′ is defined in (5.5). Furthermore, we have

(5.8) ‖u− Iuhτ‖2Y ≤ ‖u− uhτ‖2EY ≤ 9‖u− Iuhτ‖2Y +
N∑
n=1

min
{

[ηnC]2, 8[ηnosc,τ ]2
}
.

We delay the proof of Theorem 5.1 until section 6 below. We emphasize that the
coarsening term ηnC arises only in the equivalence of norms, and that it does not need
to be computed in practice since it does not appear in the a posteriori error estimators
below; see, in particular, (5.10).

Remark 5.2 (equivalence). Theorem 5.1 shows that ‖u−uhτ‖EY and ‖u−Iuhτ‖Y
are globally equivalent up to the minimum of temporal data oscillation and coarsening
errors. A similar result due to (5.7) actually holds also on each In. In particular, one
of our key contributions here is to obtain polynomial-degree independent constants
in (5.8). It is important to note that although ‖u − uhτ‖EY and ‖u − Iuhτ‖Y are
essentially globally equivalent, their local distributions may differ.

Remark 5.3 (relation to [45]). A similar result to (5.7) was previously obtained
in the lowest-order case qn = 0 by Verfürth [45]; see, in particular, the bounds
of [45, section 7] for what is denoted there τn

3 |u
n
h − un−1

h |21, which is equivalent to∫
In
‖∇(uhτ − Iuhτ )‖2 dt with qn = 0 in our notation. For higher polynomial degrees,

we note that Gaspoz et al. have obtained independently an inequality of a similar
kind as (5.7) in [21, Prop. 7], with the difference that (5.7) features a robust constant
with respect to the temporal polynomial degree and is sharper with respect to the
oscillation term.

5.2. Main a posteriori error estimate. We introduce the following a poste-
riori error estimators and data oscillation terms:

ηnF,K(t) := ‖σhτ (t) +∇Iuhτ (t)‖K ,(5.9a)

ηnJ,K :=
√

τn(qn+1)
(2qn+1)(2qn+3) ‖∇Luhτ Mn−1‖K ,(5.9b)

ηnosc,h,K(t) :=

 ∑
K̃∈T̃ n, K̃⊆K

h2
K̃

π2 ‖fτ (t)− fhτ (t)‖2
K̃

 1
2

,(5.9c)

ηosc,τ (t) := ‖f(t)− fτ (t)‖H−1(Ω),(5.9d)

ηosc,init := ‖u0 −Πhu0‖,(5.9e)
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where t ∈ In, K ∈ T n, the equilibrated flux σhτ is defined in Definition 4.1, and
where the data approximations fτ and fhτ are, respectively, defined in section 4.2.
The two estimators ηnF,K and ηnJ,K are our principal estimators, where ηnF,K measures,
respectively, the lack of H(div)-conformity of the gradient of the reconstructed solu-
tion Iuhτ , and where ηnJ,K measures the lack of temporal conformity of the numerical
solution uhτ . The term ηnosc,h,K represents the data oscillation due to the spatial
discretization, whereas ηosc,τ represents the data oscillation due to the temporal dis-
cretization.

We define the global a posteriori error estimators as

η2
Y :=

N∑
n=1

∫
In

{ ∑
K∈T n

[ηnF,K + ηnosc,h,K ]2
} 1

2

+ ηosc,τ

2

dt+ [ηosc,init]2,(5.10a)

η2
EY := η2

Y +
N∑
n=1

∑
K∈T n

[ηnJ,K ]2.(5.10b)

Notice that in the absence of data oscillation, namely, if u0 = Πhu0 and f = fτ = fhτ
(see Remark 4.1), then ηY simplifies to η2

Y =
∫ T

0 ‖σhτ+∇Iuhτ‖2 dt, and ηEY simplifies
to η2

EY =
∫ T

0 ‖σhτ +∇Iuhτ‖2 + ‖∇(uhτ − Iuhτ )‖2 dt.
Recall that we write a . b for two quantities a and b if a ≤ Cb with a constant

C depending only on the shape regularity of T n and T̃ n, but otherwise independent
of the mesh size, time-step size, and polynomial degrees in space and time.

