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p-ROBUST EQUILIBRATED FLUX RECONSTRUCTION IN H (curl)
BASED ON LOCAL MINIMIZATIONS: APPLICATION TO A
POSTERIORI ANALYSIS OF THE CURL-CURL PROBLEM*

TH\'EOPHILE CHAUMONT-FRELET\dagger AND MARTIN VOHRAL\'IK\ddagger 

Abstract. We present a local construction of \bfitH (curl)-conforming piecewise polynomials sat-
isfying a prescribed curl constraint. We start from a piecewise polynomial not contained in the
\bfitH (curl) space but satisfying a suitable orthogonality property. The procedure employs minimiza-
tions in vertex patches, and the outcome is, up to a generic constant independent of the underlying
polynomial degree, as accurate as the best approximations over the entire local versions of \bfitH (curl).
This allows to design guaranteed, fully computable, constant-free, and polynomial-degree-robust a
posteriori error estimates of Prager--Synge type for N\'ed\'elec's finite element approximations of the
curl-curl problem. A divergence-free decomposition of a divergence-free \bfitH (div)-conforming piece-
wise polynomial, relying on overconstrained minimizations in Raviart--Thomas spaces, is the key
ingredient. Numerical results illustrate the theoretical developments.

Key words. Sobolev space \bfitH (curl), Sobolev space \bfitH (div), equilibrated flux reconstruction,
a posteriori error estimate, divergence-free decomposition, broken polynomial extension
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1. Introduction. A posteriori error estimation by equilibrated flux reconstruc-
tion has achieved a great deal of attention for elliptic model problems like the Poisson
problem. For an H1-conforming discretization whose flux is not in \bfitH (div), one has
to reconstruct a flux in \bfitH (div) satisfying a prescribed divergence constraint. To de-
sign high-performance algorithms, the procedure must furthermore be localized and
cannot involve a solution of any supplementary global problem. Then a guaranteed,
fully computable, and constant-free upper bound on the unknown discretization error
follows from the equality of Prager and Synge [35]. There are several techniques of
such an equilibrated flux reconstruction. Following Ladev\`eze and Leguillon [29] and
Ainsworth and Oden [2], normal fluxes on mesh faces can first be constructed and
then lifted elementwise as in Nicaise, Witowski, and Wohlmuth [34]; dual Vorono\"{\i}-
type grids can be employed for local nonoverlapping minimizations in \bfitH (div) as in
Luce and Wohlmuth [31] or Hannukainen, Stenberg, and Vohral\'{\i}k [27]; or a localiza-
tion by the partition of unity via the finite element hat basis functions can be used
for an overlapping combination of best-possible vertex-patch fluxes as in Destuyn-
der and M\'etivet [15] or Braess and Sch\"oberl [8]. This last approach is conceptual
and, as established in Braess, Pillwein, and Sch\"oberl [7] and Ern and Vohral\'{\i}k [21],
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1784 TH\'EOPHILE CHAUMONT-FRELET AND MARTIN VOHRAL\'IK

gives estimates robust with respect to the polynomial degree p (henceforth termed
p-robust).

In contrast, only a handful of results are available for the curl-curl problem,
where, for an \bfitH (curl)-conforming discretization whose curl is not in \bfitH (curl), one
has to locally reconstruct a flux in \bfitH (curl) satisfying a prescribed curl constraint.
An approach based on patchwise minimizations for the lowest-order case p = 0 has
been designed in [8]. Its generalization for arbitrary p \geq 1, however, turns surpris-
ingly difficult and, to the best of our knowledge, has not been presented yet. Several
workarounds appeared in the literature recently, though. A conceptual discussion
appears in Licht [30], whereas a construction following in spirit [29, 2] has been
proposed and analyzed in Gedicke, Geevers, and Perugia [23]. This last approach
has been recently modified in Gedicke et al. [24] in order to achieve p-robustness.
A broken patchwise equilibration procedure that bypasses the Prager--Synge theorem
is proposed and proved p-robust in Chaumont-Frelet, Ern, and Vohral\'{\i}k [10]; it relies
on smaller edge patches, but the arising estimates are not constant-free.

The purpose of this contribution is to design an equilibrated flux reconstruction
in \bfitH (curl) employing best-possible local fluxes. In doing so, we rely on localization
by the partition of unity via the hat functions and overlapping flux combinations, in
generalization of the concept of [8] to arbitrary p\geq 0. Consequently, we identify the
equivalent in \bfitH (curl) of the concept of equilibrated flux reconstruction in \bfitH (div)
from [15, 8, 7, 20, 21]. This is then used for a posteriori error estimation when the
N\'ed\'elec (edge) finite elements of arbitrary degree p \geq 0 are used for approximation
of the curl-curl problem. It leads to guaranteed, fully computable, and constant-
free a posteriori error estimates that are locally efficient and robust with respect to
the polynomial degree p; (higher-order) data oscillation terms are rigorously included
in our analysis. Our p-robust efficiency proofs are based on the seminal volume and
tangential trace p-robust extensions on a single tetrahedron of Costabel and McIntosh
[13, Proposition 4.2] and Demkowicz, Gopalakrishnan, and Sch\"oberl [14, Theorem
7.2]. These results were recently extended into a stable broken polynomial extension
for a single tetrahedron in Chaumont-Frelet, Ern, and Vohral\'{\i}k [9, Theorem 2]; for an
edge patch of tetrahedra in Chaumont-Frelet, Ern, and Vohral\'{\i}k [10, Theorem 3.1];
and for a vertex patch of tetrahedra in Chaumont-Frelet and Vohral\'{\i}k [11, Theorem
3.3, see also Corollary 4.3].

An important step in the construction of our estimators is to decompose the
given divergence-free right-hand side into locally supported divergence-free contri-
butions. Starting from the available (lowest-order Galerkin) orthogonality property,
we propose a multistage procedure relying on two central technical results of inde-
pendent interest: overconstrained minimization in Raviart--Thomas spaces leading to
suitable elementwise orthogonality properties and a decomposition of a divergence-
free piecewise polynomial with the above elementwise orthogonality properties into
local divergence-free contributions. These issues are related to the developments on
divergence-free decompositions in Scheichl [37], Alonso Rodr\'{\i}guez et al. [3, 4], and
the references therein.

This contribution is organized as follows. Section 2 fixes the notation. Section 3
introduces the curl-curl problem, its N\'ed\'elec finite element discretization, and iden-
tifies therefrom two abstract assumptions under which our analysis is performed. In
section 4, we motivate our approach at the continuous level. Section 5 then presents
our main results: In section 5.1, we develop a divergence-free decomposition of the
given target curl; in section 5.2, we present the equilibrated flux reconstruction based
on local minimization in \bfitH (curl) as well as its p-robust stability; and finally, these
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p-ROBUST EQUILIBRATED FLUX RECONSTRUCTION IN \bfitH (curl) 1785

abstract results are applied in section 5.3 to the N\'ed\'elec finite element discretization
of the curl-curl problem. Section 6 is dedicated to a numerical illustration, whereas
section 7 collects some technical details and proofs. Finally, in Appendices A and B,
we present the two central technical results on overconstrained minimization and
divergence-free decomposition.

2. Notation. The purpose of this section is to set the necessary notation. Let
\omega ,\Omega \subset \BbbR 3 be open, Lipschitz polyhedra; \Omega will be used to denote the computational
domain, while we reserve the notation \omega \subseteq \Omega for its simply connected subsets. Notice
that we do not require \Omega to be simply connected.

2.1. Sobolev spaces \bfitH 1, \bfitH (curl), and \bfitH (div). We let L2(\omega ) be the space of
scalar-valued square-integrable functions defined on \omega ; we use the notation \bfitL 2(\omega ) :=
[L2(\omega )]3 for vector-valued functions with each component in L2(\omega ). We denote by \| \cdot \| \omega 
the L2(\omega ) or \bfitL 2(\omega ) norm and by (\cdot , \cdot )\omega the corresponding scalar product; we drop the
index when \omega =\Omega . We will extensively work with the following three Sobolev spaces:
(1) H1(\omega ), the space of scalar-valued L2(\omega ) functions with weak gradients in \bfitL 2(\omega ),
H1(\omega ) := \{ v \in L2(\omega ); \nabla v \in \bfitL 2(\omega )\} ; (2) \bfitH (curl, \omega ), the space of vector-valued \bfitL 2(\omega )
functions with weak curls in \bfitL 2(\omega ),\bfitH (curl, \omega ) := \{ \bfitv \in \bfitL 2(\omega ); \nabla \times \bfitv \in \bfitL 2(\omega )\} ; and (3)
\bfitH (div, \omega ), the space of vector-valued \bfitL 2(\omega ) functions with weak divergences in L2(\omega ),
\bfitH (div, \omega ) := \{ \bfitv \in \bfitL 2(\omega ); \nabla \cdot \bfitv \in L2(\omega )\} . We refer the reader to Adams [1] and Girault
and Raviart [25] for an in-depth description of these spaces. Moreover, componentwise
H1(\omega ) functions will be denoted by \bfitH 1(\omega ) := \{ \bfitv \in \bfitL 2(\omega ); \bfitv i \in H1(\omega ), i = 1, . . . ,3\} .
We will employ the notation \langle \cdot , \cdot \rangle S for the integral product on boundary (sub)sets
S \subset \partial \omega .

2.2. Sobolev spaces with partially vanishing traces on \bfpartial \Omega . Let \Gamma D, \Gamma N

be two disjoint, relatively open, and possibly empty subsets of the computational
domain boundary \partial \Omega such that \partial \Omega = \Gamma D \cup \Gamma N. We assume in addition that each
boundary face of the mesh \scrT h defined below lies entirely either in \Gamma D or in \Gamma N. Then
H1

0,D(\Omega ) is the subspace of H1(\Omega ) formed by functions vanishing on \Gamma D in the sense
of traces, H1

0,D(\Omega ) := \{ v \in H1(\Omega ); v= 0 on \Gamma D\} . Let \bfitn \Omega be the unit normal vector on
\partial \Omega , outward to \Omega . Let T=D or N; then \bfitH 0,T(curl,\Omega ) is the subspace of \bfitH (curl,\Omega )
formed by functions with vanishing tangential trace on \Gamma T, \bfitH 0,T(curl,\Omega ) := \{ \bfitv \in 
\bfitH (curl,\Omega ); \bfitv \times \bfitn \Omega = 0 on \Gamma T\} , where \bfitv \times \bfitn \Omega = 0 on \Gamma T means that (\nabla \times \bfitv ,\bfitvarphi )  - 
(\bfitv ,\nabla \times \bfitvarphi ) = 0 for all functions \bfitvarphi \in \bfitH 1(\Omega ) such that \bfitvarphi \times \bfitn \Omega = 0 on \partial \Omega \setminus \Gamma T. Finally,
\bfitH 0,N(div,\Omega ) is the subspace of\bfitH (div,\Omega ) formed by functions with vanishing normal
trace on \Gamma N, \bfitH 0,N(div,\Omega ) := \{ \bfitv \in \bfitH (div,\Omega ); \bfitv \cdot \bfitn \Omega = 0 on \Gamma N\} , where \bfitv \cdot \bfitn \Omega = 0 on
\Gamma N means that (\bfitv ,\nabla \varphi ) + (\nabla \cdot \bfitv ,\varphi ) = 0 for all functions \varphi \in H1

0,D(\Omega ). Fernandes and
Gilardi [22] present a thorough characterization of tangential (resp., normal) traces
of \bfitH (curl,\Omega ) (resp., \bfitH (div,\Omega )) on a part of the boundary \partial \Omega .

2.3. Cohomology space. The space \bfscrH (\Omega ,\Gamma D) of functions \bfitv \in \bfitH 0,D(curl,\Omega )\cap 
\bfitH 0,N(div,\Omega ) such that \nabla \times \bfitv = 0 and \nabla \cdot \bfitv = 0 is the ``cohomology"" space associated
with the domain \Omega and the partition of its boundary \partial \Omega =\Gamma D\cup \Gamma N. When \Omega is simply
connected and \Gamma D is connected, this space is trivial; then the conditions associated
with it below can be disregarded. In the general case, \bfscrH (\Omega ,\Gamma D) is finite-dimensional,
and its dimension depends on the topology of \Omega and \Gamma D; see [22, 26].

2.4. Tetrahedral mesh, patches of elements, and the hat functions. Let
\scrT h be a simplicial mesh of the domain \Omega , i.e., \cup K\in \scrT h

K = \Omega , where any element
K \in \scrT h is a closed tetrahedron with nonzero measure and where the intersection
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1786 TH\'EOPHILE CHAUMONT-FRELET AND MARTIN VOHRAL\'IK

of two different tetrahedra is either empty or their common vertex, edge, or face.
The shape-regularity parameter of the mesh \scrT h is the positive real number \kappa \scrT h

:=
maxK\in \scrT h

hK/\rho K , where hK is the diameter of the tetrahedron K and \rho K is the
diameter of the largest ball contained in K. These assumptions are standard and
allow for strongly graded meshes with local refinements. We will use the notation
a \lesssim b when there exists a positive constant C only depending on \kappa \scrT h

such that
a\leq Cb.

We denote the set of vertices of the mesh \scrT h by \scrV h; it is composed of interior
vertices lying in \Omega and of vertices lying on the boundary \partial \Omega . For an element K \in \scrT h,
\scrF K denotes the set of its faces and \scrV K the set of its vertices. Conversely, for a
vertex \bfita \in \scrV h, \scrT \bfita denotes the patch of the elements of \scrT h that share \bfita , and \omega \bfita is
the corresponding open subdomain with diameter h\omega \bfita . A particular role below will
be played by the continuous, piecewise affine ``hat"" function \psi \bfita , which takes value 1
at the vertex \bfita and zero at the other vertices. We note that \omega \bfita corresponds to the
support of \psi \bfita and that the functions \psi \bfita form the partition of unity\sum 

\bfita \in \scrV h

\psi \bfita = 1.(2.1)

We will also need the patch \widetilde \scrT \bfita extended by one layer of neighbors and the associated
subdomain \widetilde \omega \bfita , corresponding to the supports of the hat functions \psi \bfitb for all vertices
\bfitb contained in the patch \scrT \bfita .

2.5. Piecewise polynomial spaces. Let q \geq 0 be an integer. For a single
tetrahedron K \in \scrT h, denote by \scrP q(K) the space of scalar-valued polynomials on K of
total degree at most q and by [\scrP q(K)]3 the space of vector-valued polynomials on K
with each component in \scrP q(K). The N\'ed\'elec [6, 33] space of degree q on K is then
given by

\bfscrN q(K) := [\scrP q(K)]3 +\bfitx \times [\scrP q(K)]3.(2.2)

Similarly, the Raviart--Thomas [6, 36] space of degree q on K is given by

\bfscrR \bfscrT q(K) := [\scrP q(K)]3 +\scrP q(K)\bfitx .(2.3)

We note that (2.2) and (2.3) are equivalent to the writing with a direct sum and
only homogeneous polynomials in the second terms. The second term in (2.2) can
also equivalently be given by homogeneous (q + 1)-degree polynomials \bfitv h such that
\bfitx \cdot \bfitv h(\bfitx ) = 0 for all \bfitx \in K.

We will below extensively use the broken, piecewise polynomial spaces formed
from the above element spaces

\scrP q(\scrT h) := \{ vh \in L2(\Omega ); vh| K \in \scrP q(K) \forall K \in \scrT h\} ,
\bfscrN q(\scrT h) := \{ \bfitv h \in \bfitL 2(\Omega ); \bfitv h| K \in \bfscrN q(K) \forall K \in \scrT h\} ,

\bfscrR \bfscrT q(\scrT h) := \{ \bfitv h \in \bfitL 2(\Omega ); \bfitv h| K \in \bfscrR \bfscrT q(K) \forall K \in \scrT h\} .

To form the usual finite-dimensional Sobolev subspaces, we will write \scrP q(\scrT h)\cap H1(\Omega )
(for q\geq 1), \bfscrN q(\scrT h)\cap \bfitH (curl,\Omega ), \bfscrR \bfscrT q(\scrT h)\cap \bfitH (div,\Omega ) (both for q\geq 0), and similarly
for the subspaces reflecting the different boundary conditions. The same notation will
also be used on the patches of mesh elements \scrT \bfita .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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p-ROBUST EQUILIBRATED FLUX RECONSTRUCTION IN \bfitH (curl) 1787

2.6. \bfitL 2-orthogonal projectors and the Raviart--Thomas interpolator.
For q\geq 0, let \Pi q denote the L2(K)-orthogonal projector onto \scrP q(K). Since this is an
elementwise procedure, we keep the same notation for the L2(\Omega )-orthogonal projector
onto \scrP q(\scrT h) given for v \in L2(\Omega ) as \Pi q(v)\in \scrP q(\scrT h) such that (\Pi q(v),wh) = (v,wh) for
all wh \in \scrP q(\scrT h). Then \Pi q is given componentwise by \Pi q.

Let K \in \scrT h be a mesh tetrahedron, and let \bfitv \in [C1(K)]3 be given. Following [6,
36], the canonical q-degree Raviart--Thomas interpolant \bfitI \bfscrR \bfscrT 

K,q (\bfitv ) \in \bfscrR \bfscrT q(K), q \geq 0, is
given by

\langle \bfitI \bfscrR \bfscrT 
K,q (\bfitv )\cdot \bfitn K , rh\rangle F = \langle \bfitv \cdot \bfitn K , rh\rangle F \forall rh \in \scrP q(F ), \forall F \in \scrF K ,(2.4a)

(\bfitI \bfscrR \bfscrT 
K,q (\bfitv ),\bfitr h)K = (\bfitv ,\bfitr h)K \forall \bfitr h \in [\scrP q - 1(K)]3.(2.4b)

Less regular functions can be used in (2.4), but \bfitv \in [C1(K)]3 will be sufficient for
our purposes; we will actually only employ polynomial \bfitv as arguments of \bfitI \bfscrR \bfscrT 

K,q . This
interpolator crucially satisfies, on the tetrahedron K, the commuting property

\nabla \cdot \bfitI \bfscrR \bfscrT 
K,q (\bfitv ) =\Pi q(\nabla \cdot \bfitv ) \forall \bfitv \in [C1(K)]3.(2.5)

2.7. Sobolev spaces on the patch subdomains \bfitomega \bfita . Let \bfita \in \scrV h be an in-
terior vertex. Then we set (1) H1

\ast (\omega \bfita ) := \{ v \in H1(\omega \bfita ); (v,1)\omega \bfita = 0\} , so that
H1

\ast (\omega \bfita ) is the subspace of those H1(\omega \bfita ) functions whose mean value vanishes; (2)
\bfitH 0(curl, \omega \bfita ) := \{ \bfitv \in \bfitH (curl, \omega \bfita ); \bfitv \times \bfitn \omega \bfita = 0 on \partial \omega \bfita \} , where the tangential trace is
understood by duality as above in section 2.2; and, similarly, (3) \bfitH 0(div, \omega \bfita ) := \{ \bfitv \in 
\bfitH (div, \omega \bfita ); \bfitv \cdot \bfitn \omega \bfita = 0 on \partial \omega \bfita \} . We will also need (4) \bfitH \dagger (curl, \omega \bfita ) := \bfitH (curl, \omega \bfita )
(the symbol \dagger is used here for notational purposes). The situation is more subtle
for boundary vertices. As a first possibility, if \bfita \in \Gamma N (i.e., \bfita \in \scrV h is a boundary
vertex such that all the faces sharing the vertex \bfita lie in \Gamma N), then the spaces H1

\ast (\omega \bfita ),
\bfitH 0(curl, \omega \bfita ), \bfitH 0(div, \omega \bfita ), and \bfitH \dagger (curl, \omega \bfita ) are defined as above. Second, when
\bfita \in \Gamma D, at least one of the faces sharing the vertex \bfita lies in \Gamma D; we denote by \gamma D the
subset of \Gamma D formed by all mesh faces sharing the vertex \bfita and lying in \Gamma D. In this
situation, we let (1) H1

\ast (\omega \bfita ) := \{ v \in H1(\omega \bfita ); v = 0 on \gamma D\} ; (2) \bfitH 0(curl, \omega \bfita ) := \{ \bfitv \in 
\bfitH (curl, \omega \bfita ); \bfitv \times \bfitn \omega \bfita = 0 on \partial \omega \bfita \setminus \gamma D\} ; (3)\bfitH 0(div, \omega \bfita ) := \{ \bfitv \in \bfitH (div, \omega \bfita ); \bfitv \cdot \bfitn \omega \bfita = 0
on \partial \omega \bfita \setminus \gamma D\} ; and (4) \bfitH \dagger (curl, \omega \bfita ) := \{ \bfitv \in \bfitH (curl, \omega \bfita ); \bfitv \times \bfitn \omega \bfita = 0 on \gamma D\} .

2.8. Functional inequalities. To work with data oscillation terms, we will
employ the following three functional inequalities. First, from [12, Theorems 3.4
and 3.5], [28, Theorem 2.1], and the discussion in [10, section 3.2.1], it follows that
there exists a constant CL such that for all \bfitv \in \bfitH 0,D(curl,\Omega ), there exists \bfitw \in 
\bfitH 1(\Omega )\cap \bfitH 0,D(curl,\Omega )) such that \nabla \times \bfitw =\nabla \times \bfitv and

\| \nabla \bfitw \| \leq CL\| \nabla \times \bfitv \| .(2.6)

When either \Gamma D or \Gamma N has zero measure and if \Omega is convex, one can take CL =
1; see [12] together with [25, Theorem 3.7] for Dirichlet boundary conditions and
[25, Theorem 3.9] for Neumann boundary conditions.

Second, for any mesh element K \in \scrT h and \bfitv \in \bfitH 1(K), there holds the Poincar\'e
inequality

\| \bfitv  - \Pi 0(\bfitv )\| K \leq hK
\pi 

\| \nabla \bfitv \| K ,(2.7)

where \Pi 0(\bfitv ) denotes the componentwise mean value of \bfitv on K.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1788 TH\'EOPHILE CHAUMONT-FRELET AND MARTIN VOHRAL\'IK

Third, the Poincar\'e--Friedrichs--Weber inequality (see [22, Proposition 7.4] and
more precisely [10, Theorem A.1] for the form of the constant) will be useful: For all
vertices \bfita \in \scrV h and all vector-valued functions \bfitv \in \bfitH \dagger (curl, \omega \bfita ) \cap \bfitH 0(div, \omega \bfita ) with
\nabla \cdot \bfitv = 0, we have

\| \bfitv \| \omega \bfita \lesssim h\omega \bfita \| \nabla \times \bfitv \| \omega \bfita .(2.8)

Strictly speaking, the inequality is established in [10, Theorem A.1] for edge patches,
but the proof can be easily extended to vertex patches.

3. Setting. The purpose of this section is to introduce the curl-curl problem
and its N\'ed\'elec finite element approximation. We also identify, in a form of two
self-standing assumptions, the kernel properties solely needed for our analysis.

3.1. Current density. The following assumption is central for us.

Assumption 3.1 (current density \bfitj ). Let \bfitj be\bfitH 0,N(div,\Omega )-conforming, divergence-
free, and L2(\Omega )-orthogonal to the cohomology space \bfscrH (\Omega ,\Gamma D), i.e.,

\bfitj \in \bfitH 0,N(div,\Omega ),(3.1a)

\nabla \cdot \bfitj = 0,(3.1b)

(\bfitj ,\bfitvarphi ) = 0 \forall \bfitvarphi \in \bfscrH (\Omega ,\Gamma D).(3.1c)

Let us recall from section 2.3 that when \Omega is simply connected and \Gamma D is con-
nected, (3.1c) can be disregarded. Sometimes, to illustrate the main ideas, we will
additionally suppose that \bfitj is a piecewise p-degree Raviart--Thomas polynomial,
\bfitj \in \bfscrR \bfscrT p(\scrT h) \cap \bfitH 0,N(div,\Omega ). Assumption 3.1 equivalently means that \bfitj belongs to
the range of the curl operator; i.e., there exists \bfitv \in \bfitH 0,N(curl,\Omega ) such that \nabla \times \bfitv = \bfitj .

3.2. The curl-curl problem. The curl-curl problem we study here reads as
follows: Find the magnetic vector potential \bfitA : \Omega \rightarrow \BbbR 3 such that

\nabla \times (\nabla \times \bfitA ) = \bfitj , \nabla \cdot \bfitA = 0 in \Omega ,(3.2a)

\bfitA \times \bfitn \Omega = 0 on \Gamma D,(3.2b)

(\nabla \times \bfitA )\times \bfitn \Omega = 0, \bfitA \cdot \bfitn \Omega = 0 on \Gamma N,(3.2c)

with the additional requirement that (\bfitA ,\bfitvarphi ) = 0 for all \bfitvarphi from the cohomology space
\bfscrH (\Omega ,\Gamma D) introduced in section 2.3 to ensure uniqueness. Introducing \bfitK (\Omega ) := \{ \bfitv \in 
\bfitH 0,D(curl,\Omega ); \nabla \times \bfitv = 0\} , the weak formulation of problem (3.2) (cf., e.g., [6]) consists
in finding a pair (\bfitA ,\bfitq )\in \bfitH 0,D(curl,\Omega )\times \bfitK (\Omega ) such that

(\bfitA ,\bfitvarphi ) = 0 \forall \bfitvarphi \in \bfitK (\Omega ),(3.3a)

(\nabla \times \bfitA ,\nabla \times \bfitv ) + (\bfitq ,\bfitv ) = (\bfitj ,\bfitv ) \forall \bfitv \in \bfitH 0,D(curl,\Omega ).(3.3b)

Picking the test function \bfitv = \bfitq in (3.3b), we see that \bfitq = 0. Thus, \bfitA is such that

\bfitA \in \bfitH 0,D(curl,\Omega ),(3.4a)

(\nabla \times \bfitA ,\nabla \times \bfitv ) = (\bfitj ,\bfitv ) \forall \bfitv \in \bfitH 0,D(curl,\Omega ).(3.4b)

Remark 3.2 (characterization (3.4) of the magnetic vector potential \bfitA ). All the
main developments below actually rely solely on (3.4), so that in particular, the vector
field \bfitA can in our setting only be defined up to a curl-free component. Remark that
the existence of \bfitA satisfying (3.4) is a direct consequence of Assumption 3.1 and that
a direct consequence of (3.4) is that \nabla \times \bfitA \in \bfitH 0,N(curl,\Omega ) with \nabla \times (\nabla \times \bfitA ) = \bfitj .
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p-ROBUST EQUILIBRATED FLUX RECONSTRUCTION IN \bfitH (curl) 1789

3.3. N\'ed\'elec finite element approximation. For an integer p \geq 0 that we
consider fixed henceforth, let the N\'ed\'elec finite element space be given by \bfitV h :=
\bfscrN p(\scrT h) \cap \bfitH 0,D(curl,\Omega ). The subspace \bfitK h := \{ \bfitv h \in \bfitV h; \nabla \times \bfitv h = 0\} is simply
\nabla (\scrP p+1(\scrT h)\cap H1

0,D(\Omega )) when \Omega is simply connected and \Gamma D is connected and can be
readily identified by introducing ``cuts"" in the mesh mimicking the construction of the
cohomology space \bfscrH (\Omega ,\Gamma D); see [26, Chapter 6]. The finite element approximation
of (3.3) is a pair (\bfitA h,\bfitq h)\in \bfitV h \times \bfitK h such that

(\bfitA h,\bfitvarphi h) = 0 \forall \bfitvarphi h \in \bfitK h,(3.5a)

(\nabla \times \bfitA h,\nabla \times \bfitv h) + (\bfitq h,\bfitv h) = (\bfitj ,\bfitv h) \forall \bfitv h \in \bfitV h.(3.5b)

Observing that \bfitK h \subset \bfitK , this actually leads to \bfitA h \in \bfitV h such that

(\nabla \times \bfitA h,\nabla \times \bfitv h) = (\bfitj ,\bfitv h) \forall \bfitv h \in \bfitV h.(3.6)

In the developments below, we can actually still weaken (3.6) and rely solely on the
following.

Assumption 3.3 (discrete magnetic vector potential \bfitA h). Let \bfitA h be a piece-
wise p-degree N\'ed\'elec polynomial satisfying a lowest-order N\'ed\'elec orthogonality
property:

\bfitA h \in \bfscrN p(\scrT h)\cap \bfitH 0,D(curl,\Omega ),(3.7a)

(\nabla \times \bfitA h,\nabla \times \bfitv h) = (\bfitj ,\bfitv h) \forall \bfitv h \in \bfscrN 0(\scrT h)\cap \bfitH 0,D(curl,\Omega ).(3.7b)

4. Motivation. Let \bfitj satisfy Assumption 3.1. We motivate here our approach
by showing how an equilibrated flux \bfith may be constructed locally from any \bfitA satis-
fying (3.4) at the continuous level. These observations are the basis of the actual flux
equilibration procedure involving \bfitA h satisfying Assumption 3.3 at the discrete level
that we develop in sections 5.1 and 5.2 below. We would in particular like to identify
a patchwise construction such that

\bfith \bfita \in \bfitH 0(curl, \omega \bfita ),(4.1a)

\bfith :=
\sum 
\bfita \in \scrV h

\bfith \bfita \in \bfitH 0,N(curl,\Omega ),(4.1b)

\nabla \times \bfith = \bfitj .(4.1c)

At the continuous level, the solution is trivially

\bfith \bfita =\psi \bfita (\nabla \times \bfitA ),(4.2)

where we implicitly extend by 0 or restrict to \omega \bfita .
We now rewrite the above definition implicitly. The idea is to introduce

\bfith \bfita := arg min
\bfitv \in \bfitH 0(curl,\omega \bfita )

\nabla \times \bfitv =\bfitj \bfita 

\| \bfitv  - \psi \bfita (\nabla \times \bfitA )\| 2\omega \bfita 
\forall \bfita \in \scrV h(4.3)

with a suitable curl constraint \bfitj \bfita . Since

\nabla \times (\psi \bfita (\nabla \times \bfitA )) =\psi \bfita (\nabla \times (\nabla \times \bfitA ))\underbrace{}  \underbrace{}  
\bfitj 

+\nabla \psi \bfita \times (\nabla \times \bfitA )\underbrace{}  \underbrace{}  
\bfittheta \bfita 

,(4.4)
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1790 TH\'EOPHILE CHAUMONT-FRELET AND MARTIN VOHRAL\'IK

we have

\bfitj \bfita :=\psi \bfita \bfitj + \bfittheta \bfita , \bfittheta \bfita :=\nabla \psi \bfita \times (\nabla \times \bfitA ).(4.5)

Importantly, it holds that

\bfittheta \bfita \in \bfitH 0(div, \omega \bfita ),(4.6a)

\nabla \cdot \bfittheta \bfita =\nabla \times \nabla \psi \bfita \underbrace{}  \underbrace{}  
0

\cdot (\nabla \times \bfitA ) - \nabla \psi \bfita \cdot \nabla \times (\nabla \times \bfitA )\underbrace{}  \underbrace{}  
\bfitj 

= - \nabla \psi \bfita \cdot \bfitj ,(4.6b)

\sum 
\bfita \in \scrV h

\bfittheta \bfita =
\sum 
\bfita \in \scrV h

\nabla \psi \bfita \times (\nabla \times \bfitA ) = 0,(4.6c)

where the last property follows by the partition of unity (2.1). Consequently,

\bfitj \bfita =\psi \bfita \bfitj + \bfittheta \bfita \in \bfitH 0(div, \omega \bfita ),(4.7a)

\nabla \cdot \bfitj \bfita =\nabla \psi \bfita \cdot \bfitj +\psi \bfita \nabla \cdot \bfitj \underbrace{}  \underbrace{}  
0

+\nabla \cdot \bfittheta \bfita = 0,(4.7b)

\sum 
\bfita \in \scrV h

\bfitj \bfita = \bfitj ,(4.7c)

which gives a decomposition of the divergence-free current density \bfitj into divergence-
free contributions \bfitj \bfita defined over the vertex patch subdomains \omega \bfita . The above aux-
iliary fields \bfittheta \bfita can also be defined implicitly as the solution to the minimization
problems:

\bfittheta \bfita := arg min
\bfitv \in \bfitH 0(div,\omega \bfita )
\nabla \cdot \bfitv = - \nabla \psi \bfita \cdot \bfitj 

\| \bfitv  - \nabla \psi \bfita \times (\nabla \times \bfitA )\| 2\omega \bfita 
\forall \bfita \in \scrV h.(4.8)

We shall now mimic (4.3), (4.7), and (4.8) at the discrete level.

5. Main results. In this section, we summarize our main results.

5.1. Stable divergence-free patchwise decomposition of the given cur-
rent density \bfitj . The central issue for our approach is a stable divergence-free patch-
wise decomposition of the current density \bfitj in the spirit of (4.7). For this purpose,
we first design an appropriate discrete variant of (4.8), where we crucially rely on
the patchwise orthogonality stemming from Assumption 3.3. We will initially be
requested to work with the increased polynomial degree p\prime :=min\{ p,1\} ,

p\prime :=min\{ p,1\} ,(5.1)

recalling that p\geq 0 is fixed in section 3.3. We start with the following.

Definition 5.1 (patchwise contributions \bfitj \bfita h). Let \bfitj and \bfitA h satisfy, respectively,
Assumptions 3.1 and 3.3. Carry out the three following steps:

1. For all vertices \bfita \in \scrV h, consider the p\prime -degree Raviart--Thomas patchwise
(seemingly overconstrained) minimizations

\bfittheta \bfita h := arg min
\bfitv h\in \bfscrR \bfscrT p\prime (\scrT \bfita )\cap \bfitH 0(div,\omega \bfita )

\nabla \cdot \bfitv h=\Pi p\prime ( - \nabla \psi \bfita \cdot \bfitj )
(\bfitv h,\bfitr h)K=(\nabla \psi \bfita \times (\nabla \times \bfitA h),\bfitr h)K \forall \bfitr h\in [\scrP 0(K)]3,\forall K\in \scrT \bfita 

\| \bfitv h  - \nabla \psi \bfita \times (\nabla \times \bfitA h)\| 2\omega \bfita 
,

(5.2)
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p-ROBUST EQUILIBRATED FLUX RECONSTRUCTION IN \bfitH (curl) 1791

where in addition to the usual normal trace and divergence, the constraints
additionally also concern elementwise product with piecewise vector-valued
constants.

2. Extending \bfittheta \bfita h by zero outside of the patch subdomains \omega \bfita , set

\bfitdelta h :=
\sum 
\bfita \in \scrV h

\bfittheta \bfita h .(5.3)

For all tetrahedra K \in \scrT h, consider the (p + 1)-degree Raviart--Thomas ele-
mentwise minimizations,

\bfitdelta \bfita h | K :=arg min
\bfitv h\in \bfscrR \bfscrT 1(K)

\nabla \cdot \bfitv h=0
\bfitv h\cdot \bfitn K=\bfitI \bfscrR \bfscrT 

K,1((\psi 
\bfita \bfitdelta h)| K)\cdot \bfitn K on \partial K

\| \bfitv h  - \bfitI \bfscrR \bfscrT 
K,1 ((\psi 

\bfita \bfitdelta h)| K)\| 2K \forall \bfita \in \scrV \mu when p= 0,

(5.4a)

\bfitdelta \bfita h | K :=arg min
\bfitv h\in \bfscrR \bfscrT p+1(K)

\nabla \cdot \bfitv h=0
\bfitv h\cdot \bfitn K=\psi \bfita \bfitdelta h\cdot \bfitn K on \partial K

\| \bfitv h  - \psi \bfita \bfitdelta h\| 2K \forall \bfita \in \scrV K when p\geq 1,

(5.4b)

which yields the divergence-free decomposition

\bfitdelta h =
\sum 
\bfita \in \scrV h

\bfitdelta \bfita h .

3. For all vertices \bfita \in \scrV h, define

\bfitj \bfita h :=\psi \bfita \bfitj + \bfittheta \bfita h  - \bfitdelta 
\bfita 
h ,(5.5)

with an implicit restriction of \psi \bfita \bfitj to \omega \bfita .

For a vertex \bfita \in \scrV h and the extended (second-order) patch \widetilde \scrT \bfita , define the data
oscillation term

\widetilde \eta \bfita osc,\bfitj :=
\Biggl\{ \sum 
K\in \widetilde \scrT \bfita 

\Bigl( hK
\pi 

\| \bfitj  - \Pi p\prime (\bfitj )\| K
\Bigr) 2\Biggr\} 1

2

.(5.6)

We crucially have the following.

Theorem 5.2 (stable divergence-free patchwise decomposition of \bfitj ). Let \bfitj and
\bfitA h satisfy, respectively, Assumptions 3.1 and 3.3. Let \bfitj \bfita h be given by Definition 5.1
for all vertices \bfita \in \scrV h. Then

\bfitj \bfita h \in \bfitH 0(div, \omega \bfita ),(5.7a)

\nabla \cdot \bfitj \bfita h =\nabla \psi \bfita \cdot (\bfitj  - \Pi p\prime (\bfitj )),(5.7b) \sum 
\bfita \in \scrV h

\bfitj \bfita h = \bfitj ,(5.7c)

where the extension of \bfitj \bfita h by zero outside of the patch subdomains \omega \bfita is understood
in the last two properties. Moreover, when \bfitj \in \bfscrR \bfscrT p(\scrT h) \cap \bfitH 0,N(div,\Omega ) is piecewise
polynomial, in strengthening of (5.7a)--(5.7b),

\bfitj \bfita h \in \bfscrR \bfscrT p+1(\scrT \bfita )\cap \bfitH 0(div, \omega \bfita ),(5.8a)
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1792 TH\'EOPHILE CHAUMONT-FRELET AND MARTIN VOHRAL\'IK

\nabla \cdot \bfitj \bfita h = 0.(5.8b)

Let in addition \bfitA satisfying (3.4) be arbitrary, and let, as in (4.5),

\bfitj \bfita :=\psi \bfita \bfitj +\nabla \psi \bfita \times (\nabla \times \bfitA ).