Theorem 5.2 (EY -norm a posteriori error estimate). Let u ∈ Y be the weak
solution of (1.1), let uhτ ∈ Vhτ denote the solution of the numerical scheme (3.4), and
let Iuhτ denote its temporal reconstruction, where the operator I is defined in (3.5).
Let σhτ denote the equilibrated flux of Definition 4.1. Let ‖·‖EY be defined in (5.1),
and let the a posteriori error estimators be defined in (5.9) with ηEY defined in (5.10).
Then, we have the guaranteed upper bound

(5.11) ‖u− uhτ‖EY ≤ ηEY .

Moreover, for each 1 ≤ n ≤ N and for each K ∈ T n, the indicators satisfy the
following local efficiency bound

(5.12)
∫
In

[ηnF,K ]2 dt+ [ηnJ,K ]2 .
∑

a∈VK

{
|u− uhτ |2Ea,nY + [ηa,nosc ]2

}
,

where |·|Ea,nY is defined in (5.3), VK is the set of vertices of the element K, and the
local data oscillation term ηa,nosc is defined by

(5.13) [ηa,nosc ]2 :=
∫
In

‖f −Πa,n
hτ f‖

2
H−1(ωa) dt.

Furthermore, we have the following global efficiency bound for ‖u− uhτ‖EY :

(5.14)
N∑
n=1

∑
K∈T n

[∫
In

[ηnF,K ]2 dt+ [ηnJ,K ]2
]

. ‖u− uhτ‖2EY +
N∑
n=1

∑
a∈Vn

[ηa,nosc ]2.

The proof of Theorem 5.2 is postponed to the following sections: the proof of the
upper bound (5.11) is given in section 7, and the proof of the bounds (5.12) and (5.14)
is the subject of section 8. Theorem 5.2 shows the local space-time efficiency of the
estimators with respect to ‖u− uhτ‖EY .
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Remark 5.4 (temporal data oscillation). The temporal data oscillation term ηosc,τ
is defined with respect to a negative norm, as is usual in the literature [15, 45].
Similarly to [15, 45], this temporal data oscillation term can be of the same order
as the error in terms of the time-step size. Since this term already appears in the
upper bounds of the residual-based estimates of [45, (1.5)], it is seen that this issue
is not related to the choice of equilibrated flux a posteriori error estimators, but is
rather a part of the error estimation in the Y -norm. In practical computations, it
is often advisable to determine a minimal temporal resolution for reducing this term
to within a prescribed tolerance, in advance of solving the numerical scheme (3.4).
Although the negative norm appearing in the definition of ηosc,τ is noncomputable,
there are several possibilities for estimating it. First, we mention that ηosc,τ is bounded
from above by CΩ‖f − fτ‖ with CΩ the constant of the global Poincaré inequality,
although this can be pessimistic in practice. If f is a finite tensorial product of
spatial and temporal functions, then sharper bounds can be obtained by solving a set
of independent coarse and low-order conforming approximations for elliptic problems,
followed by equilibrated flux a posteriori error estimates to achieve guaranteed upper
bounds. Finally, we also mention that this issue motivates a posteriori error estimators
in other norms; in particular, we show in [18] that X-norm a posteriori estimates
benefit from data oscillation terms that are of higher order by an additional factor of√
τ + h.

5.3. Extension to Y -norm estimates. As a consequence of the proof of The-
orem 5.2, we can also show guaranteed upper bounds and local-in-time and global-in-
space efficiency of the estimators with respect to ‖u − Iuhτ‖Y , thereby generalizing
the results to [45] to higher-order approximations.

Corollary 5.3 (Y -norm a posteriori error estimate). Let the estimator ηY be
defined by (5.10a). Then, we have

(5.15) ‖u− Iuhτ‖Y ≤ ηY .

Furthermore, for each 1 ≤ n ≤ N , we have

∑
K∈T n

[∫
In

[ηnF,K ]2 dt+ [ηnJ,K ]2
]

.
∫
In

‖∂t(u− Iuhτ )‖2H−1(Ω) + ‖∇(u− Iuhτ )‖2 dt

(5.16)

+ min
{

[ηnC]2, 8[ηnosc,τ ]2
}

+
∑
a∈Vn

[ηa,nosc ]2.

6. Proof of equivalence between ‖u− uhτ‖EY
and ‖u−Iuhτ‖Y . In this

section, we prove Theorem 5.1, along with some corollary results, which relate ‖u −
uhτ‖EY to ‖u−Iuhτ‖Y . Our starting point involves the following two original bounds
on the norms of the jumps, which generalize one of the key results of Verfürth [45] for
the lowest-order case qn = 0. In fact, our result sharpens and simplifies the proof of
the result of [45] even in the lowest-order case.