Then

\| \bfitj \bfita  - \bfitj \bfita h\| \omega \bfita \lesssim h - 1
\omega \bfita 

\bigl[ 
\| \nabla \times (\bfitA  - \bfitA h)\| \widetilde \omega \bfita 

+ \widetilde \eta \bfita osc,\bfitj \bigr] .(5.9)

Remarks. Several remarks about Definition 5.1 and Theorem 5.2 are in order:
1. At the discrete level, \nabla \psi \bfita \times (\nabla \times \bfitA h) \not \in \bfitH 0(div, \omega \bfita ), in contrast to

\nabla \psi \bfita \times (\nabla \times \bfitA ); see (4.5)--(4.6). The auxiliary field \bfittheta \bfita h from (5.2) is the projec-
tion of \nabla \psi \bfita \times (\nabla \times \bfitA h) to \bfscrR \bfscrT p\prime (\scrT \bfita ) \cap \bfitH 0(div, \omega \bfita ) satisfying \nabla \cdot \bfittheta \bfita h =
\Pi p\prime ( - \nabla \psi \bfita \cdot \bfitj ). Step 1 of Definition 5.1 thus mimics (4.8) and achieves equiv-
alents to (4.6a) and (4.6b). Unfortunately, \bfitdelta h =

\sum 
\bfita \in \scrV h

\bfittheta \bfita h given by (5.3)
typically does not equal 0, which would mimic (4.6c).

2. Step 2 of Definition 5.1 yields the corrected fields \bfittheta \bfita h - \bfitdelta 
\bfita 
h , which mimic (4.6)

entirely in that (see Lemma 7.4 below for details)

\bfittheta \bfita h  - \bfitdelta 
\bfita 
h \in \bfscrR \bfscrT p+1(\scrT \bfita )\cap \bfitH 0(div, \omega \bfita ),

\nabla \cdot (\bfittheta \bfita h  - \bfitdelta 
\bfita 
h) =\Pi p\prime ( - \nabla \psi \bfita \cdot \bfitj ),\sum 

\bfita \in \scrV h

(\bfittheta \bfita h  - \bfitdelta 
\bfita 
h) = \bfitdelta h  - \bfitdelta h = 0.

3. Step 3 of Definition 5.1, in view of Theorem 5.2, finally materializes (4.7) at
the discrete level.

4. Property (5.9) from Theorem 5.2 shows that the local discrete decomposition
(5.7) compares in a p-robust way to the continuous-level decomposition (4.7),
up to data oscillation given by (5.6).

5. Minimization (5.2) contains an additional constraint on the elementwise prod-
uct with piecewise vector-valued constants. Existence, uniqueness, and
p-robust stability theory for such problems is developed in Appendix A.
Section 7 shows that this applies to our setting under the orthogonality in
Assumption 3.3.

6. The additional constraint in (5.2) also ensures the existence, uniqueness,
and p-robust stability of the elementwise problems (5.4), where \bfitdelta \bfita h form a
divergence-free local decomposition of \bfitdelta h following Appendix B; see Lemma 7.4
below.

5.2. Equilibrated flux reconstruction based on local patchwise mini-
mizations in \bfitH (curl). We now identify an appropriate discrete variant of
(4.1)--(4.3), giving a locally computable equilibrated flux \bfith h. Let \bfitj \bfita h be given by
Definition 5.1, and set

\=\bfitj 
\bfita 
h := arg min

\bfitv h\in \bfscrR \bfscrT p+1(\scrT \bfita )\cap \bfitH 0(div,\omega \bfita )
\nabla \cdot \bfitv h=0

(\bfitv h,\bfitr h)K=(\bfitj \bfita 
h,\bfitr h)K \forall \bfitr h\in [\scrP 0(K)]3,\forall K\in \scrT \bfita 

\| \bfitv h  - \bfitj \bfita h\| 2\omega \bfita 
.(5.10)

When \bfitj is piecewise polynomial, \bfitj \in \bfscrR \bfscrT p(\scrT h) \cap \bfitH 0,N(div,\Omega ), (5.8) implies that
\=\bfitj 
\bfita 
h = \bfitj 

\bfita 
h , so that there is no need for (5.10). In general, the role of (5.10) is to prepare

a piecewise polynomial datum for a discrete version of (4.3): It projects the nonpoly-
nomial and non-divergence-free \bfitj \bfita h to \=\bfitj 

\bfita 
h \in \bfscrR \bfscrT p+1(\scrT \bfita ) \cap \bfitH 0(div, \omega \bfita ) with \nabla \cdot \=\bfitj \bfita h = 0.
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p-ROBUST EQUILIBRATED FLUX RECONSTRUCTION IN \bfitH (curl) 1793

Problem (5.10) has the same form as problem (5.2) and is well-posed, following
Appendix A below. With the Raviart--Thomas divergence-free \=\bfitj 

\bfita 
h , the following

N\'ed\'elec local equilibration problem is well-posed by standard arguments; see,
e.g., [6].

Definition 5.3 (equilibrated flux reconstruction based on local minimization in
\bfitH (curl)). Let \bfitj and \bfitA h satisfy, respectively, Assumptions 3.1 and 3.3, and let, for
all vertices \bfita \in \scrV h, \bfitj \bfita h be given by Definition 5.1 and \=\bfitj 

\bfita 
h by (5.10). Consider the

patchwise minimizations

\bfith \bfita 
h := arg min

\bfitv h\in \bfscrN p+1(\scrT \bfita )\cap \bfitH 0(curl,\omega \bfita )

\nabla \times \bfitv h=\=\bfitj 
\bfita 
h

\| \bfitv h  - \psi \bfita (\nabla \times \bfitA h)\| 2\omega \bfita 
.(5.11a)

Extending \bfith \bfita 
h by zero outside of \omega \bfita , define

\bfith h :=
\sum 
\bfita \in \scrV h

\bfith \bfita 
h .(5.11b)

Recall \widetilde \eta \bfita osc,\bfitj from (5.6), and define

\eta \bfita osc,\bfitj \bfita 
h
:= h\omega \bfita \| \=\bfitj 

\bfita 
h  - \bfitj 

\bfita 
h\| \omega \bfita .(5.12)

Crucially, the construction of Definition 5.3 is a p-robustly stable equilibration.

Theorem 5.4 (equilibrium property and p-robust stability of the flux recon-
struction). Let \bfitj and \bfitA h satisfy, respectively, Assumptions 3.1 and 3.3. Then the
equilibrated flux reconstruction \bfith h from Definition 5.3 satisfies

\bfith h \in \bfscrN p+1(\scrT h)\cap \bfitH 0,N(curl,\Omega ),(5.13a)

\nabla \times \bfith h = \bfitj when \bfitj \in \bfscrR \bfscrT p(\scrT h)\cap \bfitH 0,N(div,\Omega ).(5.13b)

Let in addition \bfitA satisfying (3.4) be arbitrary. Then

\| \bfith \bfita 
h  - \psi \bfita (\nabla \times \bfitA h)\| \omega \bfita \lesssim \| \nabla \times (\bfitA  - \bfitA h)\| \widetilde \omega \bfita 

+ \eta \bfita osc,\bfitj \bfita 
h
+ \widetilde \eta \bfita osc,\bfitj .

5.3. Guaranteed, fully computable, constant-free, and p-robust a pos-
teriori error estimates for the curl-curl problem. We apply here the results of
sections 5.1 and 5.2 to a posteriori error analysis of the curl-curl problem (3.2).

Theorem 5.5 (guaranteed, fully computable, and constant-free upper bound).
Let \bfitj satisfy Assumption 3.1, let \bfitA be the weak solution to the curl-curl problem given
by (3.3), and let \bfitA h be its N\'ed\'elec finite element approximation given by (3.5). Let
\bfitj \bfita h be given by Definition 5.1 for all vertices \bfita \in \scrV h, and let \bfith h be given by Definition
5.3. Then

\| \nabla \times (\bfitA  - \bfitA h)\| \leq \eta tot := \| \bfith h  - \nabla \times \bfitA h\| \underbrace{}  \underbrace{}  
\eta 

+CL

\Biggl\{ \sum 
K\in \scrT h

h2K
\pi 2

\| \bfitj  - \nabla \times \bfith h\| 2K\underbrace{}  \underbrace{}  
\eta 2\mathrm{o}\mathrm{s}\mathrm{c},K

\Biggr\} 1
2

\underbrace{}  \underbrace{}  
\eta \mathrm{o}\mathrm{s}\mathrm{c}

and

\| \bfith h  - \nabla \times \bfitA h\| K + \eta osc,K \lesssim 
\sum 

\bfita \in \scrV K

\bigl[ 
\| \nabla \times (\bfitA  - \bfitA h)\| \widetilde \omega \bfita 

+ \eta \bfita osc,\bfitj \bfita 
h
+ \widetilde \eta \bfita osc,\bfitj \bigr] .
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1794 TH\'EOPHILE CHAUMONT-FRELET AND MARTIN VOHRAL\'IK

Remarks. Several remarks are in order:
1. On the discrete level, \psi \bfita (\nabla \times \bfitA h) \not \in \bfitH 0(curl, \omega \bfita ), in contrast to \psi \bfita (\nabla \times \bfitA )

on the continuous level; see (4.1)--(4.2). The equilibrated flux contribution
\bfith \bfita 
h from (5.11a) is its constrained projection to \bfscrN p+1(\scrT \bfita )\cap \bfitH 0(curl, \omega \bfita ). It

mimics (4.3) at the discrete level.
2. When \bfitj \in \bfscrR \bfscrT p(\scrT h) \cap \bfitH 0,N(div,\Omega ), all the data oscillation estimators in

Theorem 5.5 vanish. Indeed, (5.13b) implies that \eta osc = 0, whereas \=\bfitj 
\bfita 
h = \bfitj \bfita h

gives \eta \bfita osc,\bfitj \bfita 
h
= 0; see (5.12). Similarly, \widetilde \eta \bfita osc,\bfitj from (5.6) vanishes as well

(this is actually true up to \bfitj \in \bfscrR \bfscrT p\prime (\scrT h) \cap \bfitH 0,N(div,\Omega ) since \nabla \cdot \bfitj = 0).
Moreover, all these terms are higher-order with respect to \| \nabla \times (\bfitA  - \bfitA h)\| if
\bfitj is piecewise smooth. We also note that using (5.11b), (5.11a), and (5.7c),
the data oscillation term \eta osc,K can equivalently be rewritten with

\bfitj  - \nabla \times \bfith h =
\sum 
\bfita \in \scrV h

(\bfitj \bfita h  - \=\bfitj 
\bfita 
h).(5.14)

3. The equilibration of Definition 5.3 is performed in local N\'ed\'elec spaces of
order p+ 1. This is in agreement with p-robust flux equilibrations from [7,
20, 21, 11]. Similarly to [7, 19], it is also possible to design a downgrade of
the orders of the local problems (5.11a) from p+ 1 to p.

Let us first discuss the case p \geq 1. The first step is to replace (5.4b)
by (5.4a) with \bfscrR \bfscrT 1 replaced by \bfscrR \bfscrT p. Then, according to Theorem B.1 with
q\prime = p, we obtain \bfitdelta \bfita h \in \bfscrR \bfscrT p(\scrT \bfita )\cap \bfitH 0(div, \omega \bfita ) in place of (7.5a) below. Second,
we employ (elementwise) the projector \bfitI \bfscrR \bfscrT 

K,p (\psi 
\bfita \bfitj ) in (5.5) in place of \psi \bfita \bfitj . Let

\bfitj \in \bfscrR \bfscrT p(\scrT h) \cap \bfitH 0,N(div,\Omega ). Then
\sum 

\bfita \in \scrV h
\bfitj \bfita h = \bfitj and \nabla \cdot \bfitj \bfita h = 0 as in (5.7c),

(5.8b), but \bfitj \bfita h \in \bfscrR \bfscrT p(\scrT \bfita ) \cap \bfitH 0(div, \omega \bfita ) in place of (5.8a). Consequently,
(5.11a) can be brought down to

\bfith \bfita 
h := arg min

\bfitv h\in \bfscrN p(\scrT \bfita )\cap \bfitH 0(curl,\omega \bfita )
\nabla \times \bfitv h=\bfitj \bfita 

h

\| \bfitv h  - \bfitI \bfscrN p (\psi \bfita (\nabla \times \bfitA h))\| 2\omega \bfita 
,(5.15)

where \bfitI \bfscrN p is the elementwise canonical p-degree N\'ed\'elec interpolate, analogue
to (2.4). This leads to a cheaper procedure where the guaranteed estimate of
Theorem 5.5 (with \eta osc = 0) still holds true when \bfitj \in \bfscrR \bfscrT p(\scrT h)\cap \bfitH 0,N(div,\Omega );
general \bfitj can be covered by data oscillation terms. Similarly, the local ef-
ficiency of Theorem 5.5 is also preserved, with, however, the p-robustness
theoretically lost. In particular, from (B.6b), estimate (7.6) below still holds
true, up to a possibly p-dependent constant.

Alternatively, for p = 0 in particular, because of p\prime = p + 1 employed in
(5.2), we need to replace (5.5) by

\bfitj \bfita h | K := \bfitI \bfscrR \bfscrT 
K,0 ((\psi 

\bfita \bfitj + \bfittheta \bfita h  - \bfitdelta 
\bfita 
h)| K) \forall K \in \scrT h.

Let \bfitj \in \bfscrR \bfscrT 0(\scrT h) \cap \bfitH 0,N(div,\Omega ). Then clearly \bfitj \bfita h \in \bfscrR \bfscrT 0(\scrT \bfita ) \cap \bfitH 0(div, \omega \bfita ).
Moreover, from (2.5), \nabla \cdot \bfitI \bfscrR \bfscrT 

K,0 (\bfitdelta 
\bfita 
h | K) = \Pi 0(\nabla \cdot (\bfitdelta \bfita h)| K) = 0, whereas

\nabla \cdot \bfitI \bfscrR \bfscrT 
K,0 ((\psi 

\bfita \bfitj )| K) =\Pi 0(\nabla \cdot (\psi \bfita \bfitj )| K) = (\nabla \psi \bfita \cdot \bfitj )| K , also using that \bfitj \in [\scrP 0(\scrT \bfita )]3
as above in point 2, and similarly \nabla \cdot \bfitI \bfscrR \bfscrT 

K,0 (\bfittheta 
\bfita 
h | K) = \Pi 0(\nabla \cdot (\bfittheta \bfita h)| K) =

( - \nabla \psi \bfita \cdot \bfitj )| K . Thus, \nabla \cdot \bfitj \bfita h = 0. Finally, (
\sum 

\bfita \in \scrV h
\bfitj \bfita h)| K = \bfitI \bfscrR \bfscrT 

K,0 (
\sum 

\bfita \in \scrV h
(\psi \bfita \bfitj +

\bfittheta \bfita h  - \bfitdelta \bfita h)| K) = \bfitI \bfscrR \bfscrT 
K,0 (\bfitj | K) = \bfitj | K by the linearity of the Raviart--Thomas pro-

jector \bfscrR \bfscrT 0. Then the above discussion for p\geq 1 applies.
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p-ROBUST EQUILIBRATED FLUX RECONSTRUCTION IN \bfitH (curl) 1795

4. The approach of [23, 24] includes solutions of local, a priori overdetermined
problems on vertex patches in a multistage procedure. The present (again a
priori overconstrained) problems (5.2) and consecutive steps in Definitions 5.1
and 5.3 share this spirit, though the minimizations directly determine the
best-possible local energy error estimator contributions.

6. Numerical illustration. This section presents some numerical examples il-
lustrating the key features of the estimator of Theorem 5.5. We impose the Dirichlet
boundary condition on the whole boundary, i.e., \Gamma D := \partial \Omega . We consider both struc-
tured meshes and unstructured meshes. When we speak about a ``structured"" mesh,
we mean a Cartesian partition of \Omega into N \times N \times N cubes where each cube is first
subdivided into 6 pyramids (with the basis a face and the apex the barycenter of
the cube) and then each pyramid into 4 tetrahedra. The corresponding mesh size is
h =

\surd 
3/(2N). On the other hand, the ``unstructured"" meshes are generated with

the software pacakge MMG3D [16], where we simply require a maximum element size.
These are typically quasi-uniform, but do not have any particular repeating structure
(every vertex patch is different). For both types of meshes, we consider the N\'ed\'elec
finite element approximation (3.5) with different degrees p\geq 1.

6.1. \bfitH 3(\Omega ) solution with a polynomial right-hand side. We first consider
the unit cube \Omega := (0,1)3 and a polynomial right-hand side \bfitj := (0,0,1), so that the
data oscillation estimator \eta osc vanishes. We can show that the solution is given by
\bfitA = (0,0,A3) with

A3(\bfitx ) :=
16

\pi 4

\sum 
n,m\geq 1

1

nm(n2 +m2)
sin(n\pi \bfitx 1) sin(m\pi \bfitx 2).(6.1)

This function belongs to H3(\Omega ) but not to H4(\Omega ). In practice, we cut the series at
n=m= 100 and obtain \nabla \times \bfitA by analytically differentiating (6.1).

We first fix the polynomial degree and consider a sequence of meshes. We use
p = 1 and structured meshes with N = 1,2,4,8 and then p = 2 and a sequence
of unstructured meshes. Figure 1 presents the corresponding errors, estimates, and
effectivity indices. We observe the expected convergence rate h2 (recall that \bfitA \in 
\bfitH 3(\Omega ) merely). The estimator \eta = \eta tot (\eta osc = 0 here) closely follows the error
\| \nabla \times (\bfitA  - \bfitA h)\| , and the effectivity index given by the ratio \eta /\| \nabla \times (\bfitA  - \bfitA h)\| is
above but close to the optimal value 1; we actually numerically observe asymptotic
exactness.

We then fix a mesh and increase the polynomial degree p from 1 to 6. We
consider two configurations: a structured mesh where the unit cube is split into 24
tetrahedra as described above and an unstructured mesh consisting of 20 tetrahedra.
Figure 2 reports the results. The convergence is not exponential, which is expected
because of the solution's finite regularity. Also in this setting, the estimator closely
follows the actual error, and the effectivity index always remains above but close to
1. In particular, the effectivity index does not increase with p, which illustrates the
p-robustness of the estimator.

Although this is not reported in the figures, we also numerically check that the
reconstructed flux \bfith h is indeed equilibrated, i.e., \| \bfitj  - \nabla \times \bfith h\| = 0. Because of finite
precision arithmetics, this value is not exactly zero but ranges between 10 - 15 and
10 - 11, which is perfectly reasonable compared to the actual error levels.

6.2. Analytical solution with a general right-hand side. We consider again
the unit cube \Omega := (0,1)3, this time with a nonpolynomial right-hand side \bfitj :=
8\pi 2(sin(2\pi \bfitx 2) sin(2\pi \bfitx 3),0,0). The associated solution is analytic:
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Fig. 1. [Smooth solution with limited regularity (6.1)] Uniform mesh refinement.
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Fig. 2. [Smooth solution with limited regularity (6.1)] Uniform polynomial degree refinement.
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Fig. 3. [Analytical solution (6.2)] Uniform mesh refinement.

\bfitA := (sin(2\pi \bfitx 2) sin(2\pi \bfitx 3),0,0).(6.2)

Figure 3 presents an h convergence experiment with the same settings as above.
The optimal convergence rate hp+1 is observed for \| \nabla \times (\bfitA  - \bfitA h)\| . The oscillation-
free estimator \eta closely follows the actual error, with a possible slight underestima-
tion, whereas the total estimator including data oscillation \eta tot = \eta + CL\eta osc from
Theorem 5.5 gives a guaranteed upper bound with a slight overestimation; as dis-
cussed in section 2.8, we can take here CL = 1. In agreement with the theory, the
influence of \eta osc diminishes with mesh refinement, and we again numerically observe
asymptotic exactness. We then consider a p convergence test. In Figure 4, we now
observe the expected exponential convergence rate of the error and a perfect behavior
of the effectivity indices. More precisely, as the mesh is not refined here, \eta osc does not
necessarily go faster to zero than the error; this would be the case if the hp-version of
(2.7), with \Pi p and ChK/(p+ 1) in place of, respectively, \Pi 0 and hK/\pi , were used.
We put forward here (2.7), where the is no unknown constant C, leading to a fully
computable \eta osc.

6.3. Adaptivity with a singular solution. Our last experiment features a
singular solution in a nonconvex domain, following [10, 23]. Specifically, we consider
an L-shape example where \Omega :=L\times (0,1), with

L := \{ \bfitx = (r cos\theta , r sin\theta ); | \bfitx 1| , | \bfitx 2| \leq 1, 0\leq \theta \leq 3\pi /2\} .

The right-hand side \bfitj is nonpolynomial and chosen such that

\bfitA (\bfitx ) =
\bigl( 
0,0, \chi (r)r\alpha sin(\alpha \theta )

\bigr) 
,(6.3)
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Fig. 4. [Analytical solution (6.2)] Uniform polynomial degree refinement.

where \alpha := 3/2, r2 := | \bfitx 1| 2 + | \bfitx 2| 2, (\bfitx 1,\bfitx 2) = r(cos\theta , sin\theta ), and \chi : (0,1) \rightarrow \BbbR is a
smooth cutoff function such that \chi = 0 in a neighborhood of 1. One easily checks
that \nabla \cdot \bfitA = 0. Besides, since \Delta (r\alpha sin(\alpha \theta )) = 0 near the origin, the right-hand side is
nonsingular (i.e., \bfitj \in \bfitL 2(\Omega )), and the singularity appearing in the solution is solely
due to the reentrant edge.

We couple our estimator with an adaptive strategy based on D\"orfler's marking
[17] for \eta K := \| \bfith h - \nabla \times \bfitA h\| K and MMG3D [16] to build a series of adaptively refined
meshes. We select p= 2 and an initial mesh made of 415 elements.

The behaviors of the error and of the estimators \eta and \eta tot with respect to the
number of degrees of freedomNdofs are presented in Figure 5. Here we still take CL = 1
in front of \eta osc, though we do not anymore have a theoretical support for this. The
effectivity indices stay close to one, even on unstructured and locally refined meshes,
with \eta tot/\| \nabla \times (\bfitA  - \bfitA h)\| always above one. Besides, the optimal convergence rate is
observed (it is limited to  - 2/3 when using isotropic elements in the presence of an
edge singularity; see [5, section 4.2.3]). This seems to indicate that the estimator is
perfectly suited to drive adaptive mesh refinement and illustrates the local efficiency
of Theorem 5.5.

Finally, Figures 6 and 7 present the meshes generated by the adaptive algorithm,
the estimators \eta K = \| \bfith h  - \nabla \times \bfitA h\| K , and the elementwise errors \| \nabla \times (\bfitA  - \bfitA h)\| K
(the top face and the faces sharing the reentrant edge). The meshes are refined close
to the reentrant edge, as expected. The estimated error distribution closely matches
the actual one, illustrating again the local efficiency of the estimator.

7. Technical details and proofs. This section collects some technical details
and the proofs of all the claims above.
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Fig. 5. [Singular solution (6.3)] Adaptive mesh refinement.
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Fig. 6. [Singular solution (6.3)]. Estimated (left) and actual (right) error distributions on the
initial mesh. Top view (top) and side view (bottom).
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Fig. 7. [Singular solution (6.3)] Estimated (left) and actual (right) error distributions at adap-
tive mesh refinement iteration \#10. Top view (top) and side view (bottom).
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7.1. Equivalent form of Assumption 3.3. Recall from section 2.4 the piece-
wise affine ``hat"" function \psi \bfita associated with the vertex \bfita \in \scrV h, as well as the notation
H1

\ast (\omega \bfita ) from section 2.7. The following technical result holds true.

Lemma 7.1 (equivalence of images by the curl operator). There holds

\nabla \times 
\biggl[ 
span
\bfita \in \scrV h

\bigl( 
\psi \bfita | \omega \bfita \nabla (\scrP 1(\scrT \bfita )\cap H1

\ast (\omega \bfita ))
\bigr) \biggr] 

=\nabla \times [\bfscrN 0(\scrT h)\cap \bfitH 0,D(curl,\Omega )].(7.1)

Proof. Let \bfita \in \scrV h. For any qh \in \scrP 1(\scrT \bfita ) \cap H1
\ast (\omega \bfita ), clearly \psi 

\bfita | \omega \bfita \nabla qh, extended
by zero outside of the patch subdomain \omega \bfita , lies in \bfitH 0,D(curl,\Omega ) (though in general
not in \bfscrN 0(\scrT h)). Moreover, \nabla \times (\psi \bfita | \omega \bfita \nabla qh) = \nabla \psi \bfita | \omega \bfita \times \nabla qh, which is a piecewise
constant vector-valued polynomial on the patch \scrT \bfita whose extension by zero outside
of the patch subdomain \omega \bfita has a continuous normal trace on interfaces and zero
normal trace on \Gamma D. Thus, this extension belongs to the lowest-order divergence-free
Raviart--Thomas space, which implies \nabla \times (\psi \bfita | \omega \bfita \nabla qh) =\nabla \times \bfitw h on \omega \bfita for \bfitw h which
belongs to \bfscrN 0(\scrT h)\cap \bfitH 0,D(curl,\Omega ). Thus, in (7.1), there holds the inclusion \subseteq .

Conversely, following, e.g., Monk [32, section 5.5.1] or Ern and Guermond [18,
section 15.1], the space \bfscrN 0(\scrT h) \cap \bfitH 0,D(curl,\Omega ) is spanned by the set of the ``edge
functions"" \{ \bfitpsi e\} e\in \scrE \mathrm{D}

h
, where \scrE D

h denotes the mesh edges not lying in \Gamma D. If e is the

edge between vertices \bfita ,\bfitb \in \scrV h, then \bfitpsi e = \psi \bfita \nabla \psi \bfitb  - \psi \bfitb \nabla \psi \bfita . Moreover, if one of
the vertices of e lies in \Gamma D, we choose the convention that \bfita \in \Gamma D, so that we have
(\psi \bfitb  - c\bfitb )| \omega \bfita \in H1

\ast (\omega \bfita ) for some constant c\bfitb in all cases. Now, since \nabla \times \bfitpsi e = 2\nabla \psi \bfita \times 
\nabla \psi \bfitb = 2\nabla \times (\psi \bfita \nabla \psi \bfitb ) = 2\nabla \times (\psi \bfita \nabla (\psi \bfitb  - c\bfitb )), we have found qh := (\psi \bfitb  - c\bfitb )| \omega \bfita /2 \in 
\scrP 1(\scrT \bfita ) \cap H1

\ast (\omega \bfita ) such that, after zero extension, \nabla \times (\psi \bfita | \omega \bfita \nabla qh) = \nabla \times \bfitpsi e, and the
inclusion \supseteq in (7.1) holds.

The following alternative formulation of Assumption 3.3 is crucial.

Lemma 7.2 (patchwise orthogonality). Let \bfitj satisfy Assumption 3.1. Then \bfitA h

satisfies Assumption 3.3 if and only if \bfitA h \in \bfscrN p(\scrT h)\cap \bfitH 0,D(curl,\Omega ) and

(\psi \bfita \bfitj ,\nabla qh)\omega \bfita +(\nabla \psi \bfita \times (\nabla \times \bfitA h),\nabla qh)\omega \bfita =0 \forall qh\in \scrP 1(\scrT \bfita )\cap H1
\ast (\omega \bfita ), \forall \bfita \in \scrV h.(7.2)

Proof. Since \nabla \psi \bfita | \omega \bfita \times \nabla qh =\nabla \times (\psi \bfita | \omega \bfita \nabla qh),

(\nabla \psi \bfita \times (\nabla \times \bfitA h),\nabla qh)\omega \bfita = - (\nabla \times \bfitA h,\nabla \psi \bfita \times \nabla qh)\omega \bfita = - (\nabla \times \bfitA h,\nabla \times (\psi \bfita \nabla qh))\omega \bfita .

For any \bfitv \in \bfitH 0,N(curl,\Omega ) such that \bfitj =\nabla \times \bfitv , the Green theorem in turn gives

(\psi \bfita \bfitj ,\nabla qh)\omega \bfita = (\bfitj ,\psi \bfita \nabla qh)\omega \bfita = (\bfitv ,\nabla \times (\psi \bfita \nabla qh))\omega \bfita .

Finally, again by the Green theorem, for any \bfitv h \in \bfscrN 0(\scrT h)\cap \bfitH 0,D(curl,\Omega ),

(\bfitj ,\bfitv h) = (\nabla \times \bfitv ,\bfitv h) = (\bfitv ,\nabla \times \bfitv h).

Applying these identities, respectively, in (7.2) and (3.7b), the assertion follows from
Lemma 7.1.

7.2. Properties of the auxiliary fields \bfittheta \bfita h, \bfitdelta h, and \bfitdelta 
\bfita 
h from Definition 5.1.

We collect here some important results on \bfittheta \bfita h , \bfitdelta h, and \bfitdelta \bfita h from (5.2)--(5.4). We
start with the following application of the self-standing result on overconstrained
minimization in the Raviart--Thomas spaces that we present in Appendix A below.
Let \eta \bfita osc,\bfitj be defined as \widetilde \eta \bfita osc,\bfitj in (5.6) but on the patch \scrT \bfita only.
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p-ROBUST EQUILIBRATED FLUX RECONSTRUCTION IN \bfitH (curl) 1801

Lemma 7.3 (existence, uniqueness, and stability of \bfittheta \bfita h from (5.2)). There exists
a unique solution \bfittheta \bfita h to problem (5.2) for all \bfita \in \scrV h. Moreover, it satisfies the stability
estimate

\| \bfittheta \bfita h  - \nabla \psi \bfita \times (\nabla \times \bfitA h)\| \omega \bfita \lesssim min
\bfitv \in \bfitH 0(div,\omega \bfita )
\nabla \cdot \bfitv = - \nabla \psi \bfita \cdot \bfitj 

\| \bfitv  - \nabla \psi \bfita \times (\nabla \times \bfitA h)\| \omega \bfita + h - 1
\omega \bfita 
\eta \bfita osc,\bfitj .

Proof. We choose g\bfita := ( - \nabla \psi \bfita \cdot \bfitj )| \omega \bfita , \bfittau 
\bfita 
h := (\nabla \psi \bfita \times (\nabla \times \bfitA h))| \omega \bfita , and q := p

and verify the assumptions of Theorem A.2 in three steps. Note that \Pi p\prime (\nabla \psi \bfita \cdot \bfitj ) =
\nabla \psi \bfita \cdot \Pi p\prime (\bfitj ) and that \| \nabla \psi \bfita \cdot (\bfitj  - \Pi p\prime (\bfitj ))\| K \leq \| \nabla \psi \bfita \| \infty ,\omega \bfita \| \bfitj  - \Pi p\prime (\bfitj )\| K \lesssim h - 1

\omega \bfita 
\| \bfitj  - 

\Pi p\prime (\bfitj )\| K , where \| \nabla \psi \bfita \| \infty ,\omega \bfita \lesssim h - 1
\omega \bfita 

follows from the shape regularity of the mesh,
which gives rise to h - 1

\omega \bfita 
\eta \bfita osc,\bfitj from the data oscillation term in Theorem A.2.

Step 1. Assumption (A.1a). From (3.1a), g\bfita \in L2(\omega \bfita ), so that the first condition
in (A.1a) is satisfied. From (3.7a), in turn, on \omega \bfita , it follows that \nabla \times \bfitA h \in [\scrP p(\scrT \bfita )]3
(see, e.g., [6, Corollary 2.3.2]), so that \bfittau \bfita 

h =\nabla \psi \bfita \times (\nabla \times \bfitA h)\in [\scrP p(\scrT \bfita )]3 \subset \bfscrR \bfscrT p(\scrT \bfita )\subset 
\bfscrR \bfscrT p\prime (\scrT \bfita ). Thus, the second (polynomial) condition in (A.1a) is also satisfied.

Step 2. Assumption (A.1b). For vertices \bfita \in \scrV h such that \bfita \not \in \Gamma D, the Green
theorem and \bfitj \in \bfitH 0,N(div,\Omega ) from (3.1a) together with \nabla \cdot \bfitj = 0 from (3.1b) imply

 - (\nabla \psi \bfita \cdot \bfitj ,1)\omega \bfita = - (\nabla \psi \bfita ,\bfitj )\omega \bfita = (\psi \bfita ,\nabla \cdot \bfitj )\omega \bfita = 0.

Step 3. Assumption (A.1c). For any qh \in \scrP 1(\scrT \bfita ) \cap H1
\ast (\omega \bfita ), again the Green

theorem yields

 - (\nabla \psi \bfita \cdot \bfitj , qh)\omega \bfita 

(3.1b)
=  - (\nabla \cdot (\psi \bfita \bfitj ), qh)\omega \bfita = (\psi \bfita \bfitj ,\nabla qh)\omega \bfita ,

so that the patchwise orthogonality property (7.2) implies

(\nabla \psi \bfita \times (\nabla \times \bfitA h),\nabla qh)\omega \bfita  - (\nabla \psi \bfita \cdot \bfitj , qh)\omega \bfita = 0.(7.3)

Similarly, an important part of the results of the following lemma are consequences
of Appendix B below.

Lemma 7.4 (auxiliary correction fields \bfitdelta h and \bfitdelta \bfita h). For \bfitdelta h given by (5.3), there
holds

\bfitdelta h \in \bfscrR \bfscrT p\prime (\scrT h)\cap \bfitH 0,N(div,\Omega ) and \nabla \cdot \bfitdelta h = 0.(7.4)

In addition, there exists a unique solution \bfitdelta \bfita h | K to problems (5.4) for all tetrahedra
K \in \scrT h and all vertices \bfita \in \scrV K , yielding the local divergence-free decomposition

\bfitdelta \bfita h \in \bfscrR \bfscrT p+1(\scrT \bfita )\cap \bfitH 0(div, \omega \bfita ) and \nabla \cdot \bfitdelta \bfita h = 0 \forall \bfita \in \scrV h,(7.5a)

\bfitdelta h =
\sum 
\bfita \in \scrV h

\bfitdelta \bfita h .(7.5b)

Moreover, for all tetrahedra K \in \scrT h and all vertices \bfita \in \scrV K , there holds the local
stability estimate

\| \bfitdelta \bfita h\| K \lesssim \| \bfitdelta h\| K .(7.6)

Proof. The patchwise contributions \bfittheta \bfita h extended by zero outside of the patch
subdomains \omega \bfita belong to \bfscrR \bfscrT p\prime (\scrT h)\cap \bfitH 0,N(div,\Omega ), so that the first property in (7.4)
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1802 TH\'EOPHILE CHAUMONT-FRELET AND MARTIN VOHRAL\'IK

is immediate. The second property in (7.4) then follows by the divergence constraint
in (5.2), the linearity of the projector \Pi p\prime , and the partition of unity (2.1) since

\nabla \cdot \bfitdelta h =
\sum 
\bfita \in \scrV h

\nabla \cdot \bfittheta \bfita h =
\sum 
\bfita \in \scrV h

\Pi p\prime ( - \nabla \psi \bfita \cdot \bfitj ) =\Pi p\prime 

\Biggl[ \sum 
\bfita \in \scrV h

 - \nabla \psi \bfita \cdot \bfitj 

\Biggr] 
=\Pi p\prime (0) = 0.

Let K \in \scrT h and \bfitr h \in [\scrP 0(K)]3 be fixed. Then definition (5.3), which gives \bfitdelta h| K =\sum 
\bfitb \in \scrV K

\bfittheta \bfitb h; the partition of unity (2.1), which implies
\sum 

\bfitb \in \scrV K
(\nabla \psi \bfitb \times (\nabla \times \bfitA h))| K = 0;

and the elementwise orthogonality constraint in (5.2) lead to

(\bfitdelta h,\bfitr h)K =
\sum 
\bfitb \in \scrV K

(\bfittheta \bfitb h  - \nabla \psi \bfitb \times (\nabla \times \bfitA h),\bfitr h)K = 0.

This is condition (B.2). Thus, Theorem B.1 can be employed, where we choose q :=
p\prime together with q\prime := p\prime for p = 0 and q\prime := p\prime + 1 for p \geq 1. This implies the
existence and uniqueness of solutions \bfitdelta \bfita h | K to problems (5.4), the properties (7.5a),
the decomposition (7.5b), and the stability bound (7.6). Note in particular that we
only employ (B.6b) with q\prime = q in the lowest-order case with q = 1, whereas in other
cases, we employ (B.6b) with q\prime = q + 1, so there is indeed no polynomial degree
dependence in (7.6).

7.3. Decomposition of the current density \bfitj and its stability from The-
orem 5.2. We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2 (decomposition). Property (5.7a) is immediate since \psi \bfita \bfitj \in 
\bfitH 0(div, \omega \bfita ) in view of assumption (3.1a), from (5.2), which gives \bfittheta \bfita h \in \bfscrR \bfscrT p\prime (\scrT \bfita ) \cap 
\bfitH 0(div, \omega \bfita ), and from the first property in (7.5a). Property (5.7b) follows since
\nabla \cdot (\psi \bfita \bfitj ) = \nabla \psi \bfita \cdot \bfitj in view of assumption (3.1b) and using \nabla \cdot \bfittheta \bfita h = \Pi p\prime ( - \nabla \psi \bfita \cdot \bfitj ) =
 - \nabla \psi \bfita \cdot \Pi p\prime (\bfitj ) from (5.2) and\nabla \cdot \bfitdelta \bfita h = 0, which is the second property in (7.5a). Finally,
(5.7c) follows from the partition of unity (2.1), which gives

\sum 
\bfita \in \scrV h

\psi \bfita \bfitj = \bfitj together
with (5.3) and (7.5b). When \bfitj \in \bfscrR \bfscrT p(\scrT h) \cap \bfitH 0,N(div,\Omega ), (5.8) immediately follows
from (5.7) and the fact that \psi \bfita \bfitj \in \bfscrR \bfscrT p+1(\scrT \bfita )\cap \bfitH 0(div, \omega \bfita ).

Proof of Theorem 5.2 (stability). From (4.5) and (5.5), we develop

\bfitj \bfita  - \bfitj \bfita h =\nabla \psi \bfita \times (\nabla \times \bfitA ) - \bfittheta \bfita h + \bfitdelta 
\bfita 
h =\nabla \psi \bfita \times (\nabla \times (\bfitA  - \bfitA h))

 - (\bfittheta \bfita h  - \nabla \psi \bfita \times (\nabla \times \bfitA h)) + \bfitdelta 
\bfita 
h .

For the first term above, we immediately see

\| \nabla \psi \bfita \times (\nabla \times (\bfitA  - \bfitA h))\| \omega \bfita \leq \| \nabla \psi \bfita \| \infty ,\omega \bfita \| \nabla \times (\bfitA  - \bfitA h)\| \omega \bfita .