Lemma 6.1. For each 1 ≤ n ≤ N , let Pnh : H1
0 (Ω) → V nh denote the elliptic

orthogonal projection to V nh defined by (∇Pnh w,∇vh) = (∇w,∇vh) for all vh ∈ V nh .
Then, for each 1 ≤ n ≤ N , the jump Luhτ Mn−1 satisfies

τn
8qn + 4

‖∇Luhτ Mn−1‖2 ≤ ‖RY (Iuhτ )|In‖2X′(6.1)

+
τn

8qn + 4
‖∇{uhτ (tn−1)− Pnh [uhτ (tn−1)]}‖2,
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where ‖RY (Iuhτ )|In‖X′ is defined in (5.5). Furthermore, we also have the alternative
bound

(6.2)
τn

8qn + 12
‖∇Luhτ Mn−1‖2 ≤ 2

(
‖RY (Iuhτ )|In‖2X′ + [ηnosc,τ ]2

)
.

Proof. First, note that (uhτ−Iuhτ )|In = (−1)qn
2 (Lnqn+1−Lnqn)Luhτ Mn−1 belongs to

the space Qqn+1(In; Ṽ nh ). We define the test function vhτ := − (−1)qn
2 LnqnP

n
h Luhτ Mn−1,

which belongs to Qqn(In;V nh ), and we use it in (3.8) for the numerical scheme, which
yields, by orthogonality of the Legendre polynomials and by the definition of the
orthogonal projector Pnh , the identity∫

In

‖∇vhτ‖2 dt =
τn

8qn + 4
‖∇Pnh Luhτ Mn−1‖2 =

∫
In

(∇(uhτ − Iuhτ ),∇vhτ ) dt

=
∫
In

(f − ∂tIuhτ , vhτ )− (∇Iuhτ ,∇vhτ ) dt.
(6.3)

Therefore, we have
∫
In
‖∇vhτ‖2 dt ≤ ‖RY (Iuhτ )|In‖2X′ . This bound yields the desired

result (6.1) once it is combined with (6.3) and the orthogonality relation

‖∇Pnh Luhτ Mn−1‖2 = ‖∇Luhτ Mn−1‖2 − ‖∇{Luhτ Mn−1 − Pnh Luhτ Mn−1}‖2

= ‖∇Luhτ Mn−1‖2 − ‖∇{uhτ (tn−1)− Pnh [uhτ (tn−1)]}‖2,

where the last equality above follows from the facts that Luhτ Mn−1 = uhτ (tn−1) −
uhτ (t+n−1) and that uhτ (t+n−1) ∈ V nh . This completes the proof of the first bound (6.1).

We now turn to the proof of (6.2); the main difference in the proofs of (6.1)
and (6.2) is that above we appealed to the numerical scheme using a discrete test
function, whereas to establish (6.2), we shall now consider a higher-order polyno-
mial function that is not in the discrete test space. We define v on In by v|In :=
(−1)qn

2 Lnqn+1 Luhτ Mn−1, and then we extend v by zero outside of In, so that v ∈ X.
Then, by orthogonality of the Legendre polynomial Lnqn+1 to all polynomials of degree
at most qn on In, we have the identities

∫
In

(fτ , v) dt = 0,
∫
In

(∂tIuhτ , v) dt = 0, and∫
In

(∇uhτ ,∇v) dt = 0. Therefore, we obtain∫
In

‖∇v‖2 dt =
τn

8qn + 12
‖∇Luhτ Mn−1‖2 =

∫
In

(∇(uhτ − Iuhτ ),∇v) dt

=
∫
In

(f, v)− (∂tIuhτ , v)− (∇Iuhτ ,∇v) + (fτ − f, v) dt.

The desired result (6.2) then follows straightforwardly from the above identity.