For the second term above, we employ Lemma 7.3 with \bfitv =\nabla \psi \bfita \times (\nabla \times \bfitA ), which lies
in \bfitH 0(div, \omega \bfita ) with divergence equal to  - \nabla \psi \bfita \cdot \bfitj by virtue of (4.6), which leads to

\| \bfittheta \bfita h  - \nabla \psi \bfita \times (\nabla \times \bfitA h)\| \omega \bfita \lesssim \| \nabla \psi \bfita \times (\nabla \times (\bfitA  - \bfitA h))\| \omega \bfita + h - 1
\omega \bfita 
\eta \bfita osc,\bfitj .(7.7)

For the last term, we first recall (7.6), i.e., \| \bfitdelta \bfita h\| K \lesssim \| \bfitdelta h\| K for every K \in \scrT \bfita . Now
definition (5.3), the partition of unity (2.1), and the triangle inequality imply

\| \bfitdelta h\| K =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
\bfitb \in \scrV K

(\bfittheta \bfitb h  - \nabla \psi \bfitb \times (\nabla \times \bfitA h))

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
K

\leq 
\sum 
\bfitb \in \scrV K

\| \bfittheta \bfitb h  - \nabla \psi \bfitb \times (\nabla \times \bfitA h)\| \omega \bfitb 
,

which extends by one layer beyond the patch \omega \bfita and can be bounded by (7.7). The
shape regularity of the mesh ensures that \| \nabla \psi \bfita \| \infty ,\omega \bfita \lesssim h - 1

\omega \bfita 
and \| \nabla \psi \bfitb \| \infty ,\omega \bfitb 

\simeq 
\| \nabla \psi \bfita \| \infty ,\omega \bfita for all vertices \bfitb in the patch \scrT \bfita . Hence, (5.9) follows on combining
the above developments.
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p-ROBUST EQUILIBRATED FLUX RECONSTRUCTION IN \bfitH (curl) 1803

7.4. Equilibrated flux reconstruction from Section 5.2 and its stability.
To prove Theorem 5.4, we rely on the following crucial result.

Theorem 7.5 (p-robust \bfitH (curl, \omega \bfita ) stability). For a vertex \bfita \in \scrV h, let \bfitA h \in 
\bfscrN p(\scrT \bfita ) \cap \bfitH (curl, \omega \bfita ) and \=\bfitj 

\bfita 
h \in \bfscrR \bfscrT p+1(\scrT \bfita ) \cap \bfitH 0(div, \omega \bfita ) with \nabla \cdot \=\bfitj \bfita h = 0 be given.

Then

min
\bfitv h\in \bfscrN p+1(\scrT \bfita )\cap \bfitH 0(curl,\omega \bfita )

\nabla \times \bfitv h=\=\bfitj 
\bfita 
h

\| \bfitv h  - \psi \bfita (\nabla \times \bfitA h)\| \omega \bfita \lesssim min
\bfitv \in \bfitH 0(curl,\omega \bfita )

\nabla \times \bfitv =\=\bfitj 
\bfita 
h

\| \bfitv  - \psi \bfita (\nabla \times \bfitA h)\| \omega \bfita .
(7.8)

On a single tetrahedron K in place of the vertex patch \scrT \bfita , Theorem 7.5 follows
by the seminal contributions of Costabel and McIntosh [13, Proposition 4.2] and
Demkowicz, Gopalakrishnan, and Sch\"oberl [14, Theorem 7.2]; see [9, Theorem 2]. On
an edge patch, such a result has been established in [10, Theorem 3.1]. The further
extension to a vertex patch has recently been established in [11, Theorem 3.3; see also
Corollary 4.3].

Proof of Theorem 5.4 (equilibration). Property (5.13a) follows immediately from
\bfith \bfita 
h \in \bfscrN p+1(\scrT \bfita ) \cap \bfitH 0(curl, \omega \bfita ) of (5.11a) and (5.11b). For piecewise polynomial \bfitj \in 

\bfscrR \bfscrT p(\scrT h)\cap \bfitH 0,N(div,\Omega ), \nabla \times \bfith \bfita 
h = \=\bfitj 

\bfita 
h = \bfitj 

\bfita 
h from (5.11a) and (5.10). Property (5.13b)

is then a direct consequence of (5.7c) and (5.11b).

Proof of Theorem 5.4 (stability). Fix a vertex \bfita \in \scrV h, and use \bfitj \bfita = \psi \bfita \bfitj +
\nabla \psi \bfita \times (\nabla \times \bfitA ) = \nabla \times (\psi \bfita (\nabla \times \bfitA )) as in property (4.4). This implies (\bfitj \bfita ,\bfitv )\omega \bfita =
(\psi \bfita (\nabla \times \bfitA ),\nabla \times \bfitv )\omega \bfita for any \bfitv \in \bfitH \dagger (curl, \omega \bfita ). Then Theorem 7.5 and a primal-dual
equivalence as in, e.g., [10, Lemma 5.5] imply

\| \bfith \bfita 
h  - \psi \bfita (\nabla \times \bfitA h)\| \omega \bfita \lesssim min

\bfitv \in \bfitH 0(curl,\omega \bfita )

\nabla \times \bfitv =\=\bfitj 
\bfita 
h

\| \bfitv  - \psi \bfita (\nabla \times \bfitA h)\| \omega \bfita 

= sup
\bfitv \in \bfitH \dagger (curl,\omega \bfita )
\| \nabla \times \bfitv \| \omega \bfita =1

\bigl\{ 
(\=\bfitj 

\bfita 
h ,\bfitv )\omega \bfita  - (\psi \bfita (\nabla \times \bfitA h),\nabla \times \bfitv )\omega \bfita 

\bigr\} 
\leq sup

\bfitv \in \bfitH \dagger (curl,\omega \bfita )
\| \nabla \times \bfitv \| \omega \bfita =1

(\=\bfitj 
\bfita 
h  - \bfitj 

\bfita ,\bfitv )\omega \bfita + \| \psi \bfita (\nabla \times (\bfitA  - \bfitA h))\| \omega \bfita 

\leq sup
\bfitv \in \bfitH \dagger (curl,\omega \bfita )
\| \nabla \times \bfitv \| \omega \bfita =1

(\=\bfitj 
\bfita 
h  - \bfitj 

\bfita ,\bfitv )\omega \bfita + \| \nabla \times (\bfitA  - \bfitA h)\| \omega \bfita .

We are thus left to treat the first term above.
Fix \bfitv \in \bfitH \dagger (curl, \omega \bfita ) with \| \nabla \times \bfitv \| \omega \bfita = 1. Consider q \in H1

\ast (\omega \bfita ) such that

(\nabla q,\nabla w)\omega \bfita = (\bfitv ,\nabla w)\omega \bfita \forall w \in H1
\ast (\omega \bfita ).

Then \~\bfitv := \bfitv  - \nabla q lies in both \bfitH \dagger (curl, \omega \bfita ) and \bfitH 0(div, \omega \bfita ) and is divergence-free,
\nabla \cdot \~\bfitv = 0. Thus, the Poincar\'e--Friedrichs--Weber inequality (2.8) implies

\| \~\bfitv \| \omega \bfita \lesssim h\omega \bfita \| \nabla \times \~\bfitv \| \omega \bfita = h\omega \bfita \| \nabla \times \bfitv \| \omega \bfita = h\omega \bfita .(7.9)

Note that \=\bfitj 
\bfita 
h  - \bfitj \bfita \in \bfitH 0(div, \omega \bfita ) with \nabla \cdot (\=\bfitj \bfita h  - \bfitj \bfita ) = 0; indeed, this follows from

(4.7a)--(4.7b) together with (5.10). Thus, the Green theorem gives

(\=\bfitj 
\bfita 
h  - \bfitj 

\bfita ,\nabla q)\omega \bfita = 0.(7.10)
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1804 TH\'EOPHILE CHAUMONT-FRELET AND MARTIN VOHRAL\'IK

Thanks to this crucial property, we can play in \~\bfitv and use (7.9): Employing additionally
the Cauchy--Schwarz inequality and the triangle inequality, we have

(\=\bfitj 
\bfita 
h  - \bfitj 

\bfita ,\bfitv )\omega \bfita = (\=\bfitj 
\bfita 
h  - \bfitj 

\bfita , \~\bfitv )\omega \bfita \leq \| \=\bfitj \bfita h  - \bfitj 
\bfita \| \omega \bfita \| \~\bfitv \| \omega \bfita 

\lesssim h\omega \bfita 

\bigl[ 
\| \=\bfitj \bfita h  - \bfitj 

\bfita 
h\| \omega \bfita + \| \bfitj \bfita h  - \bfitj 

\bfita \| \omega \bfita 

\bigr] 
,

(7.11)

and we conclude by (5.9) from Theorem 5.2.

7.5. A posteriori error estimates from Section 5.3. We can now finally
prove Theorem 5.5.

Proof of Theorem 5.5 (reliability). For a piecewise polynomial current density,
\bfitj \in \bfscrR \bfscrT p(\scrT h)\cap \bfitH 0,N(div,\Omega ), Theorem 5.4 implies \bfith h \in \bfitH 0,N(curl,\Omega ) with \nabla \times \bfith h = \bfitj .
Thus, in this case, the claim follows with \eta osc = 0 by the Prager--Synge theorem [35]
in the \bfitH (curl)-context; see, e.g., [8, Theorem 10] or [23, Theorem 3.1].

In general, we proceed as follows. Since \bfitA ,\bfitA h \in \bfitH 0,D(curl,\Omega ),

\| \nabla \times (\bfitA  - \bfitA h)\| = max
\bfitv \in \bfitH 0,\mathrm{D}(curl,\Omega )

\| \nabla \times \bfitv \| =1

(\nabla \times (\bfitA  - \bfitA h),\nabla \times \bfitv ).

Fix \bfitv \in \bfitH 0,D(curl,\Omega ) with \| \nabla \times \bfitv \| = 1, and consider \bfitw from (2.6). Note that since
\bfith h \in \bfitH 0,N(curl,\Omega ) from Theorem 5.4, the Green theorem and \nabla \times \bfitw =\nabla \times \bfitv give

(\nabla \times \bfith h,\bfitw ) = (\bfith h,\nabla \times \bfitw ) = (\bfith h,\nabla \times \bfitv ).

Similarly, \nabla \times \bfitw =\nabla \times \bfitv and the weak solution characterization (3.4) lead to

(\nabla \times \bfitA ,\nabla \times \bfitv ) = (\nabla \times \bfitA ,\nabla \times \bfitw ) = (\bfitj ,\bfitw ).

Thus,

(\nabla \times (\bfitA  - \bfitA h),\nabla \times \bfitv ) = (\bfitj  - \nabla \times \bfith h,\bfitw ) + (\bfith h  - \nabla \times \bfitA h,\nabla \times \bfitv ).

The second term is trivially bounded by the estimator \eta via the Cauchy--Schwarz
inequality, so that we are left with bounding the first one.

Property (5.14) and the additional orthogonality constraint in (5.10) lead to

(\bfitj  - \nabla \times \bfith h,\bfitw ) =
\sum 
K\in \scrT h

\Biggl( \sum 
\bfita \in \scrV K

(\bfitj \bfita h  - \=\bfitj 
\bfita 
h),\bfitw 

\Biggr) 
K

=
\sum 
K\in \scrT h

\bigl( 
\bfitj  - \nabla \times \bfith h,\bfitw  - \Pi 0(\bfitw )

\bigr) 
K
.

Consequently, the Poincar\'e inequality (2.7), (2.6), and \| \nabla \times \bfitv \| = 1 give

(\bfitj  - \nabla \times \bfith h,\bfitw )\leq 
\sum 
K\in \scrT h

\eta osc,K\| \nabla \bfitw \| K \leq \eta osc\| \nabla \bfitw \| \leq CL\eta osc\| \nabla \times \bfitv \| =CL\eta osc.

Remark 7.6 (comparison with (7.11)). Above, we could also write

(\bfitj  - \nabla \times \bfith h,\bfitw ) =
\sum 
\bfita \in \scrV h

(\bfitj \bfita h  - \=\bfitj 
\bfita 
h ,\bfitw )\omega \bfita ,

where the terms in the sum are similar to (7.11) from section 7.4. In contrast to (7.11),
it seems that we cannot pass through the Poincar\'e--Friedrichs--Weber inequality (2.8)
in the absence of an exactly divergence-free field (recall from (5.7b) that \nabla \cdot \bfitj \bfita h =
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p-ROBUST EQUILIBRATED FLUX RECONSTRUCTION IN \bfitH (curl) 1805

\nabla \psi \bfita \cdot (\bfitj  - \Pi p\prime (\bfitj )) only in general) and rather need to resort to the switch from \bfitv \in 
\bfitH 0,D(curl,\Omega ) to \bfitw of (2.6) and to make use of the Poincar\'e inequality (2.7).

Proof of Theorem 5.5 (efficiency). Property (5.14), the triangle inequality, and
definition (5.12) immediately lead to \eta osc,K \leq 

\sum 
\bfita \in \scrV K

\eta \bfita osc,\bfitj \bfita 
h
. Moreover, definition

(5.11b) together with the partition of unity (2.1) imply

\| \bfith h  - \nabla \times \bfitA h\| K =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
\bfita \in \scrV K

(\bfith \bfita 
h  - \psi \bfita (\nabla \times \bfitA h))

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
K

\leq 
\sum 

\bfita \in \scrV K

\| \bfith \bfita 
h  - \psi \bfita (\nabla \times \bfitA h)\| \omega \bfita .

Thus, employing Theorem 5.4 concludes the proof.

Appendix A. Overconstrained minimization in Raviart--Thomas
spaces.

A.1. Assumption and statement of the overconstrained minimization.
In this appendix, we consider a fixed mesh vertex \bfita \in \scrV h. Let an integer q \geq 0 be
fixed, and set q\prime := min\{ q,1\} . We employ the notation of section 2 and in particular
recall that \lesssim means smaller or equal to up to a constant only depending on the mesh
shape-regularity parameter \kappa \scrT h

. We also assume a polynomial form, mean value zero,
and patchwise orthogonality conditions on the two data g\bfita and \bfittau \bfita 

h :

Assumption A.1 (data g\bfita and \bfittau \bfita 
h). The data g\bfita and \bfittau \bfita 

h satisfy

g\bfita \in L2(\omega \bfita ) and \bfittau \bfita 
h \in \bfscrR \bfscrT q\prime (\scrT \bfita ),(A.1a)

(g\bfita ,1)\omega \bfita = 0 when \bfita \not \in \Gamma D,(A.1b)

(\bfittau \bfita 
h ,\nabla qh)\omega \bfita + (g\bfita , qh)\omega \bfita = 0 \forall qh \in \scrP 1(\scrT \bfita )\cap H1

\ast (\omega \bfita ).(A.1c)

We consider the following (seemingly overconstrained) minimization problem in
the Raviart--Thomas space \bfscrR \bfscrT q\prime (\scrT \bfita )\cap \bfitH 0(div, \omega \bfita ):

\bfittheta \bfita h := arg min
\bfitv h\in \bfscrR \bfscrT q\prime (\scrT \bfita )\cap \bfitH 0(div,\omega \bfita )

\nabla \cdot \bfitv h=\Pi q\prime (g
\bfita )

(\bfitv h,\bfitr h)K=(\bfittau \bfita 
h,\bfitr h)K \forall \bfitr h\in [\scrP 0(K)]3,\forall K\in \scrT \bfita 

\| \bfitv h  - \bfittau \bfita 
h\| 2\omega \bfita 

.(A.2)

The following result is of independent interest.

Theorem A.2 (overconstrained minimization in the Raviart--Thomas spaces).
Let Assumption A.1 hold. Then there exists a unique solution \bfittheta \bfita h to problem (A.2),
satisfying the stability estimate

\| \bfittheta \bfita h  - \bfittau \bfita 
h\| \omega \bfita \lesssim min

\bfitv \in \bfitH 0(div,\omega \bfita )
\nabla \cdot \bfitv =g\bfita 

\| \bfitv  - \bfittau \bfita 
h\| \omega \bfita +

\Biggl\{ \sum 
K\in \scrT \bfita 

\Bigl( hK
\pi 

\| \Pi q\prime (g\bfita ) - g\bfita \| K
\Bigr) 2\Biggr\} 1

2

.

A.2. Auxiliary conventional minimization. In addition to (A.2), it will be
useful to also consider

\=\bfittheta 
\bfita 
h := arg min

\bfitv h\in \bfscrR \bfscrT q\prime (\scrT \bfita )\cap \bfitH 0(div,\omega \bfita )

\nabla \cdot \bfitv h=\Pi q\prime (g
\bfita )

\| \bfitv h  - \bfittau \bfita 
h\| 2\omega \bfita 

.(A.3)

Minimizations (A.3) are in a conventional format in that the constraints only con-
cern normal trace and divergence. Moreover, they fulfill the following important
property.
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1806 TH\'EOPHILE CHAUMONT-FRELET AND MARTIN VOHRAL\'IK

Lemma A.3 (existence, uniqueness, and stability of \=\bfittheta 
\bfita 
h from (A.3)). Let Assump-

tion A.1 hold. Then there exists a unique solution \=\bfittheta 
\bfita 
h to problem (A.3), satisfying the

stability estimate

\| \=\bfittheta \bfita h  - \bfittau \bfita 
h\| \omega \bfita \lesssim min

\bfitv \in \bfitH 0(div,\omega \bfita )
\nabla \cdot \bfitv =g\bfita 

\| \bfitv  - \bfittau \bfita 
h\| \omega \bfita +

\Biggl\{ \sum 
K\in \scrT \bfita 

\Bigl( hK
\pi 

\| \Pi q\prime (g\bfita ) - g\bfita \| K
\Bigr) 2\Biggr\} 1

2

.

(A.4)

Proof. Existence and uniqueness of \=\bfittheta 
\bfita 
h from (A.3) are classical following, e.g.,

[6], thanks to the Neumann boundary compatibility condition (A.1b); note that this
implies (\Pi q\prime (g

\bfita ),1)\omega \bfita = 0 when \bfita \not \in \Gamma D. Moreover, since \Pi q\prime (g
\bfita ) \in \scrP q\prime (\scrT \bfita ) and \bfittau \bfita 

h \in 
\bfscrR \bfscrT q\prime (\scrT \bfita ), taking p= q\prime , \bfittau p = - \bfittau \bfita 

h , and rK = (\Pi q\prime (g
\bfita ) - \nabla \cdot \bfittau \bfita 

h)| K in [21, Corollaries
3.3 and 3.6] for an interior vertex \bfita and [21, Corollary 3.8] and [11, Proposition 3.1]
for a boundary vertex \bfita leads to

\| \=\bfittheta \bfita h  - \bfittau \bfita 
h\| \omega \bfita \lesssim min

\bfitv \in \bfitH 0(div,\omega \bfita )
\nabla \cdot \bfitv =\Pi q\prime (g

\bfita )

\| \bfitv  - \bfittau \bfita 
h\| \omega \bfita = \| \nabla \~r\bfita \| \omega \bfita .

The equality above is a classical primal-dual equivalence, with \~r\bfita \in H1
\ast (\omega \bfita ) given by

(\nabla \~r\bfita ,\nabla v)\omega \bfita = (\bfittau \bfita 
h ,\nabla v)\omega \bfita + (\Pi q\prime (g

\bfita ), v)\omega \bfita \forall v \in H1
\ast (\omega \bfita ).

Thus, as in, e.g., [20, Theorem 3.17],

\| \nabla \~r\bfita \| \omega \bfita = max
v\in H1

\ast (\omega \bfita )
\| \nabla v\| \omega \bfita =1

\{ (\bfittau \bfita 
h ,\nabla v)\omega \bfita + (\Pi q\prime (g

\bfita ), v)\omega \bfita \} 

= max
v\in H1

\ast (\omega \bfita )
\| \nabla v\| \omega \bfita =1

\{ (\bfittau \bfita 
h ,\nabla v)\omega \bfita + (g\bfita , v)\omega \bfita + (\Pi q\prime (g

\bfita ) - g\bfita , v)\omega \bfita \} .

The projection orthogonality and the elementwise Poincar\'e inequality then lead to

| (\Pi q\prime (g\bfita ) - g\bfita , v)\omega \bfita | =

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
K\in \scrT \bfita 

(\Pi q\prime (g
\bfita ) - g\bfita , v - \Pi 0v)K

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 

\Biggl\{ \sum 
K\in \scrT \bfita 

\Bigl( hK
\pi 

\| \Pi q\prime (g\bfita ) - g\bfita \| K
\Bigr) 2\Biggr\} 1

2

\| \nabla v\| \omega \bfita ,

and (A.4) follows since

max
v\in H1

\ast (\omega \bfita )
\| \nabla v\| \omega \bfita =1

\{ (\bfittau \bfita 
h ,\nabla v)\omega \bfita + (g\bfita , v)\omega \bfita \} = min

\bfitv \in \bfitH 0(div,\omega \bfita )
\nabla \cdot \bfitv =g\bfita 

\| \bfitv  - \bfittau \bfita 
h\| \omega \bfita 

by the same primal-dual equivalence argument.

A.3. Auxiliary first-order overconstrained minimization and proof of
Theorem A.2. Let, in addition to (A.2) and (A.3), the first-order Raviart--Thomas
piecewise polynomial \=\bfitepsilon \bfita h be given by

\=\bfitepsilon \bfita h := arg min
\bfitv h\in \bfscrR \bfscrT 1(\scrT \bfita )\cap \bfitH 0(div,\omega \bfita )

\nabla \cdot \bfitv h=0
(\bfitv h,\bfitr h)K=(\bfittau \bfita 

h - \=\bfittheta \bfita 
h,\bfitr h)K \forall \bfitr h\in [\scrP 0(K)]3,\forall K\in \scrT \bfita 

\| \bfitv h  - \bfittau \bfita 
h +

\=\bfittheta 
\bfita 
h\| 2\omega \bfita 

.(A.5)
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p-ROBUST EQUILIBRATED FLUX RECONSTRUCTION IN \bfitH (curl) 1807

The field \=\bfitepsilon \bfita h can be seen as the correction of \=\bfittheta 
\bfita 
h from (A.3) necessary to fulfill the con-

straints on the elementwise product with piecewise vector-valued constants in (A.2).
As one might expect, the patchwise orthogonality assumption (A.1c) turns to be the
key for the following crucial technical result.

Lemma A.4 (existence, uniqueness, and stability of \=\bfitepsilon \bfita h from (A.5)). Let As-
sumption A.1 hold. Then there exists a unique solution \=\bfitepsilon \bfita h to problem (A.5), and the
following stability estimate holds true:

\| \=\bfitepsilon \bfita h\| \omega \bfita \lesssim \| \bfittau \bfita 
h  - \=\bfittheta 

\bfita 
h\| \omega \bfita .(A.6)

We postpone the proof Lemma A.4 to the sections below; let us now first show
that Lemma A.4 implies the results announced in Theorem A.2.

Proof of Theorem A.2. It follows straightforwardly from (A.3) and (A.5) that \=\bfittheta 
\bfita 
h+

\=\bfitepsilon \bfita h lies in the minimization set of (A.2). Consequently, the existence and uniqueness
of (A.2) follows since the minimized functional in (A.2) is convex. Moreover, the
triangle inequality together with Lemma A.4 implies

\| \bfittheta \bfita h  - \bfittau \bfita 
h\| \omega \bfita \leq \| \=\bfittheta \bfita h +\=\bfitepsilon \bfita h  - \bfittau \bfita 

h\| \omega \bfita \leq \| \=\bfitepsilon \bfita h\| \omega \bfita + \| \=\bfittheta \bfita h  - \bfittau \bfita 
h\| \omega \bfita \lesssim \| \=\bfittheta \bfita h  - \bfittau \bfita 

h\| \omega \bfita ,

and we conclude by Lemma A.3.

A.4. Piola mappings. In order to prove the technical results below, we will rely
on Piola mappings. An extensive description may be found in, e.g., [18, Chapters 7.2
and 9.2], and we only list here the essential properties we need.

If U,V \subset \BbbR 3 are open sets with Lipschitz boundaries and \phi : U \rightarrow V is a bi-
Lipschitz mapping, the gradient-preserving, curl-preserving, diverence-preserving, and
broken Piola mappings are the applications \phi g : L2(U) \rightarrow L2(V ), \phi c, \phi d : \bfitL 2(U) \rightarrow 
\bfitL 2(V ), and \phi b :L2(U)\rightarrow L2(V ), respectively, defined by

\phi g(v) = v \circ \phi  - 1, \phi c(\bfitw ) = (\BbbJ  - T\bfitw ) \circ \phi  - 1, \phi d(\bfitw ) =

\biggl( 
\BbbJ 
| \BbbJ | 
\bfitw 

\biggr) 
\circ \phi  - 1, \phi b(v) =

\biggl( 
v

| \BbbJ | 

\biggr) 
\circ \phi  - 1

(A.7)

for all v \in L2(U) and \bfitw \in \bfitL 2(V ), where \BbbJ is the Jacobian matrix of \phi and | \BbbJ | its
determinant. These mappings are invertible. In addition, if \gamma U \subset \partial U and \gamma V := \phi (\gamma U ),
with a similar notation as in section 2.2, then \phi g, \phi c, and \phi d

H1
0,\gamma U(U)\rightarrow H1

0,\gamma V(V ),\bfitH 0,\gamma U(curl,U)\rightarrow \bfitH 0,\gamma V(curl, V ),\bfitH 0,\gamma U(div,U)\rightarrow \bfitH 0,\gamma V(div, V )

(A.8)

are bijections, and more generally, the full, tangential, and normal traces on \gamma U are,
respectively, transported by \phi g, \phi c, and \phi d on \gamma V . The commutativity properties

\phi c(\nabla v) =\nabla (\phi g(v)) \nabla \cdot (\phi d(\bfitw )) = \phi b(\nabla \cdot \bfitw )(A.9)

for v \in H1(U) and \bfitw \in \bfitH (div,U) will be useful. We will also need the formula

((\phi d) - 1(\bfitv ),\bfitw )U = \varepsilon (\bfitv , \phi c(\bfitw ))V \forall \bfitv \in \bfitL 2(V ), \forall \bfitw \in \bfitL 2(U),(A.10)

where \varepsilon is the (constant) sign of the determinant of \BbbJ . Finally, if U is a polyhedron
covered by a tetrahedral mesh \scrT U and \phi | K is affine for each K \in \scrT U , denoting by \scrT V
the tetrahedral mesh of V induced by \phi , then we have the bijections

\phi g :\scrP q(\scrT U )\rightarrow \scrP q(\scrT V ), \phi c :\bfscrN q(\scrT U )\rightarrow \bfscrN q(\scrT V ), \phi d :\bfscrR \bfscrT q(\scrT U )\rightarrow \bfscrR \bfscrT q(\scrT V )(A.11)
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1808 TH\'EOPHILE CHAUMONT-FRELET AND MARTIN VOHRAL\'IK

for all integers q\geq 0. In addition, in this case, we have

\| \phi d\| \| (\phi d) - 1\| \leq C(\kappa \scrT U
, \kappa \scrT V

)(A.12)

with \| \phi d\| denoting the norm operator of \phi d : \bfitL 2(U) \rightarrow \bfitL 2(V ) (and vice versa for
\| (\phi d) - 1\| ) and \kappa \scrT U

, \kappa \scrT V
the shape-regularity constants of \scrT U and \scrT V as in section 2.4.

A.5. A preliminary result. Before proving Lemma A.4, we establish the fol-
lowing preliminary result.

Lemma A.5 (orthogonalities). Let \bfitmu \bfita \in \bfitL 2(\omega \bfita ) satisfy (\bfitmu \bfita ,\nabla qh)\omega \bfita = 0 for all
qh \in \scrP 1(\scrT \bfita )\cap H1

\ast (\omega \bfita ). Then the following set is nonempty:

Wh(\scrT \bfita ,\bfitmu \bfita ) :=

\left\{   \bfitv h \in \bfscrR \bfscrT 1(\scrT \bfita )\cap \bfitH 0(div, \omega \bfita )

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\nabla \cdot \bfitv h = 0
(\bfitv h,\bfitr h)K = (\bfitmu \bfita ,\bfitr h)K
\forall \bfitr h \in [\scrP 0(K)]3, \forall K \in \scrT \bfita 

\right\}   .

Proof. Step 1: Interior patches. We start with the case where the vertex \bfita \in \scrV h
does not lie on the boundary \partial \Omega ; cf. Figure 8 (left). We will construct a particular
element \bfitw h \in Wh(\scrT \bfita ,\bfitmu \bfita ) by an explicit run through the patch \scrT \bfita of tetrahedra
sharing the vertex \bfita \in \scrV h, similarly as in [7, 21]. Specifically, following the concept of
shelling of a polytopal complex (see [38, Theorem 8.12] and [21, Lemma B.1]), there
exists an enumeration Ki, 1 \leq i \leq | \scrT \bfita | , of the tetrahedra in the patch \scrT \bfita such that,
except for the first tetrahedron in the enumeration K1, (i) if there are at least two
faces corresponding to the neighbors of Ki which have been already enumerated, then
all the tetrahedra of \scrT \bfita sharing this edge come sooner in the enumeration, and (ii)
except for the last element K| \scrT \bfita | , there are one or two neighbors of Ki which have
been already enumerated and correspondingly two or one neighbors of Ki which have
not been enumerated yet.

Consider a pass through the patch \scrT \bfita in the sense of the above enumeration. For
the tetrahedron Ki, 1\leq i\leq | \scrT \bfita | , let us denote by \scrF \sharp 

i the faces of Ki corresponding to
the neighbors of Ki which have been already passed through and F j = \partial Ki\cap \partial Kj \in \scrF \sharp 

i

the face corresponding to the neighbor Kj . Also, let F ext
i be the face of Ki lying on

the patch boundary \partial \omega \bfita . Consider the problem

• a Ta

•a
Ki

F ext
i

Fig. 8. Interior vertex patch (left) and the element K1 with the face F \mathrm{e}\mathrm{x}\mathrm{t}
1 (right).
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p-ROBUST EQUILIBRATED FLUX RECONSTRUCTION IN \bfitH (curl) 1809

\bfitw i
h := arg min

\bfitv h\in \bfscrR \bfscrT 1(Ki)
\nabla \cdot \bfitv h=0

\bfitv h\cdot \bfitn Ki
=0 on F \mathrm{e}\mathrm{x}\mathrm{t}

i

\bfitv h\cdot \bfitn Ki
=\bfitw j

h\cdot \bfitn Ki
on all F j\in \scrF \sharp 

i

(\bfitv h,\bfitr h)Ki
=(\bfitmu \bfita ,\bfitr h)Ki

\forall \bfitr h\in [\scrP 0(Ki)]
3

\| \bfitv h  - \bfitmu \bfita \| 2Ki
,(A.13)

similar to (A.5) but reduced to the single tetrahedron Ki. If a solution to (A.13)
exists, for all 1\leq i\leq | \scrT \bfita | , \bfitw h defined as \bfitw h| Ki

:=\bfitw i
h belongs to Wh(\scrT \bfita ,\bfitmu \bfita ). We are

thus left to establish the existence (and uniqueness) of (A.13).
Step 1a: The first element K1. Let us start with the first element K1; cf. Figure 8

(right). Then the set \scrF \sharp 
1 is empty, and the constraints in (A.13) lead us to ask whether

in the first-order Raviart--Thomas space \bfscrR \bfscrT 1(K1) one can impose simultaneously the
divergence, the normal flux through one face, and moments against constant functions.
We will reason by the canonical degrees of freedom (see, e.g., [6, Proposition 2.3.4 and
Figure 2.14.c] or (2.4)) and find a suitable \bfitv h \in \bfscrR \bfscrT 1(K1) satisfying the constraints
in (A.13). First, we see from (2.4) that in \bfscrR \bfscrT 1(K1), the normal flux \bfitv h\cdot \bfitn K1

on F ext
1

can be fixed to zero and that the moments against constants (\bfitv h,\bfitr h)K1 can be fixed
as in (A.13). We still have the freedom to choose the normal fluxes \bfitv h\cdot \bfitn K1 on the
faces of K1 different from F ext

1 , and the question is whether this can be done so as to
fix the divergence of \bfitv h to zero. By [6, Proposition 2.3.3], there holds

\nabla \cdot \bfitv h = 0 \leftrightarrow (\nabla \cdot \bfitv h, qh)K1
= 0 \forall qh \in \scrP 1(K1).

Employing the Green theorem and the fact that \bfitv h\cdot \bfitn K1
= 0 on F ext

1 ,

(\nabla \cdot \bfitv h, qh)K1 = \langle \bfitv h\cdot \bfitn K1 , qh\rangle \partial K1\setminus F \mathrm{e}\mathrm{x}\mathrm{t}
1

 - (\bfitv h,\nabla qh)K1 .

Now, since \nabla qh \in [\scrP 0(K1)]
3, the last term above is fixed from the last constraint in

(A.13), so the question becomes whether can one choose \bfitv h\cdot \bfitn K1 on \partial K1 \setminus F ext
1 such

that

\langle \bfitv h\cdot \bfitn K1 , qh\rangle \partial K1\setminus F \mathrm{e}\mathrm{x}\mathrm{t}
1

= (\bfitmu \bfita ,\nabla qh)K1 \forall qh \in \scrP 1(K1),(A.14)

which gives 4 conditions for the 9 remaining degrees of freedom (there are 4 degrees
of freedom in \scrP 1(K1) and 3 degrees of freedom per face in \bfscrR \bfscrT 1(K1) following [6,
Proposition 2.3.4]).

We proceed as follows. Out of the three faces of K1 different from F ext
1 , choose

one, and impose \bfitv h\cdot \bfitn K1
= 0 therein. Then we are left to set \bfitv h\cdot \bfitn K1

on two faces,
say, F and \widetilde F . For F , consider the three hat basis functions \psi kF , 1 \leq k \leq 3, as in

section 2.4, corresponding to its three vertices. Restricted to \widetilde F , which is necessary a
face neighboring with F , they belong to \scrP 1( \widetilde F ), and one of the restrictions, say, \psi 3

F ,

is zero on \widetilde F . Thus, there holds

\langle \bfitv h\cdot \bfitn K1 ,\psi 
3
F \rangle \widetilde F = 0,

and, following [6, Proposition 2.3.4], we can prescribe

\langle \bfitv h\cdot \bfitn K1
,\psi kF \rangle \widetilde F := 0 1\leq k\leq 2.

Moreover, restricted to F , \psi kF create a basis of \scrP 1(F ), whereas restricted to K1, they
belong to \scrP 1(K1). Thus, we can also set

\langle \bfitv h\cdot \bfitn K1
,\psi kF \rangle F := (\bfitmu \bfita ,\nabla \psi kF )K1

1\leq k\leq 3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

4/
23

 to
 1

28
.9

3.
16

2.
24

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1810 TH\'EOPHILE CHAUMONT-FRELET AND MARTIN VOHRAL\'IK

With the choices made so far, we see that (A.14) holds for the three hat functions \psi kF ,
1 \leq k \leq 3. Finally, consider \psi 4

F , the hat basis function corresponding to the vertex
opposite to the face F . Restricted to F , it is zero, so that

\langle \bfitv h\cdot \bfitn K1
,\psi 4

F \rangle F = 0.

Moreover, restricted to \widetilde F , it completes \psi 1
F and \psi 2

F (restricted to \widetilde F ) to create a basis

of \scrP 1( \widetilde F ), and restricted to K1, it belongs to \scrP 1(K1), so that we can prescribe

\langle \bfitv h\cdot \bfitn K1 ,\psi 
4
F \rangle \widetilde F := (\bfitmu \bfita ,\nabla \psi 4

F )K1 .

Thus, (A.14) also holds for \psi 4
F , and since \psi kF , 1 \leq k \leq 4, restricted to K1 create a

basis of \scrP 1(K1), (A.14) holds true, and a unique \bfitw 1
h from (A.13) exists.

Step 1b: Any element Ki with | \scrF \sharp 
i | = 1. We now investigate those consecutive

elements Ki which are such that two neighbors of Ki have not been passed through
yet. This means that exactly one neighbor of Ki, say, Kj , has already been passed

through, so there is one face F j in the set \scrF \sharp 
i . Since \bfitv h\cdot \bfitn Ki = \bfitw j

h\cdot \bfitn Ki on F j is
requested in (A.13), (A.14) asks if can one choose \bfitv h\cdot \bfitn Ki

on \partial Ki \setminus \{ F ext
i , F j\} such

that

\langle \bfitv h\cdot \bfitn Ki
, qh\rangle \partial Ki\setminus \{ F \mathrm{e}\mathrm{x}\mathrm{t}

i ,F j\} = (\bfitmu \bfita ,\nabla qh)Ki
 - \langle \bfitw j

h\cdot \bfitn Ki
, qh\rangle F j(A.15)

for all qh \in \scrP 1(Ki), which is still undetermined, giving 4 conditions for the 6 remaining
degrees of freedom. The reasoning is similar as for K1. Still denoting F and \widetilde F the
two remaining faces and \psi kF , 1\leq k\leq 4, the hat basis functions, we again have

\langle \bfitv h\cdot \bfitn Ki
,\psi 3

F \rangle \widetilde F = 0, \langle \bfitv h\cdot \bfitn Ki
,\psi 4

F \rangle F = 0.

Moreover, imposing

\langle \bfitv h\cdot \bfitn Ki
,\psi kF \rangle \widetilde F := 0 1\leq k\leq 2,

\langle \bfitv h\cdot \bfitn Ki ,\psi 
4
F \rangle \widetilde F := (\bfitmu \bfita ,\nabla \psi 4

F )Ki  - \langle \bfitw j
h\cdot \bfitn Ki ,\psi 

4
F \rangle F j ,

\langle \bfitv h\cdot \bfitn Ki
,\psi kF \rangle F := (\bfitmu \bfita ,\nabla \psi kF )Ki

 - \langle \bfitw j
h\cdot \bfitn Ki

,\psi kF \rangle F j 1\leq k\leq 3

yields (A.15), and \bfitw i
h exists.