Proof of Theorem 5.1. The first inequality ‖u−Iuhτ‖2Y ≤ ‖u−uhτ‖2EY is obvious
from the definition of ‖u− uhτ‖EY in (5.2). Recalling the definitions of ηnJ,K in (5.9b)
and ηnC in (5.6a), we deduce from (6.1) and (6.2) that
(6.4)∑

K∈T n
[ηnJ,K ]2 ≤ 4(qn + 1)

(2qn + 3)
‖RY (Iuhτ )|In‖2X′ + [ηnC]2 ≤ 2‖RY (Iuhτ )|In‖2X′ + [ηnC]2,

and that ∑
K∈T n

[ηnJ,K ]2 ≤ 8(qn + 1)
(2qn + 1)

(
‖RY (Iuhτ )|In‖2X′ + [ηnosc,τ ]2

)
≤ 8‖RY (Iuhτ )|In‖2X′ + 8[ηnosc,τ ]2.

(6.5)
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Therefore, we obtain (5.7) by taking the minimum of the right-hand sides of the above
bounds. Finally, we get (5.8) by summing the above inequality over all time steps and
noting that

∑N
n=1‖RY (Iuhτ )|In‖2X′ = ‖RY (Iuhτ )‖2X′ ≤ ‖u − Iuhτ‖2Y which follows

from (2.7).
It is possible to obtain slightly sharper variants of Theorem 5.1 under more specific

assumptions. For instance, the following corollary shows that ‖u−uhτ‖EY is equivalent
to ‖u−Iuhτ‖Y without any additional data oscillation, whenever the mesh coarsening
error is relatively small compared to the jumps.

Corollary 6.2. Using the notation of Lemma 6.1, assume that there exists a
constant θ ∈ [0, 1) such that ‖∇ [Luhτ Mn−1 − Pnh Luhτ Mn−1]‖2 ≤ θ‖∇Luhτ Mn−1‖2 for
each 1 ≤ n ≤ N . Then, we have

(6.6) ‖u− Iuhτ‖2Y ≤ ‖u− uhτ‖2EY ≤
3− θ
1− θ

‖u− Iuhτ‖2Y .

Proof. The result is a consequence of Lemma 6.1 and of the identity Luhτ Mn−1 −
Pnh Luhτ Mn−1 = uhτ (tn−1) − Pnh [uhτ (tn−1)], which leads to τn

8qn+4‖∇Luhτ Mn−1‖2 ≤
1

1−θ‖RY (Iuhτ )|In‖2X′ . Adapting the proof of Theorem 5.1 then yields (6.6).

Note that the case θ = 0 in Corollary 6.2 corresponds to the case of no coarsening.

7. Proof of the guaranteed upper bound. We prove here (5.11) and (5.15).
First, it is clear from (5.2) that (5.15) immediately implies (5.11). Therefore, it
remains to show (5.15). Keeping in mind the equivalence identity (2.7) between
norms of the errors and residuals, we turn our attention to bounds for the residual
norm ‖RY (Iuhτ )‖X′ = supv∈X\{0} BY (u − Iuhτ , v)/‖v‖X . To this end, consider an
arbitrary function v ∈ X such that ‖v‖X = 1. Then, we obtain

〈RY (Iuhτ ), v〉 =
∫ T

0
(f − ∂tIuhτ −∇·σhτ , v)− (σhτ +∇Iuhτ ,∇v) dt,

where we have inserted the flux σhτ and used integration by parts over Ω. Next, we
use (4.1), and we write f − fhτ = f − fτ + fτ − fhτ . For any K̃ ∈ T̃ n, 1 ≤ n ≤ N , we
deduce from (4.5) that the function t 7→ (fτ (t) − fhτ (t), 1)K̃ , which is a real-valued
polynomial of degree at most qn on In, vanishes identically on In. Therefore, letting
vK̃(t) denote the mean value of v(t) over the element K̃ ∈ T̃ n, which is defined for
a.e. t ∈ In, we deduce from the Poincaré inequality that |(fτ (t) − fhτ (t), v(t))K̃ | ≤
h
K̃

π ‖fτ (t)− fhτ (t)‖K̃‖∇v(t)‖K̃ . Therefore, 〈RY (Iuhτ ), v〉 can be bounded as follows:

〈RY (Iuhτ ), v〉 =
N∑
n=1

∫
In

(f − fhτ , v)− (σhτ +∇Iuhτ ,∇v) dt

≤
N∑
n=1

∫
In

∑
K∈T n

ηnF,K‖∇v‖K +

 ∑
K̃∈T̃ n

hK̃
π
‖fτ (t)− fhτ (t)‖K̃‖∇v(t)‖K̃


+ ηosc,τ‖∇v‖dt

≤
N∑
n=1

∫
In

[ ∑
K∈T n

[ηnF,K + ηnosc,h,K ]‖∇v‖K

]
+ ηosc,τ‖∇v‖dt

≤
N∑
n=1

∫
In

{ ∑
K∈T n

[ηnF,K + ηnosc,h,K ]2
} 1

2

+ ηosc,τ

 ‖∇v‖dt.
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Applying the Cauchy–Schwarz inequality leads to an upper bound for ‖RY (Iuhτ )‖X′ ,
which we then combine with the identity (2.7) relating errors and residuals to obtain
‖u−Iuhτ‖Y ≤ ηY . The corresponding upper bound ‖u− uhτ‖EY ≤ ηEY then follows
immediately, as explained above.

8. Proof of local space-time efficiency and robustness. We prove here the
bounds (5.12), (5.14), and (5.16).

8.1. Preliminary result. The following lemma is a generalization of impor-
tant results on polynomial-degree robustness of equilibrated flux estimates from [3,
Thm. 7], in two space dimensions, and [17, Thm. 2.3] in three space dimensions.
In particular, Lemma 8.1 comes from [19, Thm. 1.2] on the existence of a discrete
polynomial-degree robust H(div)-lifting of data that are piecewise polynomials with
respect to the submesh T̃ a,n. Note that [3, Thm. 7] and [17, Thm. 2.3] only hold
for the case where the data are piecewise polynomials on the elements K ∈ T n of
the patch ωa. This generalization is crucial for allowing arbitrary refinement and
coarsening between time steps.

Lemma 8.1 (polynomial-degree-robust stability bound). For each 1 ≤ n ≤ N

and each a ∈ Vn, recall that T̃ a,n denotes the restriction of T̃ n to ωa and that
ψa ∈ H1(ωa) ∩ P1(T̃ a,n) denotes the hat function associated with ωa. Let Γa =
{x ∈ ∂ωa, ψa(x) = 0}. Then, for any fa,n

h ∈ Ppa−1(T̃ a,n) and any ξa,nh ∈
RTNpa−1(T̃ a,n), where it is further supposed that (fa

h , ψa)ωa = (ξa,nh ,∇ψa)ωa if
Γa = ∂ωa, we have

min
vh∈H(div,ωa)∩RTNpa (T̃ a,n)
∇·vh=ψaf

a,n
h −∇ψa·ξa,nh

vh·n=0 on Γa

‖vh + ψaξ
a,n
h ‖ωa . sup

ϕ∈H1
0 (ωa)\{0}

(fa,n
h , ϕ)ωa − (ξa,nh ,∇ϕ)ωa

‖∇ϕ‖ωa

.

Proof. The result is directly obtained by applying [19, Thm. 1.2], where Ω there
stands for ωa here, where T there stands for T̃ a,n here, and where ψ† there stands for
ψa here. In applying [19, Thm. 1.2], we use the fact that Γa is the union of the faces of
the mesh T̃ a,n on which ψa vanishes, and we have simplified the constant appearing
there by using the fact that hωa‖∇ψa‖∞ . ‖ψa‖∞ = 1 by shape regularity.

8.2. Stability of the space-time flux equilibration. For each 1 ≤ n ≤ N and
each a ∈ Vn, we introduce the patch residual functional Ra,n

hτ : L2(In, H1
0 (ωa)) → R

that is defined by

(8.1) 〈Ra,n
hτ , v〉 =

∫
In

(
Πa,n
hτ f − ∂t(Iuhτ ), v

)
ωa
−
(
∇uhτ ,∇v

)
ωa

dt

for all v ∈ L2(In, H1
0 (ωa)). We are now ready to state the essential result that forms

the starting point for our analysis of the efficiency of the error estimators.