Step 1c: Any element Ki with | \scrF \sharp 
i | = 2. We now investigate those consecutive

elements Ki which are such that only one neighbor of Ki has not been passed through
yet, withKj1 andKj2 already passed through and faces F j1 , F j2 in the set \scrF \sharp 

i . Denote
F the only remaining face, so that F ext

i , F j1 , F j2 , and F are the four faces of the
tetrahedron Ki. As in (A.14) and (A.15), we need to ensure that

\langle \bfitv h\cdot \bfitn Ki
, qh\rangle F = (\bfitmu \bfita ,\nabla qh)Ki

 - \langle \bfitw j1
h \cdot \bfitn Ki

, qh\rangle F j1  - \langle \bfitw j2
h \cdot \bfitn Ki

, qh\rangle F j2(A.16)

for all qh \in \scrP 1(K1). This time, the system is overdetermined in that we request 4
conditions for the 3 remaining degrees of freedom of the normal components \bfitv h\cdot \bfitn Ki

on the face F . As above, we can impose

\langle \bfitv h\cdot \bfitn Ki
,\psi kF \rangle F := (\bfitmu \bfita ,\nabla \psi kF )Ki

 - \langle \bfitw j1
h \cdot \bfitn Ki

,\psi kF \rangle F j1  - \langle \bfitw j2
h \cdot \bfitn Ki

,\psi kF \rangle F j2 1\leq k\leq 3,

which fixes \bfitv h\cdot \bfitn Ki
on the face F . Now, noting that \langle \bfitv h\cdot \bfitn Ki

,\psi 4
F \rangle F = 0, it follows

that to prove (A.16), we need to show that

(\bfitmu \bfita ,\nabla \psi 4
F )Ki

 - \langle \bfitw j1
h \cdot \bfitn Ki

,\psi 4
F \rangle F j1  - \langle \bfitw j2

h \cdot \bfitn Ki
,\psi 4

F \rangle F j2 = 0.(A.17)
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p-ROBUST EQUILIBRATED FLUX RECONSTRUCTION IN \bfitH (curl) 1811

To prove (A.17), recall from property (i) of the enumeration (given that all other
elements sharing the edge e common to F j1 and F j2 have been already passed through)
and the previous steps (see (A.14) and (A.15)) that

\langle \bfitw j
h\cdot \bfitn Kj

,\psi 4
F \rangle \partial Kj

= (\bfitmu \bfita ,\nabla \psi 4
F )Kj

(A.18)

for all the tetrahedra Kj sharing the edge e, different from Ki. Recalling from the
assumptions of Lemma A.5, we have

0 = (\bfitmu \bfita ,\nabla \psi 4
F )\omega \bfita = (\bfitmu \bfita ,\nabla \psi 4

F )\omega e ,(A.19)

where \omega e is the part of \omega \bfita corresponding to the elements sharing the edge e; the last
equality holds since in the vertex patch subdomain \omega \bfita , \psi 

4
F is only supported on the

edge patch subdomain \omega e. Denote by \widetilde \omega e the part of \omega e without the element Ki. Then
the normal traces orientation, the zero normal trace boundary conditions \bfitw j

h\cdot \bfitn Kj
= 0

on the faces F ext
j together with the zero values of \psi 4

F on \partial \omega e\setminus \partial \omega \bfita , the Green theorem

first applied on \widetilde \omega e and later individually on Kj , and the notation \bfitw h| Kj =\bfitw 
j
h for the

previous K\circ 
j \subset \widetilde \omega e give

 - \langle \bfitw j1
h \cdot \bfitn Ki ,\psi 

4
F \rangle F j1  - \langle \bfitw j2

h \cdot \bfitn Ki ,\psi 
4
F \rangle F j2 = \langle \bfitw j1

h \cdot \bfitn \widetilde \omega e
,\psi 4

F \rangle F j1 + \langle \bfitw j2
h \cdot \bfitn \widetilde \omega e

,\psi 4
F \rangle F j2

= \langle \bfitw h\cdot \bfitn \widetilde \omega e
,\psi 4

F \rangle \partial \widetilde \omega e
= (\bfitw h,\nabla \psi 4

F )\widetilde \omega e
+ (\nabla \cdot \bfitw h,\psi 

4
F )\widetilde \omega e

=
\sum 

j;K\circ 
j \subset \widetilde \omega e

\bigl\{ 
(\bfitw j

h,\nabla \psi 
4
F )Kj

+ (\nabla \cdot \bfitw j
h,\psi 

4
F )Kj

\bigr\} 
=

\sum 
j;K\circ 

j \subset \widetilde \omega e

\langle \bfitw j
h\cdot \bfitn Kj

,\psi 4
F \rangle \partial Kj

(A.18)
=

\sum 
j;K\circ 

j \subset \widetilde \omega e

(\bfitmu \bfita ,\nabla \psi 4
F )Kj

= (\bfitmu \bfita ,\nabla \psi 4
F )\omega e

 - (\bfitmu \bfita ,\nabla \psi 4
F )Ki

(A.19)
=  - (\bfitmu \bfita ,\nabla \psi 4

F )Ki
,

(A.20)

which is (A.17). Thus, there exists a unique \bfitw i
h from (A.13) also on this Ki.

Step 1d: The last element K| \scrT \bfita | . According to property (ii) of the enumeration,

the last element K| \scrT \bfita | is such that | \scrF \sharp 
| \scrT \bfita | | = 3, so that all the neighbors have been

already passed through. Consequently, all the degrees of freedom of \bfitv h are fixed from
the last three constraints in (A.13), and we need to show that \nabla \cdot \bfitv h = 0, i.e., that

(\nabla \cdot \bfitv h, qh)K| \scrT \bfita | = 0 \forall qh \in \scrP 1(K| \scrT \bfita | ),

since \nabla \cdot \bfitv h \in \scrP 1(K| \scrT \bfita | ). Using the Green theorem and the constraints in (A.13) as
above, this is equivalent to verifying that

0 = (\bfitmu \bfita ,\nabla \psi kF )K| \scrT \bfita |  - \langle \bfitw j1
h \cdot \bfitn K| \scrT \bfita | ,\psi 

k
F \rangle F j1

 - \langle \bfitw j2
h \cdot \bfitn K| \scrT \bfita | ,\psi 

k
F \rangle F j2  - \langle \bfitw j3

h \cdot \bfitn K| \scrT \bfita | ,\psi 
k
F \rangle F j3

(A.21)

for all 1 \leq k \leq 4, where F j1 , F j2 , F j3 are the three faces in \scrF \sharp 
| \scrT \bfita | and \psi kF are

the hat basis functions associated with the four vertices of K| \scrT \bfita | . As in (A.19), the
assumptions of Lemma A.5 imply

0 = (\bfitmu \bfita ,\nabla \psi kF )\omega \bfita 1\leq k\leq 4.(A.22)

Moreover, as in (A.18), it follows from (A.14), (A.15), and (A.16) that

\langle \bfitw j
h\cdot \bfitn Kj ,\psi 

k
F \rangle \partial Kj = (\bfitmu \bfita ,\nabla \psi kF )Kj 1\leq k\leq 4(A.23)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

4/
23

 to
 1

28
.9

3.
16

2.
24

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1812 TH\'EOPHILE CHAUMONT-FRELET AND MARTIN VOHRAL\'IK

is satisfied on all elements Kj of the patch \scrT \bfita other than K| \scrT \bfita | . Let \widetilde \omega \bfita correspond
to the patch subdomain \omega \bfita without the element K| \scrT \bfita | . Then, as in (A.20),

 - \langle \bfitw j1
h \cdot \bfitn K| \scrT \bfita | ,\psi 

k
F \rangle F j1  - \langle \bfitw j2

h \cdot \bfitn K| \scrT \bfita | ,\psi 
k
F \rangle F j2  - \langle \bfitw j3

h \cdot \bfitn K| \scrT \bfita | ,\psi 
k
F \rangle F j3

= \langle \bfitw j1
h \cdot \bfitn \widetilde \omega \bfita 

,\psi kF \rangle F j1 + \langle \bfitw j2
h \cdot \bfitn \widetilde \omega \bfita 

,\psi kF \rangle F j2 + \langle \bfitw j2
h \cdot \bfitn \widetilde \omega \bfita 

,\psi kF \rangle F j3

= \langle \bfitw h\cdot \bfitn \widetilde \omega \bfita 
,\psi kF \rangle \partial \widetilde \omega \bfita 

= (\bfitw h,\nabla \psi kF )\widetilde \omega \bfita 
+ (\nabla \cdot \bfitw h,\psi 

k
F )\widetilde \omega \bfita 

=
\sum 

j;K\circ 
j \subset \widetilde \omega \bfita 

\bigl\{ 
(\bfitw j

h,\nabla \psi 
k
F )Kj

+ (\nabla \cdot \bfitw j
h,\psi 

k
F )Kj

\bigr\} 
=

\sum 
j;K\circ 

j \subset \widetilde \omega \bfita 

\langle \bfitw j
h\cdot \bfitn Kj

,\psi kF \rangle \partial Kj

(A.23)
=

\sum 
j;K\circ 

j \subset \widetilde \omega \bfita 

(\bfitmu \bfita ,\nabla \psi kF )Kj
= (\bfitmu \bfita ,\nabla \psi kF )\omega \bfita  - (\bfitmu \bfita ,\nabla \psi kF )K| \scrT \bfita | 

(A.22)
=  - (\bfitmu \bfita ,\nabla \psi kF )K| \scrT \bfita | 

for all 1\leq k\leq 4, i.e., (A.21). Thus, there exists a minimizer \bfitw 
| \scrT \bfita | 
h of (A.13) on K| \scrT \bfita | .

Step 2: Boundary patches with flat boundaries. We now investigate the case where
the vertex \bfita \in \scrV h lies on the boundary \partial \Omega . We present in this step in detail the case
of a boundary patch \scrT \bfita for which \Gamma \bfita , the part of \partial \omega \bfita that contains the faces sharing
the vertex \bfita , is contained in a plane \bfitH , which we call a ``flat boundary"" case. For
the sake of simplicity, assume that either \Gamma \bfita \subset \Gamma D or \Gamma \bfita \subset \Gamma N and, without loss
generality, that H = \{ \bfitx \in \BbbR 3; \bfitx 3 = 0\} . The symmetrization operator around the
plane \bfitH , \phi :\bfitx = (\bfitx 1,\bfitx 2,\bfitx 3)\rightarrow (\bfitx 1,\bfitx 2, - \bfitx 3), as in [21, section 7] and [11, section 7],
will be instrumental in the proof. Specifically, we introduce the symmetrized patch\widetilde \scrT \bfita := \scrT \bfita \cup \phi (\scrT \bfita ), with the associated domain \widetilde \omega \bfita , obtained by mapping the elements of
\scrT \bfita by \phi . We will employ the Piola mappings from (A.7) to relate the set Wh(\scrT \bfita ,\bfitmu \bfita )
from the announcement of Lemma A.5 to a set Wh(\widetilde \scrT \bfita , \widetilde \bfitmu \bfita ) with an extended datum\widetilde \bfitmu \bfita . Then the result will follow by Step 1 since \widetilde \scrT \bfita is an interior patch.

Step 2a: The case \bfita \in \Gamma D. We start by defining the extended datum \widetilde \bfitmu \bfita \in 
\bfitL 2(\widetilde \omega \bfita ) from \bfitmu \bfita : We simply set \widetilde \bfitmu \bfita := \bfitmu \bfita in \omega \bfita and \widetilde \bfitmu \bfita := \phi d(\bfitmu \bfita ) on \widetilde \omega \bfita \setminus \omega \bfita . Let\widetilde qh \in \scrP 1(\widetilde \scrT \bfita ) \cap H1

\ast (\widetilde \omega \bfita ). Recalling that \phi is a symmetrization operator, its (constant)
Jacobian matrix has a negative determinant. As a result, using (A.10) and (A.9),

(\widetilde \bfitmu \bfita ,\nabla \widetilde qh)\widetilde \omega \bfita 
=(\bfitmu \bfita ,\nabla \widetilde qh)\omega \bfita +(\phi d(\bfitmu \bfita ),\nabla \widetilde qh)\widetilde \omega \bfita \setminus \omega \bfita 

=(\bfitmu \bfita ,\nabla \widetilde qh)\omega \bfita  - (\bfitmu \bfita , (\phi c) - 1(\nabla \widetilde qh))\omega \bfita 

=(\bfitmu \bfita ,\nabla \widetilde qh)\omega \bfita  - (\bfitmu \bfita ,\nabla ((\phi g) - 1(\widetilde qh)))\omega \bfita =(\bfitmu \bfita ,\nabla qh)\omega \bfita 

with qh := \widetilde qh  - (\phi g) - 1(\widetilde qh). Because (\phi g) - 1 preserves the trace on \bfitH , we see that
qh = 0 on \bfitH (see (A.8)), and since it also maps piecewise polynomials to piecewise
polynomials (see (A.11)), qh \in \scrP 1(\scrT \bfita )\cap H1

\ast (\omega \bfita ) (recall from section 2.7 that H1
\ast (\omega \bfita ) =

\{ v \in H1(\omega \bfita ); v = 0 on \gamma D = \Gamma \bfita \} here). Hence, (\widetilde \bfitmu \bfita ,\nabla \widetilde qh)\widetilde \omega \bfita 
= 0 by our assumption

(\bfitmu \bfita ,\nabla qh)\omega \bfita = 0. Thus, \widetilde \bfitmu \bfita satisfies the assumption of Lemma A.5 on the interior
patch \widetilde \scrT \bfita , and therefore Step 1 ensures that the set Wh(\widetilde \scrT \bfita , \widetilde \bfitmu \bfita ) is nonempty.

We now consider an arbitrary element \widetilde \bfitw h \in Wh(\widetilde \scrT \bfita , \widetilde \bfitmu \bfita ) and set \bfitw h := \widetilde \bfitw h| \omega \bfita .
Since \widetilde \bfitw h \in \bfscrR \bfscrT 1(\widetilde \scrT \bfita ) \cap \bfitH 0(div, \widetilde \omega \bfita ), it is clear that \bfitw h \in \bfscrR \bfscrT 1(\scrT \bfita ) \cap \bfitH 0(div, \omega \bfita ),
namely as no normal trace boundary conditions are required on \Gamma \bfita \subset H. Indeed,
in this case, \Gamma \bfita = \gamma D in the notation of section 2.7, so that \bfitH 0(div, \omega \bfita ) = \{ \bfitv \in 
\bfitH (div, \omega \bfita ); \bfitv \cdot \bfitn \omega \bfita = 0 on \partial \omega \bfita \setminus \Gamma \bfita \} . Moreover, \nabla \cdot \bfitw h = \nabla \cdot \widetilde \bfitw h = 0 on \omega \bfita . Finally,
(\bfitw h,\bfitr h)K = (\bfitmu \bfita ,\bfitr h)K for all \bfitr h \in [\scrP 0(K)]3 and all K \in \scrT \bfita since \scrT \bfita \subset \widetilde \scrT \bfita and
simply (\bfitw h,\bfitr h)K = ( \widetilde \bfitw h,\bfitr h)K , (\bfitmu \bfita ,\bfitr h)K = (\widetilde \bfitmu \bfita ,\bfitr h)K , and \widetilde \bfitw h \in Wh(\widetilde \scrT \bfita , \widetilde \bfitmu \bfita ), so
that ( \widetilde \bfitw h,\bfitr h)K = (\widetilde \bfitmu \bfita ,\bfitr h)K . This concludes the proof that the set Wh(\scrT \bfita ,\bfitmu \bfita ) is
nonempty in this case.
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p-ROBUST EQUILIBRATED FLUX RECONSTRUCTION IN \bfitH (curl) 1813

Step 2b: The case \bfita \in \Gamma N. In this case, we extend the datum \bfitmu \bfita by setting\widetilde \bfitmu \bfita :=\bfitmu \bfita on \omega \bfita and \widetilde \bfitmu \bfita := 0 on \widetilde \omega \bfita \setminus \omega \bfita . If \widetilde qh \in \scrP 1(\widetilde \scrT \bfita )\cap H1
\ast (\widetilde \omega \bfita ), we have

(\widetilde \bfitmu \bfita ,\nabla \widetilde qh)\widetilde \omega \bfita 
= (\bfitmu \bfita ,\nabla \widetilde qh)\omega \bfita = 0

since \widetilde qh| \omega \bfita \in \scrP 1(\scrT \bfita )\cap H1(\omega \bfita ), whose gradients have the same span as those of \scrP 1(\scrT \bfita )\cap 
H1

\ast (\omega \bfita ), the zero mean value subspace of \scrP 1(\scrT \bfita ) \cap H1(\omega \bfita ) following section 2.7 in
this case. It thus follows from Step 1 that Wh(\widetilde \scrT \bfita , \widetilde \bfitmu \bfita ) is nonempty.

Consider an element \widetilde \bfitw h \in Wh(\widetilde \scrT \bfita , \widetilde \bfitmu \bfita ), and set \bfitw h := \widetilde \bfitw h| \omega \bfita  - (\phi d) - 1( \widetilde \bfitw h| \widetilde \omega \bfita \setminus \omega \bfita 
).

We need to show that \bfitw h \in Wh(\scrT \bfita ,\bfitmu \bfita ). Recall that here the functions in\bfitH 0(div, \omega \bfita )
need to satisfy the no-flow boundary condition on the whole patch boundary \partial \omega \bfita 

and in particular on \bfitH : \bfitH 0(div, \omega \bfita ) = \{ \bfitv \in \bfitH (div, \omega \bfita ); \bfitv \cdot \bfitn \omega \bfita = 0 on \partial \omega \bfita \} from
section 2.7 in this case. Since the Piola mapping (\phi d) - 1 maps piecewise Raviart--
Thomas polynomials to piecewise Raviart--Thomas polynomials (cf. (A.11)) and pre-
serves the divergence (cf. (A.9)) and the normal trace (cf. (A.8)), it is clear that
\bfitw h \in \bfscrR \bfscrT 1(\scrT \bfita ) \cap \bfitH 0(div, \omega \bfita ) and \nabla \cdot \bfitw h = 0. It remains to show that (\bfitw h,\bfitr h)K =
(\bfitmu \bfita ,\bfitr h)K for all \bfitr h \in [\scrP 0(K)]3 and all K \in \scrT \bfita . Let K \in \scrT \bfita and \bfitr h \in [\scrP 0(K)]3, and
let \widetilde K be the tetrahedron corresponding to K by the symmetry map \phi . Then

(\bfitw h,\bfitr h)K = ( \widetilde \bfitw h,\bfitr h)K  - ((\phi d) - 1( \widetilde \bfitw h),\bfitr h)K = ( \widetilde \bfitw h,\bfitr h)K + ( \widetilde \bfitw h, \phi 
c(\bfitr h)) \widetilde K

= (\widetilde \bfitmu \bfita ,\bfitr h)K + (\widetilde \bfitmu \bfita , \phi c(\bfitr h)) \widetilde K = (\widetilde \bfitmu \bfita ,\bfitr h)K = (\bfitmu \bfita ,\bfitr h)K ,

where we have used (A.10), the fact that the Piola mapping \phi c maps piecewise con-
stant vectors onto piecewise constant vectors (this can be seen from the definition
(A.7) of \phi c since its Jacobian matrix is constant here), that \widetilde \bfitw h \in Wh(\widetilde \scrT \bfita , \widetilde \bfitmu \bfita ), and fi-
nally that \widetilde \bfitmu \bfita is the extension of \bfitmu \bfita by zero to the symmetrized patch. This concludes
the proof that Wh(\scrT \bfita ,\bfitmu \bfita ) is nonempty in this case.

Step 3: General boundary patches. For general boundary patches, the proof
follows the lines of Step 2 while employing the extension and restriction operators
introduced in [11, section 7] instead of the (simpler) symmetrization operator \phi of
Step 2. We do not give details here.

A.6. Proof of Lemma A.4. We can now finally establish a proof of Lemma A.4.

Proof of Lemma A.4. Step 1: Existence and uniqueness. The minimization set in
(A.5) is the setWh(\scrT \bfita ,\bfitmu \bfita ) of Lemma A.5 with \bfitmu \bfita := \bfittau \bfita 

h - \=\bfittheta 
\bfita 
h . Since the minimization

functional in (A.5) is convex, it is sufficient to show that Wh(\scrT \bfita ,\bfitmu \bfita ) is nonempty to
ensure the existence and uniqueness of \=\bfitepsilon \bfita h from (A.5). From Lemma A.5, we need to
show that (\bfitmu \bfita ,\nabla qh)\omega \bfita = 0 for all qh \in \scrP 1(\scrT \bfita ) \cap H1

\ast (\omega \bfita ). This is actually a direct
consequence of assumption (A.1c). Indeed, from the divergence constraint in (A.3)
and since q\prime \geq 1 and qh \in \scrP 1(\scrT \bfita )\cap H1

\ast (\omega \bfita ), we have

(\bfitmu \bfita ,\nabla qh)\omega \bfita = (\bfittau \bfita 
h ,\nabla qh)\omega \bfita  - (\=\bfittheta 

\bfita 
h ,\nabla qh)\omega \bfita = (\bfittau \bfita 

h ,\nabla qh)\omega \bfita + (\nabla \cdot \=\bfittheta \bfita h , qh)\omega \bfita 

= (\bfittau \bfita 
h ,\nabla qh)\omega \bfita + (\Pi q\prime (g

\bfita ), qh)\omega \bfita = (\bfittau \bfita 
h ,\nabla qh)\omega \bfita + (g\bfita , qh)\omega \bfita 

(A.1c)
= 0.

Step 2: Stability bound. We now proceed with the proof of the stability (A.6).
Step 2a: Generic stability bound. Set again \bfitmu \bfita := \bfittau \bfita 

h  - \=\bfittheta 
\bfita 
h , and denote by

\bfitmu \bfita 
h the \bfitL 2(\omega \bfita )-orthogonal projection of \bfitmu \bfita onto [\scrP 1(\scrT \bfita )]3. Considering the Euler

(--Lagrange) equations associated with (A.5), it is clear that we can equivalently re-
place \bfitmu \bfita by \bfitmu \bfita 

h in the definition (A.5) of \=\bfitepsilon \bfita h . Furthermore, because (A.5) is a quadratic
minimization problem with linear constraints, the operator T : [\scrP 1(\scrT \bfita )]3 \ni \bfitmu \bfita 

h \rightarrow \=\bfitepsilon \bfita h \in 
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1814 TH\'EOPHILE CHAUMONT-FRELET AND MARTIN VOHRAL\'IK

\bfscrR \bfscrT 1(\scrT \bfita )\cap \bfitH 0(div, \omega \bfita ) (well-defined from Step 1) is linear. Since both [\scrP 1(\scrT \bfita )]3 and
\bfscrR \bfscrT 1(\scrT \bfita ) \cap \bfitH 0(div, \omega \bfita ) are finite-dimensional spaces, the operator T is continuous,
and there exists a constant C(\scrT \bfita ) such that

\| \=\bfitepsilon \bfita h\| \omega \bfita \leq C(\scrT \bfita )\| \bfitmu \bfita 
h\| \omega \bfita \leq C(\scrT \bfita )\| \bfitmu \bfita \| \omega \bfita ,(A.24)

where we used the fact that \bfitmu \bfita 
h is defined from \bfitmu \bfita by projection in the last inequality.

The constant C(\scrT \bfita ) is independent of the polynomial degree q (recall that (A.5) works
with \bfscrR \bfscrT 1 elements only) but depends on the patch \scrT \bfita in an unspecified way. To make
the dependence explicit, we resort in the next step to a reference patch.

Step 2b: Explicit stability bound. For a fixed shape-regularity parameter \kappa \scrT h
from

section 2.4, there exists a maximal number of elements N(\kappa \scrT h
) allowed in any patch

\scrT \bfita . In turn, for any N(\kappa \scrT h
), there exists a finite set of reference patches \{ \widehat \scrT \} such

that for all vertex patches \scrT \bfita , there exists a reference patch \widehat \scrT and a bi-Lipschitz
mapping \phi : \omega \bfita \rightarrow \widehat \omega (\widehat \omega being the open domain associated with \widehat \scrT ) such that \phi | K is
an affine mapping between the tetrahedron K \in \scrT \bfita and a tetrahedron \widehat K \in \widehat \scrT . The
associated Piola mapping \phi d from (A.7) will be useful.

Crucially, we observe that for all \widehat K \in \widehat \scrT , \bfitv \in \bfitL 2(K), and \widehat \bfitr h \in [\scrP 0( \widehat K)]3, there
exists \bfitr h \in [\scrP 0(K)]3 such that (\phi d(\bfitv ), \widehat \bfitr h) \widehat K = (\bfitv ,\bfitr h)K since, elementwise, the Pi-
ola transform amounts to a multiplication by a constant matrix and a change of
coordinates. It follows that \phi d maps the minimization set of (A.5) on \scrT \bfita into the
minimization set of the equivalent problem set on \widehat \scrT with constraints \phi d(\bfitmu \bfita ).

Now, on the reference patch \widehat \scrT , if \widehat \bfitepsilon h is the minimizer of (A.5) with the datum
\phi d(\bfitmu \bfita ), we conclude from Step 2a that

\| \widehat \bfitepsilon h\| \widehat \omega \leq C(\kappa \scrT h
)\| \phi d(\bfitmu \bfita )\| \widehat \omega \leq C(\kappa \scrT h

)\| \phi d\| \| \bfitmu \bfita \| \omega \bfita .

On the other hand, since (\phi d) - 1(\widehat \bfitepsilon h) belongs the minimization set on \scrT \bfita , we have

\| \=\bfitepsilon \bfita h  - \bfitmu \bfita \| \omega \bfita \leq \| (\phi d) - 1(\widehat \bfitepsilon h) - \bfitmu \bfita \| \omega \bfita \leq \| (\phi d) - 1\| \| \widehat \bfitepsilon h\| \widehat \omega + \| \bfitmu \bfita \| \omega \bfita ,

so that

\| \=\bfitepsilon \bfita h  - \bfitmu \bfita \| \omega \bfita \leq (1 +C(\kappa \scrT h
)\| (\phi d) - 1\| \| \phi d\| )\| \bfitmu \bfita \| \omega \bfita .

At this point, we conclude the proof since \| (\phi d) - 1\| \| \phi d\| only depends on \kappa \scrT h
due to

(A.12) and \| \=\bfitepsilon \bfita h\| \omega \bfita \leq \| \bfitmu \bfita \| \omega \bfita + \| \=\bfitepsilon \bfita h  - \bfitmu \bfita \| \omega \bfita .

Appendix B. Decomposition of a divergence-free piecewise polynomial
with an elementwise orthogonality into local divergence-free contributions.
Let q \geq 0 be a fixed integer, and recall the notation of section 2; namely, \bfitI \bfscrR \bfscrT 

K,q is the
canonical q-degree Raviart--Thomas interpolate on the given mesh element K \in \scrT h
from (2.4), and \lesssim means smaller or equal to up to a constant only depending on
the mesh shape-regularity parameter \kappa \scrT h

. The following result is of independent
interest.

Theorem B.1 (decomposition of a divergence-free Raviart--Thomas piecewise
polynomial with an elementwise orthogonality constraint into local divergence-free
contributions). Let

\bfitdelta h \in \bfscrR \bfscrT q(\scrT h)\cap \bfitH 0,N(div,\Omega ) with \nabla \cdot \bfitdelta h = 0(B.1)

be a divergence-free q-degree Raviart--Thomas piecewise polynomial that is elementwise
orthogonal to vector-valued constants:

(\bfitdelta h,\bfitr h)K = 0 \forall \bfitr h \in [\scrP 0(K)]3, \forall K \in \scrT h.(B.2)
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p-ROBUST EQUILIBRATED FLUX RECONSTRUCTION IN \bfitH (curl) 1815

Then there exists a unique solution to the q\prime -degree Raviart--Thomas elementwise min-
imizations, q\prime = q or q\prime = q+ 1,

\bfitdelta \bfita h | K := arg min
\bfitv h\in \bfscrR \bfscrT q\prime (K)

\nabla \cdot \bfitv h=0
\bfitv h\cdot \bfitn K=\bfitI \bfscrR \bfscrT 

K,q\prime ((\psi 
\bfita \bfitdelta h)| K)\cdot \bfitn K on \partial K

\| \bfitv h  - \bfitI \bfscrR \bfscrT 
K,q\prime ((\psi 

\bfita \bfitdelta h)| K)\| 2K(B.3)

for all tetrahedra K \in \scrT h and all vertices \bfita \in \scrV K . This yields patchwise divergence-free
contributions

\bfitdelta \bfita h \in \bfscrR \bfscrT q\prime (\scrT \bfita )\cap \bfitH 0(div, \omega \bfita ) with \nabla \cdot \bfitdelta \bfita h = 0 \forall \bfita \in \scrV h,(B.4)

decomposing \bfitdelta h as

\bfitdelta h =
\sum 
\bfita \in \scrV h

\bfitdelta \bfita h .(B.5)

Moreover, for all tetrahedra K \in \scrT h and all vertices \bfita \in \scrV K , there hold the local
stability estimates

\| \bfitdelta \bfita h  - \bfitI 
\bfscrR \bfscrT 
K,q\prime ((\psi 

\bfita \bfitdelta h)| K)\| K \lesssim \| \bfitdelta h\| K ,(B.6a)

\| \bfitdelta \bfita h\| K \lesssim q\prime \| \bfitdelta h\| K ,(B.6b)

where \lesssim q\prime means \lesssim for q\prime = q + 1 and up to a constant only depending on the mesh
shape-regularity parameter \kappa \scrT h

and the degree q when q\prime = q.

Remark B.2 (the two settings q\prime = q or q\prime = q+1 in Theorem B.1). With the choice
q\prime = q, the contributions \bfitdelta \bfita h in Theorem B.1 stay in the same degree Raviart--Thomas
space as the datum \bfitdelta h, but, unfortunately, the stability (B.6b) is not necessarily q-
robust. For q-robustness, the choice q\prime = q + 1, increasing the degree of \bfitdelta \bfita h by one,
is to be used. Note that in this case, the Raviart--Thomas interpolator \bfitI \bfscrR \bfscrT 

K,q\prime can be

disregarded since then \bfitI \bfscrR \bfscrT 
K,q\prime ((\psi 

\bfita \bfitdelta h)| K) = (\psi \bfita \bfitdelta h)| K .

Proof. Let \bfitdelta h satisfy (B.1) and (B.2). We address (B.3)--(B.6) in four steps.
Step 1: Proof of the well-posedness of (B.3). Fix K \in \scrT h and \bfita \in \scrV K . The

existence and uniqueness of \bfitdelta \bfita h | K from (B.3) are classical following, e.g., [6], when the
Neumann compatibility condition \langle \bfitI \bfscrR \bfscrT 

K,q\prime ((\psi 
\bfita \bfitdelta h)| K)\cdot \bfitn K ,1\rangle \partial K = 0 is satisfied. This

can be shown via (2.4a), the Green theorem, the assumption \nabla \cdot \bfitdelta h = 0 in (B.1), and
the elementwise orthogonality assumption (B.2) (note that (\nabla \psi \bfita )| K \in [\scrP 0(K)]3) as

\langle \bfitI \bfscrR \bfscrT 
K,q\prime ((\psi 

\bfita \bfitdelta h)| K)\cdot \bfitn K ,1\rangle \partial K = \langle \psi \bfita \bfitdelta h\cdot \bfitn K ,1\rangle \partial K = \langle \bfitdelta h\cdot \bfitn K ,\psi \bfita \rangle \partial K
= (\nabla \cdot \bfitdelta h,\psi \bfita )K + (\bfitdelta h,\nabla \psi \bfita )K = 0.

Step 2: Proof of the stability estimates (B.6). Still for a fixed K \in \scrT h and \bfita \in \scrV K ,
consider the problem

\^\bfitdelta 
\bfita 

h | K := arg min
\bfitv h\in \bfscrR \bfscrT q\prime (K)

\nabla \cdot \bfitv h=( - \nabla \psi \bfita \cdot \bfitdelta h)| K
\bfitv h\cdot \bfitn K=0 on \partial K

\| \bfitv h\| 2K .(B.7)

This problem is again well-posed since from (B.2), (\nabla \psi \bfita \cdot \bfitdelta h,1)K = (\bfitdelta h,\nabla \psi \bfita )K = 0;
moreover, (\nabla \psi \bfita \cdot \bfitdelta h)| K \in \scrP q(K) \subset \scrP q\prime (K) since from \nabla \cdot \bfitdelta h = 0, it follows that

\bfitdelta h| K \in [\scrP q(K)]3 (see, e.g., [6, Corollary 2.3.1]). It follows that \^\bfitdelta 
\bfita 

h | K = \bfitdelta \bfita h | K  - 
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1816 TH\'EOPHILE CHAUMONT-FRELET AND MARTIN VOHRAL\'IK

\bfitI \bfscrR \bfscrT 
K,q\prime ((\psi 

\bfita \bfitdelta h)| K); indeed, the commuting property (2.5) yields, on the simplex K,

\nabla \cdot (\bfitI \bfscrR \bfscrT 
K,q\prime (\psi 

\bfita \bfitdelta h)) = \scrP q\prime (\nabla \cdot (\psi \bfita \bfitdelta h)) = \scrP q\prime (\nabla \psi \bfita \cdot \bfitdelta h) =\nabla \psi \bfita \cdot \bfitdelta h. Problem (B.7) fits the
framework of [21, Lemma A.3] with rF = 0, rK = ( - \nabla \psi \bfita \cdot \bfitdelta h)| K , and p= q\prime , so that

\| \bfitdelta \bfita h  - \bfitI 
\bfscrR \bfscrT 
K,q\prime ((\psi 

\bfita \bfitdelta h)| K)\| K = \| \^\bfitdelta 
\bfita 

h\| K = min
\bfitv h\in \bfscrR \bfscrT q\prime (K)

\nabla \cdot \bfitv h= - \nabla \psi \bfita \cdot \bfitdelta h
\bfitv h\cdot \bfitn K=0 on \partial K

\| \bfitv h\| K \lesssim min
\bfitv \in \bfitH (div,K)

\nabla \cdot \bfitv = - \nabla \psi \bfita \cdot \bfitdelta h
\bfitv \cdot \bfitn K=0 on \partial K

\| \bfitv \| K = \| \nabla \zeta K\| K .

Here, by the primal-dual equivalence, \zeta K \in H1
\ast (K) is such that

(\nabla \zeta K ,\nabla v)K = - (\nabla \psi \bfita \cdot \bfitdelta h, v)K \forall v \in H1
\ast (K)

with H1
\ast (K) := \{ v \in H1(K); (v,1)K = 0\} , where the Poincar\'e inequality gives \| v\| K \lesssim 

hK\| \nabla v\| K . Then the Cauchy--Schwarz inequality and shape regularity yield

\| \nabla \zeta K\| K= max
v\in H1

\ast (K)
\| \nabla v\| K=1

(\nabla \zeta K ,\nabla v)K= max
v\in H1

\ast (K)
\| \nabla v\| K=1

 - (\nabla \psi \bfita \cdot \bfitdelta h, v)K\lesssim \| \nabla \psi \bfita \| \infty ,K\| \bfitdelta h\| KhK\lesssim \| \bfitdelta h\| K .

Combining the two above estimates gives the desired stability result (B.6a). The other
stability result (B.6b) follows from (B.6a) by the triangle inequality together with the
non-q-robust stability bound \| \bfitI \bfscrR \bfscrT 

K,q\prime ((\psi 
\bfita \bfitdelta h)| K)\| K \lesssim q\prime \| \psi \bfita \bfitdelta h\| K \leq \| \bfitdelta h\| K when q\prime = q,

whereas \| \bfitI \bfscrR \bfscrT 
K,q\prime ((\psi 

\bfita \bfitdelta h)| K)\| K = \| \psi \bfita \bfitdelta h\| K \leq \| \bfitdelta h\| K when q\prime = q+ 1.
Step 3: Proof of the patchwise properties (B.4). The first property in (B.4) follows

from the prescription of the normal components in (B.3), whereas the second one is
the divergence prescription in (B.3).

Step 4: Proof of the decomposition (B.5). Finally, in order to prove (B.5), set
\~\bfitdelta h :=

\sum 
\bfita \in \scrV h

\bfitdelta \bfita h . Now fix an element K \in \scrT h, and remark that from the normal trace

constraint in (B.3) and the linearity of the interpolator \bfitI \bfscrR \bfscrT 
K,q\prime , on \partial K,

\~\bfitdelta h| K \cdot \bfitn K =
\sum 

\bfita \in \scrV K

\bfitdelta \bfita h | K \cdot \bfitn K =
\sum 

\bfita \in \scrV K

\bfitI \bfscrR \bfscrT 
K,q\prime ((\psi 

\bfita \bfitdelta h)| K)\cdot \bfitn K = \bfitI \bfscrR \bfscrT 
K,q\prime 

\Biggl[ \sum 
\bfita \in \scrV K

(\psi \bfita \bfitdelta h)| K

\Biggr] 
\cdot \bfitn K

= \bfitI \bfscrR \bfscrT 
K,q\prime (\bfitdelta h| K)\cdot \bfitn K = \bfitdelta h| K \cdot \bfitn K

also using the partition of unity (2.1). Similarly, by the divergence constraint in (B.3)
and \nabla \cdot \bfitdelta h = 0 from (B.1), on K,

\nabla \cdot \~\bfitdelta h =
\sum 

\bfita \in \scrV K

\nabla \cdot \bfitdelta \bfita h = 0=\nabla \cdot \bfitdelta h.

Consequently, (\~\bfitdelta h  - \bfitdelta h)| K \in \bfscrR \bfscrT q\prime (K) has zero normal trace and divergence. More-
over, the Euler conditions of problem (B.3) state

(\bfitdelta \bfita h  - \bfitI 
\bfscrR \bfscrT 
K,q\prime ((\psi 

\bfita \bfitdelta h)| K),\bfitv h)K = 0 \forall \bfitv h \in \bfscrR \bfscrT q\prime (K) with \nabla \cdot \bfitv h = 0 and \bfitv h\cdot \bfitn K = 0

on \partial K. Summing this over all vertices \bfita \in \scrV K and using again the linearity of \bfitI \bfscrR \bfscrT 
K,q\prime ,

(\~\bfitdelta h  - \bfitdelta h,\bfitv h)K = 0 \forall \bfitv h \in \bfscrR \bfscrT q\prime (K) with \nabla \cdot \bfitv h = 0 and \bfitv h\cdot \bfitn K = 0 on \partial K,

so that indeed \~\bfitdelta h = \bfitdelta h on any mesh element K \in \scrT h.
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