Lemma 8.2 (space-time stability bound). Let σa,n
hτ denote the patchwise flux

reconstructions of Definition 4.1, and let Ra,n
hτ denote the local patch residual defined

by (8.1). Then, we have

(8.2)
(∫

In

‖σa,n
hτ + ψa∇uhτ‖2ωa

dt
) 1

2

. sup
v∈Qqn (In;H1

0 (ωa))\{0}

〈Ra,n
hτ , v〉(∫

In
‖∇v‖2ωa

dt
) 1

2
,

where Qqn(In;H1
0 (ωa)) denotes the space of H1

0 (ωa)-valued univariate polynomials of
degree at most qn on In.
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Proof. The definition of σa,n
hτ ∈ V

a,n
hτ in (4.9) implies that it is enough to show that

there exists a vhτ ∈ V a,n
hτ such that ∇·vhτ = ga,nhτ and such that

∫
In
‖vhτ − τ a,n

hτ ‖2ωa
dt

is bounded by the right-hand side of (8.2). Let {φnj }
qn
j=0 be an L2-orthonormal basis

of polynomials on In, and let the functions {fa,n
h,j }

qn
j=0 and {ξa,nh,j }

qn
j=0 be defined by

(8.3) fa,n
h,j :=

∫
In

(Πa,n
hτ f − ∂tIuhτ )φnj dt, ξa,nh,j :=

∫
In

∇uh φnj dt.

It will be useful to keep in mind that ga,nhτ =
∑qn
j=0[ψaf

a,n
h,j −∇ψa · ξa,nh,j ]φnj and that

τ a,n
hτ = −

∑qn
j=0 ψaξ

a,n
h,j φ

n
j . Let Γa := {x ∈ ∂ωa, ψa(x) = 0}; note that if a ∈ Vnint, then

Γa = ∂ωa, whereas Γa is a strict subset of ∂ωa if a ∈ Vnext. We will now use Lemma 8.1
to show that, for each 0 ≤ j ≤ qn, there exists va,n

h,j ∈ H(div, ωa) ∩ RTNpa(T̃ a,n)
such that

∇·va,n
h,j = ψaf

a,n
h,j −∇ψa · ξa,nh,j in ωa, va,n

h,j · n = 0 on Γa,(8.4a)

‖va,n
h,j + ψaξ

a,n
h,j ‖ωa . ‖Ra,n

h,j ‖H−1(ωa),(8.4b)

where Ra,n
h,j ∈ H−1(ωa) is defined by 〈Ra,n

h,j , v〉 := (fa,n
h,j , v)ωa − (ξa,nh,j ,∇v)ωa for all v ∈

H1
0 (ωa). To check the hypotheses of Lemma 8.1, we start by observing that the choice

of pa in (4.2) implies that fa,n
h,j ∈ Ppa−1(T̃ a,n) and that ξa,nh,j ∈ RTNpa−1(T̃ a,n) for all

0 ≤ j ≤ qn. For any interior vertex a ∈ Vnint, it is seen from (4.8) that (fa,n
h,j , ψa)ωa =

(ξa,nh,j ,∇ψa)ωa for all 0 ≤ j ≤ qn. Therefore, the hypotheses of Lemma 8.1 are satisfied,

and there exists va,n
h,j ∈H(div, ωa) ∩RTNpa(T̃ a,n) satisfying (8.4).

Next, we claim that va,n
h,j ∈ V

a,n
h for all 0 ≤ j ≤ qn. Indeed, the definition of

Γa implies that Γa = ∂ωa for all a ∈ Vnint and that ∂ωa \ ∂Ω ⊂ Γa for all a ∈ Vnext.
Therefore, we have va,n

h,j ∈ V
a,n
h for all 0 ≤ j ≤ qn. It then follows that the function

va,n
hτ :=

∑qn
j=0 v

a,n
h,j φ

n
j ∈ V

a,n
hτ and that this function satisfies

∇·va,n
hτ =

qn∑
j=0

[ψaf
a,n
h,j −∇ψa · ξa,nh,j ]φnj = ga,nhτ ,(8.5a)

∫
In

‖va,n
hτ − τ

a,n
hτ ‖

2
ωa

dt =
qn∑
j=0

‖va,n
h,j + ψaξ

a,n
h,j ‖

2
ωa

.
qn∑
j=0

‖Ra,n
h,j ‖

2
H−1(ωa),(8.5b)

where the equality in (8.5b) results from the orthonormality of {φnj }
qn
j=0. We now

claim that

(8.6)


qn∑
j=0

‖Ra,n
h,j ‖

2
H−1(ωa)


1
2

≤ sup
v∈Qqn (In;H1

0 (ωa))\{0}

〈Ra,n
hτ , v〉(∫

In
‖∇v‖2ωa

dt
) 1

2
.

For each j = 0, . . . , qn, we define zj ∈ H1
0 (ωa) by (∇zj ,∇v)ωa = 〈Ra,n

h,j , v〉 for
all v ∈ H1

0 (ωa). It is then straightforward to show that ‖∇zj‖2ωa
= 〈Ra,n

h,j , zj〉 =
‖Ra,n

h,j ‖2H−1(ωa) for each j = 0, . . . , qn. Then, we define z∗ ∈ Qqn(In;H1
0 (ωa)) by

z∗ :=
∑qn
j=0 zjφ

n
j . It follows from the orthonormality of the temporal basis that
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In
‖∇z∗‖2ωa

dt =
∑qn
j=0‖R

a,n
h,j ‖2H−1(ωa). Fubini’s theorem and (8.3) imply that

〈Ra,n
hτ , z∗〉 =

qn∑
j=0

∫
In

(Πa,n
hτ f − ∂tIuhτ , φ

n
j zj)ωa − (∇uh, φnj∇zj)ωa dt

=
qn∑
j=0

{(∫
In

(Πa,n
hτ f − ∂tIuhτφ

n
j ) dt, zj

)
ωa

−
(∫

In
∇uhφnj dt,∇zj

)
ωa

}

=
qn∑
j=0

{
(fa,n
h,j , zj)ωa − (ξa,nh,j ,∇zj)ωa

}
=

qn∑
j=0

〈Ra,n
h,j , zj〉 =

qn∑
j=0

‖Ra,n
h,j ‖

2
H−1(ωa).

Hence, the above identities immediately imply (8.6). Therefore, we combine (8.5) and
(8.6) to deduce that va,n

hτ ∈ V
a,n
hτ satisfies ∇·va,n

hτ = ga,nhτ and
∫
In
‖vh − τ a,n

hτ ‖2ωa
dt is

bounded by the right-hand side of (8.2). This implies (8.2) as explained above.

8.3. Local efficiency. We can now prove the local efficiency bound (5.12).
Proof of the local efficiency bound (5.12). Consider a time step In and an element

K ∈ T n. First, note that [ηnJ,K ]2 ≤
∑

a∈VK |u−uhτ |
2
Ea,nY

trivially, where we recall that
VK denotes the set of vertices of K. Hence, it remains only to bound

∫
In

[ηnF,K ]2 dt.
To this end, observe that σhτ |K×In =

∑
a∈VK σ

a,n
hτ |K×In , and that

∫
In

[ηnF,K ]2 dt =
∫
In

∥∥∑
a∈VK (σa,n

hτ + ψa∇Iuhτ )
∥∥2
K

dt

≤ (|VK |+ 1)
∫
In

∑
a∈VK

‖σa,n
hτ + ψa∇uhτ‖2K + ‖∇(uhτ − Iuhτ )‖2K dt

≤ (|VK |+ 1)
∫
In

∑
a∈VK

‖σa,n
hτ + ψa∇uhτ‖2ωa

dt+ [ηnJ,K ]2,(8.7)

where |VK | is the number of vertices of the element K, which equals d+1 for simplices
and where we have used that ‖·‖K ≤ ‖·‖ωa and the definition of ηnJ,K in the last line.

Keeping in mind Lemma 8.2, we therefore turn our attention to bounding the
dual norm of the patchwise residuals Ra,n

hτ for each a ∈ VK . Consider an arbitrary
v ∈ Qqn(In, H1

0 (ωa)) such that
∫
In
‖∇v‖2ωa

dt = 1; then (2.3) implies that

〈Ra,n
hτ , v〉 =

∫
In

(
Πa,n
hτ f, v

)
ωa
−
(
∂t(Iuhτ ), v

)
ωa
−
(
∇uhτ ,∇v

)
ωa

dt

=
∫
In

〈∂t(u− Iuhτ ), v〉+ (∇(u− Iuhτ ),∇v)ωa dt

+
∫
In

(∇(Iuhτ − uhτ ),∇v)ωa − (f −Πa,n
hτ f, v)ωa dt

=: E1 + E2 + E3 + E4.

The definition of the ‖·‖H−1(ωa)-norm and the Cauchy–Schwarz inequality then yield
|E1 +E2 +E3| . |u−uhτ |Ea,nY . Finally, we find that |E4| ≤ ηa,nosc , where ηa,nosc is defined
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in (5.13). Therefore, we find that

(8.8) sup
v∈Qqn (In,H1

0 (ωa))\{0}

〈Ra,n
hτ , v〉(∫

In
‖∇v‖2ωa

dt
) 1

2
.
(
|u− uhτ |2Ea,nY + [ηa,nosc ]2

) 1
2
.

Recalling (8.2) of Lemma 8.2, we deduce that, for each a ∈ VK ,

(8.9)
∫
In

‖σa,n
hτ + ψa∇uhτ‖2ωa

dt . |u− uhτ |2Ea,nY + [ηa,nosc ]2,

which in combination with (8.7), yields the desired result (5.12).

8.4. Global efficiency. We finally prove the global efficiency bounds (5.14) and
(5.16).

Proof of (5.14) and (5.16). Recalling the definition (5.3) of the localized semi-
norms |·|Ea,nY , we claim that∑

a∈Vn
|u− uhτ |2Ea,nY .

∫
In

‖∂t(u− Iuhτ )‖2H−1(Ω) + ‖∇(u− Iuhτ )‖2 dt(8.10)

+
∫
In

‖∇(uhτ − Iuhτ )‖2 dt.

The proof is essentially a counting argument after local Riesz mappings are introduced
to evaluate the negative norms ‖∂t(u − Iuhτ )‖2H−1(ωa) for all a ∈ Vn; see also [2].
Summing (5.12) over K ∈ T n and using (8.10) then leads to

∑
K∈T n

[∫
In

[ηnF,K ]2 dt+ [ηnJ,K ]2
]

.
∫
In

‖∂t(u− Iuhτ )‖2H−1(Ω) + ‖∇(u− Iuhτ )‖2 dt

(8.11)

+
∫
In

‖∇(uhτ − Iuhτ )‖2 dt+
∑
a∈Vn

[ηa,nosc ]2.

Summing the bound (8.11) for all 1 ≤ n ≤ N immediately yields (5.14), whereas
(5.16) results from (8.11) after invoking (5.7) and observing that ‖RY (Iuhτ )|In‖2X′ is
bounded from above by

∫
In
‖∂t(u− Iuhτ )‖2H−1(Ω) + ‖∇(u− Iuhτ )‖2 dt.

9. Conclusion and outlook. We have studied a posteriori error estimates for
hp-τq discretizations of parabolic problems based on arbitrarily high-order conforming
Galerkin spatial discretizations and discontinuous Galerkin temporal discretizations.
The equilibrated flux reconstructions lead to guaranteed upper bounds for the norm
‖u − uhτ‖EY . Furthermore, the estimators have the key property of being uncon-
ditionally locally space-time efficient with respect to the local errors |u − uhτ |Ea,nY
with constants that are fully robust with respect to both the spatial and temporal
approximation orders. The estimators are flexible in the sense that they do not re-
quire restrictive transition conditions on the refinement and coarsening between time
steps. We also showed that the composite norm of the error ‖u − uhτ‖EY is glob-
ally equivalent to ‖u − Iuhτ‖Y up to the minimum of coarsening error and data
oscillation, with polynomial-degree-robust constants in the equivalence. Finally, the
analysis given here can be extended in various directions; in [18], we show that the
equilibrated flux reconstruction employed here can also be used for obtaining a pos-
teriori estimates for the X-norm of the error, with guaranteed upper bounds, and
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local space-time efficiency under the natural parabolic condition that h2 . τ . Fur-
thermore, the adaptation of Lemma 8.1 to the case of residual-based estimators is
currently under investigation.
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[19] A. Ern, I. Smears, and M. Vohraĺık, Discrete p-robust H(div)-liftings and a posteriori error
analysis of elliptic problems with H−1 source terms, Calcolo, 54 (2017), pp. 1009–1025.

[20] L. C. Evans, Partial Differential Equations, Grad. Stud. Math. 19, AMS, Providence, RI, 1998.
[21] F. D. Gaspoz, C. Kreuzer, K. G. Siebert, and D. A. Ziegler, A Convergent Time-Space

Adaptive dG(s) Finite Element Method for Parabolic Problems Motivated by Equal Error
Distribution, preprint, arXiv:1610.06814, 2016.

[22] E. H. Georgoulis, O. Lakkis, and J. M. Virtanen, A posteriori error control for discontin-
uous Galerkin methods for parabolic problems, SIAM J. Numer. Anal., 49 (2011), pp. 427–
458.
